
Algorithmica (2010) 58: 790–810
DOI 10.1007/s00453-009-9296-1

Efficient Exact Algorithms on Planar Graphs:
Exploiting Sphere Cut Decompositions

Frederic Dorn · Eelko Penninkx ·
Hans L. Bodlaender · Fedor V. Fomin

Received: 30 January 2006 / Accepted: 20 February 2009 / Published online: 13 March 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a general framework for designing fast subexponential exact
and parameterized algorithms on planar graphs. Our approach is based on geomet-
ric properties of planar branch decompositions obtained by Seymour and Thomas,
combined with refined techniques of dynamic programming on planar graphs based
on properties of non-crossing partitions. To exemplify our approach we show how to
obtain an O(26.903

√
n) time algorithm solving weighted HAMILTONIAN CYCLE on

an n-vertex planar graph. Similar technique solves PLANAR GRAPH TRAVELLING

SALESMAN PROBLEM with n cities in time O(29.8594
√

n). Our approach can be used
to design parameterized algorithms as well. For example, we give an algorithm that
for a given k decides if a planar graph on n vertices has a cycle of length at least k in
time O(213.6

√
kn + n3).

Keywords Exact and parameterized algorithms · Planar graphs · Treewidth ·
Branchwidth · Traveling salesman problem · Hamiltonian cycle

This work is supported by the Norwegian Research Council and partially by the Netherlands
Organisation for Scientific Research NWO (project Treewidth and Combinatorial Optimisation).
A preliminary version of this paper appeared at ALGO-ESA’05 [15].

F. Dorn (�) · F.V. Fomin
Department of Informatics, University of Bergen, 5020 Bergen, Norway
e-mail: frederic.dorn@ii.uib.no

F.V. Fomin
e-mail: fedor.fomin@ii.uib.no

E. Penninkx · H.L. Bodlaender
Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands

E. Penninkx
e-mail: penninkx@cs.uu.nl

H.L. Bodlaender
e-mail: hansb@cs.uu.nl

mailto:frederic.dorn@ii.uib.no
mailto:fedor.fomin@ii.uib.no
mailto:penninkx@cs.uu.nl
mailto:hansb@cs.uu.nl

Algorithmica (2010) 58: 790–810 791

1 Introduction

The celebrated Lipton and Tarjan planar separator theorem [26] is one of the most
common approaches to obtain algorithms with subexponential running time for many
problems on planar graphs [27]. The usual running time of such algorithms is 2O(

√
n)

or 2O(
√

n logn), however the constants hidden in big-Oh of the exponent are a serious
obstacle for practical implementation. During the last few years a lot of work has
been done to improve the running time of divide-and-conquer type algorithms [2, 3].

A related approach is based on using treewidth (or branchwidth) [18]. The idea
of this approach is very simple: compute the treewidth (or branchwidth) of a pla-
nar graph and then use the well developed machinery of dynamic programming on
graphs of bounded treewidth (or branchwidth) [6]. For example, it can be shown that,
when given a branch decomposition of width � of a graph G on n vertices, the max-

imum independent set of G can be found in time O(2
3�
2 n). The branchwidth of a

planar graph G is at most 2.122
√

n [18] and it can be found in time O(n3) [31]
(see also [20]). Putting all together, we obtain an O(23.182

√
n) time algorithm solving

INDEPENDENT SET on planar graphs. Note that planarity comes into play twice in
this approach: First in the upper bound on the branchwidth of a graph and second in
the polynomial time algorithm for constructing an optimal branch decomposition. A
similar approach combined with the results from graph minor theory [29] works for
many parameterized problems on planar graphs, and on bounded-genus and minor-
free graphs [9]. However, for many problems, including HAMILTONIAN CYCLE, such
approach brings to the running time 2O(

√
n logn). This is due to the fact that all known

algorithms, solving, say, HAMILTONIAN CYCLE, on graphs of treewidth � require
2O(� log �)nO(1) steps [7]. In this paper we show how to get rid of the logarithmic
factor in the exponent for a number of problems. The main idea behind such an ex-
ponential time speed-up is to use special type of branch decompositions of planar
graphs which were used by Seymour and Thomas [31] in their seminal ratcatcher
algorithm. Because of these specific decompositions, we are able to exploit planarity
once again, this time while performing dynamic programming on graphs of bounded
branchwidth.

Loosely speaking, the results of Seymour and Thomas [31] imply that a graph em-
bedded on a sphere Σ has a branch decomposition that is similar to a decomposition
of Σ into discs (or sphere cuts). We call these decompositions sphere cut decomposi-
tions. Sphere cut decompositions seem to be an appropriate tool for solving a variety
of planar graph problems. In a consequent work, sphere cut decompositions play a
crucial role in obtaining parameterized algorithms computing a path of length k in
H -minor-free graphs on n vertices in time 2O(

√
k)nO(1) [12, 13].

We demonstrate the usefulness of this combinatorial method by designing algo-
rithms for the following problems.

Traveling Salesman Problem The TRAVELING SALESMAN PROBLEM (TSP) prob-
lem is one of the most attractive problems in Computer Science and Operations Re-
search. For several decades, almost every new algorithmic paradigm was tried on
TSP including approximation algorithms, linear programming, local search, polyhe-
dral combinatorics, and probabilistic algorithms [25]. One of the first known exact

792 Algorithmica (2010) 58: 790–810

exponential time algorithms is the algorithm of Held and Karp [21] solving TSP on
n cites in time 2O(n) by making use of dynamic programming. For some special
cases like EUCLIDEAN TSP (where the cites are points in the Euclidean plane and
the distances between the cites are Euclidean distances), several researchers indepen-
dently obtained subexponential algorithms of running time 2O(

√
n·logn) by exploiting

planar separator structures (see e.g. [22]). Smith and Wormald [32] succeed to gen-
eralize these results to d-dimensional space and the running time of their algorithm
is 2dO(d) · 2O(dn1−1/d logn) + 2O(d). Another variant is PLANAR GRAPH TSP, which
for a given weighted planar graph G is the TSP with distance metric the shortest path
metric of G. Arora et al. [4] use non-crossing partitions to achieve faster approxima-
tion schemes. In this paper we give the first 2O(

√
n) time exact algorithm for solving

PLANAR GRAPH TSP.

Parameterized Planar k-cycle The last ten years showed a rapid development of a
new branch of computational complexity: Parameterized Complexity (see the book
of Downey and Fellows [16]). Roughly speaking, a parameterized problem with pa-
rameter k is fixed parameter tractable if it admits an algorithm with running time
f (k)|I |β . Here f is a function depending only on k, |I | is the length of the non-
parameterized part of the input and β is a constant. Typically, f is an exponential
function, e.g. f (k) = 2O(k). During the last five years much effort was put in the
construction of algorithms with running time 2O(

√
k)nO(1) for different problems on

planar graphs. The first paper on the subject was by Alber et al. [1] describing an
algorithm with running time O(270

√
kn) for the PLANAR DOMINATING SET prob-

lem. Different fixed parameter algorithms for solving problems on planar and related
graphs are discussed in [2, 3, 9, 11, 14]. In the PLANAR k-CYCLE problem a parame-
ter k is given and the question is if there exists a cycle of length at least k in a planar
graph. There are several ways to obtain algorithms solving different generalizations
of PLANAR k-CYCLE in time 2O(

√
k log k)nO(1), one of the most general results is

Eppstein’s algorithm [17] solving the PLANAR SUBGRAPH ISOMORPHISM problem
with pattern of size k in time 2O(

√
k log k)n. Using non-crossing partitions, Demaine

and Hajiaghayi [10] remove the logarithmic factor for some connected problems on
graphs of outerplanarity k.

