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Abstract T. Rado conjectured in 1928 that if F is a finite set of axis-parallel squares
in the plane, then there exists an independent subset I ⊆ F of pairwise disjoint
squares, such that I covers at least 1/4 of the area covered by F . He also showed
that the greedy algorithm (repeatedly choose the largest square disjoint from those
previously selected) finds an independent set of area at least 1/9 of the area covered
by F . The analogous question for other shapes and many similar problems have been
considered by R. Rado in his three papers (in Proc. Lond. Math. Soc. 51:232–264,
1949; 53:243–267, 1951; and J. Lond. Math. Soc. 42:127–130, 1968) on this sub-
ject. After 45 years, Ajtai (in Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys.
21:61–63, 1973) came up with a surprising example disproving T. Rado’s conjec-
ture. We revisit Rado’s problem and present improved upper and lower bounds for
squares, disks, convex bodies, centrally symmetric convex bodies, and others, as well
as algorithmic solutions to these variants of the problem.
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1 Introduction

Rado’s problem on selecting disjoint squares is a famous unsolved problem in geom-
etry [5, Problem D6]: What is the largest number c such that, for any finite set F
of axis-parallel squares in the plane, there exists an independent subset I ⊆ F of
pairwise disjoint squares with total area at least c times the union area of the squares
in F ? T. Rado [14] observed that a greedy algorithm, which repeatedly selects the
largest square disjoint from those previously selected, finds an independent subset I
of disjoint squares with total area at least 1/9 of the area of the union of all squares
in F . This lower bound has been improved by R. Rado [15] to 1/8.75 in 1949, and
further improved by Zalgaller [22] to 1/8.6 in 1960. On the other hand, an upper
bound of 1/4 for the area ratio is obvious: take four unit squares sharing a common
vertex, then only one of them may be selected.

T. Rado conjectured that, for any finite set of axis-parallel squares, at least 1/4 of
the union area can be covered by a subset of disjoint squares. For congruent squares,
the conjecture was confirmed by Norlander [11], Sokolin [19], and Zalgaller [22].
For the general case, Ajtai [1] came up with an ingenious construction with several
hundred squares and disproved T. Rado’s conjecture in 1973! The problem of select-
ing disjoint squares has also been considered by R. Rado in a more general setting
for various classes of convex bodies, in his three papers entitled “Some covering the-
orems” [15–17].

We introduce some definitions. Throughout the paper, the term “convex body”
refers to a compact convex set with nonempty interior. For a convex body S in R

d ,
denote by |S| the Lebesgue measure of S, i.e., the length when d = 1, the area when
d = 2, or the volume when d ≥ 3. For a finite set F of convex bodies in R

d , denote
by |F | = |⋃S∈F S| the Lebesgue measure of the union of the convex bodies in F ;
when d = 2, we call |F | the union area of F . For a convex body S in R

d , define

F(S) = inf
F

sup
I

|I|
|F | ,

where F ranges over all finite sets of convex bodies in R
d that are homothetic to S,

and I ranges over all independent subsets of F . Also define

f (S) = inf
F1

sup
I

|I|
|F1| ,

where F1 ranges over all finite sets of convex bodies in R
d that are homothetic and

congruent to S, and I ranges over all independent subsets of F1.
For the one-dimensional case, it is known that f (S) = F(S) = 1/2 for an inter-

val S [2, 15]. The aforementioned results of Zalgaller [22] and Ajtai [1], respectively,
give lower and upper bounds of 1/8.6 ≤ F(S) ≤ 1/4 − 1/1728 for a square S. In
Sect. 2, we present a very simple Algorithm A1 that improves the now 48 years old
lower bound by Zalgaller [22]. Our algorithm is based on a novel idea that can be
easily generalized to obtain improved lower bounds for hypercubes in any dimension
d ≥ 2.
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Let λd be the unique solution in [(5/2)d ,3d ] to the equation

3d − (λ1/d − 2)d/2 = λ. (1)

As it will be shown later, λd ≤ (3 − (d + 2d · 3d−1)−1)d . For d = 2, λ2 = (
√

46 +
2)2/9 = 8.5699 . . . .

Theorem 1 For a hypercube S in R
d , F(S) ≥ 1/λd . Moreover, given a set F of n

axis-parallel hypercubes in R
d , d ≥ 2, an independent set I ⊆ F such that |I|/|F | ≥

1/λd can be computed by Algorithm A1 in O(dn2) time.

In Sect. 3, we generalize the algorithmic idea of A1 to obtain an improved lower
bound of F(S) ≥ 1/λ2 > 1/8.5699 for any centrally symmetric convex body S in the
plane. The previous best lower bound of F(S) ≥ (1+1/200704)/9 = 1/8.999955 . . .

was obtained by R. Rado in 1949 [15, Theorem 8].

Theorem 2 For any centrally symmetric convex body S in the plane, F(S) ≥ 1/λ2 >

1/8.5699.

In Sect. 4, we obtain an improved lower bound for the special case that the cen-
trally symmetric convex body S is a disk. The previous best lower bound for disks
was F(S) > 1/8.4898 [2].

Theorem 3 For a disk S, F(S) ≥ 1/λdisk, where λdisk = 8.3539 . . . . Moreover, given
a set F of n disks in the plane, an independent set I ⊆ F such that |I|/|F | ≥ 1/λdisk
can be computed by Algorithm B1 in O(n3) time.

In Sect. 5, we present another Algorithm A2 that achieves an even better lower
bound for squares. The Algorithm Z implicit in Zalgaller’s lower bound [22] com-
putes an independent set by repeatedly adding at most four disjoint squares at a time;
our Algorithm A2 adds at most three squares at a time.

Theorem 4 For a square S, F(S) ≥ 1/λsquare, where λsquare = 8.4797 . . . . Moreover,
given a set F of n axis-parallel squares in the plane, an independent set I ⊆ F such
that |I|/|F | ≥ 1/λsquare can be computed by Algorithm A2 in O(n2) time.

In Sect. 6, we present an improved upper bound for squares. Our construction
refines Ajtai’s idea [1] and consists of an infinite number of squares tiling the plane.

Theorem 5 For a square S, F(S) ≤ 1
4 − 1

384 .

We know much more about f (S) than about F(S). For example, f (S) = 1/4 for a
square S; see [5]. R. Rado [15] showed that f (S) = 1/6 for a triangle S, f (S) = 1/4
for a centrally symmetric hexagon S, f (S) ≥ π

8
√

3
> 1/4.4106 for a disk S, f (S) ≥

1/16 for any convex body S in the plane, and f (S) ≥ 1/7 for any centrally symmetric
convex body S in the plane. In Sect. 7, we improve the lower bounds on f (S) for the
two latter cases.
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Table 1

Convex body S in R
2 Old bound New bound

Square F(S) < 1/4 − 1/1728 [1] F(S) ≤ 1/4 − 1/384 Thm. 5

Square F(S) ≥ 1/8.6 [22] F(S) > 1/8.4797 Thm. 4

Disk F(S) > 1/8.4898 [2] F(S) > 1/8.3539 Thm. 3

Centrally symmetric F(S) > 1/8.999955 [15] F(S) > 1/8.5699 Thm. 2

Centrally symmetric f (S) ≥ 1/7 [15] f (S) > 1/4.4810 Thm. 6

Arbitrary f (S) ≥ 1/16 [15] f (S) ≥ 1/6 Thm. 6

Theorem 6 (i) For any convex body S in the plane, f (S) ≥ 1/6. This inequality can-
not be improved. (ii) For any centrally symmetric convex body S in the plane, f (S) ≥
δ(S)/4 where δ(S) is the packing density of S; in particular, f (S) > 1/4.4810.

