
Algorithmica (2010) 57: 747–768
DOI 10.1007/s00453-008-9233-8

Chordal Deletion is Fixed-Parameter Tractable

Dániel Marx

Received: 20 February 2008 / Accepted: 7 October 2008 / Published online: 30 October 2008
© Springer Science+Business Media, LLC 2008

Abstract It is known to be NP-hard to decide whether a graph can be made chordal
by the deletion of k vertices or by the deletion of k edges. Here we present a uniformly
polynomial-time algorithm for both problems: the running time is f (k) · nα for some
constant α not depending on k and some f depending only on k. For large values of
n, such an algorithm is much better than trying all the O(nk) possibilities. Therefore,
the chordal deletion problem parameterized by the number k of vertices or edges to be
deleted is fixed-parameter tractable. This answers an open question of Cai (Discrete
Appl. Math. 127:415–429, 2003).

Keywords Chordal graphs · Fixed-parameter tractability · Chordal deletion

1 Introduction

A graph is chordal if it does not contain an induced cycle of length greater than 3.
It can be decided in linear time whether a graph is chordal [26]. However, it is NP-
complete to decide whether a graph can be made chordal by the deletion of k vertices
[19], by the deletion of k edges [23], or by the addition of k edges [27] (if k is part of
the input).

In this paper we investigate these problems from the parameterized complexity
point of view. Parameterized complexity deals with problems where the input has a
distinguished part k (usually an integer) called the parameter. A parameterized prob-
lem is called fixed-parameter tractable (FPT) if there is an algorithm with running

Research is supported by the Magyary Zoltán Felsőoktatási Közalapítvány and the Hungarian
National Research Fund (OTKA grant 67651).

D. Marx (�)
Department of Computer Science and Information Theory, Budapest University of Technology and
Economics, Budapest 1521, Hungary
e-mail: dmarx@cs.bme.hu

mailto:dmarx@cs.bme.hu

748 Algorithmica (2010) 57: 747–768

time f (k) · nα , where f (k) is an arbitrary function and α is a positive constant inde-
pendent of k. It turns out that several NP-hard decision problems, such as MINIMUM

VERTEX COVER (parameterized by the size k of the vertex cover to be found) and
LONGEST PATH (parameterized by the length k of the path), are fixed-parameter
tractable. The function f (k) is usually exponential, thus if the parameter k can be
arbitrary, then the algorithms are not polynomial (as expected). However, for small
fixed values of k, fixed-parameter tractable problems have low-degree polynomial
algorithms, which are sometimes even practically feasible. The definition of fixed-
parameter tractability can be extended in a straightforward way to the case when the
input has two parameters k1, k2. In this case, our aim is to find an algorithm with
running time f (k1, k2) ·nα . For more background, the reader is referred to the mono-
graph of Downey and Fellows [8] or to the recent book of Flum and Grohe [9].

If k is a fixed constant, then the three chordal deletion/completion problems can be
solved in polynomial time by exhaustive search. For example, in the edge completion
problem we can try all the nO(k) possible edge sets of size k and check whether the
addition of these edges makes the graph chordal. This trivial nO(k) time algorithm
can be improved to O(4k/(k + 1)3/2 · (n + m)) time [3] or O(k2nm + k624k) time
[16]. Therefore, chordal edge completion (which is also called the minimum fill-in
problem) is fixed-parameter tractable. The main result of the paper is that chordal
vertex deletion and chordal edge deletion are also fixed-parameter tractable. In fact,
we give an algorithm for the common generalization of the two deletion problems: in
the CHORDAL DELETION problem the graph has to be made chordal by the deletion
of at most k1 vertices and at most k2 edges.

Theorem 1 CHORDAL DELETION is fixed-parameter tractable with combined pa-
rameters k1 and k2, where k1 (resp., k2) is the maximum number of vertices (resp.,
edges) to be deleted.

Cai [4] proposed a general class of graph modification problems analogous to
CHORDAL DELETION. Let G be an arbitrary class of graphs. We denote by G + ke

(resp., G − ke) the class of those graphs that can be obtained by adding (resp., delet-
ing) k edges to/from a member of G . Similarly, let G + kv contain those graphs that
can be obtained from some member of G by adding k new vertices and connecting
these vertices with the original vertices and with each other in an arbitrary way. (An
equivalent definition is to say that a graph is in G + kv if it can be made a member
of G by deleting k vertices.) For every graph class G , we can ask about the com-
plexity of recognizing graphs in G + ke, G − ke, or G + kv. In particular, we are
interested in whether these problems are fixed-parameter tractable parameterized by
k. Our main result implies that recognizing chordal + ke and chordal + kv graphs are
fixed-parameter tractable. This answers an open question of Cai [4]. The only previ-
ous result for this problem is a linear-time algorithm [15] for recognizing chordal+1e

and chordal+1v graphs, which is more efficient than deleting each edge (vertex) and
checking whether the remaining graph is chordal.

Our algorithm can actually find the k edges or k vertices whose deletion makes
the graph chordal; these edges/vertices are called the modulator of the graph in [4].
Vertex coloring of chordal + ke graphs is fixed-parameter tractable parameterized

Algorithmica (2010) 57: 747–768 749

by k, provided that the modulator of the graph is given in the input [21]. The result
in this paper implies that the modulator of a chordal + ke graph can be generated
in f (k)nα time, hence the vertex coloring on chordal + ke graphs remains fixed-
parameter tractable even if the modulator is not given in the input.

The iterative compression method introduced in [24] allows us to concentrate on
an easier “solution compression” problem. This technique proved useful for many
other problems, see [6, 7, 13]. The compression problem is the following (for brevity,
we discuss only the vertex-deletion version in this paragraph): given a set X of k + 1
vertices such that G \ X is chordal, find k vertices whose deletion makes G chordal.
To solve this solution compression problem, we first determine the size of the maxi-
mum clique in the chordal graph G \ X. If the clique size G \ X is small, then G \ X

(and hence the slightly larger G) has small treewidth. Using standard techniques, the
problem can be solved in linear time for graphs with bounded treewidth. On the other
hand, we show that if there is a large clique in G \ X, then the clique contains “irrel-
evant” vertices that can be removed from the graph without changing the solvability
of the problem. The main technical difficulty of the proof is to prove that an irrele-
vant vertex always exists in a large clique. This idea of repeatedly deleting irrelevant
vertices until a bounded-treewidth instance is obtained was useful for other problems
as well [12, 22, 25].

The paper is organized as follows. Section 2 reviews some basic facts on chordal
graphs. Section 3 presents the algorithm for bounded-treewidth graphs. In Sect. 4 we
show how the iterative compression method of [24] can be applied to our problem.
Section 5 discusses how we can reduce the size of the cliques to make our graph a
bounded treewidth graph.

2 Chordal Graphs

We recall some standard definitions from graph theory. A walk in a graph G is a
sequence of vertices v1v2 · · ·vk such that vi and vi+1 are adjacent in G for every
1 ≤ i < k. The length of a walk v1v2 · · ·vk is defined to be k − 1. A path is walk
where the vi ’s are distinct. We say that the path v1v2 · · ·vk connects vertices v1 and
vk . The distance of two vertices u and v is the length of the shortest path connecting
u and v; the distance is defined to be infinity if there is no such path. The distance of
a vertex v and a set S of vertices is the minimum distance of v and a vertex u ∈ S.
Vertex v is adjacent to S if the distance of v and S is 1, i.e., there is an edge between
v and some vertex u ∈ S. A cycle in G is a walk v1v2 · · ·vkvk+1 such that v1 = vk+1
and vi �= vj for every 1 ≤ i < j ≤ k. The length of a cycle v1v2 · · ·vkvk+1 is the
number of distinct vertices in the sequence, i.e., k.

A graph is chordal if it does not contain a cycle of length greater than 3 as an
induced subgraph. This is equivalent to saying that every cycle of length greater than
3 contains at least one chord, i.e., an edge connecting two vertices not adjacent in the
cycle. A chordless cycle of length greater than 3 will be called a hole. Chordality is a
hereditary property: every induced subgraph of a chordal graph is chordal.

