
Algorithmica (2010) 56: 448–479
DOI 10.1007/s00453-008-9180-4

Approximation Algorithms for Treewidth

Eyal Amir

Received: 27 December 2002 / Accepted: 11 March 2008 / Published online: 2 April 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper presents algorithms whose input is an undirected graph, and
whose output is a tree decomposition of width that approximates the optimal, the
treewidth of that graph. The algorithms differ in their computation time and their
approximation guarantees. The first algorithm works in polynomial-time and finds
a factor-O(log OPT) approximation, where OPT is the treewidth of the graph. This
is the first polynomial-time algorithm that approximates the optimal by a factor that
does not depend on n, the number of nodes in the input graph. As a result, we get
an algorithm for finding pathwidth within a factor of O(log OPT · logn) from the
optimal. We also present algorithms that approximate the treewidth of a graph by
constant factors of 3.66, 4, and 4.5, respectively and take time that is exponential
in the treewidth. These are more efficient than previously known algorithms by an
exponential factor, and are of practical interest. Finding triangulations of minimum
treewidth for graphs is central to many problems in computer science. Real-world
problems in artificial intelligence, VLSI design and databases are efficiently solvable
if we have an efficient approximation algorithm for them. Many of those applications
rely on weighted graphs. We extend our results to weighted graphs and weighted
treewidth, showing similar approximation results for this more general notion. We
report on experimental results confirming the effectiveness of our algorithms for large
graphs associated with real-world problems.

Keywords Treewidth · Triangulation · Tree decomposition · Network flow

1 Introduction

The treewidth of an undirected graph G(V,E) is the lowest width achievable by a
tree decomposition (a.k.a. junction tree [39, 46]) of G. A tree decomposition of G is

E. Amir (�)
Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: eyal@cs.uiuc.edu

mailto:eyal@cs.uiuc.edu

Algorithmica (2010) 56: 448–479 449

Fig. 1 Two examples of tree decompositions. The given graphs are with nodes {A,B,C,D,E,F,G,

H, I, J } and the depicted edges. One possible tree decomposition is given for each graph. The top part
depicts the sets (X1, . . . ,X4, and Y1, . . . , Y4, respectively), and the bottom part displays the tree on those
sets. Their widths are 3 (left) and 4 (right). Notice that on the right-hand example E appears in all sets
Y1, . . . , Y4

a tree T = 〈X,E〉 whose nodes X ∈ X are subsets of V such that (a) every vertex of
V appears in at least one X ∈ X, (b) for every graph edge (u, v) ∈ E, there is X ∈ X

such that u,v ∈ X; and (c) if u ∈ X1 ∩ X2 and X3 is on the tree-path between X1 and
X2, then u ∈ X3 (this is called the running-intersection property). The width of a tree
decomposition T = 〈X,E〉 is the size of the largest X ∈ X minus 1. Figure 1 presents
two example graphs and one possible tree decomposition per graph.

Given undirected graph G(V,E) and integer k, the TREEWIDTH problem is of
deciding if the treewidth of G is at most k [49]. An equivalent constructive problem
is finding a tree decomposition of width at most k of G. Another equivalent problem
is finding a triangulation of G (a chordal graph containing G) with a clique number
that is at most k + 1 (the clique number of a graph is the size of the largest clique in
this graph).

An efficient solution to TREEWIDTH is key in many applications in artificial in-
telligence, databases and logical-circuit design. Exact inference in Bayesian networks
using the junction tree algorithm [33, 39] or the variable elimination algorithm (e.g.,
[21]) requires us to first find a tree decomposition (equivalently, an elimination order)
and then perform inference using that tree. The time complexity of the junction tree
algorithm depends exponentially on the width of the tree, so it is important to try to
find a close to optimal such tree.

Reasoning with structured CSPs (constraint-satisfaction problems), propositional
SAT and FOL (first-order logic) problems also benefits from close-to-optimal tree
decompositions [5, 22, 45]. Also, database applications that use the world-wide web
(WWW) are practical if we use a tree decomposition of low width [31]. Finally, the
solution time of many graph-related NP-hard problems that are found in the literature
is possible in polynomial time, if the graph has low treewidth and a triangulation of
close to minimum treewidth is given (e.g., [7]).

This paper presents four approximation algorithms for finding triangulations of
minimum treewidth. The most important of which from a theoretical perspective is
the first polynomial-time algorithm that finds a tree decomposition within a factor-
O(log OPT) from the optimal, where OPT is the treewidth of the given graph. This

450 Algorithmica (2010) 56: 448–479

algorithm runs in time O(n4 k logk), for n being the number of nodes and k = OPT
being the treewidth of the given graph, G. The best previously known algorithm was
due to [14], and produced a factor-O(logn) approximation.

Our second algorithm improves an algorithm of [50] and produces factor-4 ap-
proximations in time O(24.38kn2k). The third algorithm produces factor-(4 + 1

2) tri-

angulations in time O(23kn2k
3
2). The last algorithm improves an algorithm of [8]

and produces factor-(3+ 2
3) approximations in time O(23.6982kn3k3 log4 n). The time

bounds achieved by the second and fourth algorithms are faster by factors of O(20.4k)

and O(2kpoly(n)), respectively, than previously available algorithms for these ap-
proximation factors. Our third algorithm has the lowest known dependence on k

amongst algorithms that produce constant-factor approximations.
We have implemented the factor-4 approximation algorithm, the factor-(4 + 1

2)

approximation algorithm and a reduced version of our O(log OPT)-approximation
algorithm. We used them to find tree decompositions of graphs used in a subset of
the HPKB project [18], a subset of the CYC knowledge base [43], several CPCS
Bayesian networks [47], and some SAT problems from the SATLIB benchmark
set [32]. These graphs have between 100 and 60,000 nodes and between 400 and
1,000,000 edges. Our results compare favorably with the algorithms of [8, 53], and
are also comparable to those produced by heuristic functions (these are known to per-
form well on some graphs, but are also known to produce solutions that are arbitrarily
far from optimal for other graphs).

The results that we achieved here (published originally in [3]) were used success-
fully in [44] for inference with large knowledge bases in First-Order Logic.

1.1 Overview of Our Approach

The approach that we take is similar in principle to much earlier work in the line of [8,
13, 48, 49]. The main idea there is that a recursive decomposition of the input graph
can yield an approximation to the optimal tree decomposition. That approach builds
on an observation of [49] that every graph of treewidth k has a balanced vertex cut
of size at most k + 1, for some notion of balance (see more formally in Lemma 2.5).
Then, the recursive step uses an algorithm that finds a balanced vertex cut, also mak-
ing sure that the previous separator (up the recursion) is split in some way as well.

The main observation in the current work is that the recursive step of such al-
gorithms needs only to find a balance vertex cut of the previous separator (up the
recursion), and can ignore the contribution of the rest of the graph to the balance. We
then define more fully and apply a polynomial-time algorithm of [42] for finding a
balanced vertex cut of a set of vertices W in a graph that is within O(log |W |) from
the optimal. With a carefully defined recursive step we get an O(log k) approximation
to the optimal tree decomposition. Figure 2 presents this approach.

We also apply the new observation together with maximum s-t-flow algorithms
to give faster solutions for previously known constant-factor approximations, as de-
scribed above. The main step there is setting up flow problems whose solution yields
balanced vertex cuts as needed. The exponential in k remains because we connect
together into cliques large fractions of the previous separator, W , and there is an ex-
ponential number in |W | of possible subsets to connect into cliques. The gain that

Algorithmica (2010) 56: 448–479 451

Fig. 2 A recursive approach to finding close-to-optimal tree decompositions. We find a vertex cut in the
graph G(V,E) that is a balanced vertex cut of the previous vertex cut. Each oval in the graph on the upper
right indicates a vertex cut. The numbers (1, . . . ,6) indicate the order in which these vertex cuts were
found. The tree decomposition is illustrated at the bottom-left. Only the first 6 steps of the approach are
illustrated

we get in speed (a smaller coefficient of k in the exponential) is due to using flow
problems and our ability to ignore in the separation the rest of G.

1.2 Previous Work

An optimal solution for the TREEWIDTH problem is known to be NP-hard [6]. It is
an open question whether a constant-factor approximation can be found in polyno-
mial time. Nevertheless, several algorithms were found with either a constant approx-
imation factor and an exponential time-dependency on k, the treewidth of the graph,
or a O(logn) approximation factor and a polynomial execution time. We briefly re-
count some of the previous work done on finding tree decompositions of minimum
width.

Prior to the current work, the best polynomial-time approximation algorithm for
this problem was [13, 36]. Their algorithm yields a factor-O(logn) (specifically,
12 · k ·� · log(n+ 1) for � being a large unspecified constant) approximation, taking
time O(poly(n ·k)), where poly(n ·k) is the time to compute an approximate balanced
vertex separator in the sense of [35] (Lemma 4.1 in [35] promises an algorithm, us-
ing the algorithm of [41] which in turn uses linear programming; the randomized
algorithm of [40] can replace the linear programming part of that algorithm and runs
in expected time O(nmδ log3 n), when δ is the maximum degree of any node in the
graph).

For a constant k, several authors provided polynomial algorithms for the exact so-
lution. Robertson and Seymour [49] provided the first algorithm using O(n2k2+4k+8)

452 Algorithmica (2010) 56: 448–479

time (the complexity bound is due to [6]). Arnborg et al. [6] improved this algorithm
to takes time O(nk+2). In 1986 Robertson and Seymour [50] gave a non-constructive
proof of the existence of a decision procedure that uses O(n2) time. That proce-
dure computes a tree decomposition whose width is within a constant-factor from
the treewidth. It then uses this tree decomposition to compute an optimal decompo-
sition (of width that is the treewidth). Later, Reed [48] showed that the first part of
their algorithm takes time O(k2 · 33k · n2) and finds a decomposition that is of width
≤ 4k + 3.

Lagergren [37] developed an algorithm that performs the first part in
O(f (k)n log2 n) time and produces a treewidth of size ≤ 8k + 7, where f (k) is

k · 2k+3 · (k + 2)k · (k + 1)!2 · k · 2k

which is more than 2k2 · (k + 1)!2. Reed [48] proposed an algorithm that takes
O(k234kn logn) time to solve the first part and provides an approximation of fac-
tor 5. Both algorithms yield a valid answer that the width is larger than k, or output a
tree decomposition that has treewidth bounded by a linear function in k.

Bodlaender and Kloks [14, 36] provide algorithms for the second part that work
in linear time (again, with k fixed). If we have a tree decomposition of width l, and
look for a tree decomposition of width k, then the time is

O

(
ll−1 ·

(
(2l + 3)2l+3 ·

(
8

3
· 22k+2

)2l+3)2l−1

· n
)

[10, 12] (this is more than O(28k3
n) time). Lagergren and Arnborg [1, 38] provided

algorithms for the second part with similar super-exponential dependency on k. Bod-
laender [10] provided a combined linear-time algorithm (for both parts) having a
similar dependency on k, l, using the algorithm of [14].

Becker and Geiger [8] presented an approximation algorithm that finds a factor
3.66 approximation to the optimal decomposition in time O(24.66kn ·poly(n)), where
poly(n) is the running time of linear programming. Shoikhet and Geiger [53] pre-
sented an algorithm that finds an optimal triangulation in time O(Rn5 + Rkn

3Cmax)

where R is the number of all minimal separators of G, Rk is the number of minimal
separators of G of size at most k, and Cmax is the maximal number of maximal cliques
in a validity graph1 of some fragment in FG (FG is the set of fragments of the graph
obtained by a separator of G of size ≤ k). Broersma et al. [16] presented an algorithm
that finds the optimal triangulation in time O(Rn5 +KRK+1(n+m)n · logn), where
R is the number of all minimal separators of G and K is the asteroidal number of G

(the algorithm does not require prior knowledge of the asteroidal number of G).
In special classes of graphs there are better results than those above. In particular,

there are constant-factor approximations in AT-free graphs [15], planar graphs [4,
52], and single-crossing minor-free graphs [23].

1The notion of a validity graph is defined in their paper.

Algorithmica (2010) 56: 448–479 453

1.3 Organization of This Paper

The paper is organized as follows. Section 2 defines the main notions involved in
computing treewidth and recalls some theorems proved elsewhere. Section 3 presents
our O(log OPT)-approximation algorithm. Section 4 presents our algorithms that
provide factor-4, factor-(4 + 1

2) and factor-(3 + 2
3) approximations. Section 5 draws

further results for finding path-width and cut-width. Section 6 extends our results to
weighted graphs. The paper concludes with experimental results in Sect. 7.