We summarize our results for convex bodies in R
2 in Table 1.

The covering problems of Rado are related to the classical optimization problem
of computing a maximum weight independent set in geometric intersection graphs.
It is well known that finding a maximum independent set in a set of axis-parallel unit
squares is NP-hard [9]; therefore finding a maximum area independent set in a set
of axis-parallel arbitrary-size squares is also NP-hard. On the other hand, maximum
weight independent set in the intersection graphs of arbitrary-size squares (or, disks,
fat objects, etc.) admits polynomial-time approximation schemes [4, 6, 10]. Our algo-
rithms come with a different guarantee: while the previous approximation algorithms
bound the weight of an independent set in terms of the maximum weight of any in-
dependent set, our algorithms bound the total area of an independent set in terms of
the union area.

2 Lower Bounds for Squares and Hypercubes: Proof of Theorem 1

In this section we present Algorithm A1 that computes an independent set of squares
meeting the requirements in Theorem 1. We first consider the planar case. Let F be
a set of n axis-parallel squares. For each square Sq in F , denote by Tq the smallest
axis-parallel square that contains all squares in F that intersect Sq (Tq contains Sq

but is not necessarily concentric with Sq ). Denote by xq the side length of Sq . Denote
by yq the side length of Tq . Put zq = yq − xq .

Let λ = λ2. Recall that λ2 = (
√

46 + 2)2/9 = 8.5699 . . . > (5/2)2. To construct
an independent set I , our Algorithm A1 initializes I to be empty, then repeats the
following selection round until F is empty:

1. Find the largest square Sl in F . Assume without loss of generality1 that xl = 1.
2. If yl ≤ √

λ, add Sl to I , delete from F the squares that intersect Sl , then stop.
Otherwise, set k ← l and continue with the next step.

1This assumption simplifies the analysis, and is not implemented in the algorithm. Our bounds are not
affected by this assumption because they are area ratios.



542 Algorithmica (2010) 57: 538–561

3. Let Si and Sj be two squares in F that intersect Sk and touch two opposite sides
of Tk . (We will prove later that Si and Sj exist, are disjoint, and are different from
Sk .) If both zi and zj are at most zk , add Si and Sj to I , delete from F the squares
that intersect Si or Sj , then stop. Otherwise, set k ← i or j such that zk increases,
then repeat this step.

Intuitively, in each selection round, the algorithm selects either the largest square
Sl with a small neighborhood in step 2, or two squares Si and Sj each with a small
neighborhood in step 3. There are at most n selection rounds. In each selection round,
step 3 is repeated at most n times since zk is strictly increasing. So the algorithm
terminates in O(n2) steps. Later in this section we will describe an efficient imple-
mentation of the algorithm and analyze its running time in more detail.

We now prove that the algorithm achieves a lower bound of 1/λ. Consider any
selection round. If yl ≤ √

λ in step 2, then

|Sl |/|Tl | = x2
l /y2

l ≥ 1/λ. (2)

Now suppose that yl >
√

λ. Then the algorithm proceeds to step 3. The two squares
Si and Sj clearly exist: even if no other squares in F intersect Sk , in which case
Tk = Sk , we can still take Si = Sj = Sk .

In every iteration of step 3, our choice of Si and Sj implies that xi + xj + xk ≥
yk = xk + zk . Therefore,

xi + xj ≥ zk. (3)

Since both xi and xj are at most xl = 1, it follows from (3) that zk ≤ 2. The value
zk is strictly increasing; in the first iteration, it is equal to zl = yl − xl >

√
λ − 1.

Therefore, in every iteration,
√

λ − 1 < zk ≤ 2. (4)

Either Si or Sj becomes Sk for the next iteration. It then follows from (3) and (4) that,
in every iteration, √

λ − 2 < xk ≤ 1. (5)

From (4) and (5) we have yk = xk +zk > (
√

λ−2)+(
√

λ−1) = 2
√

λ−3 ≥ 2(5/2)−
3 = 2. Since xi + xj ≤ 2, it follows that, in every iteration,

yk > xi + xj . (6)

The strict inequality in (6) implies that Si and Sj are disjoint, hence both Si and Sj

are different from Sk .
When the selection round ends, we have zi ≤ zk and zj ≤ zk . Therefore,

|Ti | = y2
i = (xi + zi)

2 ≤ (xi + zk)
2, |Tj | = y2

j = (xj + zj )
2 ≤ (xj + zk)

2. (7)

Since Sk ⊆ Ti and Sk ⊆ Tj , we also have

|Ti ∩ Tj | ≥ |Sk| = x2
k . (8)
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Then,

|Ti ∪ Tj |
|Si | + |Sj | = |Ti | + |Tj | − |Ti ∩ Tj |

|Si | + |Sj |

≤ (xi + zk)
2 + (xj + zk)

2

x2
i + x2

j

− x2
k

x2
i + x2

j

= 1 + 2
xi + xj

x2
i + x2

j

zk + 2

x2
i + x2

j

z2
k − x2

k

x2
i + x2

j

≤ 1 + 2
2

xi + xj

zk +
(

2

xi + xj

)2

z2
k − x2

k

x2
i + x2

j

=
(

1 + 2

xi + xj

zk

)2

− x2
k

x2
i + x2

j

≤ (1 + 2)2 − (
√

λ − 2)2

2

= 9 − (
√

λ − 2)2/2, (9)

where the last inequality follows from (3) and (5). Recall that λ = λ2 is the solution
to the equation 9 − (

√
λ − 2)2/2 = λ. So we have

|Si | + |Sj |
|Ti ∪ Tj | ≥ 1/λ. (10)

From the two inequalities (2) and (10), it follows by induction that |I|/|F | ≥
1/λ2 > 1/8.5699. Note that this bound already improves the previous best bound of
1/8.6 by Zalgaller [22].

Generalization to higher dimensions The algorithm can be easily generalized to
any dimension d ≥ 2 to achieve a bound of 1/λd , where λd is the unique solution in
[(5/2)d ,3d ] of (1). Set the threshold for yl to λ

1/d
d in step 2 of the selection round.

Note that the inequality xi + xj ≥ zk in (3) still holds, and (4) and (5) become

λ1/d − 1 < zk ≤ 2 and λ1/d − 2 < xk ≤ 1.