Every chordal graph is a perfect graph [11]: the minimum number of colors re-
quired to color the vertices of a chordal graph equals the size of the largest clique.

750 Algorithmica (2010) 57: 747–768

Fig. 1 A chordal graph and its
clique tree decomposition

The complement of a chordal graph is also perfect, which translates to the statement
that the minimum number of cliques required to cover the vertices of a chordal graph
equals the size of the largest independent set. Furthermore, an optimum coloring or
clique covering of a chordal graph can be found in polynomial time [11]. We will use
these observations to cover certain sets of vertices with a small number of cliques and
treat the cliques separately.

Chordal graphs can be also characterized as the intersection graphs of subtrees of
a tree (see e.g., [11]):

Theorem 2 The following two statements are equivalent:

1. G(V,E) is chordal.
2. There exists a tree T (U,F) and a subtree Tv ⊆ T for each v ∈ V such that u,v ∈

V are neighbors in G(V,E) if and only if Tu ∩ Tv �= ∅ (i.e., Tu and Tv have a
common node).

The tree T together with the subtrees Tv is called the clique tree decomposition
of G. Figure 1 shows a chordal graph and a possible clique tree decomposition. The
vertices in a node of the tree show which subtrees contain that particular node; for
example, the leftmost node of the tree is contained in subtrees Tb and Tc . One can
find a clique tree decomposition of a given chordal graph in polynomial time (see [11,
26]). For clarity, we will use the word “vertex” when we refer to the graph G(V,E),
and “node” when referring to T (U,F). We say that a vertex v covers node x if Tv

contains node x. For an arbitrary node x of T , the vertices covering x induce a clique.
Conversely, for every clique K , there is a node x of T such that every v ∈ K covers
this node x (cf. [11]). The following easy observation will be used repeatedly:

Proposition 3 Let x, y, z be vertices in G(V,E) such that xy, xz ∈ E but yz �∈ E. If
there is a walk T in G \ x from y to z such that y and z are the only neighbors of x

in T , then T ∪ x contains a hole of length at least 4.

Proof Let P be a minimal subpath of T from y to z. Since y and z are not neighbors,
path P has length at least 2. Therefore, the length of xyPzx is at least 4, and it is
chordless, since P is a minimal path and x is not the neighbor of the internal vertices
of P . �

Proposition 3 can be also thought of as a characterization of chordal graphs: if
v1v2 · · ·vtv1 is a hole, then choosing x = v1, y = v2, z = vt satisfies the requirements.

If the deletion of X ⊆ V and Y ⊆ E makes the graph G(V,E) chordal, then we
say that the pair (X,Y) is a hole cover of G. We use the notation G \ (X,Y) for the
graph obtained by deleting the vertices X and the edges Y from G. The size of a hole

Algorithmica (2010) 57: 747–768 751

cover (X,Y) is the pair (|X|, |Y |). We say that a hole cover (X,Y) obstructs a path
P if X contains a vertex of P or Y contains an edge of P . For a hole cover (X,Y),
let ω(X,Y) contain the vertices of V and the endpoints of the edges in E; clearly
|ω(X,Y)| ≤ |X| + 2|Y |.

The problem studied in this paper is formally defined as follows:

CHORDAL DELETION

Input: A graph G(V,E) and integers k1, k2

Parameter: k1, k2

Task: Find a hole cover of size (k1, k2).

It turns out that the deletion problem is very different from the edge completion
problem. The algorithms in [3, 16] for chordal edge completion use the standard
method of bounded search trees. If there is a chordless cycle of length more than k+3,
then the answer is no, as we would need more than k edges to make this cycle chordal.
If there is a chordless cycle of length � ≤ k+3, then every solution has to contain �−3
edges that make this chordless cycle chordal. There is a constant number of different
ways of making a hole of size � chordal using � − 3 edges. The algorithm tries all
these possibilities: we branch off into at most a constant (i.e., depending only on k)
number of directions. After making the cycle chordal, the problem parameter (the
number of edges that can be added) is decreased by �−3, and the algorithm continues
with the next chordless cycle. Since the problem parameter can be decreased only at
most k times, the algorithm finishes after at most k branchings. At each step, the
number of directions we branch into can be bounded by a function of k, thus the size
of the search space explored by the algorithm can be also bounded by a function of
k. In summary, the main idea is that the graph cannot contain a large hole, otherwise
the graph could not be made chordal by adding k edges. In the deletion problem we
cannot make this assumption: it is possible that the graph can be made chordal by
deleting few vertices, even if there are large holes (for example, if the graph is a large
chordless cycle, then it can be made chordal by the deletion of a single vertex). This
means that there might be many possibilities to repair a long chordless cycle, thus
we cannot use the bounded search tree method. Substantially different (and more
complicated) ideas are required for the vertex deletion problem.

3 Bounded-Treewidth Graphs

One way to define treewidth is the following: the treewidth of a graph G is the small-
est integer k such that G is a subgraph of a chordal graph H having clique num-
ber k + 1. Graphs with treewidth 1 are exactly the forests. For more background on
treewidth, see for example [2, 18].

The algorithmic importance of treewidth comes from the fact that a large number
of NP-hard problems can be solved in linear time if we have a bound on the treewidth
of the input graph. Most of these algorithms use a bottom-up dynamic programming
approach, which generalizes dynamic programming on trees.

Courcelle’s Theorem [5] (see also [8, Sect. 6.5]) gives a powerful way of quickly
showing that a problem is linear-time solvable on bounded treewidth graphs. Sen-
tences in the Extended Monadic Second Order Logic of Graphs (EMSO) contain

752 Algorithmica (2010) 57: 747–768

quantifiers, logical connectives (¬, ∨, and ∧), vertex variables, edge variables, ver-
tex set variables, edge set variables, and the following binary relations: ∈, =, inc(e, v)

(edge variable e is incident to vertex variable v), and adj(u, v) (vertex variables u, v

are neighbors). If a graph property can be described in this language, then this de-
scription can be turned into an algorithm:

Theorem 4 (Courcelle [5]) If a graph property can be described in the Extended
Monadic Second Order Logic of Graphs, then for every w, there is a linear-time
algorithm for the recognition of this property on graphs with treewidth at most w.

Using Proposition 3, it is not difficult to describe those graphs G(V,E) that can
be made chordal by the deletion of at most k1 vertices and at most k2 edges:

(k1, k2)-chordal-deletion(V,E)

:= ∃v1, . . . vk1 ∈ V,∃e1, . . . , ek2 ∈ E,V0 ⊆ V,E0 ⊆ E :
[
chordal(V0,E0) ∧ (∀v ∈ V : v ∈ V0 ∨ v = v1 ∨ · · · ∨ v = vk1)

∧ (∀e ∈ E : e ∈ E0 ∨ e = e1 ∨ · · · ∨ e = ek2)
]
,

chordal(V0,E0)

:= ¬(∃x, y, z ∈ V0,V1 ⊆ V0,E1 ⊆ E0 : adj(x, y) ∧ adj(x, z) ∧ ¬adj(y, z)

∧ (∀q ∈ V1 : q = y ∨ q = z ∨ ¬adj(q, x)) ∧ connected(y, z,V1,E1)),

connected(y, z,V ,E)

:= ∀Y,Z ⊆ V : [(partition(V ,Y,Z) ∧ y ∈ Y ∧ z ∈ Z)

→ (∃y′ ∈ Y, z′ ∈ Z,e ∈ E : inc(e, y′) ∧ inc(e, z′))],
partition(V ,Y,Z) := ∀v ∈ V : (v ∈ Y ∨ v ∈ Z) ∧ (v �∈ Y ∨ v �∈ Z).

The predicate chordal(V0,E0) expresses that the subgraph with vertex set V0 and
edge set E0 is a chordal graph. To test whether the subgraph is chordal, we check
whether there are vertices x, y, and z satisfying the requirements of Proposition 3,
i.e., there is at path P with vertices V1 and edges E1 that connect y and z in such
a way that the internal vertices are not adjacent to x. To ensure that y and z are
connected by the path P , we require that for every partition Y , Z of V1, if y ∈ Y and
z ∈ Z, then there is an edge of P connecting Y and Z.

