
Algorithmica (2008) 52: 267–292
DOI 10.1007/s00453-007-9151-1

On the Parameterized Complexity of Layered Graph
Drawing

Vida Dujmović · Michael R. Fellows · Matthew Kitching · Giuseppe Liotta ·
Catherine McCartin · Naomi Nishimura · Prabhakar Ragde ·
Frances Rosamond · Sue Whitesides · David R. Wood

Received: 5 March 2007 / Accepted: 26 November 2007 / Published online: 7 December 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider graph drawings in which vertices are assigned to layers and
edges are drawn as straight line-segments between vertices on adjacent layers. We
prove that graphs admitting crossing-free h-layer drawings (for fixed h) have bounded
pathwidth. We then use a path decomposition as the basis for a linear-time algorithm
to decide if a graph has a crossing-free h-layer drawing (for fixed h). This algorithm
is extended to solve related problems, including allowing at most k crossings, or re-
moving at most r edges to leave a crossing-free drawing (for fixed k or r). If the
number of crossings or deleted edges is a non-fixed parameter then these problems

Research initiated at the International Workshop on Fixed Parameter Tractability in Graph Drawing,
Bellairs Research Institute of McGill University, Holetown, Barbados, Feb. 9–16, 2001, organized by
S. Whitesides. Research of Canada-based authors is supported by NSERC; research of Quebec-based
authors is also supported by a grant from FCAR. Research of D.R. Wood completed while visiting
McGill University. Research of G. Liotta supported by CNR and MURST.

V. Dujmović · M. Kitching · S. Whitesides
Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2T5, Canada

M.R. Fellows · F. Rosamond
School of Electrical Engineering and Computer Science, The University of Newcastle, Newcastle,
Australia

G. Liotta
Dipartimento di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia,
Perugia, Italy

C. McCartin
Institute of Information Science and Technology, Massey University, Palmerston North, New Zealand

N. Nishimura · P. Ragde (�)
School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 2P9, Canada
e-mail: plragde@uwaterloo.ca

D.R. Wood
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain

mailto:plragde@uwaterloo.ca

268 Algorithmica (2008) 52: 267–292

are NP-complete. For each setting, we can also permit downward drawings of di-
rected graphs and drawings in which edges may span multiple layers, in which case
either the total span or the maximum span of edges can be minimized. In contrast
to the Sugiyama method for layered graph drawing, our algorithms do not assume a
preassignment of the vertices to layers.

1 Introduction

Layered graph drawing [6, 29, 33] is a popular paradigm for drawing graphs, and
has applications in visualization [8], DNA mapping [34], and VLSI layout [26]. In
a layered drawing of a graph, vertices are arranged in horizontal layers, and edges
are routed as polygonal lines between distinct layers. For acyclic digraphs, it may be
required that edges point downward.

The quality of layered drawings is assessed in terms of criteria to be minimized,
such as the number of edge crossings, the number of edges whose removal eliminates
all crossings, the number of layers, the maximum number of layers an edge may cross,
the total number of layers crossed by edges, and the maximum number of vertices
in one layer. Unfortunately, the question of whether a graph G can be drawn in two
layers with at most k crossings, where k is part of the input, is NP-complete [20], as is
the question of whether r or fewer edges can be removed from G so that the remaining
graph has a crossing-free drawing on two layers [17, 32]. Both problems remain
NP-complete when the permutation of vertices in one of the layers is given [17, 18].

When, say, the maximum number of allowed crossings is small, an algorithm
whose running time is exponential in this parameter but polynomial in the size of
the graph may be useful. The theory of parameterized complexity [9] addresses com-
plexity issues of this nature, in which a problem is specified in terms of one or more
parameters. A parameterized problem with input size n and parameter size k is fixed
parameter tractable, or in the class FPT, if there is an algorithm to solve the problem
in f (k) · nα time, for some function f and constant α.