Since λd ≥ (5/2)d , the inequality yk > xi + xj in (6) also holds. Following the same
chain of reasoning, (9) becomes

|Ti ∪ Tj |
|Si | + |Sj | = |Ti | + |Tj | − |Ti ∩ Tj |

|Si | + |Sj |

≤ (xi + zk)
d + (xj + zk)

d

xd
i + xd

j

− xd
k

xd
i + xd

j
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=
d∑

t=0

(
d

t

)
xd−t
i + xd−t

j

xd
i + xd

j

zt
k − xd

k

xd
i + xd

j

≤
d∑

t=0

(
d

t

)
2

xt
i + xt

j

zt
k − xd

k

xd
i + xd

j

≤
d∑

t=0

(
d

t

)
2t

(xi + xj )t
zt
k − xd

k

xd
i + xd

j

=
(

1 + 2

xi + xj

zk

)d

− xd
k

xd
i + xd

j

≤ (1 + 2)d − (λ1/d − 2)d

2

= 3d − (λ
1/d
d − 2)d/2. (11)

Recall that λd is the solution to the equation 3d − (λ1/d − 2)d/2 = λ. For any
d ≥ 2, this equation has a unique solution λd between (5/2)d and 3d because the left
side of the equation is larger than the right side when λ = (5/2)d , is smaller than
the right side when λ = 3d , and is decreasing for (5/2)d ≤ λ ≤ 3d . A fairly accurate
closed-form upper bound on λd can be derived as follows. Write λd = (3− t)d , where
t ≤ 1/2. We have

3d − (λ
1/d
d − 2)d/2 = λd

=⇒ 3d − (1 − t)d

2
= (3 − t)d = 3d

(

1 − t

3

)d

≥ 3d

(

1 − dt

3

)

=⇒ dt

3
· 3d ≥ (1 − t)d

2
≥ 1 − dt

2

=⇒ (d + 2d · 3d−1)t ≥ 1

=⇒ t ≥ 1

d + 2d · 3d−1
.

Therefore,

λd ≤
(

3 − 1

d + 2d · 3d−1

)d

.

Implementation A straightforward implementation of the algorithm takes O(dn3)

time. We now discuss a faster implementation with O(dn2) running time. For effi-
ciency, some preprocessing is done before the selection rounds. First, build 2d + 1
sorted lists of the hypercubes: one list sorted by size, and 2d lists for the two opposite
directions along each axis, sorted by coordinates. This takes O(dn logn) time. Next,
for each hypercube, build 2d sorted lists of the hypercubes that intersect it, one for
each of the two opposite directions along each axis. This takes O(dn2) time.
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After the preprocessing, each step in a selection round, except the deletions of
hypercubes from F and correspondingly from the sorted lists, takes only O(d) time.
Step 3 is repeated at most n times in each selection round. There are at most n se-
lection rounds. So the total running time of the algorithm, except the deletions, is
O(dn2). Perform the deletions in a “lazy” fashion: when deleting a hypercube from
F , simply mark it as removed; the actual removals of the hypercube from the lists
of its neighbors take place during subsequent queries in these lists. Since each hy-
percube is removed at most once from each list, the total time spent on deletions is
O(dn2).

3 Lower Bounds for Centrally Symmetric Convex Bodies in the Plane: Proof of
Theorem 2

In this section we present Algorithm B1 for centrally symmetric convex bodies in the
plane and prove Theorem 2. Note that Theorem 1 implies a bound of F(S) ≥ 1/λ2 >

1/8.5699 for a square S. Theorem 2 extends this bound for any centrally symmetric
convex body S in the plane.

Let F be a set of n homothetic copies of S. For each convex body Sq in F , de-
fine Tq as the convex hull of the union of the convex bodies in F that intersect Sq

(Tq contains Sq ). Define the width of a convex body S along a line (or direction) �

as the distance between the pair of supporting lines of S perpendicular to �. For each
line �, denote by wq(�) the width of Sq along �, and by w′

q(�) the width of Tq along �.
Define aq = max� w′

q(�)/wq(�), xq = √|Sq |, yq = aq · xq , and zq = yq − xq . Here
our new definitions of xq and yq for centrally symmetric convex bodies are extended
from those for squares in the previous section: for the definition of xq , the square
root of the area is exactly the side length when S is a square; for the definition of yq ,
the maximum width ratio aq is now taken over all directions rather than the only two
directions along the sides of squares.

Let λ = λ2. To construct an independent set I , our Algorithm B1 initializes I to
be empty, then repeats the following selection round until F is empty:

1. Find the largest convex body Sl in F . Assume without loss of generality that
xl = 1.

2. If yl ≤ √
λ, add Sl to I , delete from F the convex bodies that intersect Sl , then

stop. Otherwise, set k ← l and continue with the next step.
3. Let � be a line through the center of Sk such that w′

k(�)/wk(�) = ak . Among the
convex bodies in F that intersect Sk , let Si and Sj be any two convex bodies that
are tangent, respectively, to the two supporting lines of Tk perpendicular to �. If
both zi and zj are at most zk , add Si and Sj to I , delete from F the convex bodies
that intersect Si or Sj , then stop. Otherwise, set k ← i or j such that zk increases,
then repeat this step.

The analysis remains largely the same as that for squares. The following lemma is
analogous to (3).

Lemma 1 In each iteration of step 3 of the selection round, xi + xj ≥ zk .



546 Algorithmica (2010) 57: 538–561

Fig. 1 Algorithm B1 for
centrally symmetric convex
bodies in the plane. The line � is
horizontal, and the four
supporting lines are vertical in
this example

Proof We refer to Fig. 1. The two supporting lines of Sk perpendicular to the line �

intersect � at the two points si and sj . The two supporting lines of Tk perpendicular
to the line � intersect � at the two points ti and tj . The supporting line through ti
is tangent to Si . The supporting line through si , which is tangent to Sk , must also
intersect Si because otherwise Si would be disjoint from Sk . Now Si intersects the
two supporting lines through ti and si . On the other hand, Sk is tangent to the two
supporting lines through si and sj . It follows by similarity that xi/xk ≥ |tisi |/|sisj |.
A symmetric argument also shows that Sj intersects the two supporting lines through
sj and tj , and satisfies xj/xk ≥ |sj tj |/|sisj |. Therefore,

xi + xj ≥ |tisi | + |sj tj |
|sisj | xk = w′

k(�) − wk(�)

wk(�)
xk = (ak − 1)xk = yk − xk = zk. �

The inequality in the following lemma is analogous to the equality |Tq | = y2
q for

squares, and maintains the overall inequalities in (2) and (7). Recall the concept of
Steiner symmetrization with respect to a point [21, Exercise 6-9]: It is known that
any convex body S is (can be viewed as) the intersection of infinitely many strips
bounded by parallel supporting lines of S. The Steiner symmetrization of a convex
body S with respect to a point o is the intersection of these strips translated to new
positions such that each strip is symmetric with respect to o.

Lemma 2 For each Sq in F , |Tq | ≤ y2
q .

