
Algorithmica (2010) 58: 263–281
DOI 10.1007/s00453-008-9263-2

Compressed Indexes for Approximate String Matching

Ho-Leung Chan · Tak-Wah Lam ·
Wing-Kin Sung · Siu-Lung Tam ·
Swee-Seong Wong

Received: 6 September 2007 / Accepted: 2 December 2008 / Published online: 17 December 2008
© Springer Science+Business Media, LLC 2008

Abstract We revisit the problem of indexing a string S[1..n] to support finding all
substrings in S that match a given pattern P [1..m] with at most k errors. Previous
solutions either require an index of size exponential in k or need �(mk) time for
searching. Motivated by the indexing of DNA, we investigate space efficient indexes
that occupy only O(n) space. For k = 1, we give an index to support matching in
O(m + occ + logn log logn) time. The previously best solution achieving this time
complexity requires an index of O(n logn) space. This new index can also be used
to improve existing indexes for k ≥ 2 errors. Among others, it can support 2-error
matching in O(m logn log logn + occ) time, and k-error matching, for any k > 2, in
O(mk−1 logn log logn + occ) time.
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1 Introduction

Given a string S[1..n] over a finite alphabet � and an integer k ≥ 0, we want to build
an index for S, such that for any subsequent query pattern P [1..m], we can report
efficiently all locations in S that match P with at most k errors. The primary con-
cern is how to achieve efficient pattern matching given limited space for indexing.
We consider two kinds of errors: In the Hamming distance case, an error is a char-
acter substitution; in the edit distance case, an error can be a character substitution,
insertion or deletion.

For exact string matching (i.e., k = 0), simple and efficient solutions have been
known in the 1970s. Suffix trees [16, 23] use O(n) space1 and achieve the optimal
matching time, i.e. O(m + occ), where occ is the number occurrences of P in S.
Suffix arrays [15], also using O(n) space but with a smaller constant, give an O(m+
occ + logn) matching time. Recently, two compressed solutions, namely, CSA [10]
and FM-index [9], have been proposed, they require only O(n)-bit space and they
can support matching in O(m + occ logε n) time, for any constant ε > 0.

Approximate matching is a challenging problem even if only one error is allowed.
The simplest solution is to search the suffix tree of S for every 1-error modification of
the query pattern, this requires O(m2 + occ) time2 [7]. The first non-trivial improve-
ment was due to Amir et al. [1], who showed that the matching time can be improved
to O(m logn log logn + occ) using an index occupying O(n log2 n) space. Later
Buchshaum et al. [4] further improved the matching time to O(m log logn + occ), as
well as reducing the index space to O(n logn). Huynh et al. [12] and Lam et al. [13]
further compressed the index to O(n) space, while achieving the time complexity
reported in [1] and [4], respectively. It has been an open problem whether a time
complexity linear in m and occ can be achieved. Recently, Cole et al. [8] resolved
in the affirmative with an O(n logn)-space index that supports one-error matching
in O(m + logn log logn + occ) time. And more recently, Chan et al. [5] found that
Cole et al.’s index admits a time-space tradeoff, i.e., the space can be reduced to O(n)

space, yet the time complexity increases to O(m + log3 n log logn + occ). In this pa-
per, we give new techniques to compress Cole et al.’s index to O(n) space, while
retaining the same time complexity.

To cater for k = O(1) errors, one can perform a brute-force search on a one-error
index (i.e., repeatedly modify the pattern at different k − 1 positions and search for
one-error matches); the matching becomes very slow, involving a factor of mk in
the time complexity. A breakthrough result has been given by Cole et al. [8], who
devised a recursive solution to build an index that occupies O(n logk n) space and
takes O(m + logk n log logn + occ) time to perform a k-error matching. Our new 1-
error index is essentially a compressed version of the Cole et al.’s 1-error index and
can replace it as the base case in their recursive solution. This gives an O(n logk−1 n)-
space index for k-error matching with the same time complexity.

1Unless otherwise stated, the space complexity is measured in terms of the number of words, where a word
can store O(logn) bits.
2Unless otherwise stated, all matching time mentioned applies to both Hamming and edit distance.
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Table 1 A summary of results. Results given in this paper are marked with †

Space k = 1 k = 2

O(n log2 n) words O(m logn log logn + occ) [1] O(m + log2 n log logn + occ) [8]

O(n logn) words O(m log logn + occ) [4] O(m + log2 n log logn + occ) †

O(m + logn log logn + occ) [8]

O(n) words O(min{n,m2} + occ) [7] O(min{n,m3} + occ) [7]

O(m logn + occ) [12] O(m2 logn + occ) [12]

O(m log logn + occ) [13] O(m2 log logn + occ) [13]

O(m + log3 n log logn + occ) [5] O(m + log6 n log logn + occ) [5]

O(m + logn log logn + occ) † O(m logn log logn + occ) †

For indexing long sequences like DNA (which often contains millions to billions
of characters), it is not desirable to have an index whose space complexity grows
exponentially as k increases. Like the case of 1-error, the k-error index of Cole et al.’s
also admits a time-space tradeoff; in particular, Chan et al. [5] showed that the tree
cross product technique by Buchshaum et al. [4] can be used to trade time for space
in the k-error index by Cole et al., and the space can be reduced to O(n) while the
time for k-error matching increases to O(m+ logk(k+1) log logn+occ). Note that this
result is of theoretical interest only as the time complexity is far from practical. For
k = 2, the time complexity already involves a term log6 n log logn, which is likely to
be much bigger than m in most applications. In this paper, we devise a more practical
solution for 2-error matching. Specifically, we show that our new O(n)-space index
for 1-error matching can readily support 2-error matching in O(m logn log logn +
occ) time. Furthermore, this index can also handle k ≥ 3 errors using a brute force
manner, and the matching time is O(|�|k−1mk−1 logn log logn+ occ) for Hamming
distance and O((2|�|)k−1mk−1 logn log logn + occ) for edit distance. We believe
that this time complexity is more practical.

On the technical side, our result is based on a new technique to replace the tree-
like data structure of Cole et al. [8] with simple arrays of integers, which are basically
some kind of lexicographical information about a suffix tree. We show how approxi-
mate string matching can be done by simple range queries over these arrays, instead
of the more complicated tree traversals as in [8]. Furthermore, we show how to com-
press these arrays by storing the lexicographical information imprecisely. This simple
approximation can save space and can be verified efficiently. Using the known results
on concise representation of increasing sequences and range searching, we reduce
the space requirement of Cole et al. by a factor of O(logn), without increasing the
matching time.

