
Algorithmica (2009) 55: 375–391
DOI 10.1007/s00453-008-9218-7

Algorithms to Separate {0, 1
2}-Chvátal-Gomory Cuts

Arie M.C.A. Koster · Adrian Zymolka ·
Manuel Kutschka

Received: 9 November 2007 / Accepted: 18 July 2008 / Published online: 15 August 2008
© Springer Science+Business Media, LLC 2008

Abstract Chvátal-Gomory cuts are among the most well-known classes of cutting
planes for general integer linear programs (ILPs). In case the constraint multipliers
are either 0 or 1

2 , such cuts are known as {0, 1
2 }-cuts. It has been proven by Caprara

and Fischetti (Math. Program. 74:221–235, 1996) that separation of {0, 1
2 }-cuts is

N P -hard.
In this paper, we study ways to separate {0, 1

2 }-cuts effectively in practice. We pro-
pose a range of preprocessing rules to reduce the size of the separation problem. The
core of the preprocessing builds a Gaussian elimination-like procedure. To separate
the most violated {0, 1

2 }-cut, we formulate the (reduced) problem as integer linear
program. Some simple heuristic separation routines complete the algorithmic frame-
work.

Computational experiments on benchmark instances show that the combination of
preprocessing with exact and/or heuristic separation is a very vital idea to generate
strong generic cutting planes for integer linear programs and to reduce the overall
computation times of state-of-the-art ILP-solvers.

Keywords {0, 1
2 }-Chvátal-Gomory cuts · Separation algorithms · Integer

programming

A.M.C.A. Koster (�) · M. Kutschka
Centre for Discrete Mathematics and its Applications (DIMAP), Warwick Business School,
University of Warwick, Coventry CV4 7AL, UK
e-mail: arie.koster@wbs.ac.uk

M. Kutschka
e-mail: m.kutchka@warwick.ac.uk

A. Zymolka
Axioma (UK) Ltd., London EC2M 4QP, UK
e-mail: azymolka@axiomainc.com

mailto:arie.koster@wbs.ac.uk
mailto:m.kutchka@warwick.ac.uk
mailto:azymolka@axiomainc.com

376 Algorithmica (2009) 55: 375–391

1 Introduction

Each pure integer linear program (ILP) can be written in its standard minimisation
form

⎧
⎪⎪⎨

⎪⎪⎩

min cT x

s.t. Ax ≤ b

x ≥ 0
x ∈ Z

n

(1)

with integer matrix A ∈ Z
m×n, an integer right hand side b ∈ Z

m, and arbitrary ob-
jective values c ∈ R

n (here m is the number of rows and n the number of columns
of A). Objectives to be maximized can be rewritten as minimisation problems by
multiplying the coefficients by −1. Similarly, ≥ constraints are multiplied by −1 to
obtain a ≤ constraint. Upper bound constraints for single variables are included in
the coefficient matrix.

We assume without loss of generality that each row in A has relatively prime
coefficients, since otherwise the row can be simplified by dividing all coefficients
and the right hand side with the greatest common divisor among the coefficients
(after division, a fractional right hand side can be rounded down). Associated with
the program (1), we define the integer solution set X = {x ∈ Z

n | Ax ≤ b, x ≥ 0}, its
convex hull polyhedron PIP = conv(X) and the linear relaxation polyhedron PLP =
{x ∈ R

n | Ax ≤ b, x ≥ 0}.
Given a system Ax ≤ b, a Chvátal-Gomory (CG) cut is defined by

⌊
uT A

⌋
x ≤

⌊
uT b

⌋
(2)

with u ≥ 0. It is easy to show that undominated CG cuts have u ∈ [0,1)m. By the
integrality of x ∈ X, (2) is valid for PIP . Gomory [17, 18] showed that if PIP �=
PLP , there exists for every fractional vertex x∗ ∈ PLP a CG cut (2) that is violated,
i.e., �uT A�x∗ > �uT b� [12]. In fact, by iteratively extending the system (1) with all
possible CG cuts, we obtain the integral polyhedron after a finite number of steps (see
Gomory [17, 18] for polytopes and Schrijver [23] for polyhedrons).

Caprara and Fischetti [9] introduced {0, 1
2 }-cuts for those CG cuts that are de-

rived by u ∈ {0, 1
2 }m. For several combinatorial optimisation problems it is known

that problem-specific classes of facet-defining inequalities are {0, 1
2 }-cuts with par-

ticular properties, e.g., the blossom inequalities of the matching polytope (describ-
ing this polytope completely) [13], (odd-valued) odd hole inequalities of the stable
(multi-)set polytope [20–22], or the Möbius ladder inequalities of the linear ordering
polytope [14]. Like Gomory showed for general CG cuts, it has recently been shown
by Gentile et al. [16] that iteratively extending the system (1) by all possible {0, 1

2 }-
cuts yields a complete description of the integer polytopes in a finite number of steps
as well.

For {0, 1
2 }-cuts, we consider the following separation problem:

{0, 1
2 }-SEP

Given: The program (1) and a fractional solution x∗ ∈ PLP .

Algorithmica (2009) 55: 375–391 377

Find: A weight vector u ∈ {0, 1
2 }m such that �uT A�x∗ > �uT b� or a proof that

none exists.

Theorem 1 (Caprara and Fischetti [9]) {0, 1
2 }-SEP is N P -complete.

Consequently, Caprara and Fischetti [9] concentrate on polynomial-time solvable
cases of {0, 1

2 }-SEP. In particular, they show that if A is an integer matrix with at
most two odd coefficients per row, {0, 1

2 }-SEP is polynomial-time solvable. They pro-
pose therefore to weaken A to a matrix with the described property. In Andreello
et al. [5], a computational study is presented to reveal the strength of this heuristic
approach for {0, 1

2 }-SEP. Caprara and Fischetti [10] propose a number of reduction
rules to limit the size of the separation problem.