Proof Let T ∗
q be the Steiner symmetrization of Tq with respect to the center of Sq .

Then |Tq | ≤ |T ∗
q | since Tq is convex [21, Exercise 6-9]. Let S′

q be the concentric
homothetic copy of Sq scaled by aq . For each direction �, we have (i) the width of
Tq along � is the same as the width of T ∗

q along �, i.e., w∗
q(�) = w′

q(�); (ii) w′
q(�) ≤

aqwq(�) by the definition of aq ; (iii) aqwq(�) equals the width of S′
q along �. Hence

for each direction �, the width of T ∗
q along � is at most the width of S′

q along �.
Since both S′

q and T ∗
q are symmetric with respect to o, it follows that S′

q contains T ∗
q .

Therefore |Tq | ≤ |T ∗
q | ≤ |S′

q | = (aq · xq)2 = y2
q . �

We follow the same chain of reasoning from (2) to (10): the only difference is
that here the first equalities in (2) and (7) are changed into inequalities because of
Lemma 2; the strict inequality in (6) implies that Si and Sj are contained in two
disjoint parallel strips, hence they are disjoint from each other and different from Sk .
Hence we obtain a bound of F(S) ≥ 1/λ2 > 1/8.5699 for any centrally symmetric
convex body S in the plane. For the special case that S is a disk, we next derive a
better bound of F(S) ≥ 1/λdisk > 1/8.3539 by a tighter analysis (Sect. 4).
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4 A New Lower Bound for Disks: Proof of Theorem 3

In this section we prove Theorem 3 for a disk S. Let F be a set of n homothetic
copies of a disk S. For each disk Sq in F , define Tq as the convex hull of the union
of the disks in F that intersect Sq , and define the width ratio aq in the same way as
in the previous section. For the convenience of analysis, define xq as the diameter of
Sq instead of

√|Sq |. Define yq = aq · xq and zq = yq − xq as before.
Let λ = λdisk, where λdisk = 8.3539 . . . (the exact definition of λdisk will be given

later). To construct an independent set I , we use the same Algorithm B1 that initial-
izes I to be empty then repeats the following selection round until F is empty:

1. Find the largest disk Sl in F . Assume without loss of generality that xl = 1.
2. If yl ≤ √

λ, add Sl to I , delete from F the disks that intersect Sl , then stop. Oth-
erwise, set k ← l and continue with the next step.

3. Let � be a line through the center of Sk such that w′
k(�)/wk(�) = ak . Among

the disks in F that intersect Sk , let Si and Sj be any two disks that are tangent,
respectively, to the two supporting lines of Tk perpendicular to �. If both zi and zj

are at most zk , add Si and Sj to I , delete from F the disks that intersect Si or Sj ,
then stop. Otherwise, set k ← i or j such that zk increases, then repeat this step.

It can be easily verified that our new definition of xq does not change the in-
equalities in the chain of reasoning from (2) to (6) since the definition of the ratio
yq/xq = aq remains the same. We next discuss the final iteration of step 3 of a selec-
tion round, for which we make a different analysis from (7) to (10). We will use some
special properties of disks to obtain a tighter estimate for |Ti ∪ Tj |. This is achieved,
somewhat counter-intuitively, by “blowing up” both Ti and Tj .

Let Ri be the disk of radius ri = xi/2 + zk − 1 that is concentric with Si , and let
T ′

i be the convex hull of the union of Ti and Ri ; see Fig. 2(a). Recall that xi is the
diameter of the disk Si . Therefore, for each direction �, we have

xi = wi(�).

It follows that

yi = ai · xi = max
�

w′
i (�)

wi(�)
xi = max

�
w′

i (�).

Hence the maximum width of Ti along a line is yi = xi + zi ≤ xi + zk . We now
show that the maximum width of T ′

i along a line is also at most xi + zk . Suppose the
contrary. Then there must exist two parallel supporting lines of T ′

i with a distance of
more than xi + zk , one tangent to Ri and the other tangent to either Ri or Ti . But this
is impossible because:

1. The distance from a line tangent to Ri to the center of Si (the same as the center
of S′

i ) is exactly xi/2 + zk − 1, the radius of Ri .
2. The distance from a line tangent to Ti to the center of Si is at most xi/2 + 1, i.e.,

the radius of Si plus the maximum diameter of a disk in F that intersects Si .
3. (xi/2 + zk − 1)+ max{xi/2 + zk − 1, xi/2 + 1} ≤ (xi/2 + zk − 1)+ (xi/2 + 1) =

xi + zk .
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Let T ∗
i be the Steiner symmetrization of T ′

i with respect to the center of Si . Then
|T ′

i | ≤ |T ∗
i | since T ′

i is convex [21, Exercise 6-9]. Let S′
i be the disk of diameter

xi + zk that is concentric with Si . Then the same argument as in Lemma 2 shows that
S′

i contains T ∗
i . Therefore |T ′

i | ≤ |T ∗
i | ≤ |S′

i | = (π/4)(xi + zk)
2. We have proved the

following inequality analogous to the first inequality in (7):

|T ′
i | ≤ (π/4)(xi + zk)

2.

Similarly, let Rj be the disk of radius rj = xj /2 + zk − 1 that is concentric with
Sj , and let T ′

j be the convex hull of the union of Tj and Rj . We have

|T ′
j | ≤ (π/4)(xj + zk)

2.

The minimum radius of the two disks Ri and Rj satisfies

min{ri , rj } = min{xi, xj }/2 + zk − 1 ≥ 3(zk − 1)/2 ≥ 3
√

λ/2 − 3,

where the two inequalities follow from (3) and (4), respectively.
Since both Si and Sj intersect Sk , the distance dij between the centers of the two

disks Ri and Rj satisfies

dij ≤ xi/2 + xj/2 + xk.

The intersection of Ri and Rj consists of a cap in Ri and a cap in Rj ; refer to
Fig. 2(b). The intersection is nonempty, since hij ≥ 0, as shown below. The total
height of the two caps is

hij = ri + rj − dij

≥ (xi/2 + zk − 1) + (xj /2 + zk − 1) − (xi/2 + xj /2 + xk)

= 2(zk − 1) − xk

Fig. 2 (a) The disk Si (dark shaded), the disk Ri (concentric with Si ), the convex hull Ti (light shaded),
and the convex hull T ′

i
of the union of Ri and Ti . (b) The two disks Ri and Rj
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≥ 2(
√

λ − 1 − 1) − 1

= 2(
√

λ − 5/2),

where the last inequality follows from (4) and (5).
Denote by cap(r, h) the area of a disk cap of height h and radius r . It is known

[23] that

cap(r, h) = r2 arccos(1 − h/r) − (r − h)
√

r2 − (r − h)2.

We now have the following inequality analogous to (8):

|T ′
i ∩ T ′

j | ≥ |Ri ∩ Rj | ≥ 2 cap
(

min{ri, rj }, hij /2
)

≥ 2 cap(3
√

λ/2 − 3,
√

λ − 5/2).