A good survey paper on TREEWIDTH is [11]. A good book on the subject is [36].

2 Treewidth

In this section we define treewidth formally, also recalling some of the main defini-
tions and theorems relating to it.

Definition 2.1 [49] A tree-decomposition of a graph G(V,E) is a tree T = 〈X,E〉
with every node X ∈ X a subset of V , such that the following three conditions are
satisfied: (1)

⋃
X∈X

X = V . (2) For all edges (v,w) ∈ E there is X ∈ X such that
both v,w are contained in X. (3) For each vertex v ∈ V , the set of nodes {X | x ∈
X,X ∈ X} forms a subtree of T (this is called the running-intersection property).

The width of a tree decomposition T = 〈X,E〉 is maxX∈X(|X| − 1). The treewidth
of a graph G equals the minimum width over all tree-decompositions of G.

Corollary 2.2 If G(V,E) is a graph of treewidth k + 1, then |E| ≤ |V | · k.

A close correspondence exists between tree decompositions and triangulations of
graphs. In particular, the treewidth of G is the minimum k ≥ 0 such that G is a
subgraph of a triangulated graph with all cliques of size at most k + 1. A cycle in a
graph is chordless if no proper subset of the vertices of the cycle forms a cycle.

Definition 2.3 A graph is triangulated (or chordal) if it contains no chordless cycle
of length greater than three.

A triangulation of a graph G is a graph H with the same set of vertices such that
G is a subgraph of H and such that H is triangulated.

Any triangulation of a graph defines a tree-decomposition of a graph of the same
treewidth. Similarly, every tree-decomposition of a graph defines a triangulation of
it of the same treewidth. Triangulations are particularly interesting because there is
a simple polynomial-time algorithm that takes a triangulated graph and finds one of
its optimal tree decompositions (or equivalently, an elimination order for its vertices)
iteratively: find a vertex in the triangulated graph which forms a clique with all its
neighbors; create a set X for this vertex and its neighbors, and remove this vertex
from the graph; then, add X to the tree that you created so far by attaching it with an
edge to an already-present node such that the running intersection property still holds
(one can always find such a node in the present tree (this is a simple proof that is left
for the reader, or could be found in [36])).

454 Algorithmica (2010) 56: 448–479

Definition 2.4 Let G(V,E) be a graph, W ⊆ V a subset of the vertices and α ∈ (0,1)

a real number. An α-vertex-separator of W in G is a set of vertices X ⊆ V such that
every connected component of G[V \X] has at most α|W | vertices of W . A two-way
α-vertex-separator is required in addition to have exactly two sets, S1, S2, separated
by X such that S1 ∪ S2 ∪ X = V and |Si | ≤ α|W |, i = 1,2.

Lemma 2.5 [49] Let G(V,E) be a graph with n vertices and treewidth k. There
exists a set X with k + 1 vertices such that every connected component of G[V \ X]
has at most 1

2 (n − k) vertices.

The following corollary of Lemma 2.5 guarantees that there are always vertex
separators with three separated subgraphs of proper sizes.

Corollary 2.6 [8] Let G(V,E) be a graph with n ≥ k + 1 vertices and treewidth k.
For every W ⊆ V , |W | > 1, there is a vertex separator X and sets A,B,C ⊂ V such
that A ∪ B ∪ C ∪ X = V , A,B,C are separated by X, |X| ≤ k + 1 and |W ∩ C| ≤
|W ∩ B| ≤ |W ∩ A| ≤ 1

2 |W |.

3 O(log OPT)-Approximation to Treewidth

The algorithms for finding treewidth that we present in this paper follow the recursive
nature of previous works, e.g., [13, 48–50]. In this section, we present the first algo-
rithm, which achieves an O(log OPT) factor from the optimal. The recursive step of
this algorithm applies results from [42], and we describe those results first. Then, we
follow with the description of the algorithm and its computational properties.

3.1 Balanced Node Cuts in G(V,E) with Two Weight Functions

First, we describe a procedure for finding balanced node cuts in G(V,E) with two
weight functions, π1,π2. The first function, π1, defines the contribution of a node to
the cost of the cut (if that node is in the vertex separator), and the second function,
π2, defines the contribution of a node to the weight of the cut (if that node is in one
of the separated sets). The procedure is given in Fig. 3.

This procedure was suggested in [42] without details on the conversion to a di-
rected sparse edge-cut problem. That work presented (among others) a detailed algo-
rithm for directed b′-balanced edge cut of the following character.

Theorem 3.1 [42, Sect. 2.4, Theorem 17; Sects. 3.1; 3.4] Let b ≤ 1
2 , and b′ < b with

b′ ≤ 1
3 . There is a constructive algorithm2 that (a) is given a directed graph G∗ with

edge costs and node weights, (b) returns a b′-balanced edge cut (S, S̄) in a G∗ that is
within O(logp) from the optimal b-balanced edge cut, for p the number of vertices
in G∗ of non-zero weight, and (c) works in time O(p2n2m logp).

2We bring an overview of such an algorithm in Appendix.

Algorithmica (2010) 56: 448–479 455

PROCEDURE bal-node-cut(G, π1, π2, b, b′)
G = (V ,E) an undirected graph, π1 ≥ 0 a cost function for nodes in V , π2 ≥ 0 a
weight function on nodes in V , b ≤ 1/2, b′ < b and b′ ≤ 1/3.

1. Let G∗(V ∗,E∗) be a directed graph with edge costs and node weights built from
G as follows:a

a) Set V ∗ = {v′, v′′|v ∈ V }.
b) Set E∗ = {(v′, v′′) | v ∈ V } ∪ {(v′′, u′) | (v,u) ∈ E}.
c) Set edge costs in E∗: C(v′, v′′) = π1(v), and C(v′′, u′) = ∞ for u �= v.
d) Set node weights in V ∗: w(v′) = w(v′′) = 1

2π2(v).
2. Find a b′-balanced edge cut (S, S̄) in G∗ that is within O(logp) from the opti-

mal b-balanced edge cut,b for p = |{v ∈ V | π2(v) > 0}|.
3. Return the node cut (A,C,B) for C = {v ∈ V | v′ ∈ S, v′′ ∈ S̄ or v′′ ∈ S, v′ ∈

S̄}, A = {v ∈ V | v′ ∈ S or v′′ ∈ S} \ C, and B = V \ (A ∪ C).

aThis step is a variant of a well-known translation of a node cut problem to an edge cut problem in a
directed graph.
bThis can be done using any algorithm for balanced edge cut in directed weighted graphs, e.g., [42].

Fig. 3 An algorithm for finding a balanced node cut

The main bottleneck of the time taken in this theorem is the solution to a multi-
commodity flow problem, for which one can use, e.g., [40] (that work presents al-
gorithms for directed, weighted networks). The time quoted in Theorem 3.1 assumes
using this algorithm as a subroutine.

Corollary 3.2 Let b ≤ 1
2 , and b′ < b with b′ ≤ 1

3 . Algorithm bal-node-cut provides
a b′-balanced node cut in G that is within O(logp) from the optimal b-balanced
node cut, for p the number of non-zero π2-weights to nodes in G. It does so in time
O(p2n2m logp).

Some calculation and bookkeeping over the development in [42] shows that the
constant factor in O(logp) in this theorem is bounded by β = 4β1

b−b′ for β1 the con-
stant factor given for any implementation of sparse cut in directed graphs (e.g.,
β1 = 115.2 in [42]). For that we take their definition and analysis for a 3-way di-
rected cut [42, Sect. 3.4], which is equivalent to the 2-way directed cut in our case
(of reducing a node-cut problem to a directed edge-cut problem).

3.2 3-Way 2
3 -Vertex-Separator of W ⊂ V

We can now present the main subroutine that Sect. 3.3 below uses to find treewidth.
It finds a 2

3 -vertex-separator of W ⊆ V in G(V,E) of size within factor-O(log |W |)
from optimal 1

2 -vertex-separator in polynomial time. It does so using Procedure bal-
node-cut from Fig. 3 above.

Our procedure for finding 3-way 2
3 -vertex-separator of W in G calls subroutine

bal-node-cut with G and the following weight and cost functions: Set π1(v) = 1 for

456 Algorithmica (2010) 56: 448–479

PROCEDURE lgk-triang(G, W , k).
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. If n ≤ β · k · logk, then make a clique of G. Return.
2. If |W | < 2, then add vertices to W from G such that |W | = 2.
3. Find X, an approximate minimum 3-way 2

3 -vertex-separator of W in G, with
S1, S2, S3 the three parts separated by X (with S1, S2 �= ∅, but possibly S3 = ∅).
If |X| > β · k · log |W |, then output “the treewidth exceeds k” and exit.

4. For i ← 1 to 3 do
a) Wi ← Si ∩ W .
b) call lgk-triang(G[Si ∪ X], Wi ∪ X, k).

5. Add edges between vertices of W ∪ X, making a clique of G[W ∪ X].
Fig. 4 A O(log OPT)-approximation triangulation algorithm for treewidth

all v ∈ V , set π2(v) = 1 for all v ∈ W , and set π2(v) = 0 for all v ∈ V \ W . This
ensures that the cut that is found by the algorithm ignores the weight of nodes in
V \ W (so they do not matter for the balance), but keeps count of all the nodes when
computing the cost of the cut regardless of their membership in W or in V \ W . We
call the overall procedure 2-3-vsep-lgk(W ,G).

Corollary 3.3 Procedure 2-3-vsep-lgk(W ,G) finds a 2
3 -balanced node cut of W in

G of cost within O(log |W |) of the optimal.

3.3 O(log OPT)-Approximation Algorithm

Figure 4 presents our tree-decomposition algorithm as a triangulation one (i.e., creat-
ing cliques and a triangulated graph instead of a tree decomposition). It uses Pro-
cedure 2-3-vsep-lgk(W ,G) to find a 2

3 -vertex-separator X of W in V into three
sets S1, S2, S3 such that |X| is at most β · log |W | times the size of the optimal
1
2 -vertex-separator, for β the constant factor in Corollary 3.3. With the current ap-

proximation algorithm for balanced vertex cut we get β = 4β1
b−b′ = 2764.8, with

β1 = 115.2 (see Sect. 3.1 for a summary of the analysis). It follows that |X| is at
most β · log |W | · (k + 1) from Corollary 2.6, if k is the treewidth of G.

The following lemma implies that the algorithm lgk-triang outputs a triangulated
graph with treewidth that approximates that of the given graph by a factor that de-
pends inversely on the treewidth of the latter (i.e., the larger the treewidth of the
graph, the better approximation we get).

Lemma 3.4 Let G(V,E) be a graph with n vertices, k ≥ logn an integer3 and
W ⊆ V such that |W | ≤ γ · k · logk, and γ = cβ for c = 12 + 3 logk β a constant.4

3If k < logn, we can use the other algorithms later in this paper with a polynomial time, constant-factor
approximation guarantee.
4c ≤ 30 when n ≥ 16, and when n < 16 we can have a table lookup or use the other algorithms later in
this paper.

Algorithmica (2010) 56: 448–479 457

Then, lgk-triang(G,W ,k) either outputs correctly that the treewidth of G is more than
k − 1 or it triangulates G such that the vertices of W form a clique and the clique
number of the resulting graph is at most 4

3γ k logk.

Proof If the algorithm outputs that the treewidth is more than k, then it did not find
a decomposition of W as needed. If the treewidth of G is ≤ k, then Corollary 3.3
guarantees that subroutine 2-3-vsep-lgk finds a 2

3 -vertex-separator of W in G that is
within a factor of β · log |W | of the optimal (recall, the optimal is at most k by Corol-
lary 2.6). Thus, this separator will be found in Step 3, contradicting our assumption
that the algorithm terminated this way. Thus, the treewidth must be > k.

Assume that the algorithm does not output that the treewidth exceeds k. Then, the
algorithm eventually terminates because every recursive call to lgk-triang receives a
graph that is strictly smaller than G (S1, S2 �= ∅ (although possibly S3 = ∅)).

Now we show that the algorithm returns a triangulated graph. We prove this by
induction using the recursive structure of the algorithm. Clearly the claim is true
if n ≤ β · k · logk because Step 1 makes a clique out of V in that case. Assume
n > β · k · logk. By induction, the recursive calls lgk-triang(G[Si ∪ X], Wi ∪ X, k)
return triangulations of G[Si ∪X], such that Wi ∪X is a clique. Finally, the algorithm
makes a clique of W ∪ X. Thus, the graphs G[Si ∪ W ∪ X] are triangulated. Since
the intersection of these triangulated graphs is a clique, the union is triangulated.