Contribution This paper reports on our study to separate general {0, 1
2 }-cuts effec-

tively, despite its N P -completeness. We recall that the 0 and 1
2 coefficients of the

vector u allow to reduce the size of {0, 1
2 }-SEP considerably by an extended set of

preprocessing steps, ranging from obvious observations to a sophisticated procedure
based on Gaussian elimination to eliminate rows and columns. After preprocessing,
violated {0, 1

2 }-cuts can often be indicated directly as single rows of the reduced prob-
lem. Our computational experiments show that this is a very vital idea generating
many violated {0, 1

2 }-cuts with small effort.
Independently from the preprocessing, an ILP is formulated to find the most vi-

olated {0, 1
2 }-cut. This auxiliary ILP can be solved either for the original separation

problem or the reduced one. In a computational study we show that the exact separa-
tion can be sped up by a factor of at least 10 if preprocessing is performed first.

The effect of the separation of {0, 1
2 }-cuts on the performance of state-of-the-art

ILP solvers is documented in a further computational study. It shows that by ex-
act separation the number of branch&cut nodes is reduced by 20% on average at
the cost of increased overall computation times due to the auxiliary ILP that has to
be solved. Moreover, it is unclear whether the most violated {0, 1

2 }-cut is also the
one that strengthens the formulation the most. Therefore, we additionally propose a
heuristic routine (after preprocessing) to find violated {0, 1

2 }-cuts that are likely to
strengthen the formulation. Computational experiments show that in such a way the
overall computation times can be sped up by 20% for moderately sized instances.
This success has resulted in the introduction of {0, 1

2 }-cuts in the latest release (11.0)
of ILOG CPLEX, the leading commercial vendor of ILP software.

Recently, Fischetti and Lodi [15] followed independently a similar integer pro-
gramming approach as to optimise over the first Chvátal closure, i.e., the polytope
derived by adding all inequalities (2) with u ∈ [0,1)m. In contrast to their approach,
we can exploit the addressed preprocessing techniques for {0, 1

2 }-SEP as to reduce
the problem size. By this, we can optimise more effectively over the first Chvátal clo-
sure in case the {0, 1

2 }-cuts are the only undominated CG cuts, e.g., for the matching
polytope.

Outline The rest of the paper is organised as follow. This section is completed with
some further notation used in this paper. Section 2 is dedicated to preprocessing for

378 Algorithmica (2009) 55: 375–391

{0, 1
2 }-SEP, whereas exact and heuristic separation algorithms for {0, 1

2 }-SEP are pre-
sented in Sect. 3. In Sect. 4 we report on the results of the computational studies
on the effectiveness of the developed ideas and algorithms. The paper is closed with
concluding remarks in Sect. 5.

Notation Let ej denote a unit vector of appropriate size with the j -th coefficient
equal to one, whereas 1 (0) denotes the all one (zero) vector and 1I (i) the indicator
function being 1 if i ∈ I and 0 otherwise. With modulo applied component-wise, we
define Ā = A mod 2 and b̄ = b mod 2. Moreover, for a fractional solution x∗ ∈ PLP ,
we set s = b − Ax∗ ≥ 0 as slack vector. The violation of (2) for a vector u ∈ {0, 1

2 }m
and fractional solution x∗ ∈ PLP is denoted by z(u, x∗) := �uT A�x∗ − �uT b�.

2 Preprocessing {0, 1
2 }-SEP

To find a separating {0, 1
2 }-cut, we seek for a weight vector u such that z(u, x∗) > 0.

The next lemma restates this task.

Lemma 2 Let x∗ ∈ PLP be a fractional solution. There exists a vector u ∈ {0, 1
2 }m

such that z(u, x∗) > 0 if and only if there exists a binary vector v ∈ {0,1}m such that
vT b̄ is odd and

vT s + (vT Ā mod 2)x∗ < 1 (3)

holds.

Proof The violation z(u, x∗) can be rewritten as follows:

z(u, x∗) =
⌊
uT A

⌋
x∗ −

⌊
uT b

⌋

= 1

2

(
(2u)T b mod 2

)
− uT s − 1

2

(
(2u)T A mod 2

)
x∗

v:=2u= 1

2

(
(vT b̄ mod 2) − vT s − (vT Ā mod 2)x∗)

Since Ā, b̄, s, and v = 2u are all non-negative, the only way to obtain a posi-
tive violation z(u, x∗) consists in vT b̄ mod 2 ≡ 1 and vT s + (vT Ā mod 2)x∗ <

vT b̄ mod 2 ≡ 1. �

Note that both conditions in Lemma 2 are independent of the actual values of co-
efficients and right hand sides, but take into account only their parities, i.e., whether
they are even or odd. The vector v indicates the original inequalities to combine with
weight 1

2 such that the right hand side is in fact rounded down, and this strengthen-
ing (by 1

2) is not compensated by the collected slacks together with the necessary
rounding of the fractional left hand side coefficients.

In order to simplify the restated task, the system (Ā, b̄, s) and x∗ can be pre-
processed by a series of transformations and problem size reductions, see also
Caprara and Fischetti [10]. The following observations are helpful in this regard:

Algorithmica (2009) 55: 375–391 379

Proposition 3 The reductions below do not influence the set of undominated {0, 1
2 }-

cuts for the original system (and can be assumed to be carried out already for suc-
cessive reductions):

(i) All columns in Ā corresponding to variables x∗
i = 0 can be removed.

(ii) Zero rows in (Ā, b̄) can be removed.
(iii) Zero columns in Ā can be removed.
(iv) Identical columns in Ā can be replaced by a single representative with associ-

ated variable value as sum of the merged variables.
(v) Any unit vector column āi = ej , 1 ≤ j ≤ m, in Ā can be removed provided that

x∗
i is added to the slack sj of row j .

(vi) Any row 1 ≤ j ≤ m with slack sj ≥ 1 can be removed.
(vii) Rows identical in (Ā, b̄) can be eliminated except for one with smallest slack

value.

Proof

(i) Zero variable values do not contribute to the left hand side of (3).
(ii) Though originally Ā does not contain zero rows due to the assumption of rel-

atively prime coefficients, after any (combination) of the other preprocessing
steps, zero rows can appear in (Ā, b̄). Such rows have neither impact on the
value vT b̄ nor on the value of vT Ā, only the total slack is increased. Hence,
such rows can be left out of further consideration.