In this paper we present fixed parameter tractability results for a variety of layered
graph drawing problems. To our knowledge, the conference version of this paper [10]
was the first to take this point of view. In particular, we give a linear-time algorithm to
decide if a graph has a drawing in h layers (for fixed h) with no crossings, and if so,
to produce such a drawing (we observe that recognizing such graphs is NP-complete
when h is not fixed [24]). We then modify this basic algorithm to handle many vari-
ations, including the k-crossings problem (for fixed k, can G be drawn with at most
k crossings?) and the r-planarization problem (for fixed r , can G be drawn so that
the deletion of at most r edges removes all crossings?). The exact solution of the
r-planarization problem for h ≥ 3 layers (for vertices preassigned to layers) is stated
as an open problem in a recent survey [27]. Our algorithm can be modified to han-
dle acyclic directed graphs whose edges must be drawn pointing downward. We also
consider drawings whose edges are allowed to span multiple layers. In this case, our
algorithm can minimize the total span of the edges, or alternatively, minimize the
maximum span of an edge.

Our approach is markedly different from the traditional three-phase method for
producing layered drawings, commonly called the Sugiyama algorithm, which is

Algorithmica (2008) 52: 267–292 269

heuristic in nature and starts with an assignment of vertices to layers, following that
with repeated permutations of vertices within one layer holding an adjacent layer
fixed and trying to reduce the number of crossings between the two layers. In con-
trast, our algorithms do not assume a preassignment of vertices to layers and are
guaranteed to find the right answer. For example, in linear time we can determine
whether a graph can be drawn in h layers with at most k edge crossings (for fixed h

and k), taking into account all possible assignments of vertices to the layers.
The running time of our algorithm, however, is dominated by the cost of finding

a path decomposition of the input graph. The current best-known algorithm for this
uses linear time, but with a constant factor that makes it impractical (for the basic
h-layer recognition algorithm, the constant is 232h3

). Improving that algorithm is the
subject of active research. Our results should therefore be considered as primarily
of theoretical interest, and as a possible basis for future work of a more practical
nature. We discuss this further in the last section of the paper. As an example of how
our approach can be used in combination with common heuristics, our companion
paper [12] addresses the case of 2-layer crossing minimization without large hidden
constants being involved.

The conference presentation of this paper [10] is similar to this paper in overall
structure, but quite different in the details. Both versions use dynamic programming
on a path decomposition of the graph (a notion defined precisely in Sect. 2). In order
to keep the size of the dynamic programming table linear in n, we need to define
a representation of some of the information associated with a partial placement of
vertices on layers, but not all of the information. We believe the representation cho-
sen in the conference version to be adequate for this purpose, but in setting down
all the details, we found the case analysis of the lemmas required to justify the algo-
rithm became too lengthy. To solve this problem, we introduce in this paper another
representation that is more geometric and less combinatorial, and that facilitates the
presentation of a complete proof of correctness.

The remainder of this paper is organized as follows. Section 2 gives definitions
and discusses pathwidth, a key concept for our algorithms. The overall framework for
our algorithms is presented in Sect. 3, where we consider the problem of producing
layered drawings with no crossings. The r-planarization problem, the k-crossings
problem, and further variants are considered in Sect. 4. Section 5 concludes with
some open problems.

2 Preliminaries

2.1 Graphs and Pathwidth

To describe the graphs considered in this paper, we make use of standard graph-
theoretic notation [14]. We denote the vertex and edge sets of a graph G by V (G)

and E(G), respectively; we use n to denote |V (G)|. Unless stated otherwise, the
graphs considered are simple and without self-loops. For a subset S ⊆ V (G), we use
G[S] to denote the subgraph of G induced on the vertices in S. In order to structure
our dynamic programming algorithms, we make use of the graph-theoretic concepts
of path decomposition and pathwidth.

270 Algorithmica (2008) 52: 267–292

Definition 1 A path decomposition P of a graph G is a sequence P1, . . . ,Pp of
subsets of V (G) that satisfies the following three properties:

1. for every u ∈ V (G), there is a t such that u ∈ Pt ;
2. for every edge (u, v) ∈ E(G), there is a t such that both u,v ∈ Pt ; and
3. for every u ∈ V (G), {t | u ∈ Pt } = {i | j ≤ i ≤ k} for some 1 ≤ j ≤ k ≤ p.