Courcelle’s Theorem together with the EMSO formulation of CHORDAL DELE-
TION implies:

Theorem 5 For every k1, k2, and w, CHORDAL DELETION can be solved in linear
time for graphs with treewidth at most w.

We note that Theorem 5 can be obtained without Courcelle’s Theorem using stan-
dard (but very tedious and technical) dynamic programming techniques.

Algorithmica (2010) 57: 747–768 753

4 Iterative Compression

Reed, Smith and Vetta [24] have shown that the BIPARTITE VERTEX DELETION

problem (make the graph bipartite by deleting k vertices) is fixed-parameter tractable.
They introduced the method of iterative compression, which can be used in the case
of the CHORDAL DELETION problem as well. The idea is that it is sufficient to show
that the following easier problem is fixed-parameter tractable:

HOLE COVER COMPRESSION

Input: A graph G, integers k1, k2, and a hole cover (X,Y) of size (k1 + 1, k2).

Parameter: k1, k2

Task: Find a hole cover (X′, Y ′) of size (k1, k2) in G.

This problem is easier than CHORDAL DELETION: the extra input (X,Y) gives
us useful structural information about G. In particular, we know that G \ (X,Y) is
chordal. Our algorithm builds heavily on this fact.

Assume that we have an algorithm with running time f (k1, k2)n
α for HOLE

COVER COMPRESSION, then CHORDAL DELETION can be solved as follows (see
Fig. 2). Let v1, v2, . . . , vn be an ordering of the vertices, and let Gi be the graph
induced by v1, . . . , vi . We try to find a size-(k1, k2) hole cover for each Gi . Graph
Gk1 trivially has such a hole cover. Now assume that Gi has a size-(k1, k2) hole cover
(X,Y). Clearly, (X ∪ vi+1, Y) is a size-(k1 + 1, k2) hole cover of Gi+1. Therefore,
the compression algorithm can be used to find a size-(k1, k2) hole cover for Gi+1.
If there is such a hole cover, then we can proceed to Gi+2. Otherwise the answer is
no, we can conclude that the supergraph G of Gi+1 cannot have a size-(k1, k2) hole
cover either. The algorithm calls the compression method at most n times, thus the
total running time is f (k1, k2)n

α+1, which shows that the problem is fixed-parameter
tractable. Note that Gi+1 is obtained from Gi by adding a new vertex (rather than an
edge), thus the compression algorithm is invoked with parameter (k1 + 1, k2) and not
with (k1, k2 + 1).

Now let us turn our attention to the HOLE COVER COMPRESSION algorithm itself.
Assume that a size-(k1 + 1, k2) hole cover (X,Y) of G is given. Let W := ω(X,Y),
let V0 = V \ W , and denote by G0 the chordal graph G \ W . If the size of the max-
imum clique in V0 is c, then the treewidth of the chordal graph G0 is c − 1, and the

CHORDAL DELETION(G, k1, k2)

1. Set i := k1 and let X be the vertices of Gk1 and Y be k2 arbitrary edges.
2. Invariant condition: (X,Y) is a size-(k1, k2) hole cover of Gi .
3. If i = n, then return “(X,Y) is a size-(k1, k2) hole cover of G.”
4. Set X := X ∪ vi+1, now (X,Y) is a size-(k1 + 1, k2) hole cover of Gi+1.
5. Call HOLE COVER COMPRESSION(Gi+1, k1, k2,X,Y).

– If the answer is a size-(k1, k2) hole cover (X′, Y ′) of Gi+1, then let
(X,Y) := (X′, Y ′), i := i + 1, and go to Step 2.

– If the answer is “no,” then return “no.”

Fig. 2 Algorithm CHORDAL DELETION

754 Algorithmica (2010) 57: 747–768

treewidth of G is at most c − 1 +|W | ≤ c − 1 + k1 + 2k2 + 1. Therefore, if the clique
size of G0 can be bounded by a constant depending on k1 and k2, then the method
described for bounded-treewidth graphs in Sect. 3 can be used to decide whether G

has a size-(k1, k2) hole cover.
In Sect. 5, we present a method of reducing the clique size of G0 to a constant

depending only on k1, k2. A vertex v ∈ V is irrelevant if every size-(k1, k2) hole
cover of G \ v is also a hole cover of G. If we identify an irrelevant vertex v, then
the problem can be reduced to finding a size-(k1, k2) hole cover in G \ v. We show
that if there is a clique K in G0 whose size is greater than some constant ck1,k2 , then
the problem can be reduced to a simpler form: either we find an irrelevant vertex or
a small set of vertices/edges such that every size-(k1, k2) hole cover contains at least
one member of this set. More precisely, for a set Nv of vertices and set Ne of edges
we say that (Nv,Ne) is a necessary set if whenever (X,Y) is a size-(k1, k2) hole
cover, then either X contains a vertex of Nv or Y contains an edge of Ne. If the set
(Nv,Ne) = (∅,∅) is a necessary set, then this means that there is no hole cover of the
required size. The necessary sets that we find are always small, i.e., there is a constant
bk1,k2 such that |Nv| + |Ne| ≤ bk1,k2 . (In the following, when we say “a necessary set
can be found,” we always mean that the size of this set can be bounded by a function
of k1 and k2.)

If the clique reduction algorithm returns a necessary set (Nv,Ne), then we can
conclude that every size-(k1, k2) hole cover contains at least one vertex of Nv or an
edge of Ne. Therefore, we branch into |Nv|+|Ne| directions: for each vertex v of Nv ,
we check whether there is a size-(k1 − 1, k2) hole cover of G \ v and for each edge
of Ne, we check whether there is a size-(k1, k2 − 1) hole cover. Thus the problem can
be reduced to at most bk1,k2 subproblems with smaller parameter values, where bk1,k2

depends only on k.
In summary, the clique reduction algorithm does one of the following:

– Identifies an irrelevant vertex v ∈ K . In this case, the deletion of v does not change
the problem. If the maximum clique size is still larger than ck1,k2 , then the algo-
rithm can be applied again. Otherwise, we can use the algorithm of Theorem 5.

– Identifies a necessary set (Nv,Ne) whose size is bounded by a function of k1 and
k2. In this case, the algorithm can branch into a constant number of directions: one
vertex of Nv or one edge of Ne has to be deleted.

The overall algorithm HOLE COVER COMPRESSION is shown in Fig. 3. The algo-
rithm calls the clique reduction method (which is described in the following section)
and can make some number of recursive calls to HOLE COVER COMPRESSION with
parameter (k1 − 1, k2) and with parameter (k1, k2 − 1). That is, the sum k1 + k2

strictly decreases in each recursive call, hence the recursion depth is at most k1 + k2.
By assumption, if CLIQUE REDUCTION returns a necessary set, then its size can be
bounded by a function of k1 and k2. This means that the algorithm branches into a
constant number of directions, and the size of the recursion tree can be also bounded
by some function of k1 and k2. Thus the running time of HOLE COVER COMPRES-
SION can be bounded by g(k1, k2)n

α for an appropriate function g and constant α.

Algorithmica (2010) 57: 747–768 755

HOLE COVER COMPRESSION(G, k1, k2,X,Y)

1. Let W := ω(X,Y). If the clique size of G \ W is at most ck1,k2 , then use the
algorithm of Theorem 5.

2. If G \ W has a clique K of size more than ck1,k2 , then call CLIQUE REDUC-
TION(G,W,K,k1, k2).

3. If there is an irrelevant vertex v, then delete v from G, and go to Step 1.
4. If there is a necessary set (Nv,Ne):
5. For each vertex v ∈ Nv , call HOLE COVER COMPRESSION(G \ v, k1 − 1, k2).

– If the answer is “Yes” for some v ∈ Nv , and (X′, Y ′) is a size-(k1 − 1, k2) hole
cover of G \ v, then answer “(X′ ∪ v,Y ′) is a size-(k1, k2) hole cover of G.”

6. For each edge e ∈ Ne , call HOLE COVER COMPRESSION(G \ e, k1, k2 − 1).

– If the answer is “Yes” for some e ∈ Ne , and (X′, Y ′) is a size-(k1, k2 − 1) hole
cover of G \ e, then answer “(X′, Y ′ ∪ e) is a size-(k1, k2) hole cover of G.”