We extend our data structure for 1-error matching to support a “lazy” preprocess-
ing of a given pattern P [1..m], which takes O(m) time. Then, for any P ′ formed
by modifying P at one of the m positions, we can find the 1-error matches of P ′
in S in O(logn log logn + occ′) time, where occ′ is the number of 1-error matches
for P ′. There are O(m) possible P ′. And all the 2-error matches of P can be found
in O(m logn log logn + occ) time.
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Table 1 summarizes the existing results and the new results in this paper. We re-
mark that our paper concerns only worst-case performance. The literature also con-
tains several interesting results on average-case performance, see, e.g., [6, 14, 20].

2 Preliminaries

We first review several basic data structures including suffix tree, centroid path de-
composition and y-fast trie, as well as some related notations. Then, we present two
new observations on side-tree rank and LCP data structure, which are essential to the
O(n)-space index.

2.1 Suffix Tree, Centroid Path Decomposition and y-Fast Trie

Let S[1..n] be a string over a finite alphabet �. The suffix tree T of S is a com-
pact trie comprising all suffixes of S. Each edge is labeled with a substring of S.
Throughout this paper, we assume that the suffixes are ordered from left to right in
increasing lexicographical order. The suffix array SA[1..n] is an array of integers such
that SA[i] = j if S[j..n] is the lexicographically i-th suffix of S. Note that the inverse
suffix array SA−1[1..n] satisfies that SA−1[j ] gives the lexicographical order of the
suffix S[j..n]. We always store T , SA[1..n] and SA−1[1..n], which take O(n) words,
or equivalently, O(n logn) bits.

With respect to a suffix tree T , the centroid path decomposition [8] of T is defined
as follows. For every internal node u, let v be the child of u with the most number of
leaves (ties broken arbitrarily). The edge uv is called a core edge. Edges other than
core edges are called side edges. A centroid path C is a maximal path connecting
consecutive core edges. The root of C , denoted r(C), is the top-most node on C . We
denote �(T ) the set of all centroid paths in T . It is useful to define the level of a
centroid path. Intuitively, all centroid paths attached to the same higher centroid path
via a side edges are considered to be of the same level; specifically, we define the
level of C is the number of side edges on the path from the root of T to r(C).

Denote Tu the subtree of T rooted at a node u and |Tu| be the number of leaves
in Tu. Let TC be Tr(C). A leaf (i.e., a suffix) x of T belongs to a centroid path C if x

is in TC . A node u hangs from C if its parent edge is a side edge connecting to a node
on C , and Tu is called a side tree of C . For any node u hanging from C , we note that
|Tu| ≤ |TC |/2. We highlight some properties of the decomposition.

Fact 1 (i) For any leaf x in T , the path from root of T to x has at most logn side
edges, and x belongs to at most logn centroid paths.

(ii)
∑

C∈�(T ) |TC | ≤ n logn.
(iii) For any two centroid paths C1 and C2 of the same level, TC1 and TC2 are

disjoint, i.e., they do not have common leaves.

Let A[1..�] be a array of integers in increasing order. Given any integer j , the
predecessor query reports the smallest i such that A[i] > j . Assuming the range of
the integers is fixed, Willard [24] gave an efficient data structure called the y-fast trie
to support the predecessor query.
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Lemma 1 ([24]) Let A[1..�] be a sort array of integers in [1, n], we can build a y-
fast trie for A using O(� logn) bits to support the predecessor query in O(log logn)

time.

2.2 The Side-Tree Rank of a Leaf

Let T be the suffix tree for S[1..n]. Consider a centroid path C of T . The leaves in TC
are partitioned among the side trees of C . We want to store the association between
the leaves and the side trees. To save space, we rank the side trees hanging from C in
descending order of their size (i.e., the number of leaves), and we store, for each leaf
x, the rank of the side tree containing x, which is denoted st-rankC (x). To store such
side-tree ranks for all centroid paths, we need

∑
C∈�(T )

∑
x∈T C �log st-rankC (x)�

bits, which is naively at most n log2 n bits (because
∑

C∈�(T ) |TC | ≤ n logn and
st-rankC (x) ≤ n). Our compressed index takes advantage of a better upper bound
as follows.

Lemma 2 (i) Let x be a leaf in T . Suppose that x belongs to α ≥ 1 centroid paths
C1, C2, . . . , Cα . Then

∑
1≤i≤α log st-rankCi

(x) ≤ logn.
(ii)

∑
C∈�(T )

∑
x∈T C �log st-rankC (x)� ≤ 2n logn.

Proof Let x be any leaf in T .
(i) We assume that the α ≥ 1 centroid paths to which x belongs are labeled in such

a way that r(Ci+1) hangs from Ci , for i = 1, . . . , α − 1. Let ri = st-rankCi
(x). We

note that |TCi
| ≥ |TCi+1 | × ri , because the ri -th largest side tree has at most 1

ri
of all

leaves belonging to Ci . Thus, we have
∑α

i=1 log ri ≤ ∑α−1
i=1 log(

|T Ci
|

|T Ci+1 | ) + log rα ≤
log

|T C1 |
|T Cα | + log |TCα

| = log |TC1 | ≤ logn.
(ii) It follows directly from (i). �

2.3 The LCP Data Structure

The LCP query can be defined with respect to the suffix tree T of a text S[1..n], or,
in general, any compact trie T ′ of a subset of suffixes of S. Below a location in T ′
refers to a node in T ′ or an edge; the latter is further characterized by a position in
the edge label, which represents a proper prefix of the edge label.

Definition 1 (LCP query) Given a pattern P [1..m], an integer i ≤ m and a location
u in T ′, we attempt to match the suffix P [i..m] character by character with the edge
labels of T ′ starting from u. Note that this process may terminate without matching
all characters of P [i..m]. The query LCP(P, i, u) asks for the location in T ′ at which
the matching ends.

We are allowed to preprocess P in O(m) time, and the concern is to efficiently an-
swer subsequent LCP queries for different suffixes P [i..m] and different locations u.

Let � be the number of leaves in T ′. Cole et al. [8] proposed an O(� log2 n)-bit
LCP data structure to answer an LCP query in O(log logn) time. In this paper, we
give a simple observation to reduce the space requirement to O(� logn) bits.
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First of all, we review the LCP data structure in [8]. A centroid path decomposition
is performed on T ′. Consider a particular centroid path C in T ′ and all the leaves in
the subtree T ′

C (which is rooted at r(C)). Every leaf represents a suffix of S. We want
to store the rank of each leaf (suffix) in T ′

C with respect to all suffixes of S. Let �C
be the number of leaves in T ′

C . In [8], an array AC [1..�C ] is used to store the rank of
the leaves (suffixes) in T ′

C . Precisely, AC [i] stores the rank of πi among all suffixes
of S, where πi denotes the concatenation of edge labels on the path from r(C) to the
i-th leaf in T ′

C . Note that AC [1..�C ] is strictly increasing. A y-fast trie [24] of size
O(�C logn) bits is built to answer in O(log logn) time the predecessor query. The A

arrays and y-fast tries over all centroid paths in T ′ occupy O(� log2 n)-bit space. The
remaining part of Cole et al.’s LCP data structure takes only O(� logn)-bit space. We
use the following observation to reduce the space requirement.