By making use of sphere cut decompositions we succeed to find an O(213.6
√

kk n+
n3) time algorithm solving PLANAR k-CYCLE.

Planar Hamiltonian Cycle In the PLANAR HAMILTONIAN CYCLE problem one
is given an edge weighted planar graph, and is asked to compute a cycle over all
vertices with minimum weight with respect to the edges. Until very recently there
was no known 2O(

√
n)-time algorithm for this problem. Deı̆neko et al. [8] obtained the

first result of this form: a divide-and-conquer type algorithm of running time 2O(
√

n).
Their goal was to get rid of the logarithmic factor in the exponent, accepting a large
constant hidden in the big-Oh notation. But even with careful analysis, it is difficult
to obtain small constants in the exponent of the divide-and-conquer algorithm due to
its recursive nature.

In this paper we use sphere cut decompositions to obtain an O(26.903
√

n) time
algorithm for PLANAR HAMILTONIAN CYCLE.

Algorithmica (2010) 58: 790–810 793

This paper is organized as follows: in Sect. 2 we start with some basic defini-
tions and introduce sphere cut decompositions. The main part of the presentation of
our techniques is spent on Sect. 3 where we solve PLANAR HAMILTONIAN CYCLE.
We extend our techniques in Sect. 4 to PLANAR GRAPH TSP and in Sect. 5 to PLA-
NAR k-CYCLE and several other variants of connected problems. Section 6 is devoted
to conclusions and open problems.

2 Geometric Branch Decompositions of Σ-plane Graphs

In this section we introduce our main technical tool, sphere cut decompositions, but
first we give some definitions.

Let Σ be a sphere {(x, y, z) ∈ R
3:x2 + y2 + z2 = 1}. By a Σ -plane graph G we

mean a planar graph G with the vertex set V (G), the edge set E(G), and the face
set F(G) drawn (without crossings) in Σ . Throughout the paper we denote by n the
number of vertices of G. To simplify notations, we usually do not distinguish between
a vertex of the graph and the point of Σ used in the drawing to represent the vertex or
between an edge and the open line segment representing it. An O-arc is a subset of
Σ homeomorphic to a circle. An O-arc in Σ is called a noose of a Σ -plane graph G

if it meets G only in vertices and intersects with every face at most once. The length
of a noose O is |O ∩ V (G)|, the number of vertices it meets. Every noose O bounds
two open discs Δ1, Δ2 in Σ , i.e., Δ1 ∩ Δ2 = ∅ and Δ1 ∪ Δ2 ∪ O = Σ .

Branch Decompositions and Carving Decompositions A branch decomposition
〈T ,μ〉 of a graph G consists of an unrooted ternary tree T (i.e., all internal vertices
have degree three) and a bijection μ : L → E(G) from the set L of leaves of T to the
edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G) as fol-
lows: Let T1 and T2 be the two connected components of T \ {e}. Then let Gi be the
graph induced by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1,2}. The middle set
is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2).
The width bw of 〈T ,μ〉 is the maximum order of the middle sets over all edges of T ,
i.e., bw(〈T ,μ〉) := max{|mid(e)|: e ∈ T }. An optimal branch decomposition of G is
defined by a tree T and a bijection μ which together provide the minimum width, the
branchwidth bw(G).

A carving decomposition 〈T ,μ〉 is similar to a branch decomposition, only with
the difference that μ is the bijection between the leaves of the tree and the vertex set
of the graph. For an edge e of T , the counterpart of the middle set, called the cut set
cut(e), contains the edges of the graph with end vertices in the leaves of both subtrees.
The counterpart of branchwidth is carvingwidth. In a bond carving decomposition of
a graph, every cut set is a bond of the graph, i.e., every cut set is a minimal edge cut.

We will need the following result:

Proposition 1 ([18]) For any planar graph G, bw(G) ≤ √
4.5n ≤ 2.122

√
n.

Sphere cut Decompositions For a Σ -plane graph G, we define a sphere cut de-
composition or sc-decomposition 〈T ,μ,π〉 as a branch decomposition such that

794 Algorithmica (2010) 58: 790–810

for every edge e of T there exists a noose Oe bounding the two open discs Δ1

and Δ2 such that Gi ⊆ Δi ∪ Oe , 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and
its length is |mid(e)|. A clockwise traversal of Oe in the drawing of G defines a
cyclic ordering π of mid(e). We always assume that the vertices of every middle
set mid(e) = V (G1) ∩ V (G2) are enumerated according to π .

The following theorem provides us with the main technical tool. Parts of it fol-
low almost directly from the results of Seymour and Thomas [31] and Gu and
Tamaki [20]. Since the impact of those results on sc-decompositions is not explicitly
mentioned in [31], we summarize the main ingredients in the proof of our theorem.

Theorem 1 Let G be a connected Σ -plane graph of branchwidth at most � without
vertices of degree one. There exists an sc-decomposition of G of width at most � and
such a branch decomposition can be constructed in time O(n3).

Proof Let G be a Σ -plane graph of branchwidth at most � and with minimum vertex
degree at least two. Then, I (G) is the simple bipartite graph with vertices V (G) ∪
E(G), in which v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an endpoint of e

in G. The medial graph MG of G has vertex set E(G), and for every vertex v ∈ V (G)

there is a cycle Cv in MG with the following properties:

• The cycles Cv of MG are mutually edge-disjoint and have as union MG;
• For each v ∈ V (G), let the neighbors w0, . . . ,wt−1 of v in I (G) be enumerated

according to the cyclic order of the edges {v,w0}, . . . , {v,wt−1} in the drawing
of I (G); then Cv has vertex set {w0, . . . ,wt−1} and wi−1 is adjacent to wi (1 ≤
i ≤ t), where the indices are taken modulo t .

Seymour and Thomas [31, Theorems (5.1) and (7.2)] show that a Σ -plane graph
G without vertices of degree one is of branchwidth at most � if and only if MG has
a bond carving decomposition of width at most 2�. They also show [31, Algorithm
(9.1)] how to construct an optimal bond carving decomposition of the medial graph
MG in time O(n4). A refinement of the algorithm in [20] gives running time O(n3).
A bond carving decomposition 〈T ,μ〉 of MG is also a branch decomposition of G

(vertices of MG are the edges of G) and it can be shown (see the proof of (7.2) in
[31]) that for every edge e of T if the cut set cut(e) in MG is of size at most 2�, then
the middle set mid(e) in G is of size at most �. It is well known that the edge set of
a minimal cut forms a cycle in the dual graph. The dual graph of a medial graph MG

is the radial graph RG. In other words, RG is a bipartite graph with the bipartition
F(G)∪V (G). A vertex v ∈ V (G) is adjacent in RG to a vertex f ∈ F(G) if and only
if the vertex v is incident to the face f in the drawing of G. Therefore, a cycle in RG

forms a noose in G.
To summarize, for every edge e of T , cut(e) is a minimal cut in MG, thus cut(e)

forms a cycle in RG (and a noose Oe in G). Every vertex of MG is in one of the
open discs Δ1 and Δ2 bounded by Oe . Since Oe meets G only in vertices, we have
that Oe ∩ V (G) = mid(e). Thus for every edge e of T and the two subgraphs G1

and G2 of G formed by the leaves of the subtrees of T \ {e}, Oe bounds the two open
discs Δ1 and Δ2 such that Gi ⊆ Δi ∪ Oe , 1 ≤ i ≤ 2.