7. If the answer is “No” for every v and every e, then answer “No.”

Fig. 3 Algorithm HOLE COVER COMPRESSION

5 Clique reduction

As in the previous section, we assume that W is a set of at most k1 + 2k2 + 1 vertices
such that G0 := G \ W is a chordal graph. In this section we show that if there is a
large clique K in G0, then in polynomial time we can either find a necessary set or an
irrelevant vertex of K . In the rest of the section, we fix a clique K in G0. Intuitively
speaking, a vertex v of K is not irrelevant, if it is somehow essential for the holes of
G. Every hole of G goes through a vertex of W , thus every hole of G not completely
contained in W goes through a neighbor of W in G0. Thus the neighbors of W play an
important role, hence we try to understand the structure of such vertices in Sect. 5.1.
Those neighbors of W are especially important that are reachable from K in certain
technical sense, and hence can be part of a hole containing also a vertex of K . We will
investigate such vertices in Sect. 5.2. These structural results enable us to identify a
bounded number of important vertices in the clique K and we can declare any other
vertex of the clique irrelevant (Sect. 5.3). More precisely, in Sect. 5.4 we show that
if there is a hole going through such an irrelevant vertex (possibly after the deletion
of k1 vertices and k2 edges), then there is a hole avoiding this vertex. This shows that
removing the irrelevant vertex does not change the answer to the problem.

5.1 Labeling

If a vertex v ∈ V \ W is the neighbor of some vertex � ∈ W , then we say that v has
label �. A vertex can have more than one label; the labels of a given vertex form a
subset of W . The following easy observations will be used to find necessary sets if
certain structures appear in the graph G0:

Proposition 6 If P is a path of length at least 2 connecting nonadjacent vertices u

and v, and vertices u and v are the only vertices in P having label �, then every hole
cover has to contain either �, �u, �v or at least one vertex or edge of P .

756 Algorithmica (2010) 57: 747–768

Proof If (X,Y) is a hole cover disjoint from P and contains none of vertex �, edges
�u, and �v, then �uPv� contains a hole in G \ (X,Y) (Proposition 3), a contradic-
tion. �

Lemma 7 Let v be a vertex without label t , let x1, . . . , xk1+k2+2 be independent
t-labeled vertices, and let P1, . . . , Pk1+k2+2 be internally disjoint paths where Pi

connects v and xi , and the internal vertices of Pi do not have label t . Then ({v, t},∅)

is a necessary set.

Proof Let (X,Y) be a hole cover of size-(k1, k2) disjoint from ({v, t},∅). Consider
the internally disjoint paths vPixi t for every i = 1, . . . , k1 + k2 + 2. Since v, t �∈ X,
hole cover (X,Y) can obstruct at most k1 + k2 of these paths. Assume without loss
of generality that vP1x1t and vP2x2t are not obstructed; this means that x1 and x2
can be connected with a path x1P1vP2x2 whose internal vertices do not have label t .
Since x1 and x2 are neighbors of t in G \ (X,Y) and there is no edge between them,
Proposition 6 implies that there is a hole in G \ (X,Y). �

Lemma 8 Let H1, . . . , Hk1+k2+1 be holes in G, let S be the set of all vertices that
are contained in more than one Hi , and let ES be the edges induced by S. If |S| ≤ c

for some constant c depending only on k1 and k2, then (S,ES) is a necessary set of
size at most c + c(c − 1)/2.

Proof Let (X,Y) be a hole cover of size-(k1, k2) such that S∩X = ∅ and SE ∩Y = ∅.
Now each vertex of X and each edge of Y can be contained in at most one hole Hi .
Thus there has to be a hole which is not covered by (X,Y), a contradiction. �

In Lemma 10 we give a bound on the number of independent labeled vertices
in the neighborhood of a connected unlabeled set. We need the following lemma of
Kleinberg [17]:

Lemma 9 (Kleinberg [17]) Let A be a set of vertices. Suppose that for some k, there
do not exists k + 1 pairwise disjoint paths with distinct endpoints in A. Then there is
a set Z of size at most 3k such that each component of G \ Z contains at most one
vertex of A \ Z.

Note that there is a polynomial-time algorithm that finds k + 1 pairwise disjoint
paths with distinct endpoints in A (if such paths exist) [10] and the proof of Lemma 9
can be made algorithmic. Thus in polynomial time we can either find the k+1 disjoint
paths or the set Z of size 3k.

Lemma 10 Let B be a connected subset of V0 = V (G0) such that no vertex in B has
label t . Let I be an independent set of t-labeled vertices in the neighborhood of B . If
|I | > 6(k1 + k2)

2, then we can find a necessary set in polynomial time.

Proof Let I = {v1, v2, . . . , v6(k1+k2)
2+1} be an independent set of vertices with label

t in the neighborhood of B . Denote by G′
0 the subgraph of G0 induced by I ∪ B .

If there are k1 + k2 + 1 disjoint paths in G′
0 with distinct endpoints in I , then these

Algorithmica (2010) 57: 747–768 757

paths together with vertex t give k1 + k2 + 1 holes that intersect only in vertex t . By
Lemma 8, this means that we can find a necessary set. Assume therefore that there are
no such paths; by Lemma 9, this means that there is a set Z of size at most 3k1 + 3k2
such that each component of G′

0 \Z contains at most one vertex of I . Let C1, . . . , Cc

be the components of G′
0 \Z containing a vertex of I , and let vi be the unique vertex

Ci ∩ I . Note that c ≥ |I \Z| ≥ 6(k1 +k2)
2 +1−3(k1 +k2) > 3(k1 +k2)(k1 +k2 +1)

(if k1 + k2 > 1).
We claim that each Ci is adjacent to a vertex of Z ∩ B . First, it is not possible

that Z ∩ B = ∅: vertices vi and vj are in the neighborhood of B , hence they can be
connected with a path whose internal vertices are in B , and this path would not be
blocked by Z if Z ∩ B = ∅. Let z ∈ Z ∩ B be an arbitrary vertex. Each vertex vi has
a neighbor u ∈ B . If u ∈ Z, then u is a neighbor of Ci in Z ∩ B . Otherwise, there is
a path fully contained in B that connects u and z. Let z′ be the first vertex (starting
from u) on this path that is in Z. Now z′ is a neighbor of Ci .

Since |Z ∩ B| ≤ 3(k1 + k2), there has to be a vertex z ∈ Z ∩ B that is adjacent
to more than k1 + k2 + 1 components. Assume without loss of generality that z is
adjacent to components C1, . . . , Ck1+k2+2, and path Pi connects vertex vi with z

such that the internal vertices of Pi are in Ci . Note that these paths intersect only in
Z ∩ B . Since z ∈ Z ∩ B does not have label t , Lemma 7 gives a necessary set. �

5.2 Dangerous Vertices

Let us fix a maximal clique K of G0. A vertex v ∈ V0 \ K is called a t-dangerous
vertex (for K) if v has label t and there is a path P from v to a vertex u ∈ K such that
v is the only vertex having label t on the path. Vertex v is a t∗-dangerous vertex if v

has label t and there is a path P from v to a vertex u ∈ K such that v and u are not
neighbors, u also has label t , and the internal vertices of the path do not have label t .
Vertex u is a t-witness (t∗-witness) of v, the path P is a t-witness (t∗-witness) path
of v. A vertex v can be t-dangerous for more than one t ∈ W , or it can be t- and
t∗-dangerous at the same time. For a subgraph G′

0 of G0, we use the expression with
respect to G′

0 if we require that the witness path is in G′
0.

The name dangerous comes from the observation that if there is a hole in G that
goes through the clique K , then the hole has to go through a dangerous vertex as
well. For example, if a hole starts in t ∈ W , goes to a t-labeled neighbor v ∈ V0 \ K

of t , goes to a t-labeled vertex u ∈ K via a path P ⊆ V0, and returns to t , then v is
a t∗-dangerous vertex, u is its witness, and P is the witness path (see Fig. 4a). In
the situation depicted in Fig. 4b, the hole goes through two vertices t1, t2 of W , and
the hole has a subpath with endpoints v1, v2 that goes through K (where v1 and v2
are the neighbors of t1 and t2, respectively). The internal vertices of this path do not
have labels t1, t2, hence v1 is t1-dangerous and v2 is t2-dangerous, and u is a witness
for both. When we delete vertices to make the graph chordal, our aim is to destroy
as many witness paths as possible and to make many vertices non-dangerous. It will
turn out that if a clique is large, then it contains many vertices whose deletion does
not affect the dangerous vertices, thus there is no use of deleting them.

