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Abstract We analyze the performance of evolutionary algorithms on various matroid
optimization problems that encompass a vast number of efficiently solvable as well
as NP-hard combinatorial optimization problems (including many well-known exam-
ples such as minimum spanning tree and maximum bipartite matching). We obtain
very promising bounds on the expected running time and quality of the computed so-
lution. Our results establish a better theoretical understanding of why randomized
search heuristics yield empirically good results for many real-world optimization
problems.

Keywords Evolutionary algorithms · Matroids · Minimum weight basis · Matroid
intersection · Randomized search heuristics

1 Introduction

Motivation While evolutionary algorithms are known to work (empirically) well
for many optimization problems in practice, a satisfying and rigorous mathematical
analysis of their performance is one of the main challenges in the area of genetic and
evolutionary computing. Interesting results have been obtained for some important,
isolated optimization problems but a general theoretical explanation of the behavior
of evolutionary algorithms is still missing. The aim of this article is to make progress
in this direction. We study the performance of evolutionary algorithms on a very
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Table 1 A summary of results on various matroid optimization problems. The problems are described
in the first column. The second column gives the running time of known efficient algorithms, where � is
the (maximum) time complexity of the independence oracle(s). The third column describes the results for
(1 + 1) EA and (modifications of) RLS obtained in this article. The last column gives lower bounds on the
running time of (1 + 1) EA and RLS for obtaining an optimal solution. Note that the numbers in the two
last columns denote the expected number of iterations rather than the total runtime

Problem Efficient algorithm Exp. # iterations of Lower bound on

known (1 + 1) EA and RLS exp. # iterations of

(1 + 1) EA and RLS

Minimum O(|E| log |E| + |E|�) O(|E|2(log r(E) + logwmax)) �(|E|2 log r(E)) [25]

weight basis

Unweighted O(|E| r(E)1.5�) [3] (1 − ε)-approximation in exponential [14]

matroid O(|E|2�1/ε�)
intersection

Weighted O(|E| r(E)(r(E)� 1/2-approximation in exponential [14]

matroid + log |E|)) [31] O(|E|4(log |E| + logwmax))

intersection

Intersection NP-hard [13] 1/p-approximation in exponential [14]

of p ≥ 3 O(|E|p+2(log |E| + logwmax))

matroids

general class of combinatorial optimization problems and obtain promising results
on the running time and quality of the computed solutions. A summary of our results
together with an overview of the complexity of the considered optimization problems
can be found in Table 1.

Independence Systems and Matroids Matroid theory provides a framework in which
a substantial class of problems in combinatorial optimization can be studied from
a unified perspective. Matroids form a special class of independence systems that
are given by a finite set E and a family of subsets F ⊆ 2E such that F is closed
under subsets. The subsets contained in F are called independent and a maximal
independent subset is called a basis of the independence system. A precise definition
of matroids along with some important classical results is given in Sect. 2.

Many combinatorial optimization problems can be formulated as follows: Given
an independence system on a weighted set E, find a basis of minimum (or maximum)
weight. We mention as an example the problem of finding a stable set of maximum
weight in a given graph with weights on the nodes (here, the underlying independence
system is not a matroid).

A famous result by Rado [27], Gale [12], and Edmonds [7] states that an indepen-
dence system is a matroid if and only if the greedy algorithm computes a minimum
weight basis for arbitrary weights on the elements of E. This algorithmic character-
ization of matroids highlights their relevance in the area of efficient algorithms and
combinatorial optimization.
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Examples of Matroids and First Results Graphic matroids are an important example
of matroids where E is the edge set of a graph G = (V ,E) and a subset of edges is
independent if it does not contain a circuit. If the given graph G is connected, the
problem of finding a minimum weight basis of the corresponding graphic matroid
is the minimum spanning tree problem. In the context of evolutionary algorithms,
Raidl and Julstrom [28] analyze different encodings for the minimum spanning tree
problem and propose to work with so-called edge sets. Neumann and Wegener [25]
study evolutionary algorithms for the minimum spanning tree problem. They prove
that two specific evolutionary algorithms, (1 + 1) EA and RLS, compute a minimum
spanning tree in expected polynomial time, i.e., O(|E|2(log |V | + logwmax)), where
wmax denotes the maximum weight of any edge; moreover, they establish a lower
bound of �(|E|2 log |V |). In Sect. 3 we generalize this result to arbitrary matroids
(see also Table 1). After establishing a crucial property of the problem our analysis
follows that of [25].

Another important example of matroids are linear matroids where E is a set of
vectors and a subset is independent if the vectors contained in it are linearly indepen-
dent. Linear matroids occur, for example, in the minimum cycle basis problem where
the task is to find a minimum weight basis of the cycle space of a given graph with
weights on the edges. This problem is an important building block in various real-
world optimization problems such as, for example, in electrical networks, structural
engineering, chemistry and biochemistry, and in periodic timetabling; see, e.g., [23]
for details.

Matroid Intersection Matroids have even more algorithmic power than just that of
the greedy method. Edmonds [6] (see also [22]) observed that also the (weighted)
matroid intersection problem can be solved efficiently. That is, a maximum weight
common independent set in two matroids can be found in strongly polynomial time.
The matroid intersection problem has applications in many settings such as, for exam-
ple, edge connectivity [10], survivable network design [2], constrained [18] as well
as degree-bounded [16] minimum spanning trees, and multicast network codes [17].

One of the most prominent examples of an optimization problem that can be for-
mulated as a matroid intersection problem is the maximum weight matching problem
in bipartite graphs. Giel and Wegener [14, 15] analyze evolutionary algorithms for the
maximum matching problem (with unit weights). They show that (1+1) EA and RLS
are (randomized) polynomial-time approximation schemes with an expected runtime
of O(|E|2�1/ε�); moreover they construct a class of bipartite graphs for which these
algorithms need an exponential expected running time until they find an optimal so-
lution. Motivated by these results we prove in Sect. 4 that (1 + 1) EA and RLS are
polynomial-time approximation schemes for the matroid intersection problem with
unit weights (see also Table 1). Again, establishing a crucial property of the problem
structure allows to extend the previous analysis for the special case to our problem.