The width of a path decomposition is defined to be max{|Pt | − 1 : 1 ≤ t ≤ p}. The
pathwidth of a graph G is the minimum width w of any path decomposition of G.
Each Pt is called a bag of P . It is easily seen that the set of vertices in a bag Pt is
a separator of the graph G for 1 < t < p . Of particular interest are graphs of constant
pathwidth, for they have constant-size separators. For fixed w, path decompositions
of graphs of pathwidth w can be found in linear time [3, 5].

Definition 2 A path decomposition P = P1, . . . ,Pp of a graph G of pathwidth w is
normalized if

1. |Pt | = w + 1 for t odd;
2. |Pt | = w for t even; and
3. Pt−1 ∩ Pt+1 = Pt for even t .

Given a path decomposition, a normalized path decomposition of the same width (and
�(n) bags) can be found in linear time [22]. The proof of this result is not difficult; it
is a technical convenience that reduces the amount of case analysis necessary in the
dynamic programming recurrence that we define on the path decomposition.

2.2 Layered Graph Drawing

An h-layer drawing of a (directed or undirected) graph G consists of a partition of the
vertices V (G) into h layers L1,L2, . . . ,Lh such that for each edge (u, v) ∈ E(G),
u ∈ Li and v ∈ Lj implies i �= j ; each vertex on layer Lj , 1 ≤ j ≤ h, is positioned
at a distinct point in the plane with a Y -coordinate of j and each edge is represented
by a straight line-segment. If we further stipulate that for each edge (u, v) ∈ E(G),
u ∈ Li and v ∈ Lj implies |i − j | = 1, then G is a proper h-layer drawing.

An (a, b)-stretched h-layer drawing of a graph G is a proper h-layer drawing of
a graph G′ obtained from G by replacing each edge of G by a path with at most
a internal vertices such that the total number of interior “dummy” vertices on the
paths is at most b, and path vertices have monotonically increasing or decreasing
Y -coordinates. Of course, proper h-layer drawings are (0,0)-stretched. A graph is
said to be an (a, b)-stretchable h-layer graph if it admits an (a, b)-stretched h′-layer
drawing for some h′ ≤ h.

A layered drawing with at most k crossings is said to be k-crossing, where the
number of crossings is the number of pairs of edges that cross. A 0-crossing h-layer
drawing is called an h-layer plane drawing. A graph is ((a, b)-stretchable) h-layer
planar if it admits an ((a, b)-stretched) plane h′-layer drawing for some h′ ≤ h.
A layered drawing in which r edges can be deleted to remove all crossings is said
to be r-planarizable, and a graph that admits an ((a, b)-stretched) r-planarizable
h-layer drawing is said to be an ((a, b)-stretchable) r-planarizable h-layer graph.

Algorithmica (2008) 52: 267–292 271

We further distinguish between proper and non-proper versions of these graphs, de-
pending on whether or not the graph admits a proper h-layer drawing of the specified
type.

For an acyclic digraph G, an ((a, b)-stretched) h-layer drawing of G is called
downward if for each edge (u, v) ∈ E(G), u ∈ Li and v ∈ Lj implies i > j .

When h is implicit and constant, we use the shorthand layered drawing to replace
“h-layer drawing” in the various terms given above.

Edge crossings in proper layered drawings do not depend on the actual assign-
ment of X-coordinates to the vertices, and we shall not be concerned with the deter-
mination of such assignments (algorithms for this purpose were presented in other
work [2, 21, 28]). For our purposes, a layered drawing can be represented by the par-
tition of the vertices into layers and linear orderings of the vertices within each layer.
The linear ordering can be extended in the obvious fashion to points that are not ver-
tices. In a layered drawing, we say a vertex u is to the left of a vertex v and v is to
the right of u, if u and v are in the same layer and u < v in the corresponding linear
ordering.

Such a partition and a set of orderings correspond to a layered plane drawing if
and only if there do not exist two edges (u1, v1), (u2, v2) with u1 < u2 in the same
layer and v1 > v2 in an adjacent layer, as such a pair of edges must cross. When there
are no crossings, the edges between two adjacent layers are also linearly ordered, by
the obvious extension of the vertex ordering. Given edges e and e′ between layers L

and L′ in a layered plane drawing, the edge-sequence from e to e′ denotes the set of
edges between e and e′ in the ordering; if e and e′ are the first and last edges between
the layers, we refer to the edge-sequence between L and L′.