We prove two technical results on dangerous vertices: we bound by 6(k1 + k2)
2

(resp., 6(k1 +k2)
3) the number of independent t-dangerous (resp., t∗-dangerous) ver-

758 Algorithmica (2010) 57: 747–768

Fig. 4 (a) A t∗-dangerous
vertex v. (b) A t1-dangerous
vertex v1 and a t2-dangerous
vertex v2

tices. Since G0 is chordal (hence perfect), it follows that these vertices can be covered
by 6(k1 + k2)

2 (resp., 6(k1 + k2)
3) cliques.

Lemma 11 Given a set I of more than 6(k1 +k2)
2 independent t-dangerous vertices,

we can find a necessary set in polynomial time.

Proof Consider the subgraph G′
0 of G0 induced by those vertices that do not have

label t . The clique K contains vertices only from one connected component of G′
0,

let B be this component. Clearly, every t-dangerous vertex is a neighbor of B in G0.
Therefore, by Lemma 10, we can find a necessary set. �

Lemma 12 Given a set I of more than 6(k1 + k2)
3 independent t∗-dangerous ver-

tices, we can find a necessary set in polynomial time.

Proof Consider the subgraph G′
0 of G0 induced by the vertices without label t . Let

C1, . . . , Cc be the connected components of G′
0. The internal vertices of a witness

path for a t∗-dangerous vertex are completely contained in one of these components.
Let Ii ⊆ I contain a t∗-dangerous vertex v ∈ I if and only if v has a witness path
with internal vertices only in Ci .

If |Ii | > 6(k1 + k2)
2 for some 1 ≤ i ≤ c, then we are ready by using Lemma 10 for

the connected subgraph Ci . Thus c > k1 + k2, otherwise the size of the independent
set is at most 6(k1 + k2)

3. Let us fix k1 + k2 + 1 of these components. For each such
component Ci , let us select a t∗-dangerous vertex that has a witness path Pi whose
internal vertices are in Ci . Each path Pi together with vertex t form a hole. As the
internal vertices of the Pi ’s are in different components, the k1 + k2 + 1 holes can
intersect each other only in their endpoints and in t . This means that there are only
2k1 + 2k2 + 3 vertices that are contained in more than one of the holes; therefore, by
Lemma 8, we can find a necessary set of bounded size. �

5.3 Marking the Clique

In the next two lemmas, we show that for a clique Q of dangerous vertices, there
is only a constant (i.e., depending only on k1, k2) number of vertices in K whose
deletion can make a dangerous vertex of Q non-dangerous. For every other vertex
u ∈ K , if v is t-dangerous, then v ∈ Q remains t-dangerous with respect to G0 \ u.

Algorithmica (2010) 57: 747–768 759

Even more is true: if X is a set of at most k1 vertices and Y is a set of at most k2 edges,
then v ∈ Q is t-dangerous with respect to G0 \ (X,Y) if and only if v is t-dangerous
with respect to G0 \ (X ∪ u,Y). In the following lemma, we mark some number of
vertices such that any unmarked vertex u ∈ K has this property. Essentially, we have
to mark those vertices of K that are “closest” to Q, where closeness is measured in
the clique tree decomposition.

Lemma 13 Let Q be a clique of t-dangerous vertices. For every k1, k2, there is a
constant dk1,k2 , such that we can mark dk1,k2 vertices in K such that if X is a set of
k1 vertices, and Y is a set of k2 edges, and v ∈ Q has an unmarked t-witness u with
respect to G0 \ (X,Y), then v has a marked t-witness u′ ∈ K \ ω(X,Y) with respect
to G0 \ (X ∪ u,Y).

Proof Consider the clique tree decomposition of the chordal graph G0. Since Q and
K are cliques, there are two nodes x and y such that every vertex of Q covers node x,
and every vertex of K covers node y. Consider those vertices of K that do not have
label t , and order these vertices such that the distance of their subtrees from node x is
nondecreasing. Let us mark the first dk1,k2 := k1 + 2k2 + 1 vertices (or all of them, if
there are less than k1 + 2k2 + 1 such vertices). Suppose that the witness u of v is not
marked. Since |ω(X,Y)| ≤ k1 + 2k2, there is a marked vertex u′ ∈ K \ ω(X,Y). By
the way the vertices are ordered, the distance of the subtree of u′ from x is not larger
than the distance of the subtree of u from x. Therefore, the witness path P connecting
v and u goes through the neighborhood of u′, i.e., P has a subpath P ′ from v to a
neighbor w of u′. As u′ �∈ ω(X,Y), the edge wu′ is in G0 \ (X,Y), hence the witness
path vP ′u′ shows that u′ is a t-witness of v with respect to G \ (X ∪ u,Y). �

The next lemma proves a similar statement for t∗-dangerous vertices. However,
now the marking procedure is more complicated. The reason for this complication is
that a t∗-witness for v has to satisfy two (somewhat contradicting) requirements: the
witness has to be reachable from v (thus it has to be close to the clique Q), but it
should not be a neighbor of v (thus it should not be too close to Q).

Lemma 14 Let Q be a clique of t∗-dangerous vertices. For every k1, k2, there is a
constant d∗

k1,k2
such that either we can find a necessary set or we can mark d∗

k1,k2
vertices in K such that if X is a set of k1 vertices, Y is a set of k2 edges, v ∈ Q has
an unmarked t∗-witness with respect to G0 \ (X,Y), then v has a marked t∗-witness
u ∈ K \ ω(X,Y) as well.

Proof Consider the clique tree decomposition of the chordal graph G0, let Tv be the
subtree corresponding to a vertex v. Since Q and K are cliques, there are two nodes
x and y such that every v ∈ Q covers x, and every u ∈ K covers y. Consider the
unique path connecting x and y in the tree, and identify the vertices of the path with
the integers 1, 2, . . . , n, where x = 1 and y = n. Let u1, u2, . . . be the vertices of K

having label t and denote by ai the smallest node of Tui
on this path. Similarly, let

v1, v2, . . . be the vertices of Q and denote by bi the largest node of Tvi
on this path.

Clearly, Tvi
and Tuj

intersect if and only if ai ≤ bj . For convenience, we assume that

760 Algorithmica (2010) 57: 747–768

Fig. 5 Proof of Lemma 14: the path between nodes x and y. The rectangles show the subtrees of the vi ’s
and ui ’s on this path

the ai ’s and bi ’s are all distinct, this can be achieved by slightly modifying the tree
decomposition. Furthermore, we can assume that the vertices are ordered such that
the sequence ai and the sequence bi are strictly increasing (see Fig. 5).

We define a subsequence of bi and aj as follows. Let β1 = 1. For every j ≥ 1, let
αj be the smallest value such that aαj

> bβj
. For every i ≥ 2, let βi be the smallest

value such that bβi
> aαi−1 . If we cannot find such a βi or αj , then we stop. Therefore,

the sequence bβ1 , aα1 , bβ2 , aα2 , . . . is strictly increasing. In Fig. 5, dark rectangles
correspond to the members of this sequence.

Let us be a witness of a t∗-dangerous vertex vβj
. We claim that uαj

is also a wit-
ness for t∗-dangerous vertex vβj

. Clearly, as > bβj
(otherwise us would be a neighbor

of vβj
), hence as ≥ aαj

by the definition of αj . Let P be a witness path from vβj
to

us . Since as ≥ aαj
, path P goes through the neighborhood of uαj

, i.e., there is a ver-
tex w of P that is in the neighborhood of uαj

. Let P ′ be the subpath of P from vβj

to w. As uαj
is not a neighbor of vβj

(by construction of the sequence bβ1 , aα1 , . . .),
path vβj

P ′uαj
is a witness path. This proves the claim that uαj

is a witness of vβj
.