Algorithmica (2010) 58: 790–810 795

Finally, with a given bond carving decomposition 〈T ,μ〉 of the medial graph MG,
it is straightforward to construct a cycle in RG corresponding to cut(e), e ∈ E(T),
and afterwards to compute the ordering π of mid(e) in time linear in �. �

Non-Crossing Partitions Together with sphere cut decompositions, non-crossing
partitions give us the key to our later dynamic programming approach. A non-
crossing partition (ncp) is a partition P(n) = {P1, . . . ,Pm} of the set S = {1, . . . , n}
such that there are no numbers a < b < c < d where a, c ∈ Pi , and b, d ∈ Pj with
i �= j . A partition can be visualized by a circle with n equidistant vertices on its
border, where every set of the partition is represented by the convex polygon with
its elements as endpoints. A partition is non-crossing if these polygons do not over-
lap. Non-crossing partitions were introduced by Kreweras [24], who showed that the
number of non-crossing partitions over n vertices is equal to the n-th Catalan number:

CN(n) = 1

n + 1

(
2n

n

)
∼ 4n

√
πn

3
2

≈ 4n (1)

Non-Crossing Matchings A non-crossing matching (ncm) is a special case of a ncp,
where |Pi | = 2 for every element of the partition. A ncm can be visualized by placing
n vertices on a cycle, and connecting matching vertices with arcs at one fixed side
of the cycle. A matching is non-crossing if these arcs do not cross. The number of
non-crossing matchings over n vertices is given by:

M(n) = CN

(
n

2

)
∼ 2n

√
π(n

2)
3
2

≈ 2n (2)

3 Planar Hamiltonian Cycle

In this section we show how sc-decompositions in combination with ncm’s can be
used to design subexponential algorithms. In the PLANAR HAMILTONIAN CYCLE

problem we are given a weighted Σ -plane graph G = (V ,E) with weight function
w:E(G) → N and we ask for a cycle of minimum weight through all vertices of
V . We can formulate the problem in a different way: A labeling H : E(G) → {0,1}
is Hamiltonian if the subgraph GH of G formed by the edges with label ‘1’ is a
spanning cycle. We may express the HAMILTONIAN CYCLE problem as follows:

Find a Hamiltonian labeling H minimizing
∑

e∈E(G) H(e) · w(e).
For an edge labeling H and a vertex v ∈ V (G) we define the H-degree degH(v)

of v as the sum of labels assigned to the edges incident to v. Although the use of
labeling makes the algorithm more complex, it is necessary for the understanding of
the approach for PLANAR GRAPH TSP we use later.

Rooting Sphere-cut Decompositions Let 〈T ,μ,π〉 be a sc-decomposition of G of
width �. We root T by arbitrarily choosing an edge e, and subdivide it by inserting a
new node s. Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e). Create
a new node root r , connect it to s and set mid({r, s}) = ∅. For every edge e of T the

796 Algorithmica (2010) 58: 790–810

Fig. 1 On the left we see the same graph G as in the last figure. The grey rhombus and grey edges illustrate
the radial graph RG . G is partitioned by the rectangle vertices of S1, S2, S3 into GL in drawn-through
edges, GR in dashed edges, and GP in pointed edges. On the right the three nooses OL , OR , and OP are
marked. Note that the nooses are induced by S1, S2, S3 and the highlighted grey edges on the left hand.
All three nooses here intersect in one portal vertex s

subtree directed towards the leaves is called the lower part and the rest the residual
part with regard to e. We call the subgraph Ge induced by the leaves of the lower part
of e the subgraph rooted at e. Let e be an edge of T and let Oe be the corresponding
noose in Σ . The noose Oe partitions Σ into two discs, one of which, Δe , contains Ge.
Each internal node v of T has one adjacent edge on the path from v to r , called the
parent edge eP , and two adjacent edges towards the leaves, called the left child eL

and the right child eR .
Let OL, OR , and OP be the nooses corresponding to edges eL, eR , and eP , and

let ΔL, ΔR , and ΔP be the discs bounded by these nooses. Note that, due to the
definition of middle sets, a vertex v in a middle set mid(e) is incident both to an edge
f in Ge, and to an edge g in G \ Ge. Thus, v appears in every middle set along the
path from μ−1(f) to μ−1(g). This means, every vertex in V (G) ∩ (OL ∪ OR ∪ OP)

appears in at least two of the three middle sets corresponding to OL,OR , and OP . We
partition the set (OL ∪ OR ∪ OP) ∩ V (G) into three sets:

• Portal vertices P := OL ∩ OR ∩ OP ∩ V (G).
• Intersection vertices I := OL ∩ OR ∩ V (G) \ P .
• Symmetric difference vertices D := OP ∩ V (G) \ (P ∪ I).

See Fig. 1 for an illustration of these notions. Observe that |P | ≤ 2, as the disc ΔP

contains the union of the discs ΔL and ΔR . This observation will prove to be crucial
in the analysis of the algorithm.

Labeling the Subgraphs Given a labeling P [e]:E(Ge) → {0,1} for an edge e in T ,
we define for every vertex v in Ge the P [e]-degree degP [e](v) to be the sum of the
labels on the edges incident to v. Let GP [e] be the subgraph induced by the edges with
label ‘1’. We call P [e] a partial Hamiltonian labeling if GP [e] satisfies the following
properties:

Algorithmica (2010) 58: 790–810 797

• For every vertex v ∈ V (Ge) \ Oe , degP [e](v) = 2.
• Every connected component of GP [e] has exactly two vertices in Oe with

degP [e](v) = 1, all other vertices of GP [e] have degP [e](v) = 2.

Observe that GP [e] forms a collection of disjoint paths with endpoints in Oe , and
note that every partial Hamiltonian labeling P [{r, s}] of G{r,s} forms a Hamiltonian
labeling H.

Partial Hamiltonian Labeling and Non-crossing Matchings Now the geometric
properties of sc-decompositions in combination with non-crossing matchings come
into play. For a partial Hamiltonian labeling P [e] let P be a path of GP [e]. As the
graph is planar, no paths cross and we can reduce P to an arc in Δe with endpoints on
the noose Oe. If we do so for all paths, the endpoints of these arcs form a non-crossing
matching on a subset of mid(e).

Because Oe bounds the disc Δe and the graph GP [e] is in Δe, we are able to scan
the vertices of V (P)∩Oe according to the ordering π and mark with ‘1[’ the first and
with ‘1]’ the last vertex of P on Oe. Mark the endpoints of all paths of GP [e] in such
a way. Then the obtained sequence with marks ‘1[’ and ‘1]’, decodes the complete
information on how the endpoints of V (GP [e]) hit Oe. With the given ordering π ,
the ‘1[’ and ‘1]’ encode a ncm. The other vertices of V (GP [e]) ∩ Oe are the ‘inner’
vertices and we mark them by ‘2’. All vertices of Oe that are not in GP [e] are marked
by ‘0’.