3 Proper h-Layer Plane Drawings

In this section we present an algorithm for recognizing proper h-layer planar graphs;
elaborations of this basic algorithm form the basis of our subsequent results. In
Sect. 3.1, after showing that a h-layer planar graph has bounded pathwidth, we give
an overview of how dynamic programming can be used to exploit the structure by
keeping track of key visibility information. Formal definitions of visibility are pre-
sented in Sect. 3.2, along with foundational lemmas and a way of representing a pos-
sible drawing of part of the graph. Section 3.3 considers the problem of reducing the
representation in such a way that a fixed-parameter algorithm is possible. Finally, in
Sect. 3.4 the algorithm is presented.

3.1 Bounded Pathwidth and Dynamic Programming

As noted above, the algorithm, which performs dynamic programming on a path
decomposition, relies on the fact that an h-layer planar graph has bounded pathwidth,
as we now prove.

Lemma 1 If G is an h-layer planar graph, then G has pathwidth at most h − 1.

272 Algorithmica (2008) 52: 267–292

Proof We first consider a proper h-layer planar graph G. Given an h′-layer plane
drawing of G for some h′ ≤ h, we give an algorithm to form a normalized path de-
composition of G in which each bag of size h′ contains exactly one vertex from each
layer. We initialize the path decomposition to consist of the single bag B containing
the leftmost vertices on each layer, and repeat the following step until B consists of
the rightmost vertices on each layer: find a vertex v ∈ B such that v is not rightmost
in its layer, and for all neighbors w of v, either w ∈ B or w is to the left of a vertex
in B . For u the vertex immediately to the right of v on the same layer, we append the
bag B \ {v} to the path decomposition, followed by B ∪ {u} \ {v}, and set the current
bag B ← B ∪ {u} \ {v}.

To prove that the algorithm is correct, it suffices to show that before the last iter-
ation, it is possible to find such a pair v and u; it is straightforward to verify that the
resulting normalized path decomposition is valid by checking the three conditions
of each of Definitions 1 and 2. If v does not exist before the last iteration, then for
B ′ = {b0, b1, . . . , bj } the set of vertices in B that are not rightmost on their layer,
enumerated in order of increasing layer number, each bi has a neighbor to the right
of some vertex in B ′. Suppose b0 has a neighbor to the right of some bi1 ∈ B ′, and is
connected to that neighbor by edge e1. Then bi1 is connected by edge e2 to a neighbor
to the right of some bi2 ∈ B ′, and i1 < i2, as otherwise e2 would cross e1. Continuing
this argument, some big (where g ≤ j − 1) must have a neighbor to the right of bj

and be connected to it by eg . But bj also has a neighbor to the right of some member
of B ′, and the edge to that neighbor must cross eg , a contradiction. Thus v exists in
B ′, and u is the vertex immediately to its right on the same layer.

Finally, if G is a non-proper h-layer planar graph, then we can apply the above
algorithm to a stretched h-layer drawing of G (and hence a proper h-layer drawing of
a graph G′ obtained by adding dummy vertices to G) to obtain a path decomposition
of G′ of width at most h − 1. To obtain a path decomposition of G, we choose any
linear ordering of the vertices of G, and in each bag of this path decomposition of
G′, replace a dummy vertex on the edge (u, v) by u, where u < v in the chosen
linear ordering. Again, it is straightforward to verify that the properties of a path
decomposition hold. �

As stated in Sect. 2, we can obtain a normalized width-w path decomposition of
any graph for which one exists in O(n) time (for fixed w) [3, 5, 22]. Applying this
algorithm to an h-layer planar graph will in general not result in a “nice” decomposi-
tion like that in Lemma 1 (where bags of size h contain exactly one vertex from each
layer), but we can use the fact that each bag is a separator in order to obtain a dynamic
programming algorithm. In the remainder of Sect. 3 we prove the following result.