Our result for the unweighted matroid intersection problem cannot be general-
ized easily to the weighted case and also from the viewpoint of efficient algorithms
it is known that the weighted version of the problem is somewhat harder than the
unweighted problem. In Sect. 5 we prove that (1 + 1) EA and a slightly modified ver-
sion of RLS are 1

2 -approximation algorithms for the weighted matroid intersection
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problem (see also Table 1). The techniques used to obtain this result differ from those
for the unweighted case and we are not aware of previous work for (other) special
cases.

NP-Hard Problems The problem of finding a maximum-size common independent
set in three or more matroids is NP-hard as finding a Hamiltonian circuit in a directed
graph is a special case [19]. On the other hand it is known that any independence sys-
tem can be represented as an intersection of finitely many matroids and a vast number
of combinatorial optimization problem falls into this category. In Sect. 6 we prove
that (1+1) EA and (an appropriately modified version of) RLS are 1

p
-approximation

algorithms for the NP-hard problem to find a maximum-weight independent set in
the intersection of p ≥ 3 matroids (see also Table 1). This result is a generalization
of our 1

2 -approximation for the weighted intersection of two matroids. Note that the
approximation ratio of 1

p
is the same as that of the greedy algorithm [20, 21].

More Results from the Literature In the following we mention some further related
results from the literature. Wegener [33, 34] discusses randomized search heuristics
as an alternative to exact algorithms in the context of discrete optimization problems
and gives an overview of known results. Droste, Jansen and Wegener [5] study the
behavior of (1 + 1) EA on pseudo-boolean functions. Sorting and shortest path prob-
lems are considered by Scharnow, Tinnefeld, and Wegener [30].

2 Preliminaries

Evolutionary algorithms are a class of randomized search heuristics that are inspired
by biological evolution. Informally, their basic structure can be explained as follows.
An element of the search space is referred to as individual and a set of such individu-
als is called population. The quality of an individual is measured by a fitness function.
Following the idea of survival of the fittest, evolutionary algorithms try to maximize
the fitness of the individuals in the population in an iterative way. Such an iteration is
called generation. To this end, some individuals (parents) of the current population
are chosen as seed for the next generation. By applying recombination and/or muta-
tion operators, new individuals (offspring) are generated. The recombination operator
is applied to two individuals and creates a new individual by recombining the infor-
mation of the parents. The mutation operator is applied to one individual and creates
one new individual. The offspring compete with the individuals of the current gener-
ation for a place in the population of the next generation. See [1] or [8] for a detailed
introduction into the field of evolutionary algorithms.

We study the behavior of two very simple evolutionary algorithms, namely
(1 + 1) EA and randomized local search (RLS), which is sometimes also called lo-
cal (1 + 1) EA. These algorithms play an important role since their simplicity al-
lows a theoretical analysis of their behavior. On the other hand, they are complex
enough to solve important combinatorial optimization problems. The population of
both algorithms consists of exactly one individual, and there is no recombination
operator. Almost all theoretical results for combinatorial optimization problems con-
sider evolutionary algorithms without recombination operator (also called crossover).
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This is due to the fact that proofs become much more difficult if such an operator is
introduced. It was an open question whether recombination is provably helpful for
non-artificial problems. This question has recently been answered positively for the
all-pairs shortest path problem [4] and the Ising model [9, 32].

For both algorithms, (1+1) EA and RLS, the search space consists of all bitstrings
of a fixed length. Initially, a bitstring s ∈ {0,1}n is chosen randomly (whenever we
speak of randomness, we mean uniform randomness). The mutation operators of (1+
1) EA and RLS are defined as follows:

(1 + 1) EA: Obtain the bitstring s′ by flipping each bit of s independently of the
other bits with probability 1/n.

RLS: Choose b ∈ {0,1} randomly. If b = 0, choose i ∈ {1, . . . , n} randomly and
obtain s′ by flipping the i-th bit of s. If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n}
randomly and obtain s′ by flipping the i-th and j -th bit of s.

Note that the mutation operator of RLS is capable of flipping two bits simultane-
ously. We shall see later that it is crucial that the neighborhood of a given search point
contains other search points with a Hamming distance of two. The current search
point s is replaced by s′ if the fitness value of s′ is better than or equal to that of s.
Note that “better” corresponds to either “smaller” or “larger”, depending on whether
a minimization or maximization problem is considered.

Both algorithms do not use any stopping criteria. For theoretical investigations it is
common to consider the algorithms as infinite stochastic processes and to consider the
number of fitness evaluations as a measure of the runtime. Note that in (1 + 1) EA
and RLS there is exactly one fitness evaluation per generation, thus the number of
fitness evaluations equals the number of generations. Hence, our goal is to bound the
expected number of generations (also called expected runtime) until the algorithms
have discovered a desired search point.

We shall now give the definition of matroids as well as some well-known proper-
ties used in this article. See [22, 26], or [31], for a more detailed discussion.

Definition 1 Let E be a finite set and F ⊆ 2E . The pair M = (E, F ) is called a
matroid if

(i) ∅ ∈ F ,
(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X,Y ∈ F , |X| > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F .

The elements of F are called independent, the elements of 2E \ F are called
dependent. The maximal independent sets are called bases of M , the minimal de-
pendent sets are called circuits. For X ⊆ E, a maximal independent subset of X is
called a basis of X. The rank r(X) of X is the maximal cardinality of a basis of X,
r(X) := max{|Y | | Y ⊆ X,Y ∈ F }.

Proposition 1 Let (E, F ) be a matroid. Then

(i) for X ⊆ E, all bases of X have the same cardinality;
(ii) for all bases B1,B2 of M , x ∈ B1 \ B2 there exists y ∈ B2 \ B1 such that (B1 \

{x}) ∪ {y} is a basis of M .
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Proposition 2 Let (E, F ) be a matroid and r(·) its rank function. Then

(i) r(∅) = 0,
(ii) ∀X ⊆ E : r(X) ≤ |X|,

(iii) ∀X ⊆ E : r(X) = |X| ⇔ X ∈ F ,
(iv) ∀X,Y ⊆ E,X ⊆ Y : r(X) ≤ r(Y ).

For X ∈ F and y ∈ E such that X ∪ {y} �∈ F , we use C(X,y) to denote the unique
circuit in X ∪ {y}. If X ∪ {y} ∈ F , we define C(X,y) := ∅.