(iii) The corresponding variable has only even coefficients, hence left hand side
rounding will never occur.

(iv) Either all or none variables of identical columns will have to be rounded on the
left hand side.

(v) Let inequality j be the only inequality with odd coefficient for the i-th variable.
Hence, x∗

i contributes to the left hand side of (3) if and only if vj = 1. The same
holds for sj and hence the values can be combined.

(vi) Setting vj = 1 where sj ≥ 1 violates directly condition (3).
(vii) Whenever an indicated cut involves one of the eliminated inequalities, the latter

can be replaced in the generation by the associated one kept in the system,
yielding a cut with at least the same violation value. �

As a result, we obtain a reduced system which is equivalent for the separation.
For notational convenience, we continue to use m and n for the (reduced) numbers of
rows and columns, respectively. Moreover, we assume throughout the sequel that for
any arising interim system, all of these reductions are applied as well.

So far, any row of the system (Ā, b̄, s) represents a single original inequality.
A further reduction in problem size can be obtained by row combinations accord-
ing to rules specified below. For this, we associate with each row j of (Ā, b̄, s) an
index set Rj holding the indices of original inequalities currently combined for this
row. These index sets are initialised by Rj = {j}.

We consider a basic operation performed on the rows of (Ā, b̄, s): the addition of
one row to another one, where the coefficients of Ā and b̄ are added in modulo 2
arithmetic, the coefficients of s in normal arithmetic, and the symmetric difference is

380 Algorithmica (2009) 55: 375–391

taken for the associated index sets. So, adding row i to row j gives a new row j with
the following values:

ājk := āik + ājk mod 2 ∀k,

b̄j := b̄i + b̄j mod 2, sj := si + sj , and Rj := Ri � Rj ,

where X � Y = (X ∪ Y) \ (X ∩ Y) for sets X,Y .
Using this operation, the system (Ā, b̄, s) can be further transformed and might

then allow for additional application of reduction rules from Proposition 3. Except
for this, we are particularly interested in rows with zero coefficients and non-zero
right hand side.

Lemma 4 Let j be the index of a zero row in Ā with b̄j = 1. If sj < 1, then the
weight vector u defined by ui = 1

2 for all i ∈ Rj and 0 otherwise, defines a violated
{0, 1

2 }-cut on the original system (A,b, s).

Proof Let v = ej . Then vT b̄ = 1 and the left hand side of (3) equals sj < 1, and thus
by Lemma 2 a violated {0, 1

2 }-cut inequality is found. By construction, the index set
Rj defines exactly the original inequalities to be combined. �

Notice that rows with slack zero have a special property: Adding such a row i

twice to any other row j results in the original row j . Rows with slack zero play a
key role in the next reduction rule.

Proposition 5 Let i be the index of a row and k the index of a column of Ā such that
āik = 1 and si = 0. Then column k can be removed from Ā provided that row i is
added to all other rows j with ājk = 1 and the slack of row i is set to si := x∗

k .

Proof Let i be the index of a row and k the index of a column of Ā such that āik = 1
and si = 0. Further let J := { j : ājk = 1} \ {i}. Consider a cut which is generated by
combining all rows with indices j ∈ I ⊆ {1, . . . ,m} of the system (Ā, b̄) such that
w.l.o.g. |I ∩ J | = q . W.l.o.g. we assume Rj = {j} for all j ∈ I . This gives R = I for
the symmetric difference R of all index sets Rj and for the violation z(R,x∗) holds

z(R,x∗) =
∑

j∈I

sj +
∑

�

[(∑

j∈I

āj�

)

mod 2

]

x∗
�

=
∑

j∈I\{i}
sj +

∑

��=k

[(∑

j∈I

āj�

)

mod 2

]

x∗
�

+
[(∑

j∈I∩J

ājk + 1I (i)āik

)

mod 2

]

x∗
k

=
∑

j∈I\{i}
sj +

∑

��=k

[(∑

j∈I

āj�

)

mod 2

]

x∗
� + [(q + 1I (i)) mod 2] x∗

k

Algorithmica (2009) 55: 375–391 381

Now consider the reduced system (Ā′, b̄′) which results from adding the row i to
all rows j ∈ J . Thus ā′

j� = āj� if j ∈ I \ J and ā′
j� = āj� + āi� for i ∈ I ∩ J . Let

R′
j denote the updated index sets, s′

j the updated slack values and R′ the associated
symmetric difference for row set I ′. The violation is z(R′, x∗) = ∑

j∈I ′\(J∪{i}) s′
j +

∑
��=k [(∑j∈I ′ ā′

j�) mod 2] x∗
� + 1I ′(i) s′

i . In addition it follows that

∑

j∈I ′
ā′
j� =

∑

j∈I ′\(J∪{i})
ā′
j� +

∑

j∈J∩I ′
ā′
j� + 1I ′(i)ā′

i�

=
∑

j∈I ′\(J∪{i})
āj� +

∑

j∈J∩I ′
āj� + āi� + 1I ′(i)āi�

=
∑

j∈I ′\{i}
āj� + (q + 1I ′(i))āi�

We now consider three cases: First, q is even. We set I ′ = I . Then the following
holds:

z(R′, x∗) =
∑

j∈I \{i}
sj +

∑

� �=k

[(∑

j∈I

āj�

)

mod 2

]

x∗
� + 1I (i) x∗

k = z(R,x∗)

and hence the same violated inequalities can be found.
Second, q is odd, i ∈ I . Then we set I ′ = I \ {i} and consider the violation:

z(R′, x∗) =
∑

j∈I\{i}
sj +

∑

��=k

[(∑

j∈I ′
ā′
j�

)

mod 2

]

x∗
�

=
∑

j∈I\{i}
sj +

∑

��=k

[(∑

j∈I\{i}
āj� + qāil

)

mod 2

]

x∗
� = z(R,x∗)