We show that the largest clique in this triangulation is of size at most C · k · logk.
First, we prove that always |W | ≤ γ k logk. Initially, |W | ≤ γ k logk by our assump-
tion in the statement of the lemma. As the algorithm is called recursively, we find a
separator X such that |X| ≤ βk log |W | and |Wi | ≤ 2

3 |W | ≤ 2
3γ k logk, by induction.

Thus, |Wi ∪ X| ≤ 2
3γ k log k + βk log |W |.

Now, notice that

|X| ≤ βk log |W | ≤ βk log(γ k log k) = βk log(cβk logk)

= βk log(ck(c−12)/3k logk) = βk log(ckc/3−3 log k) ≤ βk logkc/3 = 1

3
cβk log k.

It follows that |Wi ∪ X| ≤ 2
3γ k logk + |X| ≤ γ k logk. Thus, the in the next recursive

call also |W | ≤ γ k logk.
Now, let M be a maximal clique. If M contains no vertex of Si \ Wi , for i =

1,2,3, then M contains only vertices of W ∪X. Thus, in this case, |M| ≤ |W ∪X| ≤
γ k log k + 1

3γ k logk ≤ 4
3γ k log k.

On the other hand, if M contains a vertex of Si \ Wi , then it does not contain
any vertex of Sj , for j �= i. This is because X vertex-separates S1, S2, S3 (any two
separated vertices cannot have an edge connecting them). Hence, M is a clique in
the triangulation of G[Si ∪ X]. By induction we know that |M| ≤ γ k logk. This con-
cludes the proof of the lemma. �

Theorem 3.5 Procedure lgk-triang(G, ∅, k) finds a triangulation of G of clique num-
ber ≤ (4

3γ logk) ·k, for γ = cβ , and c = 12+3 logk β , if the treewidth of G is at most
k − 1. This procedure takes time O(n4 · k logk).

458 Algorithmica (2010) 56: 448–479

Proof Lemma 3.4 guarantees the correctness of the procedure. We prove the time
bound below (it is important to notice that the normal recursive argument for time
computation does not work here, as we end up with at least two graphs with sizes
that sum up to more than the original size, and each may be of size n − 1 (e.g., when
k = n − 2)).

We will bound the number of times that Step 3 is called in procedure lgk-triang
by O(|V |). Together with the time bound in Corollaries 3.2 and 2.2 this provides the
time bound promised in the theorem.

We distinguish three cases for Step 3 in procedure lgk-triang:

(1) For at least two of i = 1,2,3, |Si ∪ X| > βk logk;
(2) Exactly one of i = 1,2,3 has |Si ∪ X| > βk logk; and
(3) For all i = 1,2,3, |Si ∪ X| ≤ βk logk.

Let �(i) be the number of vertices that may participate in a future invocation of
Step 3 after the i-th call to Step 3.

Each invocation of case (1) on a set of vertices, S, increases � by at most
2βk logk. To see that, notice that the three sets generated from case (1) are S1 ∪ X,
S2 ∪ X and S3 ∪ X (the latter one is included only if S3 �= ∅). Their joint size is
at most |S1 ∪ X| + |S2 ∪ X| + |S3 ∪ X| = |S1| + |S2| + |S3| + |X| + |X| + |X| =
|S1 ∪ X ∪ S2 ∪ S3| + |X| + |X| = |S| + 2|X| ≤ |S| + 2βk logk. This is larger from
|S| by at most 2βk logk.

Each invocation of case (2) on a set of vertices, S, decreases � by at least 1.
This is seen as follows. First, notice that |Si | ≥ 1 for i = 1,2. Now, assume |S1 ∪
X| ≤ βk logk (otherwise, |S2 ∪ X| ≤ βk logk, and the treatment is identical). The
vertices of S1 will not participate in any future invocation of Step 3 because |S1 ∪X| ≤
βk logk is our stopping condition (Step 2 of Algorithm lgk-triang). Thus, there are
only the vertices of S2 ∪ X left from those of S, and |S2 ∪ X| = |S| − |S1| − |S3| ≤
|S| − 1.

Each invocation of case (3) on a set of vertices, S, decreases � by at least βk logk.
This is because |S| > βk logk or we would not have executed Step 3 for S. After
executing Step 3 with this case, none of the vertices of S will participate in any future
invocation of Step 3 (both partitions are of size ≤ βk logk).

Now we show that there are no more than max(0,
|V |

βk log k
−3) invocations of Step 3

in lgk-triang that are of case (1), for G(V,E) and k > 0. We show this by induction
on |V |. For every graph G, let invoke1(G) denote the number of invocations of Step 3
for subsets of G that are of case (1).

Assume that the claim was proved for V ’s of sizes smaller than n, and that |V | = n.
If |V | ≤ βk logk, we are done (no invocations at all) If |V | > βk logk, then we will
apply Step 3 once, generating three subgraphs, G[S1 ∪ X],G[S2 ∪ X],G[S3 ∪ X]
(the last one may be discarded if S3 = ∅). If the invocation was of type (1),
then at least two of the subgraphs have more than βk log k vertices and for those
max(0,

|Si∪X|
βk log k

− 3) = |Si∪X|
βk log k

− 3. Assume for a moment that the last one holds for all
i (we discuss the case of only two subgraphs with more than βk logk vertices later).
Using the induction hypothesis,

Algorithmica (2010) 56: 448–479 459

invoke1(G)

≤ 1 + invoke1(G[S1 ∪ X]) + invoke1(G[S2 ∪ X]) + invoke1(G[S3 ∪ X])
≤ 1 + |S1| + |X|

βk logk
− 3 + |S2| + |X|

βk logk
− 3 + |S3| + |X|

βk logk
− 3

≤ |V | + 2|X|
βk logk

− 8 ≤ |V | + 2βk log k

βk log k
− 8 = |V |

βk logk
− 6 ≤ |V |

βk logk
− 3

which concludes the induction step for this case. If instead there are only two sub-
graphs with more than βk logk vertices, then assume without loss of generality that
those subgraphs are G[S1 ∪ X] and G[S2 ∪ X]. Using a similar argument as above,
and noticing that invoke1(G[S3 ∪ X]) = 0 (or S3 = ∅, which is equivalent):

invoke1(G)

≤ 1 + invoke1(G[S1 ∪ X]) + invoke1(G[S2 ∪ X]) + invoke1(G[S3 ∪ X])
≤ 1 + |S1| + |X|

βk logk
− 3 + |S2| + |X|

βk log k
− 3 + 0

≤ |V | + 2|X|
βk logk

− 5 ≤ |V | + βk logk

βk logk
− 5 = |V |

βk logk
− 4 ≤ |V |

βk logk
− 3

which concludes the induction step.
If this invocation was not of type (1), and using the induction hypothesis (assuming

without loss of generality that |S1 ∪ X| ≥ βk logk),

invoke1(G)

≤ 1 + invoke1(G[S1 ∪ X]) + invoke1(G[S2 ∪ X]) + invoke1(G[S3 ∪ X])

≤ max

(
0,

|S1 ∪ X|
βk logk

− 3

)
+ 0 + 0 ≤ max

(
0,

|V |
βk log k

− 3

)

which concludes the induction step for this case as well.
Thus, there are no more than |V |

βk log k
invocations of Step 3 that are of case (1) (and

if |V | ≥ βk logk, then there are no more than |V |
βk log k

− 3). Each of those invocations

adds at most 2βk logk to �(i). This means that there are at most |V |
βk log k

· 2βk logk

invocations of Step 3 that are of cases (2) or (3), since our potential function �(i)

is never negative. Thus, there are no more than 2 |V |
2βk log k

· (2βk log k) invocations of
Step 3 altogether. This is in 	(|V |). �

The theorem guarantees a triangulation that is within a factor of 4
3γ logk of the

optimal, with γ = cβ , when c can be chosen according to k. To see how the constant
factor guaranteed by Theorem 3.5 behaves with respect to k, we notice the following
cases. For k ≥ 4, we can take c = 30, and get γ = 30 · 2764.8. For k ≥ 5 we can take
c = 27, for k ≥ 8 we can take c = 24, and for k ≥ 16 we can take c = 21. For k ≥ β

we can take c = 12.

460 Algorithmica (2010) 56: 448–479

Thus, from a theoretical viewpoint, we can use an algorithm such as one of those
presented in the rest of this paper (which take time that is exponential in k) to test
if the treewidth is more than β , getting a constant factor approximation to the actual
treewidth if it does. If this algorithm fails, then we can use lgk-triang to find the
treewidth up to a factor of 4

3 · 12 · β log OPT from the actual treewidth, OPT . This
means that the combined algorithm gives an approximation factor of at most 16 · β ·
log OPT .

From a practical point of view, bounding k by a (possibly large) constant for al-
gorithms that take time that is exponential in k is not of real use. However, as our
analysis in Theorem 4.8 (see Sect. 4.3) shows, there is an algorithm that provides a
constant factor approximation (in fact, a factor of (4 + 1

2)) that takes time roughly
proportional to 23kn2, that allows us (both theoretically and practically (see Sect. 7))
to assume that k ≥ 16 in those graphs that are given to lgk-triang. In this case, the
constant in our approximation factor is 4

3 · 21 · β .

4 Constant-Factor Approximations in Time Exponential in OPT

In this section we present three algorithms for finding constant-factor approximations
to treewidth. The first two algorithms use two-way separators recursively. They differ
on their choice of actual separator: 2/3 versus 1/2. The last algorithm uses a three-
way separator in a similar manner.

4.1 Minimum Vertex Separators

We briefly describe the notion of a vertex separator. Let G = (V ,E) be an undirected
graph. A set S of vertices is called an (a, b)-vertex-separator if {a, b} ⊂ V \ S and
every path connecting a and b in G passes through at least one vertex contained in S.
An (a, b)-vertex-separator of minimum cardinality is said to be a minimum (a, b)-
vertex-separator. The weaker property of a vertex separator being minimal requires
that no subset of the (a, b)-vertex-separator is an (a, b)-vertex-separator.

Algorithms for finding minimum vertex separators typically reduce the problem
to a maximum flow problem in a directed graph. The algorithm of Even and Tarjan
reported in [26] for finding minimum vertex separators uses Dinitz’s algorithm [24]

with time complexity O(|V | 1
2 |E|).

Another possibility is to use the Ford-Fulkerson flow algorithm [29] (alternatively,
see [19]), for computing maximum flow. For an original graph of treewidth < k this
involves finding at most k augmenting paths of capacity 1. Thus, the combined al-
gorithm using the Ford-Fulkerson maximum flow algorithm finds a minimum (a, b)-
vertex-separator in time O(k(|V | + |E|)).

Finally, to compute the vertex connectivity of a graph and a minimum separator,
without being given a pair (a, b), we check the connectivity of any c vertices (c being
the connectivity of the graph) to all other vertices. When Dinitz’s algorithm is used

as above, this procedure takes time O(c · |V | 3
2 · |E|), where c ≥ 1 is the connectivity

of G. For the cases of c = 0,1 there are well known linear time algorithms. Even
[25] also showed a way to test for k connectivity of a graph using only n + k2 pairs
of vertices.

Algorithmica (2010) 56: 448–479 461

PROCEDURE 2way-2/3-triang(G, W , k)
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. If n ≤ 4k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ vertices from V such that |W ′| = 3k + 2.
3. Find X, a minimum 2

3 -vertex-separator of W ′ in G, with S1, S2 two nonempty
parts separated by X (S1 ∪S2 ∪X = V) and |X| ≤ k. If there is no such separator,
then output “the treewidth exceeds k − 1” and exit.

4. For i ← 1 to 2 do
a) Wi ← Si ∩ W .
b) call 2way-2/3-triang(G[Si ∪ X], Wi ∪ X, k).

5. Add edges between vertices of W ∪ X, making a clique of G[W ∪ X].
Fig. 5 A 4-approximation triangulation algorithm

4.2 4-Approximation Algorithm

Procedure 2way-2/3-triang, displayed in Fig. 5, finds factor-4 approximations. For a
graph G and a parameter k, running 2way-2/3-triang(G, ∅, k), either returns a valid
answer that the treewidth of G is of size > k − 1 or it returns a triangulation of G of
clique number at most 4k + 1.