Lemma 3 For any centroid path C in T ′, let hC be the total length of edge label from
r(T ′) to r(C).

(i) For i = 1, . . . , �C , AC [i] can be computed in O(1) time using hC and the inverse
suffix array of S.

(ii) The predecessor query can be supported in O(log logn) time using an O(�C )-
bit data structure.

Proof (i) Consider the i-th leaf in T ′
C and let S[j..n] be its leaf label, i.e., S[j..n] is

the suffix corresponding to the path from root of T ′ to this leaf. Then, AC [i] is the
lexicographical order of S[j + hC ..n], which is SA−1[j + hC ].

(ii) Instead of building a y-fast trie on the complete AC array, we only build a y-fast
trie for AC [logn],AC [2 logn], . . . using O(�C ) bits space. The predecessor query can
be done by first querying y-fast trie, then performing a binary search in AC within an
interval of length logn. It takes O(log logn) time. �

Thus, for each centroid path C , we store an integer hC and an O(�C )-bit prede-
cessor data structure. It takes totally O(� logn) bits over all centroid paths in T ′.
Together with the remaining part of the LCP data structure of [8], we have the fol-
lowing lemma.

Lemma 4 Let T ′ be a compact trie comprising � suffixes of S[1..n]. We can build
an O(� logn)-bit LCP data structure for T ′. Given any pattern P [1..m], we can
preprocess P in O(m) time. Each subsequent LCP query can be answered in
O(log logn) time.

3 An O(n logn)-bit Index for 1-Error Matching

This section explains how to compress the data structure of Cole et al. [8] into an
O(n logn)-bit index for S[1..n], such that for any pattern P [1..m], its 1-error matches
in S can be found in O(m + occ + logn log logn) time. We consider the Hamming
distance first. Extension to the edit distance and k > 1 errors are given at the end of
the section.
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First of all, it is useful to observe a simple fact about where a 1-error match of a
pattern P appears in the suffix tree T of S.

Consider any prefix P [1..i] of P that has an exact match in S. Suppose that P [1..i]
also has a 1-error match in S, in which P [j ], where 1 ≤ j ≤ i, is the mismatch
character. Then, with respect to T , the path from r(T ) labeled with P [1..j − 1]
always ends at a node u, and P [j ] is the first character labeling an outgoing edge
of u.

With respect to the suffix tree T of S, we perform a centroid path decomposition
on T . For each centroid path C , we define a set of modified suffixes of C as follows.
Let s be a suffix of S. Note that s corresponds to a path from r(T ) to a leaf � in T .
Suppose that this path passes through C , from r(C) down to a node u on C . We create
a modified suffix s′ by modifying s at the first character after u (if exists), replacing
it with the first character on the core edge out of u. We say that s generates s′ with
respect to C . Let φC be the set of all modified suffixes with respect to C . To ease our
discussion, we assume that φC includes the suffix ending at the leaf of C . See Fig. 1
for an example.

The core of our solution to the 1-error matching problem is an index that answers
the following query about modified suffixes.

Definition 2 (Prefix matching of modified suffixes (PMMS) query) For any pattern
P and any centroid path C of T , let φC (P ) be the subset of modified suffixes in φC
that contain P as a prefix. The query PMMSC (P ) asks for the set of suffixes in T
that generate the modified suffixes in φC (P ).

Lemma 5 Let T be the suffix tree of S[1..n]. We can build an O(n logn)-bit in-
dex for T . For any pattern P [1..m], we can preprocess P in O(m) time; then
PMMSC (P ), for any centroid path C in T , can be answered in O(log logn +
|PMMSC (P )| + eC ) time, where eC ≥ 0 and the sum of eC over all centroid paths
in T is at most 2 logn.

The rest of this section (Sects. 3.1 to 3.3) is devoted to proving Lemma 5. Before
proving Lemma 5, we show that 1-error matching problem can be solved by using
three O(n logn)-bit indexes, namely, a suffix tree, an index for LCP queries and an
index for PMMS queries.

Theorem 6 We can build an O(n logn)-bit index for S[1..n] that finds the 1-error
matches of any P [1..m] in O(m+occ+ logn log logn) time, where occ is the number
of matches found.

Proof Given any pattern P , we match P with T starting from the root. We first
assume that P can be matched entirely. (The other case that P cannot be matched
entirely is similar and will be discussed later.) Let C1, C2, . . . , Ch be the centroid paths
visited during the matching. We order the centroid paths so that r(Ci ) hangs from
Ci−1 for i = 2, . . . , h. Let vi be the last node visited on Ci , and let P [xi ..yi] be the
portion of P matched with Ci , i.e., P [xi ..yi] is matched with the edge labels from
r(Ci ) to vi . Note that for each Ci , it is possible that the root r(Ci ) is the only node
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visited, i.e., vi = r(Ci ), and P [xi..yi] is a null string in this case. For simplicity, we
let xh+1 = m + 1. We find all 1-error matches of P in S in two steps.

1. We first find all 1-error matches with the mismatch in P [xi ..yi] for some i =
1,2, . . . , h. To do it, for each Ci , we use an PMMS query (precisely, PMMSCi

(P ))
to find the set of suffixes in T that generates the modified suffixes in φCi

(P ).
Each of these suffixes corresponds to a one-error match of P with the mismatch
occurring in a certain character in P [xi ..yi].

2. We then find all 1-error matches with the mismatch in P [yi +1..xi+1 −1] for some
i = 1,2, . . . , h. Note that each such 1-error match X must have the mismatch at the
position P [yi +1] (otherwise, X can be matched entirely with P [yi +1..xi+1 −1],
which is a contradiction). For each vi , P [1..yi] is exactly the label of the path
from the root of T to vi . If yi < m, then for every outgoing edge e of vi with the
first character �= P [yi + 1], we consider the location w on e that is one character
below vi . We want to know how much P [yi +2..m] can match T starting from w;
in particular, we use an LCP query (LCP(T , yi + 2,w)) to determine the location
w′ where the matching ends. If P [yi + 2..m] can be matched completely, all the
suffixes in T under the location w′ are one-error matches of P with the mismatch
at P [yi + 1]; otherwise no one-mismatch is to be reported.