Computing a Hamiltonian Labeling For an edge e of T and the correspond-
ing noose Oe , the state of dynamic programming is specified by an ordered �-
tuple te := (v1, . . . , v�). Here, the variables v1, . . . , v� correspond to the vertices
of Oe ∩ V (G) taken according to the cyclic order π with an arbitrary first vertex.
This order is necessary for a well-defined encoding where the variables vi take one
of the four values: 0, 1[, 1], 2. Hence, there are at most O(4�|V (G)|) states. For every
state, we compute a value We(v1, . . . , v�) that is the minimum weight over all par-
tial Hamiltonian labelings P [e] encoded by v1, . . . , v�. If no such labeling exists we
have We(v1, . . . , v�) = +∞. For an illustration of a partial Hamiltonian labeling see
Fig. 2.

Fig. 2 On the left we see a graph G partitioned by the rectangle vertices of Oe ∩ V (G) into Ge in
drawn-through edges and Ge in dashed edges. On the right subgraph GH marks a Hamiltonian cycle.
GH is partitioned by the vertices of Oe ∩ V (G) which are labeled corresponding to two vertex-disjoint
paths in Ge induced by the partial Hamiltonian labeling P [e]

798 Algorithmica (2010) 58: 790–810

To compute an optimal Hamiltonian labeling H, we perform dynamic program-
ming over middle sets mid(e) = O(e)∩V (G), starting at the leaves of T and working
bottom-up towards the root edge. The first step in processing the middle sets is to ini-
tialize the leaves with values We(0,0) = 0, We(1[,1]) = w(f), where f represents
the edge of the graph corresponding to the leaf. Every other We(., .) is infinite. Then,
bottom-up, update every pair of states of two child edges eL and eR to a state of
the parent edge eP assigning a finite value WP if the state corresponds to a feasible
partial Hamiltonian labeling.

We compute all valid assignments to the variables tP = (v1, v2, . . . , vp) corre-
sponding to the vertices mid(eP) from all possible valid assignments to the variables
of tL and tR . For a symbol x ∈ {0,1[,1],2}, we denote by |x| its ‘numerical’ part,
e.g. |1[| = 1. We say that an assignment cP is formed by assignments cL and cR if
for every vertex v ∈ (OL ∪ OR ∪ OP) ∩ V (G):

• v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), and cP (v) = cR(v) otherwise.
• v ∈ I : |cL(v)| + |cR(v)| = 2.
• v ∈ P : |cP (v)| = |cL(v)| + |cR(v)| ≤ 2.

We compute all �-tuples for mid(eP) that can be formed by tuples corresponding
to mid(eL) and mid(eR) and check if the obtained assignment corresponds to a label-
ing without cycles. For every tP , let WP (tP) be the minimum of WL(tL) + WR(tR)

taken over all tL and tR that form tP .
For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪Oe′′)∩V (G) = I

and O{r,s} = ∅. Hence, for every v ∈ V (GP [{r,s}]) it must hold that degP [{r,s}](v) is
two, and that the labelings form a cycle. The optimal Hamiltonian labeling H of G

results from mint {r,s} {Wr}.

Running Time Analysis Analyzing the algorithm, we obtain the following lemma.

Lemma 1 PLANAR HAMILTONIAN CYCLE on a graph G with branchwidth � can
be solved in time O(23.292��n + n3).

Proof By Theorem 1, an sc-decomposition 〈T ,μ,π〉 of width at most � of G can be
found in O(n3).

Since for any three adjacent edges eP , eL, and eR of T , we have that |OL ∪ OR ∪
OP | ≤ 1.5 · �, we consider |OL| = |OR| = |OP | = � for a worst-case scenario. With-
out loss of generality we limit our analysis to even values for �, and assume there are
no portal vertices. This can only occur if |I | = |D ∩ OL| = |D ∩ OR| = �

2 .
By just checking every combination of �-tuples from OL and OR we obtain a

bound of O(�42�) for our algorithm.
Some further improvement is apparent, as for the vertices u ∈ I we want the sum

of the {0,1[,1],2} assignments from both sides to be 2, i.e., we only combine tuples
where |cL(u)| = 1 and |cR(u)| = 1. Thus, we will bound the number of possible
combinations considered, in order to improve our algorithm.

We start by giving an expression for Q(�,m): the number of �-tuples over � ver-
tices where the {1[,1]} assignments for m vertices from I are fixed. The only freedom

Algorithmica (2010) 58: 790–810 799

is thus in the �/2 vertices in D ∩ OL and D ∩ OR , respectively:

Q(�,m) =
�
2∑

i=0

(�
2
i

)
2

�
2 −iM(i + m) (3)

This expression is a summation over the number of 1[’s and 1]’s in D ∩ OL and

D ∩ OR , respectively. The term
(�

2
i

)
counts the possible locations for the 1[’s and

1]’s, the 2
�
2 −i counts the assignment of {0,2} to the remaining �/2 − i vertices, and

the M(i + m) term counts the ncm’s over the 1[’s and 1]’s. As we are interested in
exponential behaviour for large values of � we ignore if i + m is odd, and use that
M(n) ≈ 2n:

Q(�,m) = O

⎛
⎜⎝

�
2∑

i=0

(�
2
i

)
2

�
2 −i2i+m

⎞
⎟⎠ = O(2�+m) (4)

We define C(�) as the number of possible pairs for forming an �-tuple from OP . We
sum over i: the number of 1[’s and 1]’s in the assignment for I :

C(�) =
�
2∑

i=0

(�
2
i

)
2

�
2 −iQ(�, i)2 = O

⎛
⎜⎝

�
2∑

i=0

(�
2
i

)
2

�
2 −i22�22i

⎞
⎟⎠ (5)

We interpret the different terms of (5) as follows: The term 2
�
2 −i counts the number

of ways how the vertices of I are assigned on one side with 0 and on the other side
with 2. The term 22i counts for I the number of ways vertices are assigned on both
side by symbols with numerical value one. Straightforward calculation yields:

C(�) = O

⎛
⎜⎝2

5�
2

�
2∑

i=0

(�
2
i

)
2i

⎞
⎟⎠ = O

(
2

5�
2 3

�
2

)
= O((4

√
6)�) (6)

Since we can check in time linear in � if an assignment forms no cycle and the
number of edges in the tree of a branch decomposition is O(n), we obtain an overall
running time of O((4

√
6)��n + n3) = O(23.292��n + n3). �

By Proposition 1 and Lemma 1 we achieve the running time O(26.987
√

nn3/2 +n3)

for PLANAR HAMILTONIAN CYCLE.

Forbidding Cycles We can further improve upon the previous bound by only form-
ing encodings that do not create a partial cycle. As cycles can only be formed at
the vertices in I with numerical part 1 in both OL and OR , we only consider these
vertices.

We would like to have an upper bound for the number of combinations from OL

and OR that do not induce a cycle. This bound could then be applied to the previous
analysis.

800 Algorithmica (2010) 58: 790–810

Let I have n vertices and be assigned by an ordered n-tuple of variables
(v1, . . . , vn). Each variable vi is a two-tuple (cL(vi), cR(vi)) of assignments cL, cR ∈
{1[,1]} of vertex vi . For example, suppose I has only two vertices x and y. A cycle
is formed if cL(x) = cR(x) = 1[and cL(y) = cR(y) = 1]. That is, ((1[,1[), (1],1]))
encodes a cycle.