This algorithm is very similar to that of [50], as presented in [48]. The main dif-
ference is the more efficient algorithm that we use for exact vertex separation, which
we provide below. The addition of elements to W ′ in Step 2 ensures completeness of
our separator (see Lemma 4.2’s proof).

It is important to notice that there is no benefit in finding a 2
3 -vertex-separator for

V instead. The approximation factor will still be 4, and the time saved by dividing
W into proportional subsets is negligible compared to the time we would spend in
dividing V .

Lemma 4.1 If G(V,E) is a graph, k an integer and W ⊆ V such that |W | ≤ 3k + 2,
then 2way-2/3-triang(G,W ,k) either outputs correctly that the treewidth of G is more
than k or it triangulates G such that the vertices of W form a clique and the clique
number of the result is at most 4k + 1.

The proof is identical to that presented in [48, 49].
Figure 6 presents the algorithm we will use for finding a 2

3 -vertex-separator of W ′
in G (Step 3 in procedure 2way-2/3-triang). It checks choices of sets of vertices to be
separated until a solution is found or the choices are exhausted. The intuition behind
making a clique from each selected set, Wi , is that doing so prevents any element
from that clique from becoming an element in the separated subset of the other side.
Given an arbitrary vertex separator of vW 1, vW 2 , any vertex in the clique of W 1 must
be either in the separator itself or in S1.

Lemma 4.2 Let G(V,E) be a graph, k ≥ 0 an integer, and W ⊆ V of size 3k + 2.
Algorithm 2

3 -vtx-sep(W , G, k) finds a 2
3 -separator of W in G of size ≤ k, if it exists,

462 Algorithmica (2010) 56: 448–479

PROCEDURE 2
3 -vtx-sep(W , G, k)

G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. Nondeterministically take a set W 1 of � |W |
2 � vertices from W and a set W 2 of

� |W |
3 � vertices from W \ W 1.

2. Let G′ ← G. Add edges to G′ so that W 1 is a clique and W 2 is a clique. Create
new vertices vW 1, vW 2 in G′ and connect them to all the vertices of W 1,W 2,
respectively.

3. Find a minimum (vW 1 , vW 2)-vertex-separator, X. If |X| ≤ k, return |X| and two
separated subsets S1, S2, discarding vW 1, vW 2 . Otherwise, return “failure”.

Fig. 6 Find a 2
3 -vertex-separator of W in G

returning failure otherwise. It does so in time O(24.38k

k
f (|V |, |E| + k2, k)), given a

min-(a, b)-vertex-separator algorithm taking time f (n,m,k).

Proof We prove the correctness of the algorithm first. Assume that the algorithm
finds a separator X of S1, S2 in G′. X is also a separator of S1, S2 in G, by the way
we constructed G′ from G. Also, X separates W 1 \ X and W 2 \ X in G′ because
W 1 ∪ {vW 1} and W 2 ∪ {vW 2} are cliques in G′ and X separates vW 1, vW 2 (if X does
not separate W 1 \X and W 2 \X in G′, then there is a path between vW 1, vW 2 that does
not go through X). Finally, X is a 2

3 -vertex-separator of W because |W 1|, |W 2| ≥ |W |
3 ,

W 1 \ X ⊂ S1 and W 2 \ X ⊆ S2, so |Si ∩ W | ≤ 2
3 |W |, for i = 1,2. Notice that S1, S2

are never empty because |X| ≤ k and |Si | ≥ |Wi | − |X| ≥ 1 for i = 1,2 (|Wi | ≥
� |W |

3 � = k + 1 because |W | = 3k + 2).
For the reverse direction, assume that the treewidth of G is k − 1 and we show

that the algorithm will find a suitable separator. Assume first that there are two sets of
vertices S1, S2 separated by X in G such that S1 ∪ S2 ∪ X = V and |Si ∩ W | ≤ |W |

2 ,
for i = 1,2. Let Wi

n_sep = W ∩ Si , for i = 1,2. Let Wi
sep ⊆ W ∩ X such that W 1

sep ∪
W 2

sep = W ∩ X and |Wi
sep ∪ Wi

n_sep| = |W |
2 . Let Wi = Wi

sep ∪ Wi
n_sep, for i = 1,2.

Then, X separates W 1 \ X,W 2 \ X, as Wi \ X = Wi
n_sep, for i = 1,2. Thus, running

Steps 2, 3 in our algorithm using this selection of W 1,W 2 will find a separator of
size ≤ |X| ≤ k. By the previous paragraph, this separator is a 2

3 -vertex-separator of
W in G.

Now we show that if there are no such sets S1, S2,X, then our algorithm still
finds a suitable separator. By Corollary 2.6, there are three sets, A,B,C, of vertices
separated by X in G such that |X| ≤ k and |W ∩ C| ≤ |W ∩ B| ≤ |W ∩ A| ≤ 1

2 |W |.
Let S1 = A, S2 = B ∪ C. If |S2 ∩ W | ≤ |W |

2 , then the first selection case would cover

this W (the previous paragraph). Thus, |S2 ∩ W | > |W |
2 . Take W 1 ⊂ (S2 ∩ W) of size

|W |
2 and W 2 ⊂ ((S1 ∪ X) ∩ W) \ W 1 of size |W |

3 . The selection of W 2 is possible
because |(S1 ∪ X) ∩ W | = |S1 ∩ W | + |X ∩ W | ≥ 1

3 |W \ X| + |X ∩ W | = 1
3 |W |.

For this selection of W 1,W 2 our algorithm will find a separator of size ≤ |X| ≤ k

because X is already a separator of W 1,W 2 \ X. By the first paragraph in this proof,
this separator is a 2

3 -vertex-separator of W in G.

Algorithmica (2010) 56: 448–479 463

Finally, each choice of W 1 takes O(f (|V |, |E| + k2, k)) time to check, for
f (n,m,k) the time taken by a min-(a, b)-vertex-separator algorithm over a graph
with n vertices, m edges and treewidth k − 1. There are

(3k+2
1.5k+1

)
ways to choose

1.5k + 1 elements (W 1) from a set of 3k + 2 elements (W). Also, there are
(1.5k+1

k+1

)
ways to choose k +1 elements (W 2) from a set of 1.5k +1 elements (W \W 1). Since(3k+2

1.5k+1

) = O(23k√
k
) and

(1.5k+1
k+1

) = O(21.3776k√
k

) (using Stirling’s approximation), we get

the time bound of O(24.3776k

k
f (|V |, |E| + k2, k)). �

Proposition 4.3 (cf. [48]) If the treewidth of G(V,E) is k − 1, then |E| ≤ |V |k.

Theorem 4.4 Procedure 2way-2/3-triang(G, ∅, k) finds a triangulation of G of

clique number ≤ 4k + 1, if the treewidth of G is at most k − 1, in time O(24.38k|V | 5
2)

or O(24.38k|V |2k) if we use the minimum (a, b)-vertex-separator algorithm of [26]
or [29], respectively.

Proof Lemmas 4.1 and 4.2 prove the correctness. For the time bound, an analy-
sis that is very similar to that provided in the proof of Theorem 3.5 shows that
there are at most O(|V |) calls to 2way-2/3-triang. Since each recursive step runs
2
3 -vtx-sep once and makes a clique of size ≤ 4k + 2, we get that the combined

procedure using [26]’s algorithm for min-(a, b)-vertex-separator (time O(|V | 1
2 |E|))

takes time O(24.38k

k
|V | 1

2 (|E| + k2)|V |). Using Proposition 4.3 we get the bound

O(24.38k

k
|V | 3

2 (|V |k + k2)) = O(24.38k|V | 5
2). Similarly, using the algorithm given by

[29] for finding a minimum (a, b)-vertex-separator in time O(k(n + m)) we get time
O(24.38k|V |2k). �

4.3 (4 + 1
2)-Approximation Algorithm

We can avoid many choices examined in procedure 2
3 -vtx-sep if we allow the result-

ing separator to be slightly larger. Procedure 2way-half-vtx-sep, presented in Fig. 8
does that, returning a close-to-minimum two-way 1

2 -vertex separator. The combined
procedure, called 2way-half-triang, is identical to procedure 2way-2/3-triang besides
replacing step 3. It is presented in Fig. 7.

Lemma 4.5 If G(V,E) is a graph with treewidth < k and W ⊆ V , then there is a
two-way 1

2 -vertex-separator of W in G with size at most k + 1
6 |W |.

Proof By Corollary 2.6 there are A,B,C ⊂ V separated by X such that A∪B ∪C ∪
X = V , |X| ≤ k and |W ∩C| ≤ |W ∩B| ≤ |W ∩A| ≤ 1

2 |W |. If |(B ∪C)∩W | ≤ 1
2 |W |,

then A, (B ∪ C) and X satisfy our desired conditions.
Thus, assume that |(B ∪ C) ∩ W | > 1

2 |W |. Take XC ⊂ W ∩ C of size |(B ∪ C) ∩
W | − 1

2 |W |. Then |XC | = |(B ∪ C) ∩ W | − 1
2 |W | ≤ 2

3 |W | − 1
2 |W | = 1

6 |W |. Let
X′ = X ∪ XC , S1 = A and S2 = (B ∪ C) \ XC . This X′, S1, S2 satisfy the desired
conditions because |S2 ∩ W | ≤ 1

2 |W |, |S1| ≤ 1
2 |W |, |X′| ≤ |X| + |XC | ≤ k + 1

6 |W |
and X′ separates S1, S2 (because X separates S1, S2). �

464 Algorithmica (2010) 56: 448–479

PROCEDURE 2way-half-triang(G, W , k)
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. If n ≤ 4k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ vertices from V such that |W ′| = 3k + 2.
3. Find X, a two-way 1

2 -vertex-separator of W ′ in G, with S1, S2 the two non-
empty parts separated by X (S1 ∪ S2 ∪X = V) and |X| ≤ 3

2k. If there is no such
separator, then output “the treewidth exceeds k − 1” and exit.

4. For i ← 1 to 2 do
a) Wi ← Si ∩ W .
b) call 2way-half-triang(G[Si ∪ X], Wi ∪ X,k).

5. Add edges between vertices of W ∪ X, making a clique of G[W ∪ X].
Fig. 7 A (4 + 1

2)-approximation triangulation algorithm

PROCEDURE 2way-half-vtx-sep(W , G, k)
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. Nondeterministically choose a set W 1 of |W |
2 vertices from W . Let W 2 be W \

W 1.
2. Let G′ ← G. Add edges to G′ so that W 1 is a clique and W 2 is a clique. Create

new vertices vW 1, vW 2 in G′ and connect them to all the vertices of W 1,W 2,
respectively.

3. Find a minimum (vW 1, vW 2)-vertex-separator, X. If |X| ≤ 3
2k, return |X| and

two separated subsets S1, S2, discarding vW 1, vW 2 . Otherwise, return “failure”.

Fig. 8 Find a two-way 1
2 -vertex-separator of W in G

Lemma 4.6 If G(V,E) is a graph with n vertices, k an integer and W ⊆ V such
that |W | ≤ 3k + 2, then 2way-half-triang(G,W ,k) either outputs correctly that the
treewidth of G is more than k − 1 or it triangulates G such that the vertices of W

form a clique and the clique number of the resulting graph is at most (4 + 1
2)k + 2.

Proof If the algorithm outputs that the treewidth is more than k − 1, then it did
not find a decomposition of W as needed. If the treewidth is at most k − 1, then
Lemma 4.5 guarantees the existence of a two-way 1

2 -vertex-separator of W in G

with size at most k + 1
6 |W |. Thus, this separator is of size at most k + 1

6 |W | ≤
k + 1

6 (3k + 2) = 3
2k + 1

3 (and because the size cannot be fractional, it is at most
3
2k). If we did not find such a separator, then the treewidth is indeed at most k − 1.

The same argument used for the proof of Lemma 4.1 shows that the algorithm
always terminates and, if it is successful, then it returns a graph that is triangulated.

We show that the clique number of this triangulation is at most (4 + 1
2)k + 2.

First, notice that always |W | ≤ 3k + 2. Initially, |W | ≤ 3k + 2 by our assumption
in the statement of the lemma. As the algorithm is called recursively, |X| ≤ 3

2k and

Algorithmica (2010) 56: 448–479 465

|Wi | ≤ 1
2 |W ′| = 3

2k + 1. Thus, |Wi ∪ X| ≤ 3
2k + 1 + 3

2k = 3k + 1, which concludes
the induction step (W in the recursive call to the algorithm is Wi ∪ X).