Note that |F | might be exponential in |E|. Hence, |F | is usually not given ex-
plicitly. Instead one usually assumes the existence of an appropriate oracle. Such an
oracle can be understood as a black box that reveals some information about |F |.
For example, an independence oracle decides in constant time for a given set X ⊆ E

whether X ∈ F holds. Here we assume that the set F is implicitly given by a rank
oracle which for any set X ⊆ E computes its rank r(X) in constant time. Note that a
rank oracle is polynomially equivalent to an independence oracle [22].

3 Minimum Weight Basis

The results presented in this section generalize and are motivated by the correspond-
ing results for the minimum spanning tree problem in [25]. We consider the following
problem. Given a matroid M = (E, F ) and a weight function w : E → N, find a basis
B ⊆ E of M of minimum weight. The weight of a subset of E is defined as the sum
of the weights of its elements. The weight of an optimal solution is denoted by wOPT .

The search space equals S = {0,1}|E|, where each position of the bitstring cor-
responds to an element from E = {e1, . . . , e|E|}. A search point s ∈ {0,1}|E| cor-
responds to the subset E(s) := {ei ∈ E | si = 1, 1 ≤ i ≤ |E|} of E. We define the
weight w(s) of a bitstring s as the weight of the corresponding set E(s). In a similar
way we define the rank r(s) of a bitstring s as r(s) := r(E(s)).

We consider two fitness functions f and f ′. Let wmax denote the maximum weight
of any element in E. Then wub := |E| · wmax is an upper bound on the weight of any
subset of E. Let

f (s) := (r(E) − r(s)) · |E| · wub + (|E(s)| − r(E)) · wub +
∑

e∈E(s)

w(e)

be the first fitness function which is to be minimized. The expression is dominated
by the first term which encodes the number r(E) − r(s) of elements that have to be
added to E(s) to get a superset of a basis. If E(s) is a superset of a basis, this term
vanishes and the second term dominates the expression. The factor |E(s)| − r(E)

denotes the number of elements that have to be removed from E(s) to get a basis
of M . If E(s) is a basis of M , both the first and second term vanish and the fitness of
s corresponds to the weight of the elements in E(s).

The second term in the fitness function f explicitly penalizes circuits. This is not
necessary, since the removal of an element of a circuit leads to a weight decrease by
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itself. Therefore, we also investigate the fitness function

f ′(s) := (r(E) − r(s)) · wub +
∑

e∈E(s)

w(e).

Note that f ′(s) equals f (s) if s describes a spanning tree. We shall see that the
additional information concerning |E(s)| in the first fitness function f allows us to
obtain better bounds.

The remainder of this section is structured as follows. After a simple inequality
to bound probabilities we prove two propositions concerning the expected number
of generations until a superset of a basis and a basis have been constructed. Then
we present several propositions about basis transition properties which are needed to
prove the main theorems of this section.

Proposition 3 Let α − 1 ≥ β ≥ 1 and γ ≥ 1. Then

(
1 − 1

α

)β

·
(

1 −
(

1 − 1

α

)γ )
≥ e−1 · γ

α + γ
.

Proof Since β ≤ α − 1, we get

(
1 − 1

α

)β

≥
(

1 − 1

α

)α−1

≥ e−1.

Since 1 − x ≤ e−x for all x ∈ R, we have

1 −
(

1 − 1

α

)γ

≥ 1 − e− γ
α = 1 − 1

eγ/α
.

Again, since ex ≥ 1 + x for all x ∈ R, we obtain

1 − 1

eγ/α
≥ 1 − 1

1 + γ /α
= γ

α + γ
,

which concludes the proof. �

Proposition 4 The expected number of generations until RLS or (1 + 1) EA working
on one of the fitness functions f or f ′ constructs a superset of a basis of M is bounded
by O(|E| log r(E)).

Proof Suppose the initial search point s does not describe a superset of a basis. Then
r(s) < r(E) holds. Both fitness functions f and f ′ are defined in such a way that the
rank of E(s) will never decrease in accepted steps. For each subset X ⊆ E, there are
at least r(E) − r(X) elements of E whose inclusion increases the rank of X by 1.

The probability that RLS performs a 1-bit flip is 1
2 and there are |E| possible 1-bit

flips. Therefore, for RLS, the probability that a step increases the rank of E(s) is at
least 1

2 · r(E)−r(s)
|E| . For (1 + 1) EA we consider the event that r(s) elements of a fixed
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basis of E(s) remain unchanged and at least one of r(E)− r(s) elements that enlarge
this independent subset is flipped. The probability of this event is given by

(
1 − |E|−1

)r(s) ·
(

1 −
(

1 − |E|−1
)r(E)−r(s)

)
,

which, by Proposition 3, can be lower bounded by 1
2e

· r(E)−r(s)
|E| . Hence, the expected

number of generations until s describes a superset of some basis is bounded from
above by

r(E)−1∑

i=0

2e|E|
r(E) − i

= O(|E| log r(E)).

This concludes the proof. �

Proposition 5 The expected number of generations until RLS or (1 + 1) EA working
on the fitness function f constructs a basis of M starting from a superset of a basis
is bounded by O(|E| log |E|).

Proof Suppose the initial search point s describes a proper superset of some basis
of M . Then |E(s)| > r(E) holds. The fitness function f is defined in such a way
that only supersets of bases are accepted, i.e., the rank of E(s) does not change.
Furthermore, the cardinality of E(s) never increases.

The probability that a step decreases the cardinality of E(s) while maintaining a
superset of a basis is at least 1

2 · |E(s)|−r(E)
|E| for RLS. For (1 + 1) EA we consider the

event that r(E) elements of a fixed basis of M contained in E(s) remain unchanged
and at least one of the remaining |E(s)| − r(E) elements is flipped. The probability
of this event is given by

(
1 − |E|−1

)r(E) ·
(

1 −
(

1 − |E|−1
)|E(s)|−r(E)

)
,

which, by Proposition 3, can be lower bounded by 1
2e

· |E(s)|−r(E)
|E| . Hence, the ex-

pected number of generations until s describes a basis of M is bounded from above
by

|E|∑

i=r(E)+1

2e|E|
i − r(E)

= O(|E| log |E|).