Let B(n) denote the set of all n-tuples over the first n vertices of I that form no
cycles: B(0) = ∅, B(1) = {((1[,1[))}, B(2) = {((1[,1[), (1[,1[)), ((1[,1[), (1],1[)),
((1[,1[), (1[,1]))}, etc. Exact counting of B(n) for all vertices of I is complex, so
we use a different approach. We have a natural upper bound |B(n)| ≤ zn with z = 4
when we consider all possible n-tuples.

We divide each B(i) into two classes: C1(i) contains all i-tuples of the form
(. . . , (1[,1[)), and C2(i) contains all other i-tuples. We add every possible two-
tuple to C1(i) and C2(i) to obtain two new classes C1(i + 1) and C2(i + 1) of
B(i + 1). Adding two-tuple (1],1]) to items from C1(i) is forbidden, as this di-
rectly gives us a cycle. Addition of (1[,1[) to i-tuples of both C1(i) and C2(i) gives
us (i + 1)-tuples of class C1(i + 1). Addition of (1[,1]) or (1],1[) to either class
leads to (i + 1)-tuples of class C2(i + 1), or might lead to infeasible encodings.
Given these classes we create a 2 × 2 transition matrix A for the column vectors
of the class cardinalities (|C1(i)|, |C2(i)|)T and (|C1(i + 1)|, |C2(i + 1)|)T such
that (|C1(i + 1)|, |C2(i + 1)|)T ≤ A(|C1(i)|, |C2(i)|)T . For large n we have that
(|C1(n)|, |C2(n)|)T ≤ An (|C1(1)|, |C2(1)|)T ≈ znx1 where z is largest real eigen-
value of A and x1 is an eigenvector. Thus, zn is a bound of |B(n)|. It follows that
A = (1 1

2 3

)
. As the largest real eigenvalue of A is 2 + √

3, we have z ≤ 3.73205 and
bound |B(n)| ≤ 3.73205n.

Using these two classes eliminates all cycles over two consecutive vertices. By
using three classes we can also prevent larger cycles and obtain tighter bounds
for z:

• C1(i) contains all i-tuples (. . . , (1[,1[), x), where x can consist of zero or more
elements (1[,1]), (1],1[) or (1],1[), (1[,1]) after each other.

• C2(i) contains all i-tuples (. . . , (1[,1[), x, y) where y represents (1[,1]) or
(1],1[).

• C3(i) contains all other i-tuples.

Because we use three classes here, we can also prevent some cycles over
more than two consecutive vertices. We obtain a 3 × 3 transition matrix A such
that (|C1(i + 1)|, |C2(i + 1)|, |C3(i + 1)|)T ≤ A(|C1(i)|, |C2(i)|, |C3(i)|)T of the
form:

A =
⎛
⎝1 2 1

2 0 0
0 2 3

⎞
⎠

By calculating the largest real eigenvalue we obtain z ≤ 3.68133. This bound is
definitely not tight, it seems possible to generalize the technique to get a better bound.

Algorithmica (2010) 58: 790–810 801

We may take more classes into consideration, but already concerning two classes
improves our results only incrementally. We replace 22i in (5) by the last calculated
value zi to approximate the number of PLANAR HAMILTONIAN CYCLES:

C(�) = O

⎛
⎜⎝

�
2∑

i=0

(�
2
i

)
2

�
2 −i4�zi

⎞
⎟⎠ = O(23.253�) (7)

Thus, we get the following result:

Theorem 2 PLANAR HAMILTONIAN CYCLE is solvable in O(26.903
√

nn3/2 + n3) =
O(26.903

√
n).

4 Planar Graph TSP

In the PLANAR GRAPH TSP we are given a weighted Σ -plane graph G = (V ,E)

with weight function w:E(G) → N and we are asked for a minimum weight closed
walk that visits all vertices of G at least once. Equivalently, this is TSP with dis-
tance metric the shortest path metric of G. We only sketch the algorithm for PLA-
NAR GRAPH TSP since it is very similar to the algorithm for PLANAR HAMIL-
TONIAN CYCLE. Instead of collections of disjoint paths we now deal with connected
components with even vertex degree for the vertices outside the nooses of the sc-
decomposition.

It is easy to show that a shortest closed walk passes through each edge at most
twice. Thus every shortest closed walk in G corresponds to the minimum spanning
Eulerian subgraph in the graph G′ obtained from G by adding to each edge a parallel
edge. Every vertex of an Eulerian graph is of even degree, which brings us to another
equivalent formulation of the problem. A labeling E : E(G) → {0,1,2} is Eulerian if
the subgraph GE of G formed by the edges with positive labels is a connected span-
ning subgraph and for every vertex v ∈ V the sum of labels assigned to edges incident
to v is even. Thus PLANAR GRAPH TSP is equivalent to the following problem:

Find an Eulerian labeling E minimizing
∑

e∈E(G)

E (e) · w(e).

For a labeling E and vertex v ∈ V (G) we define the E -degree degE (v) of v as the
sum of labels assigned to the edges incident to v.

Labeling the Subgraphs Let G be a Σ -plane graph and let 〈T ,μ,π〉 be a rooted sc-
decomposition of G of width �. We use the same definitions for Oe, Ge, and Δe . We
call a labeling P [e]:E(Ge) → {0,1,2} a partial Eulerian labeling if the subgraph
GP [e] induced by the edges with positive labels satisfies the following properties:

• Every connected component of GP [e] has a vertex in Oe .
• For every vertex v ∈ V (Ge) \ Oe , the P [e]-degree degP [e](v) of v is even and

positive.

802 Algorithmica (2010) 58: 790–810

The weight of a partial Eulerian labeling P [e] is
∑

f ∈E(Ge)
P [e](f) ·w(f). Note that

every partial Eulerian labeling P [{r, s}] of G{r,s} is also an Eulerian labeling E .

Partial Eulerian Labeling and Non-crossing Partitions Again we encode the in-
formation on which vertices of the connected components of GP [e] of all possible
partial Eulerian labelings P [e] hit Oe ∩ V (G). Also we encode for every vertex
v ∈ Oe ∩ V (G) the information if degP [e](v) is either 0, or odd, or even and pos-
itive.

For a partial Eulerian labeling P [e] let C be a component of GP [e] with at least
two vertices in noose Oe . Note that the connected components of GP [e] form a non-
crossing partition. Thus, similarly to the technique presented in the previous section,
we can decode the complete information on which vertices of each connected com-
ponent of V (GP [e]) hit Oe .

We scan the vertices of V (C) ∩ Oe according to the ordering π and mark with in-
dex ‘[’ the first and with ‘]’ the last vertex of C on Oe . We also mark by ‘�’ the other
‘inner’ vertices of V (C)∩Oe . Note that by planarity arguments, ‘�’ marked vertices
are uniquely allocated to C. Finally we assign numerical values corresponding to the
parity of degP [e](v) for every vertex v ∈ Oe ∩ V (C).

For the special case that C has only one vertex in Oe, we mark this vertex by ‘0’
(in order to save labels). This includes the case |V (C)| = 1.