Third, q is odd, i �∈ I . Then we set I ′ = I ∪ {i}. Then the following holds:

z(R′, x∗) =
∑

j∈I

sj +
∑

��=k

[(∑

j∈I

ā′
j� + ā′

il

)

mod 2

]

x∗
� + s′

i

=
∑

j∈I\{i}
sj +

∑

��=k

[(∑

j∈I

āj� + (q + 1) āil

)

mod 2

]

x∗
� + x∗

k = z(R,x∗)

For all cases we have shown that given an index set I of the system (Ā, b̄), we can
select an index set I ′ of the reduced system (Ā′, b̄′) that generates a cut with exactly
the same violation, and vice-versa. �

If a zero row in Ā is constructed by (repeated) application of Proposition 5, we
either have a row with b̄j = 0 and Proposition 3 (ii) can be applied to remove the
row as well, or b̄j = 1, and, by Lemma 4, the row describes a {0, 1

2 }-cut with vio-
lation 1 − sj . If in addition sj = 0, the violation is maximal. By Lemma 2 on the

382 Algorithmica (2009) 55: 375–391

other hand, a {0, 1
2 }-cut with maximal violation can be only combined from rows

with slack zero and parity sum zero (modulo 2) for all columns k with x∗
k > 0. Since

the above procedure can be applied as long as there are rows with slack zero, it pro-
vides a polynomial-time exact algorithm for maximally violated {0, 1

2 }-cuts. Caprara
et al. [11] observed the same in the more general context of mod-k-cuts.

Further, a zero row j in Ā with b̄j = 1 and sj = 0 can be very helpful in generating
further violated {0, 1

2 }-cuts: any other row i with b̄i = 0 and si < 1 can be turned into
a violated {0, 1

2 }-cut by adding row j . This way, a zero row with right hand side 1
is generated, whereas the slack remains the same. Only in case of Ri ∩ Rj = ∅, the
{0, 1

2 }-cut is dominated by the one identified by row j . Therefore if such a row j

exists, the condition uT b = 1 can be neglected in the search for further violated cuts.

Corollary 6 Let i be the index of a row and k the index of a column of Ā such that
āik = 1, si = 0, and x∗

k ≥ 1. Then both row i and column k can be removed from Ā

provided that row i is added to all other rows j with ājk = 1.

Proof After application of Proposition 5, si = x∗
k > 1 and thus Proposition 3 (vi) can

be applied to remove row i. �

The above holds in particular for tight upper bound constraints from the original
system. If b̄i = 0, only the index sets Rj have to be updated. If b̄i = 1, b̄j have to be
adapted additionally.

Corollary 6 indicates that it is beneficial to perform Proposition 5 on columns with
large x∗

k . Altogether, the combination of Propositions 3 and 5 provides an algorith-
mic framework for preprocessing the system (Ā, b̄, s) and generation of maximally
violated {0, 1

2 }-cuts.

3 Separation Algorithms

With or without preprocessing, the separation problem {0, 1
2 }-SEP can be described

by a system (Ā, b̄, s) and a fractional solution x∗ ∈ PLP . To find the most violated
{0, 1

2 }-cut, we first formulate the problem as an integer linear program. This ILP al-
lows for the exact separation of {0, 1

2 }-cuts. Alternatively, {0, 1
2 }-cuts can be separated

heuristically.

3.1 Exact Separation

The exact separation problem can be modelled by an auxiliary integer linear program
which maximises the violation. By Lemma 2, {0, 1

2 }-SEP can be restated as the search
for a binary weight vector v ∈ {0,1}m such that vT b̄ mod 2 = 1 and (3) is satisfied.
These weights are used as binary variables vi in the formulation.

Condition (3) requires to determine uT Ā mod 2 ∈ {0,1}n. To this end, the variables
yi ∈ {0,1} for all i = 1, . . . , n are introduced to express whether the i-th variable’s
coefficient becomes odd in the indicated inequality sum or not. To model the modulo

Algorithmica (2009) 55: 375–391 383

2 computations, we further need auxiliary integer variables r = (ri)i=1,...,n ∈ Z
n+ for

all columns i = 1, . . . , n, as well as an additional q ∈ Z+ for the right hand side. The
separation problem then reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑ = min sT v + (x∗)T y

s.t. b̄T v − 2q = 1
ĀT v − 2r − y = 0
v ∈ {0,1}m
y ∈ {0,1}n
r ∈ Z

n+
q ∈ Z+

(4)

The optimal value ẑ of (4) indicates whether a violated cut has been found or not.
If ẑ ≥ 1, this is not the case. If 0 ≤ ẑ < 1, 1 − ẑ equals twice the violation z(u, x∗)
of the cut generated by combining the original inequalities which are obtained from
symmetric difference of those sets Rj with vj = 1 in the optimum solution.

To guide the search to highly violated {0, 1
2 }-cuts, we can add an inequality

sT v + (x∗)T y ≤ 1 − ε (5)

to (4) where ε ∈ (0,1]. In this way only cuts with a violation of at least 1
2ε are found.

In [15] a similar auxiliary ILP is presented to separate general Chvátal-Gomory
cuts. The authors introduced a small perturbation of the objective function to obtain
sparse cutting planes and notice the importance of cut sparsity. Our experiments in
this direction have not revealed a significant difference in performance.

3.2 Heuristic Search

After the above described reductions, the auxiliary ILP might nevertheless stay large
for larger ILPs (1). Hence the search for violated {0, 1

2 }-cuts might still be time-
consuming. As a faster alternative, we study combinatorial search heuristics which
examine the reduced system (Ā, b̄) for violated cuts.

A simple approach is to enumerate all possible combinations of k or less rows of
(Ā, b̄) that yield a violated {0, 1

2 }-cut with 0 < k ≤ m: First, we check if any single
row of (Ā, b̄) results in a violated {0, 1

2 }-cut. If none of them is violated, we test all
combinations of two rows for violation. This process is continued to combinations
of k rows, if all combinations up to k − 1 rows are not violated or the number of
detected violated cuts does not exceed a given limit. Surprisingly, k = 1 yielded the
best results, cf. Sect. 4.