This concludes the proof. �

We remark that Proposition 5 holds also for RLS and the fitness function f ′, but
not for (1 + 1) EA and f ′. Since RLS flips at most two bits per step, an increase in
|E(s)| implies an increasing weight. Consequently, steps increasing |E(s)| are not
accepted. This argument does not hold for the (1 + 1) EA, which might exclude a
heavy element and include two or more light elements instead while maintaining a
superset of a basis.
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The following proposition will later turn out to be useful in order to prove a bound
on the number of steps needed to get from an arbitrary basis to a minimum weight
basis.

For a matroid M = (E, F ) and two sets A,B ∈ F we define the graph GA,B :=
(VA,B,EA,B), VA,B := A � B , and EA,B := {(a, b) | a ∈ A \ B,b ∈ C(B,a) \ A}.

Proposition 6 Given a matroid M = (E, F ) and two sets A,B ∈ F such that
C(B,a) �= ∅ for all a ∈ A \ B holds. The graph GA,B has a bipartite matching cov-
ering A \ B .

Proof Note that GA,B is a bipartite graph with bipartition VA,B = (A \B) ∪̇ (B \A).
For X ⊆ A \ B define N(X) := {b ∈ B \ A | ∃x ∈ X : (x, b) ∈ EA,B}. We show
|N(X)| ≥ |X| for all X ⊆ A \ B . Then the claim follows by the classical Theorem of
Hall (see, e.g., [22]).

Suppose there exists X ⊆ A\B with |N(X)| < |X|. By Definition 1(ii), the sets X

and N(X) are independent (and disjoint) since they are subsets of A \ B and B \ A,
respectively. Moreover, the sets X ∪̇ (A∩B) and N(X) ∪̇ (A∩B) are independent as
subsets of A and B , respectively, and |N(X)∪̇(A∩B)| < |X ∪̇(A∩B)| holds. Hence,
by Definition 1, there exists x ∈ (X ∪̇ (A∩B)) \ (N(X) ∪̇ (A∩B)) = X \N(X) = X

such that N(X) ∪̇ (A ∩ B) ∪̇ {x} ∈ F . On the other hand, by the definition of N(·),
the set N(X) ∪̇ (A ∩ B) ∪̇ {x} contains the cycle C(B,x). �

Proposition 7 Let s be a search point describing a non-minimum weight basis B

of M . Then there exists some k ∈ {1, . . . , r(E)} and k different accepted 2-bit flips
such that the average weight decrease of these flips is (w(s) − wOPT)/k.

Proof Let B∗ denote a minimum weight basis of M and define k := |B∗ \ B|. By
applying Proposition 6 to B and B∗ we obtain an injective function α : B∗ \ B →
B \ B∗ such that α(e) ∈ C(B, e) for all e ∈ B∗ \ B . By Proposition 1(i), all bases of
a matroid have equal cardinality, hence, the function α is a bijection.

By Proposition 1(ii), B ∪ {e} \ {α(e)} is again a basis of M . Furthermore, since
B∗ is an optimal basis w(e) ≤ w(α(e)) holds for all e ∈ B∗ \ B . Hence, exchanging
e and α(e) does not increase the total weight and the 2-bit flip involving e and α(e)

is accepted. All k 2-bit flips together change B into B∗ and the total weight decrease
is w(s) − wOPT . Hence, the average weight decrease is (w(s) − wOPT)/k. �

The analysis performed later can be simplified if the parameter k in Proposition 7
is independent of the search point s. This can be easily accomplished by allowing
non-accepted 2-bit flips whose weight decrease is defined as 0. We add r(E) − k

non-accepted 2-bit flips to the k 2-bit flips from Proposition 7.

Proposition 8 Let s be a search point describing a basis B of M . Then there exists a
set of r(E) 2-bit flips such that the average weight decrease of these flips is (w(s) −
wOPT)/r(E).
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Since Proposition 5 does not hold for the fitness function f ′ in combination with
(1 + 1) EA, we need a result similar to Proposition 8 for supersets of a basis. Since
we start from supersets of a basis, we need to allow also 1-bit flips to reach a basis.

Proposition 9 Let s be a search point describing a superset of a basis. Then there
exists a set of |E| − r(E) 1-bit flips and a set of r(E) 2-bit flips such that the average
weight decrease is (w(s) − wOPT)/|E|.

Proof Let B ′ ⊆ E(s) denote a basis of M and s′ the corresponding search point.
Consider the set of |E(s)| − r(E) 1-bit flips corresponding to the elements in E(s) \
B ′. Their removal from E(s) does not change the rank of E(s), hence the 1-bit flips
are accepted. We obtain the basis B ′ and apply Proposition 8. Alltogether, we obtain
a weight decrease of w(s) − wOPT and performed |E(s)| flips.

Similar to Proposition 8 we allow non-accepted 1-bit flips whose weight decrease
is defined as 0. By adding |E|− |E(s)| non-accepted 1-bit flips we obtain the claimed
result. �

Theorem 1 The expected number of generations until RLS or (1 + 1) EA work-
ing on the fitness function f constructs a minimum weight basis is bounded by
O(|E|2(log r(E) + logwmax)).

Proof By Propositions 4 and 5, it is sufficient to consider the search process after
having found a search point s describing a basis. Then, by Proposition 8, there exists
a set of r(E) 2-bit flips whose average weight decrease is (w(s) − wOPT)/r(E). The
choice of such a 2-bit flip is called a good step. The probability of performing such a
good step equals �(r(E)/|E|2) and each of the good steps is chosen with the same
probability. A good step decreases the difference between the weight of the current
search point s and wOPT on average by a factor of 1/r(E). This holds independently
of previous good steps. Hence, after N good steps, the expected difference between
w(s) and wOPT is given by (1 − 1/r(E))N · (w(s) − wOPT). Since w(s) ≤ r(E) ·
wmax and wOPT ≥ 0, we obtain the upper bound (1 − 1/r(E))N · D on the expected
difference between w(s) and wOPT after N good steps, where D := r(E) · wmax.

If N := �(ln 2) · r(E) · (log 2D)�, this bound is at most 1
2 . Since the difference is

not negative, by Markov’s inequality, the probability that the bound is less than 1 is at
least 1/2. The difference is an integer implying that the probability of having found
a minimum weight basis is at least 1/2. Therefore, the expected number of good
steps until a minimum weight basis is found is bounded by 2N = O(r(E) logD) =
O(r(E)(log r(E) + logwmax)).