Let bβ�
be the last element of the sequence that corresponds to a vertex of Q. We

claim that if � > 2k1 + 2k2 + 1, then we can find a necessary set. Let Pi be a witness
path from vβi

to its witness uαi
. For every 1 ≤ i ≤ k1 + k2 + 1, let Hi be the hole

tvβ2i
P2iuα2i

t . Suppose first that a vertex w of G0 appears in two holes Hi and Hi′
for i < i′. This is only possible if w is an internal vertex of both P2i and P2i′ . It is
easy to see that each internal vertex of P2i covers at least one node in the interval
[bβ2i

, aα2i
] and each internal vertex of P2i′ covers at least one node in the interval

[bβ2i′ , aα2i′]. Therefore, w covers both aα2i
and bβ2i′ which implies that w also covers

bβ2i+1 and aα2i+1 (since 2i′ > 2i + 1). Now tvβ2i+1wuα2i+1 is a hole of size 4 and the
vertices and edges of this hole form a necessary set. Therefore, we can assume that
every vertex of G0 appears in at most one of the holes H1, . . . , Hk1+k2+1. Thus there
is only one vertex, namely t , that appears in more than one of the holes, hence by
Lemma 8, ({t},∅) is a necessary set.

Therefore, it can be assumed that � ≤ 2k1 + 2k2 + 1. For each i = 1,2, . . . , �, we
mark the k1 + 2k2 + 1 vertices uαi

, uαi+1, . . . , uαi+k1+2k2+1 (if they exist). Thus we

Algorithmica (2010) 57: 747–768 761

mark at most d∗
k1,k2

:= (k1 +2k1 +1)(2k1 +2k2 +1) vertices. Assume that vertex vx ∈
Q has a witness path (with respect to G0 \ (X,Y)) to some uy . Since vx and uy are
not neighbors, bx < ay and there is a j with bx < aαj

≤ ay . If y ≤ αj + k1 + 2k2 + 1,
then uy is marked. Otherwise ω(X,Y) does not contain at least one of the vertices
uαj +1, uαj +2, . . . , uαj +k1+2k2+1, say vertex uαj +r �∈ ω(X,Y). Since uy is a witness
of vx , there is a path P from vx to uy in G \ (X,Y) such that the internal vertices
of P do not have label t . From aαj +r ≤ aαj +k1+2k2+1 < ay it follows that P goes
through a neighbor w of aαj +r ; let P ′ be the subpath of P from vx to w. Since
uαj +r �∈ ω(X,Y), edge wuαj +r is in G\ (X,Y). Moreover, bx < aαj

≤ aαj +r implies
that vx and uαj +r are not neighbors, thus vertex uαj +r is a t∗-witness of vx with
witness path vxP

′uαj +r . �

In the next two lemmas, we extend Lemmas 13 and 14 to apply not only for a
clique Q of t-dangerous vertices, but for every dangerous vertex. By Lemmas 11
and 12, there are no large independent sets of dangerous vertices. Observing that
G0 is chordal and hence its complement is a perfect graph (as discussed in Sect. 2),
we obtain that the number of cliques required to cover the dangerous vertices is a
constant depending only on k1, k2.

Lemma 15 For every k1, k2, there is a constant c
(1)
k1,k2

such that either we can find

a necessary set or we can mark c
(1)
k1,k2

vertices in K such that for every set X of k1

vertices, set Y of k2 edges, and label t ∈ W , if vertex v is a t-dangerous vertex v with
respect to G0 \ (X,Y) and v has an unmarked witness u ∈ K , then v has a marked
witness u′ ∈ K \ ω(X,Y) with respect to G0 \ (X ∪ u,Y).

Proof For every t ∈ W , we mark vertices as follows. Consider the set of vertices D

that are t-dangerous for K in G0. For chordal graphs, a maximum independent set
can be found in polynomial time [11]; let I be a maximum independent set in D. If
|I | > 6(k1 + k2)

2, then we can find a necessary set by Lemma 11. Thus the size of
the maximum independent set in D is at most a constant depending only on k1 and
k2. The number of cliques required to cover D is exactly the number of independent
sets required to cover D in the complement graph, i.e., it is the chromatic number of
the complement of G[D]. Since G[D] induces a chordal graph (as D ⊆ V \ W) and
the complement of a chordal graph is a perfect graph [11], it follows that D can be
covered by at most 6(k1 + k2)

2 cliques. For each such clique Q, we mark the vertices
given by Lemma 13. Hence the total number of marked vertices in K can be bounded
by a constant depending only on k1, k2. �

Lemma 16 For every k1, k2, there is a constant c
(2)
k1,k2

such that either we can find

a necessary set or we can mark c
(2)
k1,k2

vertices in K such that for every set X of k1

vertices, set Y of k2 vertices, and label t ∈ W , if a vertex v is t∗-dangerous with
respect to G \ (X,Y) and has an unmarked witness u ∈ K , then v has a marked
witness u ∈ K \ ω(X,Y) with respect to G0 \ (X ∪ u,Y) as well.

762 Algorithmica (2010) 57: 747–768

Proof The proof is similar to the proof of Lemma 15. For each t ∈ W and each clique
Q of t∗-dangerous vertices, we mark vertices as in Lemma 14, the rest of the proof
is identical. �

5.4 Fragments of a Hole

Let H be a hole in G. Since G \ W is chordal, H has to contain at least one vertex
of W . Hence H \ W is a set of paths P1, P2, . . . , Ps , the set F = H ∩ W together
with this collection of paths will be called the fragments of the hole H (Fig. 6). The
paths P1, . . . , Ps are independent: Pi and Pj do not have adjacent vertices if i �= j .
The internal vertices of a path Pi do not have any labels from F . Moreover, each end
point has exactly one label from F . The only exception is that if a path Pi consists
of only a single vertex, in this case it contains exactly two labels from F (see P1 in
Fig. 6). A label in F can appear only on at most two vertices in the fragments: if a
vertex of W is in the hole, then at most two of its neighbors can belong to the hole.
However, the neighbors of a vertex in W can also be in W , thus it is possible that a
label in F appears on only one or on none of the paths. Another property is that if
the length of Pi is 1, then the labels of the two end points are different, otherwise the
hole would induce a triangle.

The following lemma shows that if we have the fragments of a hole, and a path is
replaced with some new path satisfying certain requirements, then the new collection
of paths also induces a hole.

Lemma 17 Let F , P1, . . . , Ps be the fragments of a hole H . Assume that the length
of P1 is at least 1. Let x and y be the end points of P1, and let �x and �y be their
(unique) labels in F , respectively. Let P ′

1 be a path with the following properties:

– the end points of P ′
1 are x and y′, for some vertex y′ that has label �y ,

– the internal vertices of P ′
1 do not have label �x ,

– if �x �= �y , then y′ does not have label �x ,
– if �x = �y , then x and y′ are not neighbors.

Then there is a hole in the graph induced by the vertices of F , P ′
1, P2, . . . , Ps .

Fig. 6 The fragments F , P1,
P2, P3 of a hole

Algorithmica (2010) 57: 747–768 763

Proof We consider two cases. If |F | = 1, then �x = �y . Since x and y′ are not neigh-
bors, the internal vertices of the path P ′

1 do not have label �x , it follows that the path
P ′

1 and the only vertex of F form a hole of length at least 4.
Now assume that |F | > 1. It can be assumed that P ′

1 is a minimal path, i.e., each
internal vertex on the path is adjacent only to the previous and the next vertex. Let z

be the (unique) neighbor of x on P ′
1. The paths P ′

1, P2, . . . , Ps , and the set F gives
a walk from z to �x without going through x. Furthermore, z and �x are the only
vertices on this walk that are in the neighborhood of x. To see this, observe that x

is adjacent only to �x in F , only to z in P ′
1, and to no vertex in P2, . . . , Ps . As �x

and z are not adjacent (z does not have label �x), Proposition 3 implies that the graph
induced by F , P ′

1, P2, . . . , Ps contains a hole. �

To show that a vertex u ∈ K is irrelevant, we have to show that every size-(k1, k2)

hole cover of G \ u is a hole cover of G. That is, if X is a set of k1 vertices, Y is a
set of k2 edges, and there is a hole H in G \ (X,Y) going through u, then there is
a hole H ′ in G \ (X ∪ u,Y). The idea is to look at the fragments of H and reroute
one of the paths: if path P1 is going through u, then we find a path P ′

1 avoiding u,
and use Lemma 17 to obtain the hole H ′. As we shall see in Lemma 19, if the length
of P1 is at least 1, then P ′

1 can be found using our previous results on dangerous
vertices. However, we have to treat separately the case when P1 consists of only a
single vertex. This seemingly simple case turns out to be surprisingly difficult.