4 Computational Results

Framework We implemented our preprocessing and separation algorithms as addi-
tional separators within the branch&cut framework SCIP v0.90 [1, 2] using ILOG
CPLEX 10.01 [19] as underlying LP solver. All of SCIP’s standard modules (e.g.
separators, heuristics) are kept if not stated differently. SCIP’s parameters are set to

384 Algorithmica (2009) 55: 375–391

their default values except for a global time limit of 1 hour per instance and avoidance
of restarts during solving.

If not stated differently, our separator is called only in the root node like SCIP’s
standard separators. To investigate the added value of {0, 1

2 }-cut separation more ac-
curately, our separator is called before SCIP’s separators (Gomory, Strong Chvátal-
Gomory, Complemented MIR [2]) and cut generating constraint handlers (knapsack,
linear). At default, SCIP’s separators and constraint handlers are called to separate
cuts if and only if our separator does not find a violated cut anymore.

Instead of adding violated {0, 1
2 }-cuts directly to the LP, they are first stored in

a pool from which only the best cuts are selected and added to the LP. We tested
several methods to rate the cuts in the pool (see also [5]) but we restrict ourselves
to two methods in the following. The first one is to rate cuts by their violation (i.e.,
cuts with large violation are better than those with small violation). The second one
is similar: Cuts are rated by non-increasing efficacy which is defined as its violation
divided by the Euclidean norm of its coefficients (i.e., cuts are better the higher the
“average” violation is). The best up to p cuts are transferred to SCIP (with p given as
input parameter) which uses further criteria like the parallelism to the objective and
other cuts to select the best among all violated inequalities found.

All computations are done on a computer with a 3.6 GHz Intel Pentium 4 CPU,
3.7 GB RAM and Linux as operating system. Our computational study includes all
pure integer (i.e., non-mixed) instances from MIPLIB 3.0 [7] and MIPLIB 2003 [3]
as well as the 2-matching-relaxations of TSP instances from the TSPLIB [6] that also
have been studied in [15].

Speed-up by preprocessing We implemented the preprocessing methods suggested
in Sect. 2 in the following order: Removing columns whose corresponding variables
(a) are zero in the current LP solution (Proposition 3 (i)) or (b) have a tight variable
bound constraint, (c) removing rows with slack at least 1 (Proposition 3 (vi)), (d) re-
moving columns by repeatedly applying Proposition 5, and (e) removing unit vec-
tor columns (Proposition 3 (v)). Next we check for empty rows of the preprocessed
matrix with a nonzero right hand side (i.e., b̄j = 1). Such a row directly yields a
{0, 1

2 }-cut. It is (f) deleted from the matrix and if the corresponding cut is violated
with violation at least ε, it is added to the pool because every further combination of
rows containing such a row cannot yield a stronger cut. Finally, (g) we erase identical
rows except for one with the lowest slack value (Proposition 3 (vii)).

Whenever a zero column, a zero row, or a row with slack at least 1 results from a
preprocessing step, it is removed from (Ā, b̄) immediately (e.g., zero rows that result
from Proposition 5 are removed from (Ā, b̄) and yield a reduction in the number of
rows).

To test the effect of preprocessing, we ran all instances with separation of {0, 1
2 }-

cuts at all nodes of the branch&cut tree without a minimum violation (i.e., ε = 0).
The steps (a)–(c) reduce the size of Ā significantly, e.g., considering the MIPLIB
instances, on average 83.2% in number of rows (ranging from 46.96% (stein27) to
99.9% (nw04)) and can be applied without greater effort. Considering the 2-matching
relaxations of the TSPLIB instances this reduction is even more effective, namely
99.5% of the size of Ā is eliminated on average. Hence, these steps should certainly

Algorithmica (2009) 55: 375–391 385

Fig. 1 Efficiency of preprocessing: reduction percentage in number of rows averaged over all applications
of the separator

be applied and we focus on the further reductions. Figure 1 shows the effect of the
steps (d), (e), (f) and (g), using the number of rows as a measure for the problem
size. All reduction values are given relative to the number of rows of Ā after applying
steps (a)–(c) and are averaged over all times they are applied within the branch&cut.
Hence a value of 0% means that no further reduction beside the steps (a)–(c) can be
achieved and a value of 100% corresponds to a reduction resulting in an empty pair
(Ā, b̄). The instances are sorted according to non-decreasing total reduction.

Figure 1 shows that on average a reduction of about 14.6% of the remaining size
(after applying (a)–(c)) is achieved by applying Proposition 5 (step (d)), 1.26% by
removing unit vector columns (step (e)), 1.5% by removing empty rows that yield
a violated cut (see above) and finally 40.7% can be achieved by removing identical
rows which arise from applying the previous preprocessing methods (in particular
within step (d) and (e)).

Moreover the total reduction in number of rows of (Ā, b̄) (including the steps (a)–
(c)) is increased to 95.5% on average (ranging from 70.0% (stein27) to 99.9% (air03))
for the MIPLIB instances, respectively to 99.9% on average for the 2-matching re-
laxation of the TSPLIB instances.

This reduction of almost 100% of the size of Ā yields an enormous speed-up in the
solving time of the auxiliary ILP (4) as shown in Fig. 2. Here the CPU times needed to
solve (4) with and without preprocessing (i.e., steps (d) to (g)) are displayed, averaged
over all auxiliary ILPs within the branch&cut with a time limit of 10s (i.e., no further
nodes of the auxiliary branch&cut are solved as soon as the time limit is exceeded).
Note that solving times are given in seconds and we use a logarithmic scale to display
them. The instances are sorted according non-decreasing average solving time of the
auxiliary ILP without preprocessing.

Figure 2 shows that applying the preprocessing steps (d) to (g) reduces the solving
time of the auxiliary ILP significantly. Assuming a solving time of 10s for those
instances that reach the time limit, for 33% of the MIPLIB instances solving the
auxiliary ILP can be sped up by a factor of at least 100. On average over all MIPLIB

386 Algorithmica (2009) 55: 375–391

Fig. 2 Efficiency of preprocessing: speed-up in solving the auxiliary ILP

instances this factor exceeds 38. Considering the 2-matching relaxations, the solving
time is sped up by a factor of at least 30 for all instances and exceeds 270 on average.
Note that increasing the time limit would yield even higher speed-up factors.