Now, let M be a maximal clique. If M contains no vertex of Si \ Wi , for i = 1,2,
then M contains only vertices of W ∪X. Thus, |M| ≤ 3k+2+ 3

2k = (4+ 1
2)k+2. On

the other hand, if M contains a vertex of Si \ Wi , then it does not contain any vertex
of Sj , for j �= i. This is because X vertex-separates S1, S2 (any two separated vertices
cannot have an edge connecting them). Hence, M is a clique in the triangulation of
G[Si ∪X]. By induction we know that |M| ≤ (4+ 1

2)k +2. This proves the lemma. �

Procedure 2way-half-vtx-sep is very similar to procedure 2
3 -vtx-sep with one main

difference. While 2
3 -vtx-sep selects two sets of sizes 1

2 |W | and 1
3 |W |, procedure

2way-half-vtx-sep selects two sets of size 1
2 |W |. This precludes finding two-way sep-

arators in which one of the sets is of size 2
3 |W | (as we did before).

Lemma 4.7 Let G(V,E) be a graph, k ≥ 0 an integer, and W ⊆ V of size 3k + 2.
Algorithm 1

2 -vtx-sep(W , G, k) finds a two-way 1
2 -separator of W in G of size ≤ 3

2k,

if it exists, returning failure otherwise. It does so in time O(23k√
k
f (|V |, |E| + k2, k)),

given a min-(a, b)-vertex-separator algorithm taking time f (n,m,k).

Proof We prove the correctness of the algorithm. First, assume that the algorithm
finds a separator X of S1, S2 in G′. X is also a separator of S1, S2 in G, by the way
we constructed G′ from G. Also, X separates W 1 \ X and W 2 \ X in G′ because
W 1 ∪ {vW 1} and W 2 ∪ {vW 2} are cliques in G′ and X separates vW 1, vW 2 (if X does
not separate W 1 \ X and W 2 \ X in G′, then there is a path between vW 1, vW 2 that
does not go through X). Finally, X is a 1

2 -vertex-separator of W because |W 1| =
|W 2| = |W |

2 , W 1 \ X ⊂ S1 and W 2 \ X ⊆ S2. S1, S2 are non-empty because |S1| ≥
|W | − |X| − |W 2| ≥ 3k + 2 − 3

2k − (1
2k + 1) = 1 (similarly for S2).

Now, assume that there is a two-way 1
2 -vertex-separator X of W in G with |X| ≤

3
2k. Let S1, S2 be two separated sets of vertices in G such that S1 ∪ S2 ∪ X = V and

|Si ∩ W | ≤ |W |
2 , for i = 1,2. Let Wi

n_sep = W ∩ Si , for i = 1,2. Let Wi
sep ⊆ W ∩ X

such that W 1
sep ∪W 2

sep = W ∩X and |Wi
sep ∪Wi

n_sep| = |W |
2 . Let Wi = Wi

sep ∪Wi
n_sep,

for i = 1,2. Then, X separates W 1 \ X,W 2 \ X, as Wi \ X = Wi
n_sep, for i = 1,2.

Thus, running steps 2, 3 in our algorithm using this selection of W 1,W 2 will find a
separator of size ≤ |X| ≤ 3

2k. By the previous paragraph, this separator is a 1
2 -vertex-

separator of W in G.
Finally, each choice of W 1 takes O(f (|V |, |E| + k2, k)) time to check, for

f (n,m,k) the time taken by a min-(a, b)-vertex-separator algorithm over a graph
with n vertices, m edges and treewidth k −1. There are

(3k+2
3
2 k+1

)
ways to choose 3

2k +1

elements (W 1) from a set of 3k + 2 elements (W). Since
(2n

n

) = 22n√
πn

(1 + O(1
n
)), we

get the time bound of O(23k√
k
f (|V |, |E| + k2, k)). �

Theorem 4.8 Procedure 2way-half-triang(G, ∅, k) finds a triangulation of G of

clique number ≤ 3k + 2, if the treewidth of G is at most k − 1, in time O(23kn
5
2 k

1
2)

466 Algorithmica (2010) 56: 448–479

or O(23kn2k
3
2) if we use the minimum (a, b)-vertex-separator algorithm of [26] or

[29], respectively.

The proof of this theorem is similar to that of Theorem 4.4.

4.4 (3 + 2
3)-Approximation Algorithm

The last two algorithms recursively divide the set of vertices into two sets. Doing
so we give up some of the separators guaranteed by Lemma 2.5. In this section we
present a different angle on the tradeoff between the size of the separator, the size of
each of the separated sides and the computational complexity of finding the separator.
We find approximate three-way separators, and use them in a similar way to the one
used above.

A generalization of the minimum (a, b)-vertex-cut problem is the problem of find-
ing minimum multiway-vertex-cut. Given an undirected graph, G(V,E), and a set
of nodes, v1, . . . , vl ∈ V , a minimum multiway cut is a minimum-cardinality set of
nodes S ∈ V such that v1, . . . , vl are in different connected components in V \S. The
weighted version requires a minimum-weight set of nodes.

Unlike the minimum (a, b)-vertex-cut problem, the problem of finding a minimum
multiway-vertex-cut is NP-hard and MAXSNP-hard for l ≥ 3 [20, 30] (i.e., there is
ε > 0 such that approximating the problem within a factor of (1+ ε) is NP-hard). For
the (a, b)-vertex-cut problem the maximum flow is equal to the minimum capacity
cut in both directed and undirected graphs. This is not the case for multiway-vertex-
cut. Nevertheless, [30] showed that by solving a maximum multicommodity flow
problem, one can find an l-way vertex cut (in an undirected graph) that is of size
within a factor (2 − 2

l
) to the optimal (multicommodity flow is a generalization of

maximum-flow for multiple sources, sinks and commodities sent between them [42]).
This algorithm was used subsequently by [8] to offer an algorithm for minimum-

treewidth triangulation. This algorithm takes time O(24.66kn poly(n)), for poly(n) the
time required to solve a linear program of size n.

Figure 9 recalls the main loop of the algorithm of [8]. The algorithm differs from
that of [50] in using a 3-way separator instead of a 2-way separator. The separator, X

of W , is required to satisfy |(Si ∩W)∪X| ≤ (1+α)k, for all three sets Si , i = 1,2,3,
for a given α ≥ 1. Let us call such a separator a α-sum-separator.

Figure 10 presents a new procedure for producing an α-sum-separator. It calls
a procedure for 3-way vertex separation 3|W | times instead of 4|W | times as in the
algorithm of [8].

Lemma 4.9 Let G(V,E) be a graph, k ≥ 0 an integer, and W ⊆ V of size
(1+α)k +1. Algorithm α-sum-sep(W , G, k) finds a α-sum-separator of W in G, if it
exists, returning failure otherwise. It does so in time O(23.6982kf (|V |, |E| + k2, k)),
for α = 4

3 , with f (n,m,k) the time taken by an algorithm for α approximation to
min-(a, b, c)-vertex-separator.

Proof We prove the correctness of the algorithm first. Assume that the algorithm
finds a α-sum-separator X of S1, S2, S3 in G′. X is also a separator of S1, S2 in G,

Algorithmica (2010) 56: 448–479 467

PROCEDURE 3way-triang(G, W , k)
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. If n ≤ (2α + 1)k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ vertices from V such that |W ′| = (1 + α)k + 1.
3. Find X, a minimum α-sum-separator of W ′ in G, with S1, S2, S3 three parts

separated by X (at least two are nonempty) and S1 ∪ S2 ∪ S3 ∪ X = V . If there
is none, then output “the treewidth exceeds k − 1” and exit.

4. For i ← 1 to 3 do
a) Wi ← Si ∩ W .
b) call 3way-triang(G[Si ∪ X], Wi ∪ X, k).

5. Add edges between vertices of W ∪ X, making a clique of G[W ∪ X].
Fig. 9 A (3 + 2

3)-approximation triangulation algorithm

PROCEDURE α-sum-sep(W , G, k)
G = (V ,E) with |V | = n, W ⊆ V , k integer.

1. Nondeterministically divide |W | into three sets, W 1,W 2,W 3, such that |W |
2 ≥

|W 1| ≥ |W 2| ≥ |W 3|.
2. If |W 1| > k, then set W 2 ← W 2 ∪ W 3 and return the result of Steps 2–3 of

algorithm 2
3 -vtx-sep (Fig. 6).

3. Let G′ ← G. Add edges to G′ so that each of W 1,W 2,W 3 is a clique. Cre-
ate new vertices, vW 1, vW 2, vW 3 in G′ and connect them to all the vertices of
W 1,W 2,W 3, respectively.

4. Find an α-approximation to a minimum (vW 1, vW 2, vW 3)-vertex-separator, X.
If |X| ≤ αk, return X and the three separated sets, S1, S2, S3, discarding
vW 1, vW 2, vW 3 . Otherwise, return “failure”.

Fig. 10 Find an α-sum-separator in G of size at most k

by the way we constructed G′ from G. Also, X separates Wi \ X and Wj \ X, i �=
j ≤ 3, in G′ because Wi ∪ {vWi } and Wj ∪ {vWj } are cliques in G′ and X separates
vWi , vWj .

To see that X is an α-sum-separator of W we examine two cases. In the first,
|W 1| ≤ k. Thus, |X| ≤ αk (otherwise we return “failure”). |(Si ∩ W) ∪ X| ≤
|Wi | + |X| ≤ (1 + α)k, for i = 1,2,3, because Si ∩ W ⊆ Wi . Thus, this is an α-
sum-decomposition. In the second case, |W 1| > k. Thus, |W 2 ∪ W 3| < αk because
|W | = (1 + α)k. Also, |X| ≤ k because it was returned by Step 3 of algorithm 2

3 -vtx-
sep (Fig. 6). Thus, |(Si ∩W)∪X| ≤ |Wi |+ |X| ≤ (1+α)k. Notice that |Si ∩W | ≥ 1,
for at least two of i = 1,2,3 (i.e., X does not contain at least two of the Wi ’s).
In the first case this is because |W 2 ∪ W 3| = |W | − |W 1| ≥ αk + 1 > |X| (we set
|W | = (1 + α)k + 1). In the second case this is because |X| ≤ k, |W 1| > k and
|W 2| = |W | − |W 1| ≥ |W | − |W |

2 > k.
For the reverse direction, assume that the treewidth of G is k − 1. We show that

the algorithm finds a suitable separator. Let S1, S2, S3 be three sets as guaranteed by

468 Algorithmica (2010) 56: 448–479

Corollary 2.6, separated by X in G such that S1 ∪ S2 ∪ S3 ∪ X = V , |S3 ∩ W | ≤
|S2 ∩ W | ≤ |S1 ∩ W | ≤ |W |

2 and |X| ≤ k.
If |W ∩ S1| ≤ k, then let Wi

n_sep = W ∩ Si , for i = 1,2,3. Let Wi
sep ⊆ W ∩ X

such that W 1
sep ∪ W 2

sep ∪ W 3
sep = W ∩ X and |Wi

sep ∪ Wi
n_sep| ≤ |W |

2 . Let Wi = Wi
sep ∪

Wi
n_sep, for i = 1,2,3. Then, X separates W 1 \X,W 2 \X,W 3 \X because Wi \X =

Wi
n_sep, for i = 1,2,3. Thus, running Steps 3, 4 in our algorithm using this selection

of W 1,W 2,W 3 will find a separator of size ≤ α|X| ≤ αk. By the first part of the
proof, this separator is a α-sum-separator of W in G.

If |W ∩S1| > k, then let W 1
n_sep = W ∩S1 and W 2

n_sep = W ∩(S2 ∪S3). Let Wi
sep ⊆

W ∩X, i = 1,2 such that W 1
sep ∪W 2

sep = W ∩X and |Wi
sep ∪Wi

n_sep| ≤ |W |
2 . Let Wi =

Wi
sep ∪ Wi

n_sep, for i = 1,2. Then, X separates W 1 \ X,W 2 \ X because Wi \ X =
Wi

n_sep, for i = 1,2. Thus, running Steps 2, 3 of algorithm 2
3 -vtx-sep (Fig. 6) using

this selection of W 1,W 2 will find a separator of size ≤ |X| ≤ k. By the first part of
the proof, this separator is a α-sum-separator of W in G.