Computing Eulerian Labeling When encoding the parity of the vertex degrees, the
following observation is useful: In every graph the number of vertices with odd de-
gree is even. Consider a component C of GP [e]. There is an even number of vertices
in C ∩Oe with odd P [e]-degree. Thus, we do not need to encode the parity of the de-
gree of a vertex assigned by ‘]’. The parity is determined by the other vertices of the
same component. The state of dynamic programming is te := (v1, . . . , v�) with vari-
ables v1, . . . , v� having one of the six values: 0, 1[, 1�, 2[, 2�,]. Here, the numerical
value ‘1’ indicates odd vertex degree and the value ‘2’ even degree. Hence, there are
at most O(6�|V (G)|) states. For every state, we compute a value We(v1, . . . , v�)

that is the minimum weight over all partial Eulerian labelings P [e] encoded by
(v1, . . . , v�):

• For every connected component C of GP [e] with |C ∩ Oe| ≥ 2 the first vertex of
C ∩ Oe in π is represented by 1[or 2[and the last vertex is represented by]. All
other vertices of C ∩ Oe are represented by 1� or 2�. For every vertex v marked
by 1[or 1� the parity of degP [e](v) is odd and for every vertex v marked by 2[or
2�, degP [e](v) is positive and even.

• For every connected component C of GP [e] with v = C ∩ Oe, v is represented
by 0. (Note that since for every w ∈ V (Ge) \ Oe it holds that degP [e](w) is even,
so must degP [e](v).)

• Every vertex v ∈ (V (Ge) ∩ Oe) \ GP [e] is marked by 0.

Note that the vertices of the last two items can be treated in the same way in the
dynamic programming. We put We = +∞ if no such labeling exists. For an illus-
tration of a partial Eulerian labeling see Fig. 3. To compute an optimal Eulerian
labeling E , we perform dynamic programming over middle sets as in the previous

Algorithmica (2010) 58: 790–810 803

Fig. 3 On the left we see a plane graph G—3-connected and non-Hamiltonian—partitioned by the rec-
tangle vertices hit by the marked noose Oe into Ge in drawn-through edges and Ge in dashed edges.
To the right a subgraph GE , where an Eulerian labeling E is marked. GE is partitioned by the vertices
of Oe ∩ V (G) which are labeled corresponding to partial Eulerian labeling P [e] of Ge . Encoding the
vertices touched by Oe from the left to the right with 1[,1[,0,],2�,], GP [e] consists of three compo-
nents C1, C2 and C3 with C1 ∩Oe = {1[,2�,]},C2 ∩Oe = {0},C3 ∩Oe = {1[,]}. Here GP [e] has edges
only labeled with 1

section. The first step of processing the middle sets is to initialize the leaves corre-
sponding to edges f ∈ E of the graph G with values We(0,0) = 0, We(1[,]) = w(f),
and We(2[,]) = 2w(f). Every other We(., .) is infinite. Then, bottom-up, update
every pair of states of two child edges eL and eR to a state of the parent edge eP

assigning a finite value WP if the state corresponds to a feasible partial Eulerian
labeling.

We compute all valid assignments cP to the variables tP = (v1, v2, . . . , vp) from
all possible valid assignments cL and cR to the variables of tL and tR . We define the
numerical value | · | of ‘]’ to be one if the sum of degP [e] over all vertices in the same
component is odd, and to be two if the sum is even.

For every vertex v ∈ (OL ∪ OR ∪ OP) ∩ V (G) we consider the three cases:

• v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.
• v ∈ I : (|cL(v)| + |cR(v)|) = 0 (mod 2) and |cL(v)| + |cR(v)| > 0.
• v ∈ P : |cP (v)| = 0 if |cL(v)| + |cR(v)| = 0, |cP (v)| = 1 if (|cL(v)| + |cR(v)|) = 1

(mod 2), else |cP (v)| = 2.

Note that for a vertex v ∈ OP ∩ V (G) it is possible that |cP (v)| = 0 even
if |cL(v)| + |cR(v)| is even and positive since v might be the only intersection of a
component with OP . In order to verify that the encoding formed from two states of eL

and eR corresponds to a labeling with each component touching OP , we use an aux-
iliary graph A with V (A) = (OL ∪ OR) ∩ V (G) and {v,w} ∈ E(A) if v and w both
are in one component of GP [eL] and GP [eR]. Every component of A must have a ver-

804 Algorithmica (2010) 58: 790–810

tex in OP ∩ V (G). For every tP , let WP (tP) be the minimum of WL(tL) + WR(tR)

taken over all tL and tR that form tP .
For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪Oe′′)∩V (G) = I

and O{r,s} = ∅. Hence, for every v ∈ V (GP [{r,s}]) it must hold that degP [{r,s}](v) is
positive and even, and that the auxiliary graph A is connected. An optimal Eulerian
labeling E of G results from mint {r,s} {Wr}.

Running Time Analysis Analyzing the algorithm, we obtain the following lemma.

Lemma 2 PLANAR GRAPH TSP on a graph G with branchwidth at most � can be
solved in time O(24.6496��n + n3).

Proof Assume three adjacent edges eP , eL, and eR of T with |OL| = |OR| = |OP | =
� and that there are no portal vertices. Thus we have |I | = |D ∩OL| = |D ∩OR| = �

2 .
By just checking every combination of �-tuples from OL and OR we obtain a

bound of O(�62�) for our algorithm.
This bound can be improved by using the fact that for all vertices u ∈ I we want

the sum of the assignments to be even, i.e., (|cL(u)| + |cR(u)|) = 0 (mod 2).
We define Q(�,m1,m2) as the number of �-tuples over � vertices of OL and OR ,

respectively, where the {0,1[,1�,2[,2�,]} assignments for vertices from I is fixed
and contains m1 vertices of odd P [e]-degree and m2 vertices of even P [e]-degree.
The only freedom is thus in the �/2 vertices in D ∩ OL and D ∩ OR , respectively:

Q(�,m1,m2) = O

⎛
⎜⎝

�
2∑

i=0

�
2 −i∑
j=0

(�
2
i

)(�
2 − i

j

)
1

�
2 −i−j

(
5

2

)i+m1
(

5

2

)j+m2

⎞
⎟⎠

= O

(
6

�
2

(
5

2

)m1
(

5

2

)m2
)

(8)

This expression is a summation over the number of vertices of odd and even P [e]-
degree in D ∩ OL and D ∩ OR , respectively. The terms

(�
2
i

)
and

(�
2 −i

j

)
count the

possible locations for the vertices of odd and even P [e]-degree, respectively, whereas

(5
2)i+m1 and (5

2)i+m2 count the number of those assignments. The 1
�
2 −i−j is left in the

formula to represent the assignment of P [e]-degree zero to the remaining �/2− i − j

vertices.
We define C(�) as the number of possibilities of forming an �-tuple from OP .

We sum over i and j : the number of vertices of odd and even P [e]-degree in the
assignment for I :

C(�) =
�
2∑

i=0

�
2 −i∑
j=0

(�
2
i

)(�
2 − i

j

)
5

�
2 −i−jQ(�, i, j)2 (9)

The term 5
�
2 −i denotes the number of ways the vertices of I can be assigned

from one side with P [e]-degree zero and from the other side with even P [e]-degree.