Theorem 1 There is an f (h) · n time algorithm that decides whether a given graph
G on n vertices is proper h-layer planar, and if so, produces a drawing.

By applying the algorithms of Bodlaender and Kloks [3, 5], we can test if G has
a path decomposition of width at most h − 1. If G does not have such a path decom-
position, by Lemma 1, G is not h-layer planar. Otherwise, let P = P1, . . . ,Pp be the
normalized path decomposition of G given by the algorithm of Gupta et al. [22]. Let

Algorithmica (2008) 52: 267–292 273

w < h be the width of this path decomposition. (Our algorithm, in fact, works on any
path decomposition of fixed width w, and in the generalizations in Sect. 4, we present
modifications of this procedure where the path decomposition has width w ≥ h.)

Our dynamic programming is structured on the path decomposition; we define
Gt = G[⋃s≤t Ps] and define subproblems for various values of t . In particular, for
each bag Pt in turn, we determine all possible ordered assignments of the vertices of
Pt to layers and, for each such assignment A (henceforth, an ordered layer assign-
ment of Pt), we solve the subproblem of whether Gt is proper h-layer planar with
assignment A of the vertices of Pt . The answer to this subproblem is determined by
checking the answers for subproblems involving Gt−1. To ensure that the time to
process each subproblem is a function only of h, we will make use of succinct repre-
sentations of possible drawings of Gt−1. In particular, we rely on the fact that Pt−1

separates Gt−1 from the rest of the graph to obtain a representation of size a function
of h but not of n.

In order to relate each bag to the rest of the graph, we must represent not only edges
between vertices in Pt but also edges with one or more endpoints in V (Gt) \ Pt . The
placement of these edges can affect how the vertices in Pt and their associated edges
can be placed in a drawing, as due to planarity, the existence of a particular edge
precludes the existence of any edge that could cross it. Representing each edge will
require a prohibitively large amount of information as there may be O(n) such edges.
Instead, we store permissible locations for new edges as “visibility” information,
where if one point (not necessarily a vertex) is visible to another, an edge can be added
between without violating the planarity condition. Equivalently, the existence of an
edge may render certain points “invisible” to each other. We maintain the visibility
information using a reduced visibility representation (defined formally later) in which
a small number of edges will be represented explicitly and the rest will be “hidden”.
We will show that given a drawing of Gt , a reduced visibility representation can easily
be constructed, and that the number of possible reduced visibility representations is a
function only of h and not of n (thereby permitting an algorithm whose running time
is linear in n). We observe that the term “edge” has three distinct uses, which should
be clear from context: an edge in a graph, its realization in a drawing, and (if present)
its representation in a reduced visibility representation.

Our subproblem then becomes: is there a proper h-layer plane drawing of Gt

associated with a given ordered layer assignment of Pt and a given reduced visibility
representation of Gt ? We answer this question by a dynamic programming recurrence
involving Gt−1 and various pairs of assignments A and visibility representations R.
The relationship between Gt−1 and Gt depends on whether t is odd or even (because
the bags Pt form a normalized path decomposition of G). If t is odd, then Gt−1 has
one fewer vertex than Gt , namely the single vertex x in Pt \Pt−1. Thus, in setting up
the recurrence, we can confine ourselves to the pair (At−1,Rt−1) that can be created
from a pair (At ,Rt) for Gt by deleting x. If t is even, then Gt−1 is equal to Gt , but
the single vertex x in Pt−1 \ Pt is not mentioned in At or Rt . In this case, for each
subproblem (At−1,Rt−1) for Gt−1 that yields a YES answer, we store a YES answer
for the subproblem (At ,Rt), where At is formed by removing x from At−1 and Rt

is formed from Rt−1 by changing the role of x.

274 Algorithmica (2008) 52: 267–292

3.2 Visibility Representations

We now proceed to more formally define our notions, and prove several lemmas
concerning visibility of vertices. To this end, we add 2h artificial boundary vertices,
one to the extreme left and one to the extreme right of each layer, and add these to
each set Pt . Furthermore, we add edges between each of these leftmost (rightmost)
vertices and the leftmost (rightmost) vertices on the layers above and below (when
those layers exist). The lemmas that follow will later be applied to the graphs Gt and
sets of vertices Pt , but we phrase them in terms of an arbitrary graph G and subset
S of vertices in the graph. We now define the notion of visibility, which allows us to
compute where edges can be added to the graph without introducing crossings.