Finally, each choice of W 1 takes O(f (|V |, |E| + k2, k)) time to check, for
f (n,m,k) the time taken by a α-approximating 3-way-vertex-separator algorithm
(or a minimum vertex separator algorithm, if it takes more time than the approximate
3-way-vertex-separator) over a graph with n vertices, m edges and treewidth k − 1.
There are at most 3|W | ways to divide W into three sets. Since |W | ≤ (1+α)k+1, we

run a vertex separation algorithm at most 3(1+α)k+1 = O(32 1
3 k) = O(23.6982k) times,

for α = 4
3 . Thus, the total time is O(23.6982kf (|V |, |E| + k2, k)). �

Theorem 4.10 [8] If G(V,E) is a graph with n vertices, k ≥ 1 an integer, α ≥ 1 a
real number, and W ⊂ V such that |W | ≤ (α + 1)k + 1, then 3way-triang(G,W ,k)
triangulates G such that the vertices of W form a clique and such that the size of
a largest clique of the triangulated graph ≤ (2α + 1)k or the algorithm correctly
outputs that the cliquewidth of G is larger than k.

Solutions for linear programs of multicommodity flow problems are typically
slow. The linear programming subroutine used by the procedure of [8] for the sub-
routine of [30] can be replaced by the multicommodity flow algorithm of [40] (that
work presents algorithms for directed, weighted networks). This combined algo-
rithm finds a factor-(1 + ε) 4

3 approximation to the optimal 3-way separator in time
O(ε−2nm log4 n), given ε > 0. Selecting ε = 1

8k
guarantees that the separator is in

fact a factor- 4
3 approximation to the optimal (because the separator size is integral).

Using this procedure, the complexity of running the algorithm with α = 4
3 is

O(23.6982kn f (n,m + k2, k)) = O(23.6982knk3n2 log4 n) = O(23.6982kn3k3 log4 n).
This is an improvement over the O(24.66kn poly(n)) of [8], especially because we
have reduced the exponential dependency on k by a factor of about 2k .

5 Applications to Other Graph Problems

The problem of finding the pathwidth of a graph is closely related to that of treewidth.

Algorithmica (2010) 56: 448–479 469

Definition 5.1 [49] A path decomposition of a graph G(V,E) is a tree decomposi-
tion of G that is a path (chain).

The width of a path decomposition is its width as a tree decomposition. The path-
width of a graph G equals the minimum width over all path decompositions of G.

Lemma 5.2 [36] Let G(V,E) be a graph with n vertices and treewidth k ≥ 1. Then
the pathwidth of G is at most (k + 1) log(n − 1).

Using this lemma we can see that any of the algorithms we presented provides an
approximation to pathwidth as well, with a somewhat larger factor. Kloks [36] in fact
provides an algorithm for transforming a tree decomposition to a path decomposition
of width at most log(n − 1) times the width of the original tree decomposition. This
procedure is fairly simple, and we do not bring it here.

Recall from Sect. 3.3 that β = 4β1
b−b′ = 2764.8, with β1 = 115.2 the constant factor

given by the implementation of sparse cut in directed graphs of [42].

Corollary 5.3 Let G(V,E) be a graph with n vertices and treewidth k ≥ 1. Then,
using Procedure lgk-triang(G, ∅, k) and then applying the procedure provided by [36]
for turning a tree decomposition to a path decomposition, finds a path-decomposition
of G of width ≤ (4

3γ logk) · k · log(n − 1), for γ = cβ , and c = 12 + 3 logk β . This
procedure takes time O(n4 k log k).

Corollary 5.4 The procedure of [36] together with lgk-triang output a path decompo-
sition that has width within a factor of O(log(OPT) · logn) from the actual pathwidth
(OPT) of G.

The last corollary follows immediately from the observation that every path de-
composition is also a tree decomposition, so the treewidth of G must be at most
OPT .

6 Allowing Arbitrary Node Weights

In many problems it is important to pay attention to the weight of each node in the
graph. For example, while reasoning with a Markov Network N , if we create a clique
from three nodes A,B,C that have 2 values each (binary nodes), then the clique has
23 possible values. However, if A,B,C have 2,4,8 possible values, respectively, then
the clique has 2 × 4 × 8 = 64 = 26 values. Thus, we convert the problem associated
with a network of m nodes A1, . . . ,Am, taking n1, . . . , nm values, respectively, into a
graph problem where the weight on node Ai is log2ni , and the treewidth problem be-
comes a weighted treewidth problem (each partition in an optimal tree decomposition
should have weight that is no more than k + 1).

The notion of treewidth was originally defined for unweighted graphs. It was ex-
tended to weighted graphs in [9]. We recall this notion in what follows, and define
weighted treewidth for weighted graphs. In this section we extend our algorithms to
the weighted case, and show that these extensions are correct.

470 Algorithmica (2010) 56: 448–479

6.1 Weighted Treewidth

Definition 6.1 For a weighted graph G(V,E), the weighted width of a tree-
decomposition of G, T = 〈X,E〉 is maxX∈X(w(X) − 1). The weighted treewidth
of G equals the minimum weighted width over all tree-decompositions of G.

Lemma 6.2 The weighted treewidth of G is the minimum k ≥ 0 such that G is a
subgraph of a triangulated graph with all cliques of weight at most k + 1.

Proof For a tree decomposition T = 〈X,E〉 we can define a triangulation Gt of G

by making each partition in this tree decomposition into a clique in Gt . This graph
is triangulated because it is a tree of cliques. Also, there are no cliques with larger
weight than the weight of the partition from X of largest weight. This is because the
cliques we created from the tree decomposition in Gt are the only maximal cliques
in Gt (to see this, notice that every clique in Gt must appear together in at least one
partition in every tree decomposition of Gt (proved in [36])). Finally, for the partition
with the largest weight, there is a corresponding clique in Gt of the same weight.

For the other direction, let Gt be a triangulation of G of minimum maximal clique-
weight. Since it is triangulated, it is the intersection graph of a family of subtrees of
a tree T = 〈X,E〉 [54] (given a family of subtrees of a tree, a graph is constructed as
follows: the vertices of the graph are the subtrees and two vertices are adjacent if the
corresponding subtrees have at least one node in common). For each node i in this
tree, define a subset Xi consisting of vertices for which the corresponding subtree
contains i. Let X = {Xi | i ∈ I }. It is easy to check that T is a tree decomposition for
Gt (and thus also for G). Furthermore, each subset corresponds to a clique in Gt and
thus has weight at most k + 1. This shows that the weighted width of T is at most
k + 1. �

Lemma 6.3 Let G(V,E) be a graph with n vertices and weighted treewidth k. There
exists a set X with weight k + 1 such that every connected component of G[V \ X]
has at most weight 1

2w(V).

Proof Let T = 〈X,E〉 be a tree decomposition of G of minimum weighted-width.
Using a simple traversal of the tree we can find a partition that will serve as the re-
quired X. Here is how this traversal works: Select a node Xi ∈ X at random. If Xi

satisfies the properties we seek for X, then stop. Otherwise, from among i’s neigh-
bors, select the neighbor j such that the set of vertices from V that appear in the
subtree of T rooted in j but are not in Xi has the largest weight.

This process terminates because we never go back-and-forth between nodes. To
see this, notice that when we move from Xi to Xj , the subtree rooted in Xj (after
the nodes of Xi are removed from it) has more than 1

2w(V) weight. Assume that
after moving to Xj , the subtree rooted in Xi (after the vertices of Xj are removed
from it) has weight that is more than 1

2w(V). Then, w(Subtreej \ Xi) > 1
2w(V) and

w(Subtreei \ Xj) > 1
2w(V). However, this implies that w(V) = w(Subtreej \ Xi) +

w(Subtreei \ Xj) > 1
2w(V) + 1

2w(V) = w(V). Contradiction. �

The following lemma has a similar proof that we omit here.

Algorithmica (2010) 56: 448–479 471

Lemma 6.4 Let G(V,E) be a graph with n vertices and weighted treewidth k. For
every set W ⊆ V there exists a set X with weight k + 1 such that every connected
component S of G[V \ X] satisfies that w(S ∩ W) ≤ 1

2w(W).

Corollary 6.5 Let G(V,E) be a graph with n ≥ k + 1 vertices and treewidth k.
For every W ⊆ V , |W | > 1, there is a vertex separator X and sets A,B,C ⊂ V

such that A ∪ B ∪ C ∪ X = V , A,B,C are separated by X, w(X) ≤ k + 1 and
w(W ∩ C) ≤ w(W ∩ B) ≤ w(W ∩ A) ≤ 1

2w(W).

We also make the following simple observation.

Proposition 6.6 If the weighted treewidth of G is k, then every vertex in V has weight
at most k.

6.2 Polynomial-Time O(log OPT)-Approximation Algorithm

In this section we modify our triangulation and treewidth algorithms earlier in this pa-
per for the notion of weighted treewidth. Procedure lgk-triang needs a single change,
replacing Steps 2, 3 with the following:

1. If w(V) ≤ β · k · logk, then make a clique of G. Return.
2. Find X, an approximate minimum 3-way weighted 2

3 -vertex-separator of W in
G, with S1, S2, S3 the three parts separated by X (with S1, S2 �= ∅, but possibly
S3 = ∅). If w(X) > β · w(W) · logk, then output “the weighted treewidth exceeds
k” and exit.

This amounts to replacing comparisons in which we counted vertices with similar
comparisons in which we weigh vertices, and also using a weighted version of the
same vertex separator algorithm. For the weighted version of Procedure 2-3-vsep-
lgk (Sect. 3.2) we need only to modify the call to procedure bal-node-cut as follows:
Define π1(v) = w(v) for all v ∈ V ; Define π2(v) = w(v) for all v ∈ W and π2(v) = 0
for all v ∈ V \ W . We call the new overall procedure wlgk-triang.

The proof of the following theorem is identical to that of Theorem 3.5, but uses
Lemma 6.3 instead of Lemma 2.5.

Theorem 6.7 Procedure wlgk-triang(G, ∅, k) finds a triangulation of G of clique
weight ≤ (4

3γ logk) · k, for γ = cβ , if the weighted treewidth of G is at most k − 1,
and c = 12 + 3 logk β . This procedure takes time O(n4 k logk).

6.3 Constant-Factor Approximations to Weighted Treewidth

For algorithms 2way-2/3-triang, 2way-half-triang and 3way-triang we perform sim-
ilar replacement of steps. There, we need to show that our specialized vertex separa-
tor algorithms have the same performance time and approximation guarantee for the
weighted vertices case. Since those procedures rely on subroutines for finding min-
imum (a, b)-vertex-separators, they are naturally extended to the case of weighted
vertices. We modify the selection of subsets W 1,W 2 ⊂ W so that they take maximal

472 Algorithmica (2010) 56: 448–479

and minimal sets such that w(W 1),w(W 2) are close to the limits taken in the original
subroutines.

Intuitively, the time taken by each of the procedures is still bounded by a function
of the number of vertices is W . Since |W | ≤ w(W) (because each vertex in V has
weight at least 1 (we are interested in those graphs that correspond to Bayesian Net-
works or other cases that produce weighted graphs with w(v) ≥ 1 for every v ∈ V)),
the time bounds we established for our original algorithms hold here as well. The
precise argument is a little more involved and is presented below.

We treat procedure 2way-2/3-triang first. In 2
3 -vtx-sep (Fig. 6) we take W 2 mini-

mal subset of W such that w(W 2) is at least w(W)
3 . We also take W 1 maximal subset

of W \ W 2 of weight at most w(W)
2 . The proof of the correctness follows in a sim-

ilar way to the simple case, with several delicate modifications. Call the resulting
procedure weighted- 2

3 -vtx-sep.

Lemma 6.8 Let G(V,E) be a graph, k ≥ 0 an integer, and W ⊆ V of weight
at least 3k + 3. Algorithm weighted- 2

3 -vtx-sep(W , G, k) finds a vertex separator
of W in G of weight ≤ k and parts S1, S2 such that w(S1 ∩ W),w(S2 ∩ W) ≤
2
3w(W), if such a separator exists, returning failure otherwise. It does so in time
O(21.459147|W |f (|V |, |E| + |W |2, k)), given a min-(a, b)-vertex-separator algorithm
taking time f (n,m,k).

Proof We prove the correctness of the algorithm first. Assume that the algorithm
finds a separator X of S1, S2 in G′. X is also a separator of S1, S2 in G, by the way
we constructed G′ from G. Also, X separates W 1 \ X and W 2 \ X in G′ (similar to
the proof of Lemma 4.2). Finally, we show that w(S1 ∩ W),w(S2 ∩ W) ≤ 2

3w(W).