The 1-error matches reported in Step 1 and Step 2 are disjoint, and they together
include all possible 1-error matches of P in S. Note that if yh = m, then PMMSCh

(P )

also returns all the 0-error matches of P .
Notice that h ≤ logn. Step 1 issues at most logn PMMS queries, and Step 2 in-

vokes at most O(logn) LCP queries (recall that the alphabet is assumed to be of
constant size). By Lemmas 4 and 5, the total time required to find all the 1-error
matches of P is O(m + occ + logn log logn).

If P cannot be matched entirely, let P [1..m′] be the longest prefix of P matched
with T and it ends at a location v in T . We first perform the above two steps as before
to find all 1-error matches with the mismatch in P [1..m′]. Then, if v locates on the
edge, we find all 1-error matches with the mismatch at P [m′ +1] by using O(1) LCP
queries on the location that is one character below v. We don’t need to perform any
thing if v is a node, because v would be equal to vh in this case and the case 2 above
finds the required 1-error matches as well. �

3.1 The Prefix Matching Query of Modified Suffixes

Cole et al. [8] used the error-tree data structure to support the PMMS query in O(m)

preprocessing time and O(log logn+|PMMSC (P )|) query time. Their solution takes
O(n log2 n)-bits and requires sophisticated tree operations. In this paper, we use in-
teresting techniques to replace their tree-like data structure with arrays of integers.

A Simple O(n log2 n)-bit Solution Let T be the suffix tree of S. Let U be the set of
all the O(n logn) modified suffixes generated according to all the centroid paths. For
each centroid path C , we simply store two arrays of integers. Let s′

1, s
′
2, . . . , s

′
� be the

modified suffixes generated according to C , in increasing lexicographical order. We
store (1) lex-orderC , where lex-orderC [i] is the lexicographical order of s′

i among all
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modified suffixes in U . (2) labelC , where labelC [i] = j if s′
i is generated by the suffix

S[j..n].
In addition, we store a compact trie M for U . Given any pattern P , we preprocess

P by aligning P with M starting from the root. It determines the range [d, e] such that
all modified suffixes with lexicographical order in [d, e] (w.r.t. U ) have P as a prefix.
Given any centroid path C of T , the PMMS query can be done by a range search
query on lex-orderC . For each i such that d ≤ lex-orderC [i] ≤ e, we report labelC [i].
The range search on lex-orderC can be done in O(log logn) time storing a y-fast trie
[24] on lex-orderC . Thus, finding PMMSC (P ) takes O(log logn + |PMMSC (P )|)
time. The total space required is O(n log2 n) bits.

An O(n logn)-bit Solution We exploit sophisticated techniques to reduce the space
requirement of the above solution to O(n logn) bits.

1. Sampling. Instead of M , we store a compact trie containing only one in every logn

leaves of M . With this approximation, answering the PMMS query requires extra
verification. Let eC be the number of suffixes that require verification. We will
show that the sum of eC is at most 2 logn over all centroid paths.

2. Constant time verification. Given the pattern P , a centroid path C and a suffix
s = S[j..n], we need to verify whether s generates a modified suffix s′ according
to C with P as a prefix. We show how to perform the verification in O(1) time
using the suffix tree, suffix array and the LCP data structure.

3. Concise representation. The lex-orderC and labelC arrays take totally O(n log2 n)

bits if stored directly. We replace their entries with integers of smaller values, by
exploiting the properties of the centroid path decomposition. Then, we use variable
size encoding to represent the arrays in O(n logn) bits.

Precisely, our O(n logn)-bit solution stores a compact trie N comprising O(n)

modified suffixes in U , namely, the lexicographically (logn)-th, (2 logn)-th, (3 logn)-
th, . . . modified suffixes. For a centroid path C , let s′

1, s
′
2, . . . , s

′
� be the modified suf-

fixes generated for C . We store two length-� arrays for C .

• lex-orderC [1..�]: lex-orderC [i] is the lexicographical order of s′
i among all the

O(n) modified suffixes in N .
• labelC [1..�]: Define labelC [i] = j if s′

i is generated by S[j..n].
A naive way to store the lex-order and label arrays still takes O(n log2 n) bits. In

Sect. 3.3, we give non-trivial techniques to compress them into O(n logn) bits. We
first proceed to show how to use these two arrays to find PMMSC (P ) efficiently.

3.2 Answering a PMMS Query

Given a pattern P , we show how to preprocess P in O(m) time such that for any
centroid path C , PMMSC (P ) can be answered in O(log logn + |PMMSC (P )| + eC )

time, and the sum of eC over all centroid paths C is at most 2 logn.

Error-Bounded Candidate Generation We align P with N starting from the root in
O(m) time to find the range [d, e] that corresponds to all the leaves in N with P as a
prefix. Then, for any centroid path C , we can find PMMSC (P ) as follows.
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1. Find the maximal range [p..q] such that d −1 ≤ lex-orderC [p] ≤ lex-orderC [q] ≤
e + 1 by a range_search query on the lex-orderC array.

2. For each i in [p..q], let j = labelC [i]. If lex-orderC [i] is not d − 1 or e + 1, report
S[j..n] in 
C ; otherwise, call S[j..n] a candidate and verify whether S[j..n] is
in 
C .

We want the lex-orderC array to support the operation range_search(d, e): given
integers d and e where d ≤ e, return p,q such that lex-orderC [p..q] is the largest
interval satisfying d − 1 ≤ lex-orderC [p] ≤ lex-orderC [q] ≤ e + 1. We can build a
y-fast trie [24] on one per logn entries in lex-orderC . Then a range_search can be
done in O(log logn) time by a query to the y-fast trie and then a binary search in an
interval of length logn. It uses O(n logn)-bit space over all centroid paths.

Lemma 7 For any centroid path C , let eC be the number of candidates generated for
verification. The sum of eC over all centroid paths is at most 2 logn.

Proof For any integer i, at most logn entries over all lex-order arrays equal i. We
verify a suffix only if its lex-order value is d − 1 or e + 1, so the lemma follows. �

Constant Time Verification We can verify whether a candidate is in PMMSC (P ) in
O(1) time.

Lemma 8 We can preprocess P in O(m) time. Then, for any centroid path C and
candidate S[j..n], we can verify in O(1) time whether S[j..n] is in PMMSC (P ), i.e.,
S[j..n] generates a modified suffix according to C with P as a prefix.

Proof We preprocess P with the suffix tree T , which takes O(m) time: For each
suffix P [r..m], we compute and store the range [dr , er ] such that all leaves with lexi-
cographical order (w.r.t. T ) in [dr , er ] have P [r..m] as a prefix.