Lemma 18 For every k1, k2, there is a constant c
(3)
k1,k2

such that either we can find a

necessary set or we can mark c
(3)
k1,k2

vertices in K such that if X is a set of k1 vertices,
Y is a set of k2 edges, and there is a hole in G \ (X,Y) with fragments F , P1, . . . , Ps

where P1 is only a single vertex u ∈ K , then G \ (X,Y) has a hole that does not use
any unmarked vertex of K .

Proof For every �1, �2, �3 ∈ W , consider those vertices of K that have both labels
�1 and �2, but do not have label �3 and let us mark k1 + 2k2 + 1 of these vertices
(if there are less than k1 + 2k2 + 1 such vertices, then we mark all of them). Since
the number of triples (�1, �2, �3) depends only on |W | ≤ k1 + 2k2 + 1, the number of
marked vertices can be bounded by a function of k1, k2.

Let F , P1, . . . , Ps be the fragments of a hole H . Without loss of generality, assume
that P1 consists of a single vertex u, in this case u has two labels �1, �2 from F . Let us
consider the case |F | > 2 first. If |F | > 2, then there is another label �3 ∈ F \{�1, �2}.
Vertex �3 has two neighbors a and b in the hole H , and there is a walk from a to b

such that the internal vertices of this walk are not neighbors of �3. By the way we
marked the vertices, there is a marked vertex u′ ∈ K \ (X,Y) that has labels �1, �2,
but does not have label �3. Therefore, if we replace P1 with the path P ′

1 consisting
only of the single vertex u′, then we get another walk from a to b. Since u′ does not
have label �3, it remains true that the internal vertices of this walk are not neighbors
of �3. Hence by Proposition 3, there is a walk that contains only the marked vertex u′
from K .

The hard case is when |F | = 2, the rest of the proof is devoted to handle this
situation. We mark some additional vertices as follows. If |F | = 2, then s cannot be

764 Algorithmica (2010) 57: 747–768

larger than 2. Furthermore, it is not possible that s = 1, since that would imply that
the hole has only three vertices �1, �2 ∈ F , and P1. Therefore,

(*) hole H has two fragments P1 and P2, where P1 is only a single vertex of K .

Consider a clique tree decomposition of G0 and let x be a node that is covered by
every vertex of the clique K . Assume that x is the root of the tree in the decompo-
sition. For each hole H satisfying (*), define wH to be the node that is covered by
some vertex of P2 and is closest to the node x. Observe that wH cannot be x: that
would imply that some vertex of P2 is adjacent with every vertex of K , including P1.
Let w1, . . . , wr be those nodes that can arise this way from some hole satisfying (*).
Although the number of holes satisfying (*) can be exponential, for every node w we
can check in polynomial time whether there is a hole H with wH = w: all we have to
do is to try every possible single-vertex path P1 in K and every possible endpoints of
P2, and for each possibility check whether there is a suitable path that covers only w

and some of its descendants. Assume that the nodes wi are ordered by nonincreasing
distance from x. We select a subset of these nodes the following way: we go through
the list w1, . . . , wr , and a select a node if and only if none of its descendants are
selected. Let wi1 , . . . , wiq be the selected nodes. Observe that a selected node cannot
be the ancestor or descendant of some other selected node.

We consider two cases. First we show that if q > k1 + k2, then a necessary set
can be identified. Consider the holes Hi1 , . . . , Hik1+k2+1 that give rise to the nodes
wi1 , . . . , wik1+k2+1 . For each hole Hij , there is a path P2 in the fragments of the hole,
denote by Pij this path. By the definition of wij , the vertices of Pij cover only the
descendants of wij , hence in particular they do not cover a descendant of wij ′ for any
j �= j ′. It follows that there are at most k1 + k2 + 3 vertices that appear in more than
one of these holes: the vertices �1, �2 and at most k1 + k2 + 1 vertices in K . Thus by
Lemma 8, we can find a necessary set.

Assume therefore that q ≤ k1 + k2. For each wij , we mark at most k1 + 2k2 + 1
vertices of K . Consider those vertices of K that have both labels �1 and �2. For every
such vertex v, the tree corresponding to v has some distance from node wij . Order
the vertices such that this distance is nonincreasing and mark the first k1 + 2k2 + 1
vertices in this ordering (or all of them, if there are less than k1 + 2k2 + 1 such
vertices). Thus at most (k1 + k2)(k1 + 2k2 + 1) vertices are marked.

We show that the marked vertices satisfy the requirements. Let H be a hole in
G \ (X,Y) and let P1, P2 be the two fragments of H , where P1 consists of a single
vertex u ∈ K . Since H satisfies (*), there is a node wi corresponding to H . Because of
the way the nodes are selected, some descendant of wi (possibly wi itself) is selected,
i.e., some wij is the descendant of wi . Vertex u is not adjacent to any vertex of P2,
hence u does not cover wi , i.e., the tree of u has nonzero distance from wi . This
means that the tree of u has nonzero distance also from wij . Consider the k1 +2k2 +1
vertices marked when the node wij was considered. If u is not marked, then this
means that there are k1 + 2k2 + 1 vertices in K whose trees have not smaller distance
from wij , implying that these vertices do not cover wi either. At least one of these
k1 + 2k2 + 1 vertices are not in ω(X,Y), let u′ ∈ K be such a vertex. Now u′ is not
adjacent to any vertex of P2, hence we can obtain a hole avoiding u in G \ (X,Y) by
replacing P1 with the single-vertex path consisting of u′ only. �

Algorithmica (2010) 57: 747–768 765

Now we are ready to prove the main lemma:

Lemma 19 For every k1, k2, there is a constant ck1,k2 such that either we can find
a necessary set or we can find an irrelevant vertex in every maximal clique of size
greater than ck1,k2 .

Proof Given a maximal clique K , we mark the vertices according to Lemmas 15, 16,
and 18. Moreover, for each �1, �2 ∈ F , consider those vertices that have label �1, but
do not have label �2, and mark k1 + 2k2 + 1 of these vertices (if there are less than
k1 + 2k2 + 1 such vertices for a given �1, �2, then all of them are marked). We argue
that any unmarked vertex is irrelevant. Since the number of marked vertices depends
only on k1, k2, the lemma follows.

Let u ∈ K be an unmarked vertex. To show that u is irrelevant, assume that X is a
set of k1 vertices, Y is a set of k2 edges, and H is a hole in G \ (X,Y) containing u.
We have to show that G \ (X,Y) contains a hole avoiding u. We construct the hole
avoiding u by replacing the fragment of H going through u with some other path
going through K .

Let F , P1, . . . , Ps be the fragments of H . Since the paths of the fragments are
independent (i.e., the vertices on two different paths are not neighbors), without loss
of generality it can be assumed that u is in P1 and only P1 intersects the clique K .
Let x and y be the two end vertices of P1. Path P1 can contain at most one other
vertex of K besides u. We consider several cases depending on which combination
of x = y, u = x, u = y, |K ∩ P1| = 1 holds (Fig. 7):

Case 1: P1 consists of only a single vertex (x = y = u). Lemma 18 ensures that
there is a hole in G \ (X,Y) that does not use u.

Fig. 7 The cases in the proof of Lemma 19

766 Algorithmica (2010) 57: 747–768

In the remaining cases we assume that x �= y. Moreover, without loss of generality
it can be assumed that u �= x. Let �x be the (unique) label of x in F and let �y be the
(unique) label of y in F .