By our construction, there are always exactly r(E) good steps. Therefore, the
probability of a good step does not depend on the current search point. Hence,
the expected number of generations until l good steps have been made equals
�(l|E|2/r(E)). Altogether, the expected number of iterations is bounded by

O(N |E|2/r(E)) = O(|E|2(log r(E) + logwmax)).

This concludes the proof. �
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A slightly worse bound can be shown for the fitness function f ′ by applying
Proposition 9 instead of Proposition 8.

Theorem 2 The expected number of generations until RLS or (1 + 1) EA work-
ing on the fitness function f ′ constructs a minimum weight basis is bounded by
O(|E|2(log |E| + logwmax)).

Proof By Proposition 4, it is sufficient to consider the search process after having
found a search point s describing a superset of a basis. Then, by Proposition 9, for
each step there exists a set of |E| − r(E) 1-bit flips and a set of r(E) 2-bit flips such
that the total weight decrease is w(s)−wOPT . The choice of such a bit flip is called a
good step. If the total weight decrease of the 1-bit flips is larger than the total weight
decrease of the 2-bit flips, the step is called a 1-step. Otherwise, it is called a 2-step.
Note that the notion of a 2-step does not imply that we actually perform a 2-bit flip,
similarly for 1-steps and 1-bit flips.

Consider the sequence of all steps until a minimum weight basis is reached. Sup-
pose that at least half of the required steps are 2-steps. Consider only these 2-steps.
Since there are r(E) good 2-bit flips, the probability of a good 2-bit flip equals
�(r(E)/|E|2). The expected weight decrease of such a 2-bit flip in a 2-step is at
least 1

2 (w(s) − wOPT)/r(E). Thus, a good 2-bit flip in a 2-step decreases the dif-
ference between the weight of the current search point s and wOPT on average by
a factor not larger than 1 − 1/(2r(E)). Hence, we can adapt the proof of Theo-
rem 1 with N ′ := �(ln 2) · 2r(E) · (log 2D′)�, D′ := |E| · wmax and obtain the bound
O(N ′|E|2/r(E)) for the expected number of 2-steps. Since the majority of all steps
are 2-steps, the claimed result follows.

Now suppose that at least half of the required steps are 1-steps and consider only
these 1-steps. Since there are k := |E| − r(E) good 1-bit flips, the probability of a
good 1-bit flip equals �(k/|E|). The expected weight decrease of such a 1-bit flip in
a 1-step is at least 1

2 (w(s) − wOPT)/k. Thus, a good 1-bit flip in a 1-step decreases
the difference between the weight of the current search point s and wOPT on average
by a factor not larger than 1 − 1/(2k). Again, we can apply the proof technique of
Theorem 1 where N ′′ := �2 · (ln 2) ·k · (log 2D′)� = O(|E|(log |E|+ logwmax)) takes
the role of N . We obtain the upper bound

O(N ′′|E|/k) = O(|E|(log |E| + logwmax))

for the expected number of 1-steps. Since the majority of all steps are 1-steps, the
total number of steps is of the same order, which is even smaller than the proposed
bound. �

Neumann and Wegener [25] show a lower bound of �(|E|2 log r(E)) for a special
class of instances of the minimum spanning tree problem. Hence, �(|E|2 log r(E))

is also a lower bound for the minimum weight basis problem.
We briefly want to mention the benefits of more problem-specific mutation oper-

ators. After having found a basis of a matroid, we are only interested in offspring
with the same cardinality. The probability of such an offspring can be increased us-
ing the following two mutation operators: If RLS flips two bits, it chooses randomly
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a 0-bit and randomly a 1-bit. If s contains k 1-bits, (1 + 1) EA flips each 1-bit with
probability 1/k and each 0-bit with probability 1/(|E| − k).

Using the modified mutation operators, the probability of a specific element ex-
change for bases increases from �(1/|E|2) to �(r(E)−1(|E|− r(E))−1). Therefore,
the bound of Theorem 1 can be replaced by O(r(E)|E| · (log r(E) + logwmax) +
|E| log |E|). In the case of Theorem 2 we obtain the bound O(r(E)|E|(log |E| +
logwmax)).

The expected number of generations can be further reduced by using parallel ver-
sions of (1 + 1) EA and RLS. The term parallel refers to the fact that in each iter-
ation (1 + λ) EA and λ-PRLS (λ-parallel RLS) independently produce λ offspring
from the currently considered individual. The selection procedure selects an individ-
ual with the smallest fitness value among the parent and its offspring. In the proofs of
Theorem 1 and Theorem 2 the probability of a good step is O(r(E)/|E|2). Choosing
λ := �|E|2/r(E)�, this probability is increased to a positive constant. As before, the
expected number of good steps is bounded by O(r(E)(log r(E) + logwmax)) and
O(r(E)(log |E| + logwmax)), respectively. This leads to the following result.

Theorem 3 The expected number of generations until λ-PRLS or (1 + λ) EA
with λ := �|E|2/r(E)� children constructs a minimum weight basis is bounded by
O(r(E) logwmax + |E| log |E|).

Using the modified mutation operator mentioned above, the probability of a good
step reduces to O(1/|E|) and we obtain the same bound on the expected number of
generations as in Theorem 3 already for λ := |E|.

The bounds of Theorems 1 and 2 depend on the maximum weight wmax. For RLS
we can actually proof the following strongly polynomial bound.

Theorem 4 The expected number of generations until RLS working on one of
the fitness functions f or f ′ constructs a minimum weight basis is bounded by
O(|E|2(log |E|)).

Proof We construct a different set of weights as follows. Sort the weights wi non-
decreasingly. Define the weight w′

i ,1 ≤ i ≤ m as the rank of wi in the sorted
sequence (with the convention that equal weights have equal rank). Now for all
i, j ∈ {1, . . . ,m} it holds that w′

i − w′
j ≤ 0 if and only if wi − wj ≤ 0. This im-

plies that the behavior of RLS does not change if the old weights wi are replaced by
the new weights w′

i . Since w′
max ≤ |E|, the claimed bound follows from Theorems 1

and 2. �

Neumann and Wegener [24] also consider multi-objective optimization techniques
for the (single-objective) minimum spanning tree problem. They study the behav-
ior of two multi-objective evolutionary algorithms called SEMO and GSEMO. The
analysis can be carried over to the minimum weight basis problem for matroids and
results in a bound of O(r(E)|E|(r(E) + log |E| + logwmax)) on the number of gen-
erations.