Algorithmica (2010) 58: 790–810 805

Straightforward calculation yields:

C(�) = O

⎛
⎜⎝

�
2∑

i=0

i∑
j=0

(�
2
i

)(�
2 − i

j

)
5

�
2 −i−j 6�

(
5

2

)2i (5

2

)2j

⎞
⎟⎠

= O((6
√

17.5)�) (10)

We obtain an overall running time of O(6�(35
2)

�
2 �n). �

Forbidding Several Components Again we can further improve upon the previous
bound by only forming encodings that do not create several components. In contrast
to cycles, the components can be formed at the vertices in I with numerical part 1
and 2 in both OL and OR . But we only consider vertices with even sum of the nu-
merical part of the assignment. Thus, we look separately at the classes of even P [e]-
degree and odd P [e]-degree. Without loss of generality consider odd P [e]-degree:
as in the previous section we want to exclude the case ((1[,1[), (],])). Again con-
sider the two classes: C1(i) contains all i-tuples (. . . , (1[,1[)), and C2(i) contains all
other i-tuples. Adding (],]) to i-tuples from C1(i) is forbidden, as this will lead to
a single component. Addition of (1[,1[) to i-tuples of both C1(i) and C2(i) gives us

the (i + 1)-tuples of class C1(i + 1). We obtain the matrix A = (1 1
5 21

4

)
with largest

eigenvalue z =
√

77+9
2 ≤ 6.2097. We can insert z for both the odd and the even valued

vertices separately in (10):

C(�) = O

⎛
⎜⎝

�
2∑

i=0

i∑
j=0

(�
2
i

)(�
2 − i

j

)
5

�
2 −i−j 6�zizj

⎞
⎟⎠

= O((6
√

17.4195)�) (11)

We obtain the following result:

Theorem 3 PLANAR GRAPH TSP is solvable in time O(29.8594
√

nn3/2 + n3) =
O(29.8594

√
n).

5 Variants

In this section we will discuss results on other non-local problems on planar graphs.

Exact Algorithms for Hamiltonian-like Problems The problem of finding the min-
imum weight PLANAR HAMILTONIAN PATH is closely related to PLANAR HAMIL-
TONIAN CYCLE. The main difference is that we now have some more freedom in the
allowed partial labelings, as there can be at most two vertices not on a noose having
degree 1. It is clear that this only contributes a constant factor to the total running
time, yielding the following theorem.

806 Algorithmica (2010) 58: 790–810

Theorem 4 PLANAR HAMILTONIAN PATH is solvable in time O(26.903
√

n).

The problem of PLANAR LONGEST CYCLE (PATH) is, given a weighted planar
graph, find the cycle (path) with the largest sum of edge weights. Let C be a cycle
in G. For an edge e of an sc-decomposition tree T , the noose Oe can affect C in
two ways: Either cycle C is partitioned by Oe such that in Ge the remains of C are
disjoint paths, or C is not touched by Oe and thus is completely in Ge or G \ E(Ge).

With the same encoding as for PLANAR HAMILTONIAN CYCLE, we add a counter
for all states te which is initialized by 0 and counts the maximum number of edges
over all possible vertex-disjoint paths represented by one te. In contrast to PLANAR

HAMILTONIAN CYCLE, we allow for every vertex v ∈ I that |cL(v)| + |cR(v)| =
0 in order to represent the isolated vertices. A cycle as a connected component is
allowed if all other components are isolated vertices. Then all other vertices in V (G)\
V (GP) of the residual part of T must be of value 0. Implementing a counter Z for
the actual longest cycle, a state in tP consisting of only 0’s represents a collection
of isolated vertices with Z storing the longest path in GP without vertices in mid(e).
At the root edge, Z gives the size of the longest cycle. Analysis is similar to that of
PLANAR HAMILTONIAN CYCLE, we get a slightly worse running time since we have
to account for isolated vertices.

By the same argument as for PLANAR HAMILTONIAN PATH we see that PLANAR

LONGEST PATH has the same running time as PLANAR LONGEST CYCLE. Thus we
have the following theorem.

Theorem 5 PLANAR LONGEST CYCLE and PLANAR LONGEST PATH are solvable
in time O(27.223

√
n).

MINIMUM NUMBER (COST) CYCLE COVER asks for a minimum number (cost)
of vertex disjoint cycles that cover the vertex set of the input graph. The algorithm
can be implemented as a variant of PLANAR HAMILTONIAN CYCLE algorithm, with
the additional freedom of allowing cycles in the merging step. Thus the result from
(6) can be used directly, leading to the following theorem.

Theorem 6 PLANAR MINIMUM NUMBER (COST) CYCLE COVER is solvable in
time O(n

3
2 26.987

√
n).

Parameterized Algorithms for Non-local Problems The PLANAR k-CYCLE prob-
lem asks for a given planar graph G to find a cycle of length at least a parameter k.
The algorithm on PLANAR LONGEST CYCLE can be used for obtaining parameter-
ized algorithms by adopting the techniques from [9, 18].

Before we proceed, let us remind the notion of a minor. A graph H obtained by
a sequence of edge-contractions from a graph G is said to be a contraction of G. H

is a minor of G if H is the subgraph of some contraction of G. Let us note that if a
graph H is a minor of G and G contains a cycle of length at least k, then so does G.

We need the following combination of statements (4.3) in [30] and (6.3) in [29].

Theorem 7 [29] Let k ≥ 1 be an integer. Every planar graph with no (k × k)-grid as
a minor has branchwidth at most 4k − 3.

Algorithmica (2010) 58: 790–810 807

It easy to check that every (
√

k × √
k)-grid, k ≥ 2, contains a cycle of length

at least k − 1. This observation combined with Theorem 7 suggests the following
parameterized algorithm. Given a planar graph G and integer k, first compute the
branchwidth of G. If the branchwidth of G is at least 4

√
k + 1−3 then by Theorem 7,

G contains a (
√

k + 1 × √
k + 1)-grid as a minor and thus contains a cycle of length

at least k. If the branchwidth of G is less than 4
√

k + 1 − 3 we can find the longest
cycle in G in time O(213.6

√
k
√

k n + n3). We conclude with the following theorem.

Theorem 8 PLANAR k-CYCLE is solvable in time O(213.6
√

kn + n3).

By standard techniques (see for example [16]) the recognition algorithm for PLA-
NAR k-CYCLE can easily be turned into a constructive one.

Non-local Problems with Tree-like Solutions The problem CONNECTED DOMI-
NATING SET asks for a minimum DOMINATING SET that induces a connected sub-
graph. See [10] for a subexponential algorithm on graphs of bounded outerplanarity.
CONNECTED DOMINATING SET can be formulated as MAX LEAF PROBLEM where
one asks for a spanning tree with the maximum number of leaves [19].

For the state of the vertices on the nooses we can use an encoding with symbols
00,01,10,1[,1�,1]. The numerical part indicates whether (1) or not (0) a vertex is
an inner node of the solution spanning tree. The indices for the vertices labeled with
a 1 encode to which connected component they belong, 10 is an isolated vertex that
becomes an inner node. The indices for the leaves 0 indicate if a vertex is connected
(1) or not (0) to any vertex marked as an inner node. Using our technique, we ob-
tain:

Theorem 9 PLANAR CONNECTED DOMINATING SET is solvable in timeO(29.822
√

n).

The MINIMUM STEINER TREE of some subset X of the vertices of a planar graph
G is a minimum-weight connected subgraph of G that includes X. It is always a tree;
thus, we only encode connected subgraphs by using four symbols 0, [,],�. Here,
[,],� mark the first, the last, and all other vertices of a component and 0 marks
isolated vertices and vertices that are the only intersection of a component and the
noose. Note that every vertex of X must be part of a component, whereas the vertices
of V \ X must not. We obtain the following:

Theorem 10 PLANAR STEINER TREE is solvable in time O(28.488
√

n).