Case 2: P1 consists of two vertices x, y = u, and P1 is completely contained in
K . In this case �x �= �y , otherwise there would be a triangle in the hole. Since u is
not marked, there are k1 + 2k2 + 1 marked vertices in K that have label �y but do
not have label �x . At least one of these vertices are not in ω(X,Y), let u′ be such a
vertex. If we replace P1 = {x,u} with the path P ′

1 = {x,u′}, then by Lemma 17 there
is a hole not containing u.

In the remaining cases we assume without loss of generality that end point x is not
in K .

Case 3: x, y �∈ K . In this case, |K ∩ P1| can be either 1 or 2 (Fig. 7 sketches
|K ∩ P1| = 2). It is possible that �x = �y and the following proof works for that
situation as well. Vertex x (resp., y) is an �x -dangerous (resp., �y -dangerous) vertex
with respect to G0 \ (X,Y) for K , and u is a witness for that. By the way the vertices
are marked (see Lemma 15) there is a marked witness ux (resp., uy) in K \ ω(X,Y)

for x (resp., y); let Px (resp., Py) be the corresponding witness path in G0 \ (X ∪
u,Y). We consider three cases:

– Px \ x contains a vertex y′ that has label �y . (Notice that Px \ x contains no vertex
with label �x , hence this case is not possible if �x = �y). Let y′ be the first vertex
on Px (starting from x) with label �y . Let P ′

1 be the subpath of Px from x to y′.
Now F , P ′

1, P2, . . . , Ps satisfy the requirements of Lemma 17, hence G \ (X,Y)

has a hole disjoint from u.
– The case when Py \ y contains a vertex that has label �x follows by symmetry.
– Assume that Px \ x contains no vertex with label �y and Py \ y contains no vertex

with label �x . Let P ′
1 be the path xPxuxuyPyy; from ux,uy ∈ K \ ω(X,Y) it

follows that edge ux,uy �∈ Y , hence P ′
1 is fully contained in G \ (X ∪ u,Y). It is

easy to see that F , P ′
1, P2, . . . , Ps satisfy the requirements of Lemma 17, hence

G \ (X,Y) has a hole disjoint from u.

In the remaining cases, we assume that x �∈ K and y ∈ K .
Case 4: x �∈ K , y ∈ K , u �= y (hence |K ∩ P1| = 2). Vertex x is an �x -dangerous

vertex for K , and u is a witness for x in G0 \ (X,Y). By the way the vertices are
marked (see Lemma 15) there is another witness u′ ∈ K \ ω(X,Y); let Px be the
witness path corresponding to u′. Let P ′

1 be the path xPxu
′y, since u′ ∈ K \ω(X,Y),

the edge u′y is in G0 \ (X,Y). Now F , P ′
1, P2, . . . , Ps satisfy Lemma 17, thus there

is a hole not containing u.
Case 5: x �∈ K , y = u, �x �= �y . In this case, |K ∩ P1| can be either 1 or 2 (Fig. 7

sketches |K ∩ P1| = 1). Vertex x is an �x -dangerous vertex for K , and u is a witness
for x in G0 \ (X,Y). By the way the vertices are marked (see Lemma 15) there
is another witness u′ ∈ K \ (X,Y); let Px be the witness path corresponding to u′.
Since u is not marked, there are k1 + 2k2 + 1 marked vertices in K that have label
�y but do not have label �x . At least one of these vertices are not in ω(X,Y), let y′
be such a vertex. Let P ′

1 be the path xPxu
′y′. Now the conditions in Lemma 17 are

satisfied, hence there is a hole not containing u.
Case 6: x �∈ K , y = u, �x = �y . In this case, |K ∩ P1| can be either 1 or 2 (Fig. 7

sketches |K ∩ P1| = 2). Vertex x is an �∗
x -dangerous vertex for K , and u is a witness

Algorithmica (2010) 57: 747–768 767

for x in G0 \ (X,Y). By the way the vertices are marked (see Lemma 15) there is
another witness u′ ∈ K \ ω(X,Y); let Px be the witness path corresponding to u′. It
is clear that F,P ′

1 satisfy Lemma 17. �

6 Conclusions

We have shown that CHORDAL DELETION is fixed-parameter tractable. The problem
was formulated in a way that includes both the vertex and edge deletion versions: k1
vertices and k2 edges have to be deleted to make the graph chordal. This formulation
could be convenient for the study of other deletion problems as well. Our algorithm
does not provide a problem kernel in an obvious way, thus it is a natural open question
whether there is problem kernel of polynomial size for the problem.

The parameterized complexity literature contains a growing number of fixed-
parameter tractability results for various deletion problems. Some of these results
follow immediately from the graph minors theory of Robertson and Seymour (see
[1]), while some of the results are more concrete algorithms [6, 22, 24]. Recently,
a hardness result has been obtained, which shows that we cannot expect that the dele-
tion problem is FPT for every natural graph class: Lokshtanov has shown that deleting
k edges/vertices to make the graph wheel-free is W[2]-hard [20]. Thus, despite the
similarity of wheel-free and chordal (i.e., hole-free) graphs, the deletion problem is
W[2]-hard for the former and FPT for the latter.

A natural next step would be to study the deletion problem for interval graphs. The
(edge) completion problem for interval graphs was shown to be FPT by Heggernes
et al. [14]. The algorithm is much more involved than chordal completion. First, all
the minimal chordal completions are enumerated (using the algorithm discussed in
the introduction), thus the problem is reduced to chordal graphs that are not interval
graphs. The algorithm is based on a thorough understanding of such graphs. It is not
clear whether a similar strategy could be used for the interval deletion problem: the
algorithm presented in this paper cannot be modified such that it enumerates all the
minimal solutions, in fact, it is possible that there are nO(k) minimal solutions. Thus
it is not sufficient to solve the interval deletion problem on chordal graphs.

References

1. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: SODA ’08: Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 641–650. Society for In-
dustrial and Applied Mathematics, Philadelphia (2008)

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)
3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf.

Process. Lett. 58(4), 171–176 (1996)
4. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127, 415–429 (2003)
5. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Com-

puter Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)
6. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3) FPT algorithm for

the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007)
7. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for

feedback set problems in tournaments. In: Algorithms and Complexity. Lecture Notes in Computer
Science, vol. 3998, pp. 320–331. Springer, Berlin (2006)

768 Algorithmica (2010) 57: 747–768

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science.
Springer, New York (1999)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, Berlin (2006)

10. Gallai, T.: Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen. Acta Math. Acad.
Sci. Hung. 12, 131–173 (1961)

11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
12. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302

(2004)
13. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter

algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396
(2006)

14. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few edges. In: STOC ’07:
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 374–381.
ACM, New York (2007)

15. Ho, M.L.: Linear time algorithms for graphs close to chordal graphs. M. Phil. Thesis, Department of
Computer Science and Engineering, The Chinese University of Hong Kong (2003)

16. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal,
strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

17. Kleinberg, J.: Detecting a network failure. Internet Math. 1(1), 37–55 (2003)
18. Kloks, T.: Treewidth. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)
19. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete.

J. Comput. Syst. Sci. 20(2), 219–230 (1980)
20. Lokshtanov, D.: Wheel-free deletion is W[2]-hard. In: Proceedings of the International Workshop

on Parameterized and Exact Computation (IWPEC 2008). Lecture Notes in Computer Science, vol.
5018, pp. 141–147. Springer, Berlin (2008)

21. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424
(2006)

22. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. In: 33rd International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2007). Lecture Notes in Computer Science,
vol. 4769, pp. 292–303. Springer, Berlin (2007)

23. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems.
Discrete Appl. Math. 113(1), 109–128 (2001)

24. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)
25. Robertson, N., Seymour, P.D.: Graph minors, XIII: the disjoint paths problem. J. Comb. Theory Ser.

B 63(1), 65–110 (1995)
26. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.

Comput. 5(2), 266–283 (1976)
27. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discrete Methods

2(1), 77–79 (1981)

	Chordal Deletion is Fixed-Parameter Tractable
	Abstract
	Introduction
	Chordal Graphs
	Bounded-Treewidth Graphs
	Iterative Compression
	Clique reduction
	Labeling
	Dangerous Vertices
	Marking the Clique
	Fragments of a Hole

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