Raidl, Koller and Julstrom [29] study specialized edge selection strategies for
the minimum spanning tree problem. For average case instances they are able to
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reduce the total expected runtime excluding preprocessing from O(|V |3 log |V |) to
O(|V |3/2 log |V |). It seems likely that some results can be extended to the minimum
weight basis problem.

4 Matroid Intersection

The results presented in this section are motivated by the results for the maximum
matching problem in [14]. We consider the matroid intersection problem which is
defined as follows. Given two matroids M1 = (E, F 1) and M2 = (E, F 2) on the
same ground set E by their independence oracles, compute a set X ∈ F 1 ∩ F 2 such
that |X| is maximum. Let OPT denote such an optimal element of F 1 ∩ F 2. The well-
known matroid intersection algorithm by Edmonds [6, 22] starts with X := ∅. In each
iteration, it searches a shortest SX–TX-path in an auxiliary graph GX . This so-called
augmenting path gives rise to X′ ∈ F 1 ∩ F 2 with |X′| = |X| + 1. The algorithm
terminates if there is no augmenting path.

The auxiliary graph GX for X ∈ F 1 ∩ F 2 is defined as follows. Its node set is E,
the edges are given by AX ∪ BX with AX := {(x, y) |y ∈ E \ X, x ∈ C1(X,y) \ {y}}
and BX := {(y, x) |y ∈ E \ X, x ∈ C2(X,y) \ {y}}. We set SX := {y ∈ E \ X |X ∪
{y} ∈ F 1} and TX := {y ∈ E \ X |X ∪ {y} ∈ F 2}.

Let the node sequence y0, x1, y1, . . . , xn, yn denote any shortest SX–TX-path and
define X′ := X \ {x1, . . . , xn} ∪ {y0, y1, . . . , yn}. Then this path is an augmenting
path, i.e., X′ ∈ F 1 ∪ F 2 and |X′| = |X| + 1. In the EA setting, such an augmentation
step corresponds to simultaneously flipping exactly the elements corresponding to
the nodes of the augmenting path.

The above algorithm solves the matroid intersection problem in O(|E|3θ) time,
where θ is the maximum complexity of both independence oracles. An improved
algorithm due to Cunningham [3] requires O(|E|r(E)3/2θ) time. Gabow and Xu [11]
consider the special case of linear matroids. Their algorithms require O(|E|r(E)1.62)

time in the unweighted case and O(|E|r(E)1.77(log r(E) + logwmax)) time in the
weighted case.

We study the performance of evolutionary algorithms for the matroid intersection
problem. We assume that we are given rank oracles r1 and r2 that compute for any
set X ⊆ E its rank with respect to M1 and M2, respectively. Again, we consider the
RLS and (1 + 1) EA algorithm. We consider the fitness function

f (s) := −�(s) · |E| + |E(s)|,
where �(s) := 2|E(s)|− r1(E(s))− r2(E(s)). The expression is dominated by �(s),
which measures the infeasibility of E(s). If E(s) is a common independent set, this
first term vanishes and the fitness of s equals the cardinality of E(s).

A more precise way to measure the infeasibility of E(s) is to replace �(s) by
�(s) := min{|X||X ⊆ E,E(s) \ X ∈ F 1 ∩ F 2}|. However, �(s) cannot be easily
computed. Hence, we resort to �(s). Note that 1

2�(s) ≤ �(s) ≤ �(s) ≤ 2|E| holds
for all s ∈ {0,1}|E|.

First, we consider the phase until a common independent set has been constructed.
Note that the empty set is a trivial common independent set. Hence, the first phase
can also be skipped entirely.
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Proposition 10 The expected number of generations until RLS or (1 + 1) EA work-
ing on the fitness function f constructs a common independent set is bounded by
O(|E| log |E|).

Proof Suppose E(s) �∈ F 1 ∩ F 2 holds for the initial search point s. The fitness func-
tion f is defined in such a way that the infeasibility �(s) never increases. There are
at least 1

2�(s) elements in E(s) whose individual removal from E(s) decreases the
infeasibility �(s). The probability that a step decreases the infeasibility �(s) is at
least 1

2 · �(s)
2|E| for RLS. For (1 + 1) EA we consider the event that the complement of

E(s) remains fixed and at least one of 1
2�(s) infeasible elements is removed from

E(s). The probability of this event is given by

(1 − |E|−1)|E\E(s)| · (1 − (1 − |E|−1)�(s)/2),

which, by Proposition 3, can be lower bounded by 1
2e

· �(s)
2|E| . Hence, the expected

number of generations until s describes an element in F 1 ∩ F 2 is bounded from
above by

�(s)∑

i=1

4e|E|
i

= O(|E| log |E|).

This concludes the proof. �

Next, we consider the search process after having found a common independent
set X ∈ F 1 ∩ F 2. We show that the length of a shortest SX–TX-path in GX can be
bounded in terms of |X| and |OPT|.

Proposition 11 Let ε > 0 and X ∈ F 1 ∩ F 2 such that |X| < (1 − ε)|OPT|. There
exists an SX–TX-path in GX with length at most 2�1/ε� − 2.

Proof It was shown by Cunningham [3] that GX contains k := |OPT| − |X| vertex-
disjoint SX–TX-paths. Hence, there exists an SX–TX-path with length at most
2�|X|/k�. Since |X| < (1 − ε) |OPT|, we have |X|/k < (1 − ε)/ε < 1/ε. Thus, the
length of this path is bounded by 2�1/ε� − 2. �

The bound on the length of an augmenting path allows us to lower bound the
probability that RLS or (1+1) EA finds such an augmenting path. These bounds lead
to upper bounds on the expected number of generations until |E(s)| is increased, and
finally, until an (1 − ε)-approximation is constructed.

Theorem 5 For ε > 0, the expected number of generations until RLS or (1 + 1) EA
working on the fitness function f constructs an (1 − ε)-approximation of a maximum
element of F 1 ∩ F 2 is bounded by O(|E|2�1/ε�).