The following chain of inequalities is analogous to (9):

|Ti ∪ Tj |
|Si | + |Sj | ≤ |T ′

i ∪ T ′
j |

|Si | + |Sj | = |T ′
i | + |T ′

j | − |T ′
i ∩ T ′

j |
|Si | + |Sj |

≤ (π/4)(xi + zk)
2 + (π/4)(xj + zk)

2

(π/4)x2
i + (π/4)x2

j

− 2 cap(3
√

λ/2 − 3,
√

λ − 5/2)

(π/4)x2
i + (π/4)x2

j

≤ 9 − cap(3
√

λ/2 − 3,
√

λ − 5/2)

π/4
.

Finally, let λdisk be the solution to the equation

9 − cap(3
√

λ/2 − 3,
√

λ − 5/2)

π/4
= λ, (12)

and we have a bound of F(S) ≥ 1/λdisk. A calculation shows that λdisk = 8.3539 . . . .

Implementation We now show how to implement the algorithm B1 in O(n3) time.
We perform some preprocessing before the selection rounds. For each disk Sq in F ,
construct a circular list Fq of the other disks that intersect it; the disks in Fq are
ordered by the directions of the vectors from the center of Sq to their centers. This
can be done in O(n2) time by computing the arrangement of the lines {�q | Sq ∈ F }
dual to the disk centers {cq | Sq ∈ F }, where cq denotes the center of Sq , since the
circular order of the other disk centers around a disk center cq corresponds to the
linear order of intersections of the other dual lines with the dual line �q .

We next consider each selection round. The largest disk Sl can be found in O(n)

time. To select the two disks Si and Sj in each iteration of step 3, first construct the
convex hull of the disks in Fk using a variant of Graham scan, then apply the standard
rotating calipers algorithm [13]. This can be done in O(n) time since the list Fk is
in circular order. To remove a disk from the circular lists, either in step 2 or in the
last iteration of step 3, simply mark the disk “removed” and defer the actual removal
until the convex hull construction of a later step. Step 3 is repeated at most n times in
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a selection round. There are at most n selection rounds. So the total running time of
the algorithm is O(n3).

5 A New Lower Bound for Squares: Proof of Theorem 4

We present a simple greedy Algorithm A2 for axis-parallel squares and prove The-
orem 4. Let F be a set of n axis-parallel squares. For each square Si = [x, x + l] ×
[y, y + l] in F , denote by xi the side length l of Si , and denote by S′

i the square
[x − 1, x + l + 1] × [y − 1, y + l + 1], which contains all possible squares of side
length at most 1 that intersect Si . Note that S′

i is concentric with Si . Given two axis-
parallel squares S and T in the plane, we say that S is tangent to T if a side of S

and a side of T are collinear and have non-empty intersection. Note that our usage
of tangent in this section is not standard: S may intersect T in the interior and at the
same time be tangent to T .

Let s be a real number to be chosen later, 3/4 < s < 1. To construct an independent
set I , our Algorithm A2 initializes I to be empty, then repeats the following selection
round until F is empty:

1. Let S0 be the largest square in F . Assume without loss of generality that S0 is a
unit square. Let F0 ⊆ F \ {S0} be the set of squares of side length at least s that
intersect S0.

2. If F0 contains three disjoint squares S1, S2, and S3, then add S1, S2, and S3 to I .
Otherwise add S0 to I .

3. For each square Si added to I , remove from F the squares that intersect Si .

In a selection round, let J be the set of selected squares, and let T be the set of
squares in F that intersect the selected squares. We prove the following two lemmas.

Lemma 3 Suppose that the algorithm selects three disjoint squares S1, S2, and S3,
in a selection round. Then

|T |/|J | ≤ (8 + 3s2 + 10s)/(3s2).

Proof We will show that the ratio of the area of the region R = S′
1 ∪ S′

2 ∪ S′
3 over the

total area of the three squares S1, S2, and S3 is maximized when each square intersects
S0 at a distinct corner as shown in Fig. 3 (possibly with a different correspondence

Fig. 3 Maximum area of
R = S′

1 ∪ S′
2 ∪ S′

3
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between the squares and the corners), and when the three squares have equal side
lengths x1 = x2 = x3 = s. The maximizing region is the union of 8 unit squares,
3 squares of side length s, and 10 rectangles of side lengths 1 and s.

We first prove that the area of the region R = S′
1 ∪ S′

2 ∪ S′
3 is maximized when

each of the three squares S1, S2, and S3 intersects S0 at a distinct corner as shown in
Fig. 3 (possibly with a different correspondence between the squares and the corners).
We will use a sequence of axis-parallel translations such that, after each translation,
(i) the area of R does not decrease, and (ii) the squares S1, S2, and S3 are disjoint.

Suppose that S0 = [0,1]2. Let B be the smallest axis-parallel rectangle that con-
tains the three squares S1, S2, and S3. Select a square Sl ∈ {S1, S2, S3} that is tangent
to the left side of B . Translate Sl to the left for a distance of ε until its right side is
tangent to the left side of S0. The translation changes the region R by adding a rec-
tangle of area ε(2 + xl) outside S′

l and removing an area of at most ε(2 + xl) inside
S′

l , where 2 + xl is the side length of S′
l . The area of R does not decrease. Similarly,

select and translate a square Sr to the right, a square Su up, and a square Sd down.
One of the three squares S1, S2, and S3 is selected at least twice. Assume without loss
of generality that Sl = Sd . Thus S0 ∩ Sl = {(0,0)}. We distinguish two cases:

• Case 1. Suppose that Sr = Su. Since Sr and Su are disjoint, one of them, say
Su, does not cover (1,1). Translate Su to the left until S0 ∩ Su = {(0,1)}, see
Fig. 4(a). Let y1 be the distance between the upper sides of S′

u and S′
l . Let y2 be

the distance between the upper sides of S′
u and S′

r . The area of R does not decrease
since y1 > y2: translating Su for a small distance ε to the left increases the area of
R by at least ε(y1 − y2). Then Sr can be translated up until S0 ∩ Sr = {(1,1)}, or
down until S0 ∩ Sr = {(1,0)}, see Fig. 4(b).

• Case 2. Suppose that Sr = Su. Then Sr ∩S0 = {(1,1)}. Let Sm be the third (middle)
square, that is, {l,m, r} = {1,2,3}. If Sm is tangent to B , say on the right side, then
we translate Sm to the right until Sm is tangent to S0, see Fig. 5(a). This reduces
to the case of different Su and Sr (Case 1). Suppose that Sm is not tangent to B .
Let y1 be the distance between the upper sides of S′

m and S′
l . Let y2 be the distance

between the lower sides of S′
r and S′

m. If Sm intersects the line y = 1, then y1 ≥ y2,
and we translate Sm to the left. If Sm intersects the line y = 0, then y2 ≥ y1, and

Fig. 4 (a) Translate Su to the left. (b) Translate Sr up or down
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Fig. 5 (a) Sm is tangent to B . (b) Sm is not tangent to B

we translate Sm to the right. If Sm lies between the two lines y = 0 and y = 1, then
we translate Sm to the left if y1 > y2, or to the right otherwise, see Fig. 5(b).