To verify a suffix S[j..n], let v be the node in T that S[j..n] diverges from the
path of P . It takes only constant time to find v using an O(n logn)-bit LCA data
structure [11] for T . Let P [1..r] (= S[j..j + r − 1]) be the path label from the root
to v. (For each node v in T , we store the path length from the root to v, then r can be
determined in O(1) time.) S[j..n] is in PMMSC (P ) if

• v is on C ;
• the first character on the core edge out of v is P [r + 1]; and
• S[j + r + 1..n] has a prefix matching P [r + 2..m].
The last condition can be checked in constant time by comparing SA−1[j + r + 1]
with the range [dr+2, er+2], the latter has been obtained during the preprocessing. �

In conclusion, Lemmas 7 and 8 show that we can build O(n logn)-bit index on
top of lex-orderC and labelC . Then, we can preprocess any given pattern P in O(m)

time, for any centroid path C , we can answer the query PMMSC (P ) in O(log logn +
|PMMSC (P )| + eC ) time, where eC is the number of verification performed and the
sum of eC over all centroid path is at most 2 logn.
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3.3 Compressed Representation of the Lexicographical Information

We now explain how to store the lex-order and label arrays in O(n logn)-bit space.

Compressing the lex-order Arrays For any centroid path C , entries in lex-orderC are
monotonic increasing, so efficient compression is possible.

Lemma 9 Let c1 ≤ c2 ≤ · · · ≤ c� be a sequence of positive integers. We can store the
sequence in O(log c1 + � · max{log(

c�−c1
�

),1}) bits and support O(1) retrieval time
for each ci .

Proof We store c1 explicitly in O(log c1) bits, and we store di = ci − c1, for i =
1, . . . , � as follows. Note that di is monotonic increasing and d� = c� − c1.

If d� ≤ �, we store a bit sequence with � 1’s, and there are di − di−1 0’s between
the i-th and the (i − 1)-th 1, for i = 2, . . . , �. We build a select data structure [17] on
the bit sequence to support the select(i) query, i.e., reporting the location of the i-th
1, in O(1) time. Finding di is done by select(i) − i, in O(1) time. The bit sequence
and the select data structure takes O(�) bits.

If d� > �, we can use the data structure of [22] for storing sorted integers, which
stores di ’s in O(� log d�

�
) bits and supports O(1) retrieval time. �

Lemma 10 We can store the lex-order arrays of all centroid paths in O(n logn)-bit
space and support O(1) retrieval time to each entry.

Proof For any centroid path C , let �C be the number of modified suffixes gener-
ated according to C . Let hC = lex-orderC [�C ] − lex-orderC [1]. Consider all C ∈
�(T ). By Lemma 9, the total space (bits) required for the lex-orderC arrays
is

∑
O(log lex-orderC [1] + �C · max{log(

hC
�C

),1}) ≤ ∑
O(log lex-orderC [1] + �C ·

log(2 + hC
�C

)) = O(n logn) + O(log
∏

(2 + hC
�C

)�C ). Since 1 + x ≤ ex for any x,

log
∏

(2 + hC
�C

)�C ) ≤ log
∏

(e
(1+ hC

�C
)�C ) = O(

∑
�C + ∑

hC ). Let Lj be the set of
all centroid paths with level j , j ≤ logn. For any two centroid paths in Lj , their
lex-order arrays are disjoint, so

∑
C∈Lj

hC ≤ n. There are at most logn levels, so
∑

C∈�(T ) hC ≤ n logn. �

Compressing the label Arrays Unlike lex-order, the label array is not an increasing
sequence. To compress label, we simulate it by other “simpler” arrays. For a cen-
troid path C , let s′

1, s
′
2, . . . , s

′
� be the modified suffixes generated according to C , in

increasing lexicographical order. Assume that t side trees hang from C . We store the
following information.

• st-rankC [1..�]: Suppose s′
i is generated by the suffix s in T . Then st-rankC [i] stores

the side-tree-rank of s, i.e., the rank of the side tree containing s.
• tree_pointerC [1..t]: tree_pointerC [j ] points to the j -th largest side tree of C in T ,

ties are broken arbitrarily.
• modified_rankC,v[1..|Tv|], for each side-tree Tv of C in T : modified_rankC,v[j ] = i

if the j -th suffix in Tv generates s′
i .
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To find labelC [i], we note that tree_pointerC [st-rankC [i]] returns the side tree Tv

hanging from C that contains the suffix generating s′
i . We perform a rank(i) query

on modified_rankC,v , where rank(i) returns j if modified_rankC,v[j ] = i. Thus,
labelC [i] is the j -th suffix in Tv . Let wv be the number of suffixes on the left of
v in T . Then labelC [i] = SA[wv + j ].

By Lemma 2, the st-rankC arrays for all centroid paths C can be represented in
O(n logn) bits using variable size encoding. We can build a select data structure [17]
on the arrays, which uses O(n logn) bit, to support O(1) time access to each entry.
The tree_pointer arrays contain only n pointers in total and take O(n logn) bits over
all centroid paths.

Lemma 11 We can store modified_rankC,v array to support the rank(i) query in
O(1) time: given any integer i, return j if modified_rankC,v[j ] = i; return null oth-
erwise. Total space required over all C ∈ �(T ) and all side trees Tv hanging from C
is O(n logn) bits.

Proof Consider any centroid path C and a side tree Tv hanging from C . The sequence
modified_rankC,v is strictly increasing and ranges from 1 to |TC |, hence it can be

stored in O(|Tv| log |T C |
|Tv | ) bits while supporting the rank query [21]. Let f (TC ) denote

the total space required to store the modified_rank arrays for all centroid paths with
root in TC , including C . Let Tv1 , Tv2 , . . . , Tvt be side trees hanging from C . Note
that f (TC ) ≤ ∑t

i=1(O(|Tvi
| log |T C |

|Tvi
| ) + f (Tvi

)). Resolving this recurrence, we have

f (TC ) = O(|TC | log |TC |) for any C . Therefore, all modified_rank arrays in T can be
stored in O(n logn) bits. �

In conclusion, Lemma 10 and 11 show that the lex-order and label arrays can
be represented in O(n logn) bits and support O(1) time retrieval. Together with the
matching algorithm of Sect. 3.2, Lemma 5 follows.