Effect of Separation To identify the effect of {0, 1
2 }-cut separation, two natural keys

values are available for comparison: the number of nodes of the branch&cut tree
and the overall CPU time. Since the 2-matching polytope is completely described by
the model inequalities and all {0, 1

2 }-cuts (in fact only the blossom inequalities suf-
fice [13]), no branching is needed for these instances if the {0, 1

2 }-cuts are separated
exactly. Hence, for the 2-matching relaxations of TSP instances from the TSPLIB
an additional value to compare can be used: the number of cuts added to obtain an
integral LP solution in the root of the branch&cut tree. Fischetti and Lodi [15] sep-
arated for these instances the more general Chvátal-Gomory cuts exactly. Therefore
we compare three scenarios for these instances: the results presented in the paper by
Fischetti and Lodi [15], SCIP default (i.e., with its standard separators and heuristics,
etc.) and SCIP without its standard separators and heuristics but with our {0, 1

2 }-cut
separation. To obtain as few {0, 1

2 }-cuts as necessary our separator adds only one cut
per callback, namely the most-violated one. In order to add {0, 1

2 }-cuts to the LP until
integrality is reached, we adjust some of SCIP’s parameters (e.g., maximal number
of consecutive separation rounds without improvement of objective and integrality).
The results are shown in Table 1. Compared to Fischetti and Lodi we are able to
solve 80% of the problems with less cuts. This suggests that often stronger cuts are
generated which is consistent with the theory that all facet-defining inequalities are
{0, 1

2 }-cuts. Compared with SCIP default, we are able to solve the problems with less
cuts in about 40%, but SCIP needs more than one branch&cut node in more than half
the cases. In addition whenever it solves one of the problems in the root node, it needs
strictly more cuts than our separator (except for the pr226 instance).

Next, we investigate the added value of our {0, 1
2 }-cut separator for general in-

teger programs. We consider the pure integer problems from MIBLIB that can be

Algorithmica (2009) 55: 375–391 387

Table 1 Efficiency of {0, 1
2 }-cuts separation on 2-matching problems (best results in bold)

name Fischetti&Lodi SCIP default {0, 1
2 }-cuts separator

#nodes #cuts #nodes #cuts #nodes #cuts

a280 1 104 273 31 1 99

ch150 1 141 13 36 1 58

eil101 1 43 1 60 1 20

gil262 1 266 513 72 1 331

gr120 1 45 1 37 1 25

gr137 1 31 1 61 1 39

gr229 1 224 242 66 1 83

kroA200 1 84 1 99 1 86

kroB200 1 558 616 63 1 135

lin318 1 768 >25 010 >44 1 209

pr124 1 320 1 84 1 76

pr144 1 78 1 85 1 41

pr226 1 901 1 110 1 145

rat195 1 237 194 46 1 127

ts225 1 857 2687 138 1 231

solved within 1 hour with SCIP’s default settings. We first compare on the number
of branch&cut nodes needed with and without {0, 1

2 }-cut separation. For this, we use
the following settings: {0, 1

2 }-cuts are separated exactly using the auxiliary ILP (4).
The separator is called in every node of the branch&cut tree up to a depth of 15. Note
that not only violated cuts obtained from the optimal solution of the auxiliary ILP, but
also from earlier (non-optimal) solutions are added to the pool. In addition, we apply
a simple postprocessing: all single rows whose corresponding variables are zero in
the auxiliary ILP solutions (i.e., rows that are not part of the most violated {0, 1

2 }-cut
yet) are checked. If one of these rows yields a violated {0, 1

2 }-cut, it is added to the
pool as well. This way, the number of branch&cut nodes needed to solve a problem
can be reduced by 26% on average (ranging from a reduction by 84% to an increase
by 157%) at the cost of a higher overall solving time: an increase by 158% on average
over all instances (primary induced by fast instances with solving times of less than
a minute). The results are shown in Fig. 3. Details can be found in Table 2 (columns
five to nine).

Performance Gain ILP Solver Since the computation of an optimal solution to the
auxiliary ILP (4) is time consuming and results in few violated cuts, such an approach
is not suitable for integration in general purpose ILP solvers. Therefore, we finally
consider three cases for a CPU time comparison:

(i) SCIP default.
(ii) SCIP with our implementation as additional separator using the auxiliary ILP (4)

to separate {0, 1
2 }-cuts exactly at the root only (cut&branch). Like in the test we

used to compare on the branch&cut nodes, not only violated cuts obtained from

388 Algorithmica (2009) 55: 375–391

Ta
bl

e
2

D
et

ai
le

d
co

m
pu

ta
tio

na
l

re
su

lts
fo

r
th

e
M

IP
L

IB
in

st
an

ce
s.

Fo
ur

sc
en

ar
io

s
ar

e
co

m
pa

re
d:

SC
IP

de
fa

ul
t,

ex
ac

t
se

pa
ra

tio
n

in
ev

er
y

no
de

of
th

e
br

an
ch

&
cu

t
tr

ee
w

ith
de

pt
h

at
m

os
t1

5,
ex

ac
ts

ep
ar

at
io

n
at

th
e

ro
ot

no
de

on
ly

,a
nd

he
ur

is
tic

se
pa

ra
tio

n.
A

ll
co

m
pu

ta
tio

n
tim

es
ar

e
in

se
co

nd
s

na
m

e
Si

ze
of

A
SC

IP
de

fa
ul

t
{0,

1 2
}-c

ut
s

ex
ac

tly
,d

ep
th

≤
15

{0,
1 2
}-c

ut
s

ex
ac

tly
,r

oo
to

nl
y

{0,
1 2
}-c

ut
s

he
ur

is
tic

al
ly

#r
ow

s
#c

ol
s

#n
on

-
#n

od
es

tim
e

#n
od

es
tim

e
#c

ut
s

#n
od

es
tim

e
#c

ut
s

#n
od

es
tim

e
#c

ut
s

ze
ro

s

ai
r0

3
12

4
10

75
7

91
02

8
2

26
.7

0
1

20
.7

1
38

1
19

.0
0

15
1

19
.3

2
15

ai
r0

4
82

3
89

04
72

96
5

19
6

17
3.