Stop the motion when Sm becomes tangent to S0, and this reduces to the case
of Sm tangent to B .

After the sequence of translations, each of the three squares S1, S2, and S3 inter-
sects S0 at a distinct corner. Assume without loss of generality the correspondence
between the squares and the corners as shown in Fig. 3. The region R is the union
of (i) the three squares S1, S2, and S3, (ii) 8 unit squares, and (iii) 10 rectangles. The
area of R is x2

1 + x2
2 + x2

3 + 8 + c1x1 + c2x2 + c3x3, where c1, c2, c3 ∈ {2,3,4} and
c1 + c2 + c3 = 10. There are four cases (the first case appears in Fig. 3):

1. If x3 ≥ x1 and x3 ≥ x2, then c1 = c2 = 3 and c3 = 4.
2. If x3 ≤ x1 and x3 ≤ x2, then c1 = c2 = 4 and c3 = 2.
3. If x1 ≤ x3 ≤ x2, then c2 = 4 and c1 = c3 = 3.
4. If x2 ≤ x3 ≤ x1, then c1 = 4 and c2 = c3 = 3.

Let f : [3/4,1]3 → R be defined as follows:

f (x1, x2, x3) = 1 + 8 + c1x1 + c2x2 + c3x3

x2
1 + x2

2 + x2
3

.

Then we have |T |/|J | ≤ max{f (x1, x2, x3) : (x1, x2, x3) ∈ [s,1]3}. We show that
f (x1, x2, x3) is a decreasing function of x1 for x1 ∈ [3/4,1] by taking the deriva-
tive f ′

x1
. Consider the function

g(x1) = (x2
1 + x2

2 + x2
3)2 · f ′

x1

= c1(x
2
1 + x2

2 + x2
3) − 2(8 + c1x1 + c2x2 + c3x3)x1

= c1(−x2
1 + x2

2 + x2
3) − 2(8 + c2x2 + c3x3)x1.

Write t = 3/4. Since g(x1) is a quadratic function with the negative leading coeffi-
cient −c1 < 0 and g(0) > 0, it suffices to show that g(t) < 0. Using c1 ≤ 4, c2, c3 ≥ 2,
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Fig. 6 (a) Maximum covered area in S′
0. (b) Fl and Fr . (c) Ft and Fb

and t ≤ x2, x3 ≤ 1 we have −t2 +x2
2 +x2

3 ≥ t2 > 0 and g(t) ≤ 4(−t2 +1+1)−2(8+
2t + 2t)t = −43/4 < 0. Similarly f (x1, x2, x3) is a decreasing function of x2 and x3
in [3/4,1]. Recall that x1, x2, x3 ≥ s as imposed by Algorithm A2, hence the function
f (·) is maximized on the subdomain [s,1]3 when x1 = x2 = x3 = s. �

Lemma 4 Suppose that the algorithm selects one square, S0, in a selection round.
Then

|T |/|J | ≤ 7 + 2s2.

Proof We will show that the maximum covered area in S′
0 is the shaded area shown

in Fig. 6(a), which contains 7 unit squares and 2 squares of side length s.
Suppose that S0 = [1,2]2. Then S′

0 = [0,3]2. Let a = 1 − s. Let Fl ⊆ F0 be the
set of squares intersecting the rectangle [0, a] × [0,3]. If Fl is not empty, then let
Sl1 and Sl2 be two squares in Fl containing points with the smallest and the largest
y-coordinates yl1 and yl2, respectively (Sl1 and Sl2 can coincide). Define the left
span sl as follows: if Fl is not empty, let sl = yl2 −yl1; otherwise, let sl = 0. Similarly
define the spans sr , st and sb for the three other sides, see Fig. 6(b) and (c). The
covered area in S′

0 is at most (1 + 2s)2 + (sl + sr + st + sb)a.
Suppose that two spans are equal to zero. Then, for s ≤ 1, the covered area in S′

0
is at most

9 − 6a + a2 = 4 + 4s + s2 = 7 + 2s2 + 1 − (s − 2)2 ≤ 7 + 2s2.

Suppose that only one span is equal to zero, say, sr = 0, then st , sb ≤ 2 (otherwise
there would be three disjoint squares in Ft ∪ Fb). Then, for 1/2 ≤ s ≤ 1, the covered
area in S′

0 is at most

(1 + 2s)2 + 7a = 4s2 − 3s + 8 = 7 + 2s2 + (2s − 1)(s − 1) ≤ 7 + 2s2.

Suppose that all spans are positive. Then each span is at most 2 by the above
argument. If a span is at most 2s, then the covered area in S′

0 is at most

(1 + 2s)2 + (6 + 2s)a = 7 + 2s2.

Suppose now that each span is larger than 2s. Since sl > 2s, it follows that either
yl2 < 1.5 − s or yl1 > 1.5 + s. Assume without loss of generality that yl1 > 1.5 + s.
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The square Sl1 is above the line y = 1.5 + s − 1 = 1.5 − a, and is disjoint from
the squares in Fb because 1.5 − a > 1 + a for a < 1/4 (s > 3/4). The squares of
Fr ∪ Fb pairwise intersect otherwise F0 would contain three disjoint squares: Sl1,
one from Fr , and one from Fb . Then xb1 ≥ (2 + s) − 2 = s and xb2 > xb1 + 2s ≥ 3s.
Since 3s > 3 − s = a + 2 for s ≥ 3/4, Sb2 is disjoint from squares in Fl . Therefore,
symmetrically, the squares of Fl ∪ Ft pairwise intersect.

Consider the smallest axis-parallel rectangle Rlt that contains the squares in
Fl ∪ Ft . Let (x,3 − y) be the left-top vertex of Rlt . Note that 0 ≤ x, y ≤ a. Out-
side the square [a,3 − a]2, the rectangle Rlt covers an area of

2(a − x) + 2(a − y) − (a − x)(a − y) = (4a − a2) − (2 − a)(x + y) − xy,

which is maximized when x = y = 0. A symmetrical argument applies to Fr ∪ Fb.
The maximum covered area in S′

0 is shown in Fig. 6(a). It is equal to 7 + 2s2. �

Balancing the two bounds in Lemmas 3 and 4, we obtain a quartic equation 3s4 +
9s2 − 5s − 4 = 0, which has only one positive root s0 = 0.8601 . . . . Choose s = s0,
and we have (8 + 3s2 + 10s)/(3s2) = 7 + 2s2 = λsquare = 8.4797 . . . .