In FEEDBACK VERTEX SET on an undirected planar graph G, one is asked to find
a set Y of vertices of minimum cardinality such that every cycle of G passes through
at least one vertex of Y . FEEDBACK VERTEX SET is equivalent to the problem: find
an induced forest F in G with vertex set V (F) of maximum cardinality. It holds that
V (G) \ Y = V (F). We are able to encode induced connected subgraphs with our
technique. We mark if a vertex is in V (F) or not. Every edge of G is an edge in the
forest if its incident vertices are in V (F).

808 Algorithmica (2010) 58: 790–810

Theorem 11 PLANAR FEEDBACK VERTEX SET is solvable in time O(29.264
√

n).

In the parameterized version of the problem, k-FEEDBACK VERTEX SET, we ask
if Y is of size at most parameter k. We improve the 2O(

√
k log k)nO(1) algorithm in [23]

to 2O(
√

k)nO(1) by using the bidimensionality of k-FEEDBACK VERTEX SET (see [9]
for more information). If a problem on graphs of bounded treewidth tw is solvable
in time 2O(tw)nO(1) and its parameterized version with parameter k is bidimensional
then it is solvable in time 2O(

√
k)nO(1).

6 Concluding Remarks

In this paper we introduced a new algorithmic design technique based on geometric
properties of branch decompositions. Our technique can be also applied to construct
2O(

√
n) · nO(1)-time algorithms for a variety of cycle, path, or tree subgraph prob-

lems in planar graphs like HAMILTONIAN PATH, LONGEST PATH, and CONNECTED

DOMINATING SET, and STEINER TREE amongst others. An interesting question here
is if the technique can be extended to more general problems, like SUBGRAPH ISO-
MORPHISM. For example, Eppstein [17] showed that PLANAR SUBGRAPH ISOMOR-
PHISM problem with pattern of size k can be solved in time 2O(

√
k log k)n. Can we get

rid of the logarithmic factor in the exponent (maybe in exchange to a higher polyno-
mial degree)?

The results of Cook and Seymour [7] on using branch decompositions to obtain
high-quality tours for (general) TSP show that branch decomposition based algo-
rithms run much faster in practice than their worst case time analysis would indicate.
This may be explained by two facts,

• the branchwidth of real world instances is often much less than O(
√

n)—often
even constant;

• many states of the dynamic programming simply do not appear because the corre-
sponding partial solutions do not exist in the graph.

Recent experimental studies show that sc-decompositions of optimal width can
be efficiently found [5], and the dominating set problem on planar graphs can be
efficiently solved for remarkably huge instances using branch decompositions [28].
An experimental study of our algorithms, similar to the study of [28] is an interesting
project.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for
dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

2. Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. J. Comput. Syst. Sci.
67(4), 808–832 (2003)

3. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar
graph problems. J. Algorithms 52(1), 26–56 (2004)

Algorithmica (2010) 58: 790–810 809

4. Arora, S., Grigni, M., Karger, D., Klein, P.N., Woloszyn, A.: A polynomial-time approximation
scheme for weighted planar graph TSP. In: Proceedings of the 9th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 1998), pp. 33–41. ACM, New York (1998)

5. Bian, Z., Gu, Q.-P., Marzban, M., Tamaki, H., Yoshitake, Y.: Study on branchwidth and branch de-
composition of planar graphs. In: Proceedings of the 10th Workshop on Algorithm Engineering and
Experiments (ALENEX 2008), pp. 152–165. ACM, New York (2008)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–21 (1993)
7. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15, 233–248

(2003)
8. Deı̆neko, V.G., Klinz, B., Woeginger, G.J.: Exact algorithms for the Hamiltonian cycle problem in

planar graphs. Oper. Res. Lett. 34(2), 269–274 (2006)
9. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algo-

rithms on graphs of bounded genus and H -minor-free graphs. J. Assoc. Comput. Math. 52(6), 866–
893 (2005)

10. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and
PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), pp. 590–601. ACM, New York (2005)

11. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Com-
put. J. 51(3), 292–302 (2008)

12. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algorithm for non-local problems on graphs
of bounded genus. In: Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT
2006). LNCS, vol. 4059, pp. 172–183. Springer, Berlin (2006)

13. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming on H-minor-free
graphs. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), pp. 631–640. ACM, New York (2008)

14. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Comput. Sci. Rev.
2(1), 29–39 (2008)

15. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs:
Exploiting sphere cut branch decompositions. In: Proceedings of the 13th Annual European Sympo-
sium on Algorithms (ESA 2005). LNCS, vol. 3669, pp. 95–106. Springer, Berlin (2005)

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
17. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms

Appl. 3, 1–27 (1999)
18. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. J. Graph

Theory 51(1), 53–81 (2006)
19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York (1979)
20. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. ACM Trans.

Algorithms 4(3) (2008). Article 30
21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–

210 (1962)
22. Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard

problems in subexponential time. Algorithmica 9(4), 398–423 (1993)
23. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint

cycles on plane and planar graphs. In: Proceedings of the 28th International Workshop on Graph-
theoretic Concepts in Computer Science (WG 2002). Lecture Notes in Comput. Sci., vol. 2573, pp.
282–295. Springer, Berlin (2002)

24. Kreweras, G.: Sur les partitions non croisées d’un circle. Discrete Math. 1(4), 333–350 (1972)
25. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. (eds.): The Traveling Salesman Problem. Wiley,

New York (1985)
26. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–

189 (1979)
27. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–

627 (1980)
28. Marzban, M., Gu, Q.-P., Jia, X.: Computational study on dominating set problem of planar graphs. In:

Proceedings of the Second International Conference on Combinatorial Optimization and Applications
(COCOA 2008). Lecture Notes in Comput. Sci., vol. 5165, pp. 89–102. Springer, Berlin (2008)

29. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B
62, 323–348 (1994)

810 Algorithmica (2010) 58: 790–810

30. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decomposition. J. Comb. Theory,
Ser. B 52(2), 153–190 (1991)

31. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 15, 217–241 (1994)
32. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: Proceedings of the

39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 232–243.
IEEE Comput. Soc., Los Alamitos (1998)

	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions
	Abstract
	Introduction
	Traveling Salesman Problem
	Parameterized Planar k-cycle
	Planar Hamiltonian Cycle

	Geometric Branch Decompositions of Sigma-plane Graphs
	Branch Decompositions and Carving Decompositions
	Sphere cut Decompositions
	Non-Crossing Partitions
	Non-Crossing Matchings

	Planar Hamiltonian Cycle
	Rooting Sphere-cut Decompositions
	Labeling the Subgraphs
	Partial Hamiltonian Labeling and Non-crossing Matchings
	Computing a Hamiltonian Labeling
	Running Time Analysis
	Forbidding Cycles

	Planar Graph TSP
	Labeling the Subgraphs
	Partial Eulerian Labeling and Non-crossing Partitions
	Computing Eulerian Labeling
	Running Time Analysis
	Forbidding Several Components

	Variants
	Exact Algorithms for Hamiltonian-like Problems
	Parameterized Algorithms for Non-local Problems
	Non-local Problems with Tree-like Solutions

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