12
13

6
57

9.
87

19
80

34
7

24
3.

30
10

4
5

59
.2

5
25

8
ai

r0
5

42
6

71
95

52
12

1
24

4
93

.2
7

20
8

23
3.

56
11

57
35

7
85

.0
9

56
33

5
86

.2
1

11
9

ca
p6

00
0

21
76

60
00

48
24

3
26

21
30

.7
9

30
45

12
9.

39
13

59
32

07
38

.0
6

3
32

07
38

.9
1

3
di

sc
to

m
39

9
10

00
0

30
00

0
1

59
.5

7
1

65
.5

0
67

1
11

.3
9

64
1

11
.4

4
65

en
ig

m
a

21
10

0
28

9
44

55
1.

72
10

46
5.

77
29

7
16

98
0.

95
1

16
98

0.
94

1
fa

st
05

07
50

7
63

00
9

40
9

34
9

19
91

27
58

.6
2

tim
el

im
it

w
as

re
ac

he
d

12
15

19
55

.1
7

33
23

06
44

58
.5

5
52

gt
2

29
18

8
37

6
46

0.
12

11
1

0.
46

1
46

0.
15

0
46

0.
11

0
ha

rp
2

11
2

29
93

58
40

95
1

10
3

14
08

.7
2

87
8

34
3

22
88

.0
0

10
06

42
2

09
0

86
2.

96
3

42
2

09
0

88
3.

03
3

l1
52

la
v

97
19

89
99

22
65

7.
23

67
13

6.
42

40
1

16
5.

82
19

3
39

8.
89

22
8

ls
eu

28
89

30
9

30
2

0.
78

80
0.

93
42

13
29

1.
39

9
13

29
1.

34
9

m
an

na
81

64
80

33
21

12
96

0
1

2.
67

1
2.

68
11

6
1

1.
97

27
2

1
1.

97
27

2
m

itr
e

20
54

10
72

4
37

67
1

3
40

.9
0

3
34

.3
1

33
7

1
33

.0
0

31
7

4
29

.5
2

30
5

m
od

00
8

6
31

9
12

43
21

7
0.

85
55

8
3.

89
12

0
13

7
0.

68
2

13
7

0.
60

2
m

od
01

0
14

6
26

55
11

20
3

1
2.

99
1

3.
10

7
10

6.
59

14
7

1
3.

42
82

m
zz

v1
1

20
54

10
72

4
37

67
1

15
25

96
4.

05
23

17
34

83
.6

3
83

65
17

71
87

0.
49

14
0

49
83

10
98

.4
8

10
7

m
zz

v4
2z

10
46

0
11

71
7

15
1

26
1

16
38

40
1.

13
77

4
68

1.
17

15
04

11
10

40
8.

57
16

5
25

04
38

9.
08

80
nw

04
36

87
48

2
63

6
66

6
3

96
.0

8
3

18
8.

13
86

5
13

2.
64

6
7

13
0.

60
10

p0
03

3
16

33
98

1
0.

02
1

0.
40

12
2

0.
14

9
2

0.
06

9
p0

20
1

13
3

20
1

19
23

83
2.

48
53

3.
99

65
19

4
2.

78
25

19
4

2.
72

25
p0

28
2

24
1

28
2

19
66

45
0.

60
69

2.
15

10
6

45
1.

07
29

45
0.

84
29

p0
54

8
17

6
54

8
17

11
32

0.
39

5
0.

56
34

18
0.

77
17

18
0.

59
17

p2
75

6
75

5
27

56
89

37
21

2
4.

94
76

4.
10

12
6

94
3.

23
58

94
3.

09
58

st
ei

n2
7

11
8

27
37

8
41

73
4.

57
19

12
59

.4
7

32
11

41
94

4.
60

1
41

94
4.

34
1

st
ei

n4
5

33
1

45
10

34
53

18
9

58
.3

6
18

57
9

69
8.

57
48

78
6

50
83

5
58

.7
7

3
50

12
2

56
.7

1
3

Algorithmica (2009) 55: 375–391 389

Fig. 3 Efficiency of separation: ratio of branch&cut nodes without and with {0, 1
2 }-cuts [bars] and ab-

solute numbers without [line with markers]

the optimal solution of the auxiliary ILP, but also from earlier (non-optimal)
solutions and from single rows not part of the most violated {0, 1

2 }-cut are added
to the pool.

(iii) SCIP with our separator using the heuristic described in Sect. 3.2 to separate
{0, 1

2 }-cuts at the root node only. Results of (ii) showed us that almost all added
{0, 1

2 }-cuts are generated from a relative small number of rows of Ā: on average
only 2 or less “preprocessed” rows. The “original” rows (i.e., rows in A) im-
plied by the preprocessing exceeds 10 on average and goes up to as high as 351
(mzzv11). Inspired by this observation we studied several settings for k. Based
on the results of this study we set k = 1, i.e., we check all single rows of (Ā, b̄)

if they yield a violated {0, 1
2 }-cut.

Based on extensive experiments, we restrict in all cases on those {0, 1
2 }-cuts with

violation greater than 0.35 (i.e., ε = 0.7 in (5)) to avoid the generation of many weak
cuts (this restriction is implemented as a cutoff value on the objective). Hence not all
violated {0, 1

2 }-cuts are separated. We add all violated {0, 1
2 }-cuts from preprocessing

to the pool and additionally up to 100 violated {0, 1
2 }-cuts found by the procedures

described in case (ii) respectively (iii). The p = 100 best (w.r.t. their efficacy) cuts of
the pool are added to SCIP which decides if they enter the LP (as it does for all its
standard separators, as well).

Figure 4 shows the relative solving times of cases (ii) and (iii) w.r.t. case (i), e.g., a
value of 0.8 means that solving the instance takes only 80% time compared to SCIP
default (case (i)). There are two bars for each instance, the first one refers to case
(ii), the second one to case (iii). Each bar is divided into two parts: the lower black
part shows the fraction of the solving time spent by SCIP methods and the upper
grey part shows the fraction spent within the {0, 1

2 }-cuts separator. The black boxes
refer to the second y-axis on the right hand side which displays the absolute solving
times of SCIP default (case (i)) in seconds, according to which the instances are non-
decreasingly sorted. Details of the computations can be found in Table 2 (last six
columns).