3.4 Remarks

Extension to Edit Distance We handle each type of edit operations separately. Sub-
stitution is handled by the above data structure. To find substrings of S that matches
P with one insertion (to the substrings), we generate another type of modified suf-
fixes, which we called the insertion suffixes. Precisely, let C be a centroid path in the
suffix tree T . Let s be a suffix in T passing through the root of C , and diverging
from C at a node u on C . We create an insertion suffix s′ by inserting a character c

to s after u, where c is the first character on the core edge out of u. We say that s

generates an insertion suffix s′ according to C . Given a pattern P , finding the 1-error
matches can be reduced to a number of PMMS queries on the insertion suffixes and
LCP queries. By handling the PMMS queries using the same techniques as shown,
we find all 1-error matches for insertion in the O(m + occ′ + logn log logn) time,
where occ′ is the number of matches found. Deletion can be handled in an identical
way. The total space for the data structures is O(n logn) bits.
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Extension to k Errors To support 2-error matching, Cole et al. [8] build compact
tries on the modified suffixes, calling them the 1-error trees. Then, 2-modified suffixes
are generated by performing centroid path decompositions on the 1-error trees, and
generating modified suffixes according to the new centroid paths. In general, k-error
matching requires the �-error trees for all � = 1, . . . , k−1 and the k-modified suffixes.
The space requirement increases by a logn factor when k increases by one. That is,
the (k − 1)-error trees occupy O(n logk n) bits and the k-modified suffixes requires
O(n logk+1 n)-bits. Using our technique, we can support k-error matching by storing
the �-error trees for all � < k, and replacing the k-modified suffixes with the lex-order
and label arrays (which are based on the (k − 1)-error trees instead of the suffix tree).
The replacement saves the space requirement by a factor of logn, and the total space
of all data structures is O(n logk n) bits. The matching time remains the same as
in [8].

4 An O(n logn)-bit Index for 2-Error and k-Error Matching

This section gives an O(n logn)-bit index for S[1..n] such that for any pattern
P [1..m], it finds all 2-error matches of P in O(m logn log logn + occ) time. We
first consider the Hamming distance. Extensions to the edit distance and k > 2 errors
are explained afterwards.

To build the 2-error matching index for a text S[1..n], we need the O(n logn)-bit
index for 1-error matching plus some O(n logn)-bit auxiliary data structures (to be
defined). Then, given a pattern P [1..m], we find the 2-error matches in S as follows:
We first modify P at each position P [i], substituting it with a character c �= P [i].
Denote the modified pattern as Pi,c[1..m]. Next, we find all 1-error matches of Pi,c

with the error in Pi,c[1..i − 1]. By trying all i = 1, . . . ,m and each possible c ∈ �,
each 2-error match of P is found exactly once.

We find the required 1-error matches for Pi,c by the following steps.

1. Search Pi,c in T to identify the centroid paths and side edges that Pi,c overlaps.
2. Search Pi,c in the sampled 1-error tree N to identify an interval [d, e] correspond-

ing to modified suffixes in N with Pi,c as a prefix.
3. Find the 1-error matches of Pi,c where the error is in Pi,c[1..i − 1] and is on a

side edge. This is done by performing an LCP query in T for each side edge
Pi,c[1..i − 1] overlaps.

4. Find the 1-error matches of Pi,c where the error is in Pi,c[1..i − 1] and is on a
centroid path. We follow the approach in Sect. 3.2. I.e., for each centroid path
that Pi,c[1..i − 1] overlaps, generate the candidates and verify them for correct
matches.

We will show in Sect. 4.1 that by using an enhanced LCP data structure, we can
preprocess P (but not Pi,c) in O(m) time, afterwards it takes O(log logn + w) time
to execute Step 1 for each Pi,c, where w is the number of centroid paths and side
edges Pi,c overlaps. Similarly, we will show that Step 2 takes O(log logn) time, and
Step 3 takes O(logn log logn + occ′) time, where occ′ is the number of matches
found. For Step 4, we will show in Sects. 4.2 and 4.3 that generating candidates and
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verifying them takes O(logn log logn + occ′′) time, where occ′′ is the number of
matches reported. So we have the following lemma.

Lemma 12 We can build an O(n logn)-bit index for S[1..n]. Given a pattern
P [1..m], we can preprocess P in O(m) time. For any modified pattern Pi,c , we can
find all 1-error matches of Pi,c with the error in Pi,c[1..i − 1] in O(logn log logn +
occi,c) time, where occi,c is the number of matches found.

By repeating the search for each Pi,c , i ≤ m and c ∈ �, we have the following
theorem.

Theorem 13 We can build an O(n logn)-bit index for S[1..n] that finds the 2-error
matches of any P [1..m] in O(m logn log logn + occ)-time, where occ is the number
of matches found.

4.1 Enhanced LCP Data Structure

We will see that Steps 1, 2 and 3 are closely related to the following LCP prob-
lem: Consider a trie T ′ for a subset of � suffixes in T . Recall that the LCP query
LCP(P, x,u) asks for the location at which the suffix P [x..m] diverges from T ′,
when P [x..m] is aligned to T ′ starting from a location u on T ′. We extend the query
to Pi,c such that LCP(Pi,c, x, u) asks for the location at which Pi,c[x..m] diverges
from T ′ when aligning from u. The challenge is that we can only process P in O(m)

time, and we want to answer each LCP query for different Pi,c in O(log logn) time.
We show that we can achieve it as follows. We augment the original LCP data

structure with an measured ancestor data structure [2] which supports the following
query in O(log logn) time: given a leaf y in T ′ and a length h, report the location at
which the prefix of y of length |y| − h ends, i.e., the location with length h above the
leaf. The measured ancestor data structure takes O(� logn) bits. In each node u, we
also store the length from the root of T ′ to u, and a pointer to the leftmost leaf of u.
It takes O(� logn) bits.

Lemma 14 Let T ′ be a compact trie comprising � suffixes of S[1..n]. We can build an
LCP data structure for T ′ that occupies O(� logn) bits. Then, given any pattern P ,
we can preprocess P in O(m) time, and every subsequent LCP query LCP(Pi,c, x,u)

can be answered in O(log logn) time.

Proof The case for x ≥ i is straightforward. Assume x < i. We first perform an LCP
query LCP(P, x,u). Let v be the location reported, which may be a node or a location
on an edge. Let a be the length from u to v. Note that a can be found in O(1) time
using the length information stored in each node. Now, if a ≤ i − x, Pi,c diverges at
the same point as P , so LCP(Pi,c, x, u) = v. Otherwise, we go to the position i − x

characters below u, along the path from u to v. It can be done in O(log logn) time
using the leftmost leaf information and the measured ancestor data structure. Then,
we align Pi,c[i] with T ′ for 1 character and let w′ be the location 1 character below w.
Finally, we align Pi,c[i + 1..m], which is equivalent to P [i + 1..m], with T ′ using an
LCP query. The whole process takes O(log logn) time. �
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With the enhanced LCP data structure, we can perform the three steps as follows.
Step 1. We build the enhanced LCP data structure for the suffix tree T . At each

node u in T , we also store a pointer to the root of the centroid path passing through u.
It takes O(n logn) bits. Then, Step 1 can be done by an LCP query with Pi,c[1..m]
and the root of T . By following the pointer that points to the roots of the centroid
paths, Step 1 takes O(log logn + w) time, where w is the number of centroid paths
found.