Definition 3 In a proper h-layer plane drawing, a point x on layer L is visible to
a point y on an adjacent layer L′ (and vice versa) if it is possible to add the line
segment between x and y without causing any crossings. Equivalently, if x is visible
to y (and hence y is visible to x), then y can see x.

The following lemma is a direct consequence of the definition of visibility.

Lemma 2 Given vertices x and y on consecutive layers,

1. if there is an edge (x, y) then no vertex to the left (resp. right) of x is visible to any
vertex to the right (resp. left) of y, and

2. if x is not visible to y, then there must exist an edge (x′, y′) such that either x′ is
to the right of x and y′ is to the left of y, or x′ is to the left of x and y′ is to the
right of y.

We will show that to form a succinct representation of a possible drawing of Gt ,
it will suffice to represent the visibility information. In order that this information be
small in size, we make the key observation that either Gt−1 = Gt (for t even) or to
alter Gt−1 to form Gt , we will only need to add the single vertex x in Pt \ Pt−1 and
edges between x and vertices in Pt (for t odd). As a consequence, it is possible to
condense visibility information to focus on the vertices in Pt or, more generally, any
special set S ⊆ V (G).

Determining an entry in the dynamic programming solution will entail determin-
ing possible drawings of Gt from possible drawings of Gt−1. As Gt and Gt−1 differ
in the role of the vertex x in Pt \ Pt−1 or in Pt−1 \ Pt , and as the representations
focus on vertices in Pt and Pt−1, respectively, the critical information includes the
positions of the vertices of S on the layers and the presence (or absence) of edges
that block visibility. As implied by Lemma 2, the exact placement of edges is unim-
portant, as is determining which vertices of G are the endpoints of the edges (except
for those in S). Moreover, certain edges of the drawing of a graph are unimportant,
allowing us to remove them to form a compact representation. We can think of the
remaining edges as defining regions (where each region is delimited by two consec-
utive remaining edges between the same pair of layers); a region is given a color to
indicate whether in the original drawing there were (black) or were not (white) any
other edges appearing between the remaining edges in the edge-sequence. Each layer

Algorithmica (2008) 52: 267–292 275

L can then be associated with the ordering of the left sides of region boundaries, the
right side of the last region, and the subset of S on layer L.

In giving the formal definitions of the parts of the representation, as we present
each concept we consider its relation to a drawing. In the following definition of
a region, the color is as described above and the shape indicates relationships among
endpoints of boundary edges.

Definition 4 A visibility region R is a pair (shape(R), color(R)) where shape(R) ∈
{�,�,�} and color(R) ∈ {white,black}. We say that R is realized at Lj in a drawing
if there exists a pair of edges e and e′ between layers Lj and Lj+1 such that:

1. if shape(R) =�, then e and e′ have a common endpoint on Lj+1;
2. if shape(R) = �, then e and e′ have a common endpoint on Lj ;
3. if shape(R) = �, then e and e′ share no endpoints;
4. if color(R) = white, then e and e′ are consecutive edges in the edge-sequence

between Lj and Lj+1; and
5. if color(R) = black, then e and e′ are not consecutive edges in the edge-sequence

between Lj and Lj+1.

We say that R is realized by e and e′, and that e and e′ are the boundaries of R (or e

and e′, and by extension, their endpoints, bound R).

For convenience, we say that R is white, black, triangular, or square if color(R) =
white, color(R) = black, shape(R) �= �, or shape(R) = �, respectively, and that
R is an up-triangle, down-triangle, or square if shape(R) =�, shape(R) = �, or
shape(R) = �, respectively. At times, we will write �, �, �, �, �, and � as short-
hand for (�,white), (�,black), (�,white), (�,black), (�,white), and (�,black), re-
spectively. The common endpoint of the boundaries of a triangular region is an apex.

As a direct consequence of the definition above, we can extract visibility informa-
tion from regions.