We notice that w(W 2) ≥ w(W)
3 by the way we chose W 2. Also, w(W 2) ≤ w(W)

3 + k

because every vertex in V has weight at most k and we chose W 2 minimal such
that w(W 2) ≥ w(W)/3. Since w(W) ≥ 3k + 3 we get that w(W 2) ≤ 2

3w(W). Also,

w(W 1) ≤ w(W) − w(W 2) ≤ w(W) − w(W)
3 = 2

3w(W). Since Wi \ X ⊆ Si for i =
1,2, also |Si ∩ W | ≤ 2

3w(W). Notice that S1, S2 are never empty because w(X) ≤
k and w(Si) ≥ w(Wi) − w(X) ≥ 1 for i = 1,2 (w(Wi) ≥ w(W)

3 ≥ k + 1 because
w(W) ≥ 3k + 3).

For the reverse direction, assume that the weighted treewidth of G is k − 1 and
we show that the algorithm will find a suitable separator. Assume first that there
are two sets of vertices S1, S2 separated by X in G such that S1 ∪ S2 ∪ X = V and
w(Si ∩W) ≤ w(W)

2 , for i = 1,2. Let Wi
n_sep = W ∩Si , for i = 1,2. Let Wi

sep ⊆ W ∩X

such that W 1
sep ∪ W 2

sep = W ∩ X and w(Wi
sep ∪ Wi

n_sep) ≤ 2
3w(W). Let Wi = Wi

sep ∪
Wi

n_sep, for i = 1,2. Then, X separates W 1 \ X,W 2 \ X, as Wi \ X = Wi
n_sep, for

i = 1,2. Thus, running Steps 2, 3 in our algorithm using this selection of W 1,W 2

will find a separator of size ≤ w(X) ≤ k. By the previous paragraph, this separator is
a 2

3 -vertex-separator of W in G.
Now we show that if there are no such sets S1, S2,X, then our algorithm still

finds a suitable separator (assuming that it exists at all). By Corollary 6.5, there
are three sets, A,B,C, of vertices separated by X in G such that w(X) ≤ k and

Algorithmica (2010) 56: 448–479 473

w(W ∩ C) ≤ w(W ∩ B) ≤ w(W ∩ A) ≤ 1
2w(W). Let S1 = A, S2 = B ∪ C. If

w(S2 ∩ W) ≤ w(W)
2 , then the first selection case would cover this W (the previous

paragraph). Thus, w(S2 ∩ W) >
w(W)

2 . Take W 1 ⊂ (S2 ∩ W) of weight at most w(W)
2

and W 2 ⊂ ((S1 ∪X)∩W)\W 1 of weight at least w(W)
3 . The selection of W 2 is possi-

ble because w((S1 ∪X)∩W) = w(S1 ∩W)+w(X∩W) ≥ 1
3w(W \X)+w(X∩W) ≥

1
3w(W). For this selection of W 1,W 2 our algorithm will find a separator of size
≤ w(X) ≤ k because X is already a separator of W 1,W 2 \ X. By the first paragraph
in this proof, this separator is a 2

3 -vertex-separator of W in G.
Finally, each choice of W 1 takes O(f (|V |, |E| + |W |2, k)) time to check, for

f (n,m,k) the time taken by a min-(a, b)-vertex-separator algorithm over a graph
with n vertices, m edges and weighted treewidth k − 1. There are

(|W |
|W |/3

)
ways to

choose |W |/3 elements (W 2) from a set of |W | elements (W). Also, there are
(2|W |/3

|W |/2

)
ways to choose |W |/2 elements (W 1) from a set of 2|W |/3 elements (W \W 2). Since(|W |
|W |/3

) ≤ O(20.918295|W |) and
(2|W |/3

|W |/2

) ≤ O(20.540852|W |), we get the time bound of

O(21.459147|W |f (|V |, |E| + |W |2, k)). �

We are left to present the modifications that we make to the recursive part of each
of the triangulation procedure. For 2way-2/3-triang (Fig. 5) we replace Steps 1, 2, 3
with

1. If w(V) ≤ 4k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ a minimal (not necessarily minimum) number of vertices

from V such that w(W ′) ≥ 3k + 2 (not necessarily of minimum weight among
such W ′).

3. Find X, a minimum weighted 2
3 -vertex-separator of W ′ in G, with S1, S2 two

nonempty parts separated by X (S1 ∪ S2 ∪ X = V) and w(X) ≤ k. If there is no
such separator, then output “the weighted treewidth exceeds k − 1” and exit.

Notice that for Step 2 above we simply need to add a minimal number of vertices
to W ′, and not necessarily try to reach a minimum number of additional vertices or
a minimum weight for W ′. This requirement is needed to ensure that |W ′| ≤ 3k + 2
(which has an impact on the running time of our weighted- 2

3 -vtx-sep), and we do not
care how large w(W ′) turns out to be (in fact, since every vertex in V has weight at
most k, this weight is at most 4k + 2).

Theorem 6.9 Procedure weighted-2way-2/3-triang(G, ∅, k) finds a triangulation of
G of maximum weighted clique ≤ 4k + 1, if the weighted treewidth of G is at most

k − 1, in time O(24.38k|V | 5
2) or O(24.38k|V |2k) if we use the minimum (a, b)-vertex-

separator algorithm of [26] or [29], respectively.

The modifications for procedures 2way-half-triang (Fig. 7) and 3way-triang
(Fig. 9) are similar. We bring them here without their proofs which are similar to
those brought above.

For a weighted version of 2way-half-vtx-sep we replace the original choice of
W 1,W 2 in Fig. 8 with a choice of W 1 to be a minimal set such that w(W 1) ≥ w(W)

2
and W 2 = W \ W 1. We also replace Steps 1, 2, 3 in procedure 2way-half-triang with

474 Algorithmica (2010) 56: 448–479

1. If w(V) ≤ 4k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ a minimal (not necessarily minimum) number of vertices

from V such that w(W ′) ≥ 3k + 2.
3. Find X, a two-way weighted 1

2 -vertex-separator of W ′ in G, with S1, S2 the two
nonempty parts separated by X (S1 ∪ S2 ∪ X = V) and w(X) ≤ 3

2k. If there is no
such separator, then output “the treewidth exceeds k − 1” and exit.

We call the resulting procedure weighted-2way-half-triang.

Theorem 6.10 Procedure weighted-2way-half-triang(G, ∅, k) finds a triangulation
of G of clique weight ≤ 3k + 2, if the treewidth of G is at most k − 1, in time

O(23kn
5
2 k

1
2) or O(23kn2k

3
2) if we use the minimum (a, b)-vertex-separator algo-

rithm of [26] or [29], respectively.

Finally, the modifications for procedures 3way-triang (Fig. 9 for a weighted
version include replacing the original choice of W 1,W 2,W 3 in procedure α-sum-
sep (Fig. 10) with a choice of W 1,W 2,W 3 such that w(W)

2 ≥ w(W 1) ≥ w(W 2) ≥
w(W 3). We also replace Steps 1, 2, 3 in procedure 3way-triang with

1. If w(V) ≤ (2α + 1)k, then make a clique of G. Return.
2. Let W ′ ← W . Add to W ′ a minimal (not necessarily minimum) number of vertices

from V such that w(W ′) ≥ (1 + α)k + 1.
3. Find X, a minimum weighted α-sum-separator of W ′ in G, with S1, S2, S3 three

parts separated by X (at least two are nonempty) and S1 ∪ S2 ∪ S3 ∪ X = V . If
there is none, then output “the treewidth exceeds k − 1” and exit.

Here weighted α-sum-separator is defined to satisfy w((Si ∩W)∪X) ≤ (1 +α)k for
every i = 1,2,3.

Theorem 6.11 If G(V,E) is a graph with n vertices, k ≥ 1 an integer, α ≥ 1 a
real number, and W ⊂ V such that w(W) ≤ (α + 1)k + 1, then weighted-3way-
triang(G,W ,k) triangulates G such that the vertices of W form a clique and such
that the size of a heaviest clique of the triangulated graph ≤ (2α + 1)k or the algo-
rithm correctly outputs that the weighted treewidth of G is larger than k − 1.

7 Experimental Results

We implemented constructive variants of our algorithms 2way-2/3-triang and 2way-
half-triang, i.e., given a graph, G, they return a tree decomposition of G. The main
difference between the description given above and our implementation is that we do
not increase the size of W ′ to be 3k + 2 in Step 2 of Fig. 5 (we do not know what k is,
a priori). Instead, we gradually increase W ′’s size during the execution of 2

3 -vtx-sep,
until we find a cardinality of |W ′| for which a minimum separator has both separated
sets non-empty. This is particularly useful when only some of the partitions of the
tree decomposition are of size close to the limit.

We use an implementation of Cherkassky and Goldberg [17] for Dinitz’s max-flow
algorithm. We have experimented with several graphs of various sizes and treewidths

Algorithmica (2010) 56: 448–479 475

Table 1 Graphs, their processing time and the resulting width of the decomposition

Graph |V | |E| Time Time (4 + 1
2)-apx 4-apx min-deg.

(4 + 1
2)-apx 4-apx W + 1 W + 1 W + 1

CYC1 142 469 1 m 2 s 6 m 34 s 21 21 14

CPCS1 360 1036 8 m 50 s 1 hr 11 m 28 26 21

CPCS2 421 1704 15 m 40 s 3 hr 55 m 33 33 24

HPKB1 446 2637 2 hr 7 m 14 hr 13 m 58 45 37

HPKB2 570 3840 7 hr 52 m 5 dy 23 hr 70 60 41

that are associated with real-world problems. The graphs and implementations are
available at [2]. The results are depicted in Table 1. They were achieved on a Sun
SuperSparc 60. For comparison5 we ran the implementation of the algorithm of [53].
Unfortunately, that algorithm did not return answers for any of these graphs after
more than three days. This is not surprising if we compare our theoretical results to
those reported in [8, 53]. These algorithms have been tested with graphs of treewidths
≤ 6, n ≤ 50, m ≤ 110 (real-world graphs) and treewidth ≤ 10, n ≤ 100 (artificially
generated), respectively, an order of magnitude lower than those used here.

It is important and interesting to notice that the min-degree heuristic [34, 51],
which iteratively selects a node that has as few neighbors as possible, makes a clique
from the neighbors and removes the node, achieved better tree decompositions than
our approximation-guaranteed algorithms on these samples. This heuristic takes be-
tween 1 second and 2 minutes on our sample graphs with a sub-optimal implementa-
tion, but is not guaranteed to approximate the optimal by a constant factor (examples
exist in which this heuristic performs arbitrarily bad as compared to the optimum).

The results that we achieved with these implementations were used successfully
in [44] for inference with large knowledge bases in First-Order Logic.

8 Conclusions

We presented four related approximation algorithms for triangulation of minimum
treewidth. The first algorithm, lgk-triang, is the first polynomial time algorithm for
an approximation factor that does not depend on the size of the graph. It gives rise
to the best approximation factor known for treewidth and pathwidth in polynomial
time. Two of the others, 2way-2/3-triang and 3way-triang, are modifications of pre-
vious algorithms that improve their running speed by a factor exponential in k and
polynomial in n. The fourth algorithm, 2way-half-triang, has the best combined n, k

time bound known for any constant-factor approximation algorithm. In this paper we
also introduced the notion of weighted treewidth, which is better suited for appli-
cations in artificial intelligence. We extended these algorithms to this more general
problem, and derived similar approximation guarantees and time bounds.

5We could not get the implementation of [8].

476 Algorithmica (2010) 56: 448–479

We showed that our algorithms are efficient enough to solve large problems of
practical importance. The results of some of the tree decompositions that we pro-
duced are currently being used in reasoning with the HPKB and CYC knowledge
bases [18, 43] using algorithms of [5].

Between the time of submission of this manuscript and its publication several
related results appeared in conferences and deserve mentioning here. In particular,
Feige, Hajiaghayi, and Lee [27] present algorithms for O(

√
log OPT) approximation

to treewidth, thus improving on the bound given in this paper. Also, Fomin, Kratsch,
and Todinca [28] give bounds on the number of minimal separators and maximal
cliques in a graph, yielding a bound of O(1.9601n) on time for computing the exact
treewidth.

Acknowledgements Work with Sheila McIlraith has raised my interest in the methods that iteratively
divided graphs in two/three parts, interest for which she deserves thanks. Kirill Shoikhet allowed me to
use his code for optimal triangulation. Daphne Koller and Ben Taskar have given me access to their copy
of the CPCS Bayesian networks. Daphne Koller and Irina Rish have pointed out the heuristics I compared
with. I have used an implementation of Dinitz flow algorithm that is due to Andrew Goldberg and Boris
Cherkassky. This research was supported in part by DARPA grant N66001-00-C-8018 (RKF program).