Proof By Proposition 10, it suffices to consider the search process after having found
a search point s with E(s) ∈ F 1 ∩ F 2. The fitness function f is designed such that
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only steps leading to search points s′ describing common independent sets of at least
the same cardinality as s are accepted. Assume that |E(s)| < (1 − ε)|OPT|.

By Proposition 11, there exists an augmenting path in GE(s) of length at most
l := 2�1/ε� − 2. The (1 + 1) EA flips exactly the l + 1 elements corresponding to
the nodes of this path with probability �(|E|−l−1). The RLS algorithm needs l/2 2-
bit flips shortening the augmenting path and a final 1-bit flip to increase |E(s)|. The
probability that this happens within the next l/2 + 1 steps is bounded from below
by �((|E|−2)l/2 · |E|−1) = �(|E|−l−1). Hence, the expected number of generations
to improve |E(s)| is bounded by O(|E|l+1) for (1 + 1) EA and by O(l · |E|l+1)

for RLS. A more careful analysis for RLS yields the bound O(|E|l+1) (see [14]).
Since |OPT| ≤ |E|, the expected number of generations until RLS or (1 + 1) EA
constructs an (1 − ε)-approximation of a maximum element of F 1 ∩ F 2 is bounded
by O(|E| log |E|) + O(|E|) · O(|E|l+1) = O(|E|2�1/ε�). �

Giel and Wegener [14] have shown that RLS and (1 + 1) EA require an exponen-
tial expected running time to find an optimal solution for certain bipartite maximum
matching problems. Since bipartite matching is a special case of matroid intersec-
tion, we know that the matroid intersection problem cannot be solved by RLS or
(1 + 1) EA in polynomial time.

5 Weighted Matroid Intersection

In the weighted matroid intersection problem we additionally consider a weight func-
tion w : E → N which assigns a non-negative weight w(e) to each element e ∈ E of
the ground set. The task is to compute a common independent set X ∈ F 1 ∩ F 2 such
that its weight w(X) := ∑

e∈X w(e) is maximum.
Similar to the unweighted case we consider the fitness function

f (s) := −�(s) · wub +
∑

e∈E(s)

w(e),

where wub := |E| · wmax is an upper bound on the weight of any subset of E.
Note that the RLS algorithm is not suited for the weighted matroid intersection

problem since, in general, simultaneous flips of more than two bits are required. In
the unweighted case, a long augmenting path can be broken into a series of 2-bit flips
maintaining the fitness value and one final 1-bit flip. In the weighted case, there are
simple examples of paths of length three where such a decomposition into a sequence
of 2-bit flips with non-negative difference of the fitness value does not exist. Consider
two matroids over E = {a, b, c} given by their bases sets B1 = {{a, b}, {a, c}} and
B2 = {{a, c}, {b, c}}. Let w(a) = w(c) = 2, w(b) = 3, and X = {b}. Then X and
E \ X are common independent sets with w(X) = 3 and w(E \ X) = 4. The unique
SX–TX-path in GX is a–b–c. Any 1- or 2-bit flip decreases the weight or leads to a
set that is dependent in at least one of the matroids.

Although bit flips of at most two bits are not sufficient in the weighted case, it is
possible to obtain a 1

2 -approximation using only bit flips of at most three bits. We
restrict ourselves in the following to this special setting and analyze the expected
number of generations to obtain a 1

2 -approximation.
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Proposition 12 Let s be a search point such that its fitness value f (s) cannot be
improved by flipping at most three bits. Then w(s) ≥ 1

2wOPT holds.

Proof Define A := OPT and B := E(s). Since the fitness value f (s) cannot be im-
proved by flipping one or two bits of s, we have C1(B,a) �= ∅ and C2(B,a) �= ∅ for
all a ∈ A \ B . Define X := A \ B = {x1, . . . , xk}.

By Proposition 6, there exist sets Y ′={y′
1, . . . , y

′
k}⊆B \A and Y ′′={y′′

1 , . . . , y′′
k } ⊆

B \ A such that y′
i ∈ C1(B,xi) and y′′

i ∈ C2(B,xi) for 1 ≤ i ≤ k. Since the fit-
ness value f (s) cannot be improved by flipping at most three bits of s, we have
w(xi) ≤ w(y′

i ) + w(y′′
i ) for 1 ≤ i ≤ k. Summing up these inequalities yield w(A \

B) = w(X) ≤ w(Y ′) + w(Y ′′) ≤ 2w(B \ A). Hence, w(s) ≥ 1
2wOPT holds. �

In order to analyze the expected number of generations until a 1
2 -approximate

solution is found we prove that there exists at least one bit flip with a certain weight
increase.

Proposition 13 Let s be a search point such that w(s) ≤ ( 1
2 − ε)wOPT holds for

some ε > 0. Then there exists an accepted bit flip involving at most three bits with a
weight increase of at least 2ε

|E|wOPT .

Proof Define A := OPT , B := E(s) and X := A\B = {x1, . . . , xk}. We use the index
sets I ′ and I ′′ to denote those elements of X whose addition to B causes a cycle in
the matroid M1 and M2, respectively.

I ′ := {i | 1 ≤ i ≤ k, C1(B,xi) �= ∅},
I ′′ := {i | 1 ≤ i ≤ k, C2(B,xi) �= ∅}.

By Proposition 6, there exist a set Y ′ = {y′
i | i ∈ I ′} ⊆ B \ A such that y′

i ∈
C1(B,xi) for all i ∈ I ′. Likewise, there exists a set Y ′′ = {y′′

i | i ∈ I ′′} ⊆ B \ A such
that y′′

i ∈ C2(B,xi) for all i ∈ I ′′. We define the weights wi , w′
i and w′′

i for 1 ≤ i ≤ k

as follows:

wi := w(xi),

w′
i :=

{
w(y′

i ), if i ∈ I ′,
0, otherwise,

w′′
i :=

{
w(y′′

i ), if i ∈ I ′′,
0, otherwise.

By assumption, w(B) ≤ ( 1
2 −ε)w(A) holds. Hence, we have w(A\B)−w(B \A) ≥

( 1
2 + ε)w(A). Since w(B \ A) ≤ w(B) ≤ ( 1

2 − ε)w(A), it follows that w(A \ B) −
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2w(B \ A) ≥ 2ε w(A). We have

k∑

i=1

wi − w′
i − w′′

i = w(X) − w(Y ′) − w(Y ′′)

≥ w(A \ B) − 2w(B \ A) ≥ 2ε w(A).