Step 2. Recall that [d, e] is the interval such that every modified suffixes with
lex_order between [d, e] have Pi,c as a prefix. Finding [d, e] can be done by aligning
Pi,c with N starting from the root of N , or equivalently, an LCP query for Pi,c and
N . To support it efficiently, we build a compact trie T ′′ consisting of all suffixes of
T and N . Note that T ′′ has some subtrees that are not found in T . Consider one such
subtree T . T is formed by suffixes in N that diverge from T at the same location u

and have the same character just after location u. Let u′ be the location one character
below u. We observe that each suffix from u′ to a leaf is a suffix of T . So we can
build the above LCP data structure for this subtree rooted at u′. We build an LCP
data structure for each other subtree that forms by suffixes from N . We also build a
measured ancestor data structure for T ′′. It takes totally O(n logn) bits.

To perform the LCP query for Pi,c and T ′′, we first perform an LCP query for Pi,c

and T . Let u on T be the location reported. We can find the corresponding location in
T ′′ by first locating the corresponding leftmost leaf of u, and then use the measured
ancestor data structure on T ′′. If there is a subtree leaving v on T ′′ such that the
first character on the outgoing edge matches that on Pi,c, we can align one character,
followed by an LCP query on that subtree to find the location u′ where Pi,c diverges
from T ′′. The interval [d, e] is simply the lex_order of the leaves below u′. The whole
process takes O(log logn) time.

Step 3. We perform an LCP query for each side edges that Pi,c[1..i − 1] overlaps.
Since there at most logn such side edges, it takes O(logn log logn + occ′) time,
where occ′ is the number of matches found.

4.2 Candidate Generation with Specific Error Location

Step 4 is challenging because generating candidates involves range_search queries
on the lex-orderC arrays, and the candidates generated may include an unbounded
number of modified suffixes having Pi,c as a prefix but their modified position is not
in Pi,c[1..i − 1]. This causes problem, e.g., an exact match of P in S will be reported
for each Pi,c, leading to a term of m · occ, instead of occ, in the searching time.

To generate only the candidates with modified position in the required range, we
store a modifiedC array for each centroid path C . It records the location of the modified
character of each modified suffix generated according to C . We then use a Bounded
Value Range Query (BVRQ) data structure [19] to ensure generating candidates with
the modified positions within Pi,c[1..i − 1]. Details are as follows.

Consider a 1-error tree EC with � leaves. The array modifiedC [1..�] is defined such
that modifiedC [j ] = e if the j -th modified suffix in EC is formed by modifying the e-
th character of a suffix in T . We do not need to store modifiedC [j ] explicitly. Instead,
it can be calculated in O(1) time as follows: For the j -th modified suffix, recall that
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we can find in O(1) time the side tree that contains the original suffix, by using the
st-rankC and tree_pointerC arrays. Hence, for each side tree T in the suffix tree T ,
we store the total length x from the root of T to the node u to which T is hanging.
Then, modifiedC [j ] = x + 1. Since each side tree stores the length information only
once, it takes O(n logn) bits.

Given an interval [p,q] in the lex-orderC array that corresponds to modified suf-
fixes with a prefix Pi,c, we only consider the j -th modified suffix as a candidate if
p ≤ j ≤ q and modifiedC [j ] < i. To locate the candidates efficiently, we build the
following Bounded Value Range Query (BVRQ) data structure for modifiedC [1..�],
using O(�)-bit space. The total space for all BVRQ data structures over all centroid
paths is O(n logn) bits.

Lemma 15 Given any integer array M[1..�], we can build an O(�)-bit data struc-
ture such that for any integers p, q and z, it answer in O(occ) time the following
BVRQ(p, q, z) query: report all indices j satisfying p ≤ j ≤ q and M[j ] ≤ z, where
occ is the number of indices reported.

Proof As shown in [19], we can reduce the BVRQ(p, q, z) query to the range min-
imum query (RMQ), where RMQ(a, b), for any integer a, b, returns any i such that
M[i] = minb

j=a M[j ]. BVRQ(p, q, z) takes O(occ) time if RMQ(a, b) can be an-
swered in O(1) time.

An O(� logn)-bit data structure supporting the RMQ query in O(1) time is given
in [3]. It constructs a binary tree in T with � nodes recursively as follows: Each entry
in M[j ] corresponds to a node uj in T . Let M[x] be the minimum entry in M and
ux be the corresponding node. The root of T is ux , and two trees T1 and T2 are built
recursively for M[1..x − 1] and M[x + 1..�]. The root of T1 (resp. T2) becomes the
left child (resp. right child) of ux . Note that for any j , the node uj corresponding to
M[j ] has in-order j in the tree T , and RMQ(a, b) corresponds to the lowest common
ancestor of ua and ub , denoted as lca(ua,ub).

We note that the space requirement can be reduced to O(�) bits, as follows. We use
parenthesis encoding [18] to represent the tree T in O(�) bits, which supports finding
the node uj with in-order j and calculating the in-order of a node u in O(1) time.
Then, we build an O(�)-bit LCA data structure [22] for the parenthesis encoding of
the tree, so that finding w = lca(ua,ub) for any node ua and ub can be done in O(1)

time.
Then, RMQ(a, b) can be done in O(1) time as follows: We first find the nodes ua

and ub corresponding to M[a] and M[b]. We calculate w = lca(ua,ub) and find the
in-order of w. It takes O(1) time. �

In conclusion, given a range [p,q] in the lex-orderC array, we can report only the
modified suffixes with modified position in Pi,c[1..i − 1] in O(occ′) time, where occ′
is the number of modified suffixes reported.

4.3 Constant Time Verification

Given a suffix x in T , we want to verify in O(1) time whether x is a 1-error match
for Pi,c. It is non-trivial because only P , but not Pi,c , is preprocessed. To support
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O(1) verification time, we exploit the properties of suffix trees and the inverse suffix
arrays, as follows.

Lemma 16 We can build an O(n)-bit data structure for T . For any P [1..m], we can
preprocess P in O(m) time. Then for any suffix x in T , we can verify in O(1)-time
whether x has a prefix that is a 1-error match of Pi,c with the error in Pi,c[1..i − 1].