Implementation A straightforward implementation of the algorithm takes O(n3)

time. The bottleneck is to decide whether F0 contains three disjoint squares in step 2
of a selection round; note that the size of F0 can be �(n). To reduce the running time
to O(n2), we replace step 2 by the following step:

• Compute the four subsets Fl , Fr , Ft , and Fb , defined in the proof of Lemma 4,
and their smallest axis-parallel enclosing rectangles. Find a set F ′

0 of at most 16
squares, four from each subset, tangent to the four sides of the corresponding rec-
tangle. If F ′

0 contains three disjoint squares S1, S2, and S3, then add S1, S2, and S3
to I . Otherwise add S0 to I .

Lemma 3 is unaffected by this modification. The proof for Lemma 4 remains valid
after we substitute F0 by F ′

0, because (i) the spans for F0 and F ′
0 coincide, and (ii) the

three disjoint squares used in the proof can be selected from F ′
0.

5.1 Comparison of Five Algorithms for Squares and Hypercubes

Besides Algorithm Z by Zalgaller [22] and our two Algorithms A1 and A2, we briefly
review two Algorithms R1 and R2 by R. Rado [15]. Algorithm R1 is implicit in
R. Rado’s bound of F(S) > 4/35 for a square S. It repeatedly adds to the indepen-
dent set either the largest square or two disjoint squares that intersect the largest
square. Algorithm R1 can be easily generalized to any dimension d ≥ 2 to achieve
the following bound for a hypercube in R

d :

F(S) ≥ min
0≤x≤1

max

{
1

(1 + 2x)d
,

2xd

2(x + 2)d − 1

}

. (13)

Algorithm R2 is implicit in R. Rado’s bound of F(S) > 1/(3d −7−d) for a hypercube
S in R

d . It repeatedly adds to the independent set either the largest hypercube or 2d
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Table 2
d R1 R2 Z A1 A2

2 8.7436 8.9726 8.6 8.5699 8.4797

3 26.7478 26.9954 26.5260

4 80.7493 80.9992 80.5091

5 242.7498 242.9999 242.5031

Fig. 7 (a) Starting point: a system of four congruent squares. (b) Ajtai’s idea: an ambiguous system Q of
13 squares of sides 1 and 2. (c) Another ambiguous system R of 66 squares of sides 1 and 2. (d) Ajtai’s
construction shown schematically; Ri , i = 1, 2, 3, 4, are rotated copies of R

pairwise disjoint hypercubes that intersect the largest hypercube. The precise bound
is

F(S) ≥ min
0≤x< 1

2

max

{
1

3d − xd
,

1

5d2−d(1 − x)−d

}

. (14)

We believe that the ratio of Algorithm A1 is better than the ratios of both R1 and R2
for all d ≥ 2 (a precise calculation is somewhat involved). We list some approximate
numerical values of these bounds in Table 2.

6 A New Upper Bound for Squares: Proof of Theorem 5

We first describe briefly Ajtai’s ingenious idea for the construction in [1]. The start-
ing point is a system of 4 non-overlapping congruent squares shown in Fig. 7(a).
Now slightly enlarge each square with respect to its center by a small ε > 0. All con-
structions we discuss will be obtained in the same way, by starting from a system
of non-overlapping (i.e., interior disjoint) squares and then applying the above trans-
formation; the effect is that any pair of touching squares results in a pair of squares
intersecting in their interior. Finally by letting ε tend to zero, one recovers the same
upper bound for systems of intersecting squares. Alternatively, one can consider the
squares as closed sets, to start with, and use non-overlapping squares in the construc-
tion.

In the second step, consider a system Q of 13 squares of sides 1 and 2 as in
Fig. 7(b). The system can also be viewed as four 2 × 2 squares A1, A2, A3, and
A4, the vertices of which are drawn as circles. These 2 × 2 superimposed squares
are not part of the system; they are only used in the analysis. The system Q has the
nice property that any independent set can cover at most one quarter of (the area of)
each Ai . Although Q by itself does not appear to be useful in reducing the conjectured
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1/4 upper bound, Ajtai found a more elaborate system R that does so. The system
R consists of 66 squares of sides 1 and 2 as in Fig. 7(c), whose union is a rectangle.
His construction is shown schematically in Fig. 7(d); it consists of four large squares
and four rotated copies of the system R. A calculation shows that this construction
yields an upper bound of 1

4 − 1
1728 , when the length of the rectangle equals the side

length of the large squares. An obvious optimization uses eight copies of the system
R bordering all eight outer sides of the four squares, and yields an improvement to
1
4 − 1

1080 .
Here we refine Ajtai’s idea in several ways to obtain a better bound. We construct

a new system R shown in Fig. 8(a). Our system, which serves the same purpose,
has two desirable features: first, R is a smaller system (in a sense not meant to be
precise) than that used in the previous construction; second, because of its symmetry,
R permits a tiling (here we use this term in a broader sense, where the tile can have
holes) of the plane, with adjacent blocks in the tiling sharing common parts of the
system R. The new system R, shown in Fig. 8(a), consists of 48 unit squares and 16

Fig. 8 (a) Preliminaries for the tiling: the new system R bordering two sides of a large square S. (b) The
labeling of the squares used in the proof of the upper bound in Lemma 5. (c) Two rectangles Z1 and Z2
superimposed on R. (d) A system of 23 squares of side 2, Ai , i = 1, . . . ,23, superimposed on R (some
of the squares in R are only partially covered by the squares Ai )
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2×2 squares bordering two adjacent sides of a large 10×10 square S. By replicating
copies of R, rotated by 0◦, 90◦, 180◦, and 270◦, we construct a tiling of the plane,
see Fig. 9. We say that a square Ai is not covered if 0% of its area is covered by I .

Lemma 5 Let I be an independent set of squares in the system R ∪ {S} in Fig. 8(a).
Let Z1 be the 10×4 superimposed rectangle that borders S from above as in Fig. 8(c).
Assume that S ∈ I . Then |I ∩ Z1| ≤ 9.

Proof Observe that R has the property that any independent set can cover at most one
quarter of (the area of) each Ai , conform with Figs. 8(b) and 8(d). By the assumption,
the 10 unit squares in the bottom row of squares A7 through A11 cannot be in I . It is
enough to show that at least one of the squares Ai (i ∈ {1,2,3,4,5}∪ {7,8,9,10,11}
is not covered. Observe that either B2 ∈ I or B3 ∈ I (otherwise A9 is not covered and
we are done). Since R ∩ Z1 admits a vertical symmetry axis, we can assume w.l.o.g.
that B2 ∈ I . It follows that e ∈ I (otherwise A10 is not covered), and that B4 ∈ I
(otherwise A11 is not covered). But then A4 is not covered, since f,B3,C3,C4 /∈ I .
This completes the proof. �

Obviously, the property in the lemma holds also for Z2 in place of Z1. We now
move to the final step—the tiling—which completes our construction. Take four
squares S1, S2, S3, and S4, each of side 10, and arrange them as in Fig. 9(b). Place
four rotated copies of R bordering the outer 8 sides of S1 ∪S2 ∪S3 ∪S4 as in Fig. 9(b),
and obtain a block (cell) of the tiling. Each block in the tiling contains 4 large 10×10
squares. Each large square has associated 23 2×2 squares that are shown in Fig. 8(d).
We assign the (total of) 92 2 × 2 squares to the block that contains them. It is impor-
tant to note that, although some of the 2 × 2 squares of R (the five squares B1, C1,
C2, C3, C4 and their symmetric counterparts) are shared between adjacent blocks in
the tiling, the superimposed squares Ai used in the analysis are not shared, i.e., they
are contained entirely in individual blocks.