Hence, there exists an i ∈ {1, . . . , k} such that wi − w′
i − w′′

i ≥ 2ε
k

w(A). Consider
the bit flip that adds the element xi and removes the elements y′

i and y′′
i if i ∈ I ′ and

i ∈ I ′′, respectively (note that y′
i and y′′

i might be identical). This bit flip involves at
most three bits and has a weight increase of at least 2ε

|E|w(A). By construction, the
resulting bit string encodes a common independent set and the bit flip is accepted. �

Now we can prove our main result, the expected number of generations for a 1
2 -

approximation of the weighted matroid intersection problem.

Theorem 6 The expected number of generations until (1 + 1) EA working on the
fitness function f constructs a 1

2 -approximation of a maximum weight element of
F 1 ∩ F 2 is bounded by O(|E|4(log r + logwmax)), where r := min{r1(E), r2(E)}.

Proof By Proposition 10 (which also holds for the weighted case), it suffices to con-
sider the search process after having found a search point s with E(s) ∈ F 1 ∩ F 2.
The fitness function f is designed such that only steps leading to search points s′ that
describe common independent sets of at least the same weight as s are accepted.

Now consider any search point s with E(s) ∈ F 1 ∩ F 2 and w(s) < 1
2wOPT . De-

fine ε := 1
2 − w(s)

wOPT
, i.e., w(s) = ( 1

2 − ε)wOPT holds. By Proposition 13 there exists
an accepted bit flip involving at most three bits with a weight increase of at least
2ε
|E|wOPT . Such a step is called a good step. A good step decreases the difference

ε · wOPT between the weight w(s) of the current search point s and 1
2wOPT on aver-

age by a factor of 2/|E|. Hence, after N good steps, the expected difference between
w(s) and 1

2wOPT is given by (1 − 2/|E|)N · ( 1
2wOPT −w(s)). Since wOPT ≤ r ·wmax

and w(s) ≥ 0, we obtain the upper bound (1 − 2/|E|)N · D, where D := 1
2 r · wmax.

If N := �(ln 2) · |E|
2 · log(3D)�, this bound is at most 1

3 . The difference is half-
integral which implies that we have actually reached a 1

2 -approximation after at most
N good steps. The probability of a good step is bounded from below by �(|E|−3).
Hence, the expected number of generations for N good steps is bounded by

O(N |E|3) = O(|E|4(log r + logwmax)).

This concludes the proof. �

Consider the following modification of the RLS algorithm. Choose b ∈ {0,1,2}
randomly. If b < 2 proceed as before. Otherwise, choose (i, j, k) ∈ {(a, b, c) |1 ≤
a < b < c ≤ |E|} randomly and flip the i-th, j -th and k-th bit of s. We call this
algorithm RLS3.



204 Algorithmica (2010) 57: 187–206

Since we restrict ourselves to bit flips involving at most three bits, all good steps
that are accepted by the (1 + 1) EA can also be achieved using RLS3. Moreover, the
probability of a particular bit flip is again bounded from below by �(|E|−3). Hence,
Theorem 6 does not only hold for (1 + 1) EA, but also for RLS3.

6 Intersection of Three or More Matroids

Furthermore, the result of Theorem 6 can be easily generalized to the intersection
of p matroids Mi = (E, F i ), 1 ≤ i ≤ p. The task is to compute an independent set
X ∈ ⋂p

i=1 F i with maximum weight. This problem is NP-hard for p ≥ 3, as finding
a Hamiltonian circuit in a directed graph is a special case; see [19].

Similar to the previous case of p = 2, there are situations in which simultaneous
flips of at least p + 1 bits are required. Therefore, we do not consider the RLS algo-
rithm in this section. A modification of the RLS algorithm similar to that described
in the last paragraphs of the preceding section is still possible though.

The definition of the function �(s) is adjusted as follows. Let

�(s) := p |E(s)| −
p∑

i=1

ri(E(s)) for all s ∈ {0,1}|E|.

The bound of Proposition 10 increases to O(p|E| log |E|). The results of Propo-
sition 13 carry over to the intersection of p matroids, although the achieved approxi-
mation ratio is worse.

Proposition 14 Let s be a search point such that w(s) ≤ ( 1
p

− ε)wOPT holds for
some ε > 0. Then there exists an accepted bit flip involving at most p + 1 bits with a
weight increase of at least p ε

|E|wOPT .

The lower bound for the probability of picking a particular bit flip of at most p +1
bits reduces to �(|E|−p−1). This observation leads to the following generalization
of Theorem 6.

Theorem 7 Given p matroids Mi = (E, F i ), 1 ≤ i ≤ p, the expected number
of generations until (1 + 1) EA working on the fitness function f constructs
a 1

p
-approximation of a maximum weight element of

⋂
1≤i≤p F i is bounded by

O(|E|p+2(log r + logwmax)), where r := min{ri(E) | 1 ≤ i ≤ p}.

Similar to the minimum weight basis problem we can use parallel versions of
(1 + 1) EA and RLS to reduce the number of generations. Choosing the number of
offspring per generation as λ := |E|p+1 improves the probability of a good step from
�(|E|−p−1) to a positive constant. As before, the expected number of good steps is
bounded by O(|E|(log r + logwmax)). This leads to the following result.

Corollary 1 Given p matroids Mi = (E, F i ), 1 ≤ i ≤ p, the expected number of
generations until (1 + λ) EA with λ := |E|p+1 children working on the fitness func-
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tion f constructs a 1
p

-approximation of a maximum weight element of
⋂

1≤i≤p F i is
bounded by O(|E|(log r + logwmax)).

7 Conclusion

We have analyzed the performance of (1 + 1) EA and RLS on a very general class of
combinatorial optimization problems ranging from very simple problems that can be
solved optimally by the greedy method up to NP-hard problems. Our results provide
an indication of the enormous power of evolutionary algorithms from a theoretical
point of view. It turns out that the very general and abstract structure of matroid opti-
mization problems suffices to lead evolutionary algorithms into promising directions
and to finally obtain optimal or at least provably good solutions after only polynomi-
ally many iterations.
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