Proof We build an O(n)-bit lowest common ancestor data structure [22] for T . Given
any two nodes u and v in T , it returns in O(1) time the lowest common ancestor,
denoted lca(u, v), of u and v. Given P , we preprocess P by finding, for each suffix
P [j..m], a suffix yj in T that has the longest common prefix (or lcp for short) with
P [j..m].

To verify a suffix x in T , we let S[ax..n] be the corresponding suffix. We first
find the lcp between S[ax..n] and Pi,c[1..m], by finding the lcp between S[ax..n]
and P [1..m] using the query lca(x, y1). It locates the first error between S[ax..n]
and Pi,c[1..m]. Let Pi,c[h] be error position. We return false if h > i − 1. To check
whether S[ax + h..n] has Pi,c[h + 1..m] as a prefix, we note that the leaf x′ in T
corresponding to the suffix S[ax + h..n] can be found by SA−1[ax + h]. So the lcp of
S[ax + h..n] and Pi,c[h + 1..m] can be found by performing lca(x′, yh+1). It should
locate the second error at the i-th position. We finally find the lcp of S[ax + i..n] and
Pi,c[i + 1..m] to confirm the 1-error match. The whole process takes O(1) time. �

4.4 Remarks

Extension to Edit Distance We handle deletion and insertion separately. For dele-
tion, for each i ≤ m, we delete P [i] to form a new pattern P ′

i . Then we follow the
above framework to find all 1-error matches of P ′

i with the error in P ′
i [1..i − 1].

Handling insertion is similar. The search time remains O(m logn log logn + occ).

Extension to k Errors We first discuss the case for Hamming distance. To find
the k-error matches for a pattern P [1..m], we first generate a modified pattern P ′
by modifying k − 2 characters of P . Let i3 < · · · < ik be the modified positions.
We preprocess P ′ in O(m) time. Let P ′

i2,c
, where i2 < i3, be a pattern obtained

by modifying the i2-th character of P ′, substituting it with a character c. Follow-
ing the above approach, we can find the 1-error matches of P ′

i2,c
with the error

in P ′
i2,c

[1..i2 − 1] in O(logn log logn + occ′
i2,c

) time, where occ′
i2,c

is the num-
ber of matches found. Note that these are distinct k-error matches of P . There are
O(|�|k−2mk−2) choices of P ′ and O(|�|k−1mk−1) possible P ′

i2,c
, so the total time

complexity is O(|�|k−1mk−1 logn log logn + occ), where occ is the number of k-
error matches of P .

Handling edit distance is similar. We generate all possible patterns P ′ that have
k − 2 errors with P . Note that at each position of P , we can modify it by in-
serting a character, substituting a character or deleting a character, so there are
O((2|�|)k−1mk−1) possible P ′. For each P ′, we find the 2-error matches sepa-
rately in O(2|�|m logn log logn + occ′) time. Therefore, the total searching time
is O((2|�|)k−1mk−1 logn log logn + occ) time.



Algorithmica (2010) 58: 263–281 281

References

1. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh, M.: Indexing and
dictionary matching with one error. In: Proceedings of Workshop on Algorithms and Data Structures,
pp. 181–192 (1999)

2. Amir, A., Landau, G., Lewenstein, M., Sokol, D.: Dynamic pattern, static text matching. In: Proceed-
ings of Workshop on Algorithms and Data Structures, pp. 340–352 (2003)

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proceedings of Theoretical Infor-
matics, 4th Latin American Symposium, pp. 88–94 (2000)

4. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching over tree cross products. In:
Proceedings of European Symposium on Algorithms, pp. 120–131 (2000)

5. Chan, H.L., Lam, T.W., Sung, W.K., Tam, S.L., Wong, S.S.: A linear-size index for approximate
pattern matching. In: Proceedings of Combinatorial Pattern Matching, pp. 49–59 (2006)

6. Chavez, E., Navarro, G.: A metric index for approximate string matching. In: Proceedings of Latin
American Theoretical Informatics, pp. 181–195 (2002)

7. Cobbs, A.: Fast approximate matching using suffix trees. In: Proceedings of Symposium on Combi-
natorial Pattern Matching, pp. 41–54 (1995)

8. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t
cares. In: Proceedings of Symposium on Theory of Computing, pp. 91–100 (2004)

9. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proceedings of Sym-
posium on Foundations of Computer Science, pp. 390–398 (2000)

10. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. In: Proceedings of Symposium on Theory of Computing, pp. 397–406 (2000)

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput.
13(2), 338–355 (1984)

12. Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate string matching using compressed
suffix arrays. In: Proceedings of Symposium on Combinatorial Pattern Matching, pp. 434–444 (2004)

13. Lam, T.W., Sung, W.K., Wong, S.S.: Improved approximate string matching using compressed suffix
data structures. Algorithmica 51, 298–314 (2008)

14. Maaß, M.G., Nowak, J.: Text indexing with errors. Technical Report TUM-10503, Fakultät für Infor-
matik, TU München (Mar. 2005)

15. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput.
22(5), 935–948 (1993)

16. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272
(1976)

17. Munro, J.I.: Tables. In: Proceedings of Conference on Foundations of Software Technology and Com-
puter Science, pp. 37–42 (1996)

18. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. J. Comput.
31(3), 762–776

19. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proceedings of 13th
Symposium on Discrete Algorithms, pp. 657–666 (2002)

20. Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string matching. J. Discrete
Algorithms 1(1), 205–209 (2000). Special issue on Matching Patterns

21. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary
trees and multisets. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 233–242
(2002)

22. Sadakane, K.: Succinct representations of lcp information and improvements in the compressed suffix
arrays. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 225–232 (2002)

23. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of Symposium on Switching and
Automata Theory, pp. 1–11 (1973)

24. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space �(n). Inf. Process.
Lett. 17(2), 81–84 (1983)


	Compressed Indexes for Approximate String Matching
	Abstract
	Introduction
	Preliminaries
	Suffix Tree, Centroid Path Decomposition and y-Fast Trie
	The Side-Tree Rank of a Leaf
	The LCP Data Structure

	An O( n logn)-bit Index for 1-Error Matching
	The Prefix Matching Query of Modified Suffixes
	A Simple O( n log2n)-bit Solution
	An O( nlogn)-bit Solution

	Answering a PMMS Query
	Error-Bounded Candidate Generation
	Constant Time Verification

	Compressed Representation of the Lexicographical Information
	Compressing the lex-order Arrays
	Compressing the label Arrays

	Remarks
	Extension to Edit Distance
	Extension to k Errors


	An O(n logn)-bit Index for 2-Error and k-Error Matching
	Enhanced LCP Data Structure
	Candidate Generation with Specific Error Location
	Constant Time Verification
	Remarks
	Extension to Edit Distance
	Extension to k Errors


	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