Let T be the infinite set of squares as in Fig. 9(c), obtained by replicating the
block in Fig. 9(b). Let I be an independent set of squares in T . Fix any block σ in
the tiling. Observe that at most one of the Si can be in I , so at most one quarter of the
area of S1 ∪ S2 ∪ S3 ∪ S4 is covered by I . Similarly I covers at most one quarter of
the area in each of the 92 2 × 2 squares assigned to σ . Observe that if one of the four
large squares, say S2, is selected in an independent set I , it forces the 10 unit squares
in both the bottom row of R ∩ Z1 and the leftmost column of R ∩ Z2 to be out of I
in Fig. 8(c).

For the analysis, we can argue independently for each block. Fix any block σ in
the tiling. The area covered by T in σ is

|T ∩ σ | = 4 × 100 + 4 × 92 = 768.

In the (easy) case that none of the Si is in I , the area covered by I in σ is

|I ∩ σ | ≤ 4 × 23 = 92, thus
|I ∩ σ |
|T ∩ σ | ≤ 92

768
= 1

4
− 50

384
,

i.e., much smaller than required.
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Fig. 9 (a) A large square of side 10 bordered by the system R. (b) S1 ∪S2 ∪S3 ∪S4 bordered by 4 rotated
copies of R (some squares are shared between adjacent copies). The block σ is the large dashed square
containing S1 ∪ S2 ∪ S3 ∪ S4. (c) Tiling of the plane with blocks composed of 4 large squares of side
10 bordered by 4 rotated copies of R (some squares are shared between adjacent blocks). The shaded
rectangles in the figure represent holes in the tiling, and are not part of the square system

Assume now that one of the Si , say S2, belongs to I . Observe that the 20 unit
squares adjacent to top and right sides of S2 do not belong to I (the same holds for
the unit square in the corner, but this is irrelevant here). By Lemma 5,
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|I ∩ σ | ≤ 100 + 4 × 23 − 2 = 190, thus
|I ∩ σ |
|T ∩ σ | ≤ 190

768
= 1

4
− 1

384
,

as desired. Of course, one can get arbitrarily close to this bound, by using a suitably
large (square) section of the tiling instead—since the boundary effects are negligible.
This completes the proof of Theorem 5.

Remark Perhaps the above upper bound can be improved—the question is by how
much? Ajtai wrote in his paper: “We now prove the conjecture is false for d = 2 (and
thus for every d > 2 too).” While we also believe that the idea of his construction can
be used to generate counterexamples in higher dimensions, the detailed arguments
and the corresponding upper bounds still remain to be derived.

7 Lower Bounds for Convex Bodies in the Plane: Proof of Theorem 6

We prove Theorem 6 in this section. We first review some preliminaries. A lattice 


is said to be admissible for a convex body S if at most one lattice point of 
 lies in the
interior of S [15]. Denote by |
| the area of a fundamental cell of 
. Denote by �(S)

the minimum fundamental cell area |
| of a lattice 
 admissible for S. Consider a
coordinate system with origin o. Define the difference region [12, pp. 38] of S as
S −S = {s − s′ | s, s′ ∈ S}. Intuitively, S −S is the union of all congruent homothetic
copies of S that contain the origin o. S − S is centrally symmetric, and is 1

2 (S − S)

scaled by 2, where 1
2 (S − S) is the convex body obtained by Steiner symmetrization

from S [21, Exercise 6-9] (we used this construction in Sect. 3). If S itself is centrally
symmetric, then S − S is a homothetic copy of S scaled by 2.

Arbitrary convex bodies We first prove a lower bound of f (S) ≥ 1/6 for any convex
body S in the plane. It is known by R. Rado’s result [15, Theorem 7] that

f (S) ≥ |S|
�(2S − 2S)

= |S|
4�(S − S)

.

To prove that f (S) ≥ 1/6, it suffices to show that

|S|
�(S − S)

≥ 2

3
.

We refer to Fig. 10. Using techniques from a classical lattice packing result by Fáry
[7] (following [12, pp. 37–41]), one can show the following: First, S − S contains an
inscribed affinely regular2 hexagon H , for any given direction �v of one side of H .
Second, any two vectors from the center of S − S (also of H ) to two non-opposite

2A convex hexagon is affinely regular if it is the image of regular hexagon under an affine transformation.
Equivalently, a convex hexagon p1, . . . , p6 is affinely regular if and only if (a) it is centrally symmetric,
and (b) −−→

p2p1 + −−→
p2p3 = −−→

p3p4.
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Fig. 10 Difference region
S − S. Convex body S (with
three straight sides and one
curved side) lightly shaded.
Center and vertices of inscribed
hexagon H shown as black dots.
Fundamental cell of lattice 


(a parallelogram) darkly shaded

vertices of H form the basis of a lattice 
. Third, with a suitable choice of �v, the
lattice 
 satisfies

|S|
|
| ≥ 2

3
.

Here δ
(S) = |S|/|
| is the packing density of S in the lattice packing 
, which is at
least 2/3 by Fáry’s result [12, Theorem 4.1 and Exercise 4.1]. Since S − S contains
exactly one lattice point (the center) of 
 in its interior, 
 is admissible for S − S. It
then follows by definition that

|S|
�(S − S)

≥ |S|
|
| ≥ 2

3
.

The lower bound f (S) ≥ 1/6 immediately follows. This bound cannot be improved,
as R. Rado showed that f (S) = 1/6 for any triangle S [15, Theorem 10].

Centrally symmetric convex bodies We next prove a better lower bound for a cen-
trally symmetric convex body S. Let T be a minimum-area convex hexagon that
contains S. It is known that T is also centrally symmetric [12, Theorem 2.5]. The
following results are also known:

1. f (T ) = 1/4 [15, Theorem 10];
2. f (S)/|S| ≥ f (T )/|T | [15, Theorem 1];
3. δ(S) ≤ |S|/|T |, where δ(S) is the packing density of S [8] (see also [12, Corol-

lary 3.4]);
4. δ(S) > 0.892656 [20].

Therefore,

f (S) ≥ f (T ) · |S|/|T | ≥ δ(S)/4 > 0.892656/4 > 1/4.4810.

This completes the proof of Theorem 6.

Remark Reinhardt [18] conjectured that δ(S) ≥ 0.902414 . . . holds for any centrally
symmetric convex body S in the plane, with equality only for the so-called smoothed
octagon (see also [3, p. 11]). If this conjecture were to hold, the lower bound would
be improved to f (S) > 1/4.4325. Compare this with the current best lower bound of
f (S) > π

8
√

3
> 1/4.4106 for a disk S [15, Theorem 10].
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