390 Algorithmica (2009) 55: 375–391

Fig. 4 Efficiency of separation: quotient of solving times of cases (ii) and (iii) w.r.t. case (i) with a split
in SCIP and separation time [bars], as well as absolute solving time of case (i) [line with markers]

From Fig. 4, we conclude that our heuristic approach (case (iii)) performs mostly
faster than the exact approach (case (ii)) (with a few exceptions like mzzv11 or
fast0507). In particular, the more difficult instances in case (i) with solving times
of more than 10 seconds (i.e., instances air03 and on) can often be solved faster.
A slowed-down instance like nw04 might be sped up by a faster implementation of
our separator, reducing the additional time. Finally we observe that our heuristic ap-
proach (case (iii)) reduces the solving time by 7% averaged over all instances (geo-
metric mean), and by 21% averaged over the instances with absolute solving time
greater than 10 seconds in case (i).

5 Conclusions

In this paper, we have developed algorithms to separate {0, 1
2 }-Chvátal-Gomory cuts

in general integer programs, despite the N P -completeness of the problem. Pre-
processing rules turned out to be an indispensable part of such algorithms as they
do not only reduce the size of the remaining separation problem but in many cases
also provide violated inequalities directly, cancelling the need for further processing.
Separating the most violated {0, 1

2 }-cut yields a substantial reduction of the number
of branch&cut nodes to be searched until optimality can be proven, whereas heuris-
tic separation achieved the best time performance. The savings in computation time
have already aroused the interest of both commercial and academic developers of
integer programming solvers. Based on the presented results, {0, 1

2 }-cuts have been
implemented in version 11.0 of the commercial solver ILOG CPLEX. Further accel-
erations of the proposed algorithms could be achieved by the CPLEX development
team by the integration of the routines in the CPLEX source code [4]. In particular
for problems with a combinatorial structure, significant speedups can be achieved.
The developed algorithms will also be available in a future version of SCIP [2].

The developed algorithms are at present only applicable to pure integer programs,
i.e., without continuous variables. The extension of the separation procedure to gen-
eral mixed integer programming problems remains as an important further research
direction as these would enhance ILP-solvers further, like the recent work of Bonami
et al. [8] showed for general CG cuts.

Algorithmica (2009) 55: 375–391 391

Acknowledgements Most of the research has been carried out while the authors were at Zuse Institute
Berlin (ZIB). The first author has been supported by the DFG research group “Algorithms, Structure,
Randomness” (Grant number GR 883/9-3, GR 883/9-4) during that time. The first and third author are
currently supported by the Centre for Discrete Mathematics and its Applications (DIMAP), University of
Warwick.

References

1. Achterberg, T.: SCIP—a framework to integrate constraint and mixed integer programming. ZIB-
Report 04–19, Zuse Institute Berlin (2004). http://www.zib.de/Publications/abstracts/ZR-04-19/

2. Achterberg, T., Berthold, T., Koch, T., Martin, A., Wolter, K.: SCIP (Solving Constraint Integer Pro-
grams) (2006). http://scip.zib.de/

3. Achterberg, T., Koch, T., Martin, A.: MIPLIB (2003). http://miplib.zib.de
4. Achterberg, T., Wunderling, R.: Private communication, November 2007
5. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1

2 }-cuts in a branch-and-cut framework: A
computational study. INFORMS J. Comput. 19(2), 229–238 (2007)

6. Bixby, R., Reinelt, G.: TSPLIB. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
7. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: MIPLIB 3.0. http://www.caam.rice.edu/

~bixby/miplib/miplib.html
8. Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvátal–Gomory cuts for

mixed integer linear programs. Math. Program. A 113, 241–257 (2008)
9. Caprara, A., Fischetti, M.: {0,1/2}-Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)

10. Caprara, A., Fischetti, M.: Odd cut-sets, odd cycles, and 0–1/2 Chvátal-Gomory cuts. Ric. Oper. 26,
51–80 (1996)

11. Caprara, A., Fischetti, M., Letchford, A.N.: On the separation of maximally violated mod-k cuts.
Math. Program. 87, 37–56 (2000)

12. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–
337 (1973)

13. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, R.K.,
Hanani, H. (eds.) Combinatorial Structures and Their Applications, pp. 80–92. Gordon and Breach,
New York (1970)

14. Fiorini, S.: {0, 1
2 }-cuts and the linear ordering problem: Surfaces that define facets. SIAM J. Discrete

Math. 20(4), 893–912 (2006)
15. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. 110(1), 3–20 (2007)
16. Gentile, C., Ventura, P., Weismantel, R.: Mod-2 cuts generation yields the convex hull of bounded

integer feasible sets. SIAM J. Discrete Math. 20(4), 913–919 (2006)
17. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc.

64, 275–278 (1958)
18. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds.)

Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)
19. ILOG. CPLEX version 10.0 (2006). http://www.ilog.com/products/cplex
20. Koster, A.M.C.A., Zymolka, A.: Stable multi-sets. Math. Methods Oper. Res. 56(1), 45–65 (2002)
21. Koster, A.M.C.A., Zymolka, A.: On cycles and the stable multi-set polytope. Discrete Optim. 2(3),

241–255 (2005)
22. Padberg, M.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)
23. Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

http://www.zib.de/Publications/abstracts/ZR-04-19/
http://scip.zib.de/
http://miplib.zib.de
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://www.ilog.com/products/cplex

	Algorithms to Separate {0,12}-Chvátal-Gomory Cuts
	Abstract
	Introduction
	Contribution
	Outline
	Notation

	Preprocessing {0,12}-sep
	Separation Algorithms
	Exact Separation
	Heuristic Search

	Computational Results
	Framework
	Speed-up by preprocessing
	Effect of Separation
	Performance Gain ILP Solver

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