Appendix: Balanced Edge Cuts in Directed Graphs

We bring an outline of the algorithm of [42] for finding a b′-balanced edge cut that is
within O(logp) from the optimal b-balanced edge cut, for p the number of vertices
in G∗ of non-zero weight.

The procedure is based on a solution to a multicommodity flow problem in a
directed graph. We first recount the procedure for finding sparse cuts in uniformly
weighted graphs. We then extend this procedure in several steps and get a procedure
for balanced edge-cuts in directed graph.

Given a directed graph G, a multicommodity flow problem with edge costs and
node weights has k ≥ 1 commodities, each with its own source node si , sink node ti ,
and demand Di > 0. The objective is to simultaneously route Di units of commodity
i from si to ti for each i so that the total amount of all commodities passing through
any edge is no greater than its capacity (cost).

Given a procedure that solves multicommodity flow, we find sparse cuts as fol-
lows.

1. Solve (accurately or approximately) the dual linear program of the given k-
commodity flow problem in a directed graph, finding a distance function, d .
There are efficient algorithms for that (e.g., [40] does that in deterministic time
O(k2nm logk) for k commodities).

2. Partition the graph using d from the solution of Step ‘1’ and � = 1
2n2 : First, create

a graph G+ from G that has unit distance for each edge (make every edge into a
path proportional to that distance). Then, randomly select v ∈ V + ∩V and find
a subset of G+ that is of some proper distance from v (the distance j is selected
such that the difference between the set of radius j and the set of radius j + 1 is
less than a threshold that depends on �). Remove this subset from G+ and repeat
the process until no vertices of G in G+ are left. The intersection of the sets that
we got with V are the sets in the partitioning.

Algorithmica (2010) 56: 448–479 477

3. Aggregate partitions from Step ‘2’ into two sets forming a cut that is of proper
size. We are guaranteed to get a cut of ratio 36 · M · logn (M is the maximum
flow, which is an upper bound on the minimum ratio cut).

To find a sparse cut in a directed, weighted graph G, we change the above algo-
rithm as follows.

1. We allow vertices to have weights, π(v), and have P the set of nodes for which π

is nonzero. We change the algorithm by using a slightly different linear program
(instead of the simple multi-commodity flow program), use � = 1

2p2 , for p = |P |,
and aggregate the sets of Step ‘2’ above in a way that matches P . To compute the
sparsest cut we use the last algorithm with all capacities set to the corresponding
edge weights.

2. We allow direction of edges by setting the same linear program as before, but with
demand from u to v being π(u)π(v) (same demand on both directions). Step ‘2’
changes to include the direction of the edges. In particular, now we check two balls
or radius i from v: one for incoming distance and one for outgoing distance. The
smaller among the two sets is chosen (after not passing the threshold for increase)
and the final sets are divided into in-sets and out-sets. The last stage is similar to
the original one, but now the constant factor is somewhat worse (115.2 ·M · logp).
We use � = 1

4p2 .

Finally, to find a b′-balanced edge cut for b′ ≤ 1/3 and b′ < b, iteratively find a
sparsest cut in the largest set from the previous iteration. We stop when the resulting
subgraph is no larger than (1 − b′) · w(V). This subgraph and the union of the sets
we removed from G define the cut.

To find a 3-way b′-balanced directed edge cut for b′ ≤ 1/3 and b′ < b, we use the
same algorithm as for the undirected one, but divide the subgraphs that are pealed off
from G into out-edges and in-edges. This gives a three-way decomposition (the third
subgraph is the one left over from the pealing). It keeps the same constant factor as
before.

References

1. Abrahamson, K.A., Fellows, M.R.: Finite automata, bounded treewidth and well-quasiordering. In:
Graph Structure Theory, Proc. Conf. on Graph Minors (Seattle, 1991). Contemporary Mathematics,
vol. 147, pp. 539–564. American Mathematical Society, Providence (1993)

2. Amir, E.: Partitioning and reasoning project website. http://www.cs.uiuc.edu/~eyal/decomp
3. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: 17th Conference on

Uncertainty in Artificial Intelligence (UAI ’01) (2001)
4. Amir, E., Krauthgamer, R., Rao, S.: Constant factor approximation of vertex-cuts in planar graphs.

In: Proc. 35rd ACM Symp. on Theory of Computing, pp. 90–99. ACM, New York (2003)
5. Amir, E., McIlraith, S.: Partition-based logical reasoning. In: Principles of Knowledge Representa-

tion and Reasoning: Proc. Seventh Int’l Conference (KR ’2000), pp. 389–400. Kaufmann, Los Altos
(2000)

6. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a K-tree. SIAM
J. Algebr. Discrete Methods 8, 277–284 (1987)

7. Arnborg, S., Lagergren, J., Seese, D.: Problems easy for tree-decomposable graphs. J. Algorithms 12,
308–340 (1991)

http://www.cs.uiuc.edu/~eyal/decomp

478 Algorithmica (2010) 56: 448–479

8. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal junction trees. In:
Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96), pp. 81–89. Kaufmann,
Los Altos (1996)

9. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artif.
Intell. 125(1–2), 3–17 (2001)

10. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

11. Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Prívara, I., Ruzicka, P. (eds.)
Mathematical Foundations of Computer Science 1997. LNCS, vol. 1295, pp. 19–36. Springer, Berlin
(1997)

12. Bodlaender, H.L.: Personal communication (September 2000)
13. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth,

frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)
14. Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth of graphs. In: Au-

tomata, Languages and Programming, 18th International Colloquium. LNCS, vol. 510, pp. 544–555.
Springer, Berlin (1991)

15. Bouchitte, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J.
Comput. 31(1), 212–232 (2001)

16. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: A generalization of AT-free graphs and a generic al-
gorithm for solving treewidth, minimum fill-in and vertex ranking. In: WG: Graph-Theoretic Concepts
in Computer Science, International Workshop WG. LNCS, vol. 1517, pp. 88–99. Springer, Berlin
(1998)

17. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the maximum flow
problem. Algorithmica 19(4), 390–410 (1997)

18. Cohen, P., Chaudhri, V., Pease, A., Schrag, R.: Does prior knowledge facilitate the development
of knowledge-based systems. In: Proc. National Conference on Artificial Intelligence (AAAI ’99),
pp. 221–226. AAAI Press, Menlo Park (1999)

19. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw–Hill, New York
(1989)

20. Cunningham, W.H.: The optimal multiterminal cut problem. In: DIMACS Series in Disc. Math. and
Theor. Comput. Sci., vol. 5, pp. 105–120. American Mathematical Society, Providence (1991)

21. Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference. In: Proc. Twelfth
Conference on Uncertainty in Artificial Intelligence (UAI ’96), pp. 211–219. Kaufmann, Los Altos
(1996)

22. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)
23. Demaine, E.D., Hajiaghayi, M.T., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algo-

rithms for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2),
166–195 (2004)

24. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power estimation.
Sov. Math. Dokl. 11, 1277–1280 (1970)

25. Even, S.: An algorithm for determining whether the connectivity of a graph is at least k. SIAM J.
Comput. 4(3), 393–396 (1975)

26. Even, S.: Graph Algorithms. Computer Science Press, New York (1979)
27. Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for minimum-weight ver-

tex separators. In: Proc. 37rd ACM Symp. on Theory of Computing, pp. 563–572. ACM, New York
(2005)

28. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-
in. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming
(ICALP 2004), pp. 568–580. Springer, Berlin (2004)

29. Ford, L.R. Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
30. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In:

Automata, Languages and Programming, 21st ICALP. LNCS, vol. 820, pp. 487–498. Springer, Berlin
(1994)

31. Goldman, R., Shivakumar, N., Venkatasubramanian, S., Garcia-Molina, H.: Proximity search in data-
bases. In: Proceedings of the 24th Intl’ Conf. on Very Large Databases (VLDB 1998) (1998)

32. Hoos, H.H., Stützle, T.: SATLIB—the satisfiability library. Canadian SATLIB site, hostet by the Lab-
oratory for Computational Intelligence at the computer science department of the University of British
Columbia in Vancouver, Canada, 2001. Can be found at http://www.satlib.org

http://www.satlib.org

Algorithmica (2010) 56: 448–479 479

33. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in recursive graphical models by local
computation. Comput. Stat. Q. 4, 269–282 (1990)

34. Kjaerulff, U.: Aspects of efficiency improvement in Bayesian networks. PhD thesis, Aalborg Univer-
sity, Department of Mathematics and Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg,
Denmark (1993)

35. Klein, P., Agrawal, A., Ravi, R., Rao, S.: Approximation through multicommodity flow. In: Proc. 31st
IEEE Symp. on Foundations of Computer Science (FOCS’90), pp. 726–739. IEEE Press, New York
(1990)

36. Kloks, T.: In: Treewidth: computations and approximations. LNCS, vol. 842. Springer, Berlin (1994)
37. Lagergren, J.: Efficient parallel algorithms for tree-decomposition and related problems. In: Proc. 31st

IEEE Symp. on Foundations of Computer Science (FOCS’90), pp. 173–182. IEEE Press, New York
(1990)

38. Lagergren, J., Arnborg, S.: Finding minimal forbidden minors using a finite congruence. In: Proc. 18th
Int. Coll. Automata, Languages and Programming. LNCS, vol. 510, pp. 532–543. Springer, Berlin
(1991)

39. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and
their application to expert systems. J. R. Stat. Soc. B 50(2), 157–224 (1988)

40. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., Tragoudas, S.: Fast approximation algo-
rithms for multicommodity flow problems. J. Comput. Syst. Sci. 50(2), 228–243 (1995)

41. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms. In: Proc. 29th IEEE Symp. on Foundations
of Computer Science (FOCS’88), pp. 422–431 (1988)

42. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approx-
imation algorithms. J. ACM 46(6), 787–832 (1999)

43. Lenat, D.B.: Cyc: A large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–
38 (1995)

44. MacCartney, B., McIlraith, S., Amir, E., Uribe, T.: Practical partition-based theorem proving for large
knowledge bases. In: Proc. Eighteenth International Joint Conference on Artificial Intelligence (IJCAI
’03), pp. 89–96. Kaufmann, Los Altos (2003)

45. McIlraith, S., Amir, E.: Theorem proving with structured theories. In: Proc. Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI ’01), pp. 624–631. Kaufmann, Los Altos (2001)

46. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Kaufmann,
Los Altos (1988)

47. Pradhan, M., Provan, G., Middleton, B., Henrion, M.: Knowledge engineering for large belief net-
works. In: Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ’94), pp. 484–490.
Kaufmann, Los Altos (1994)

48. Reed, B.A.: Finding approximate separators and computing tree width quickly. In: Proc. 24th ACM
Symp. on Theory of Computing, pp. 221–228. ACM, New York (1992)

49. Robertson, N., Seymour, P.D.: Graph minors. II: Algorithmic aspects of treewidth. J. Algorithms 7,
309–322 (1986)

50. Robertson, N., Seymour, P.D.: Graph minors XIII. the disjoint paths problem. J. Comb. Theory Ser. B
63, 65–110 (1995)

51. Rose, D.J.: Triangulated graphs and the elimination process. J. Discrete Math. 7, 317–322 (1974)
52. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
53. Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National

Conference on Artificial Intelligence (AAAI ’97), pp. 185–190. Kaufmann, Los Altos (1997)
54. Walter, J.R.: Representations of chordal graphs as subtrees of a tree. J. Graph Theory 2, 265–267

(1978)

	Approximation Algorithms for Treewidth
	Abstract
	Introduction
	Overview of Our Approach
	Previous Work
	Organization of This Paper

	Treewidth
	O(logOPT)-Approximation to Treewidth
	Balanced Node Cuts in G(V,E) with Two Weight Functions
	3-Way 23-Vertex-Separator of WV
	O(logOPT)-Approximation Algorithm

	Constant-Factor Approximations in Time Exponential in OPT
	Minimum Vertex Separators
	4-Approximation Algorithm
	(4+12)-Approximation Algorithm
	(3+23)-Approximation Algorithm

	Applications to Other Graph Problems
	Allowing Arbitrary Node Weights
	Weighted Treewidth
	Polynomial-Time O(logOPT)-Approximation Algorithm
	Constant-Factor Approximations to Weighted Treewidth

	Experimental Results
	Conclusions
	Acknowledgements
	Appendix: Balanced Edge Cuts in Directed Graphs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