Lemma 3 For a visibility region R realized by edges e and e′ in the edge-sequence
between Lj and Lj+1,

1. if shape(R) =� and v is the apex of R, then v is the only point on Lj+1 visible to
points between the endpoints of e and e′ on Lj ;

2. if shape(R) = � and v is the apex of R, then v is the only point on Lj visible to
points between the endpoints of e and e′ on Lj+1; and

3. if R = �, the set of points between and including the endpoints of e and e′ on
Lj+1 (Lj) is exactly the set of points visible to all points between the endpoints of
e and e′ on Lj (Lj+1).

We will frequently refer to sequences of regions; in a sequence σ = [R1, . . . ,R�]
we use prev(Ri) to denote Ri−1 (for 1 < i ≤ �) and next(Ri) to denote Ri+1 (for
1 ≤ i < �). We can generalize the notion of regions being realized by edges to apply to
a sequence of regions by requiring that consecutive pairs of regions share boundaries.

276 Algorithmica (2008) 52: 267–292

Fig. 1 Upward and downward
projections of a sequence of
visibility regions

Definition 5 Given a sequence of regions σ = [R1, . . . ,R�], if each Ri is realized at
Lj by edges ei and e′

i and e′
i = ei+1 for all 1 ≤ i < �, we say that σ is realized by the

sequence [e1, e2, . . . , e�, e
′
�] or that σ is realized at Lj .

In order for our representation to indicate the relative positions of sequences of
regions with respect to vertices in S as well as other sequences of regions, we need
notation that indicates the ordering of endpoints of boundaries that occur on a partic-
ular layer. The key observation is that if R is triangular, in the realization the apex of
R is an endpoint of the left boundary of the following region in the sequence. Apply-
ing this observation to a sequence σ = [R1,R2, . . . ,R�] where R1 through R�−1 are
either all up-triangles or all down-triangles, we can view R� as a representative of all
regions in σ on the layer containing the apex. Regions are associated with their left
boundaries, and a special symbol is used to denote the right boundary of the rightmost
region in the sequence.

Definition 6 For a sequence of visibility regions σ = [R1,R2, . . . ,R�], the up-
ward projection of σ, UP(σ), is the sequence of symbols ui for each i such that
shape(R) �=� followed by the special symbol ulast. For any i, up(Ri) is defined as
the symbol uj for the smallest value of j greater than or equal to i such that uj is
in UP(σ) (or ulast if no such j exists). The downward projection of R down(R) is
defined as above but with � replacing � and dlast replacing ulast.

Figure 1 illustrates the realization of a sequence σ of visibility regions as well as its
upward and downward projections. In this example, since u1 and u5 are consecutive
entries in UP(σ), up(R2) = up(R3) = up(R4) = up(R5) = u5. Since u9 represents R8
in UP(σ), up(R8) = u9.

Definition 7 For a sequence σ of visibility regions realized by the sequence of
edges E = [e1, e2, . . . , e�, e

′
�] between Lj and Lj+1, the upward (downward) projec-

tion of E , UP(σ)[E] (DOWN(σ)[E]) is the sequence of vertices formed from UP(σ)

(DOWN(σ)) by replacing each ui (di) by the endpoint of ei on Lj+1 (Lj) and ulast

(dlast) by the endpoint of e′
� on Lj+1 (Lj).

In our representation we need all vertices in S as well as all edges in G[S] to be
represented. The first step is to assign the vertices to layers and to choose orderings
among the vertices on each layer.

Definition 8 An ordered layer assignment A of S is an assignment of the vertices of
S to layers such that there is an ordering imposed on the vertices of S in each layer.

Algorithmica (2008) 52: 267–292 277

Fig. 2 A visibility
representation and an underlying
drawing

We use A[j] to denote the sequence of vertices in S on layer Lj in the order imposed
by A. A drawing D is consistent with A if the vertices of S appear in D on the layers
and in the order specified by A.

In the drawing of Fig. 2, for S = {s1, . . . , s6}, A[1] = [s5, s6], A[2] = [s4], A[3] =
[s3], and A[4] = [s1, s2]. Figure 2 has the vertices of S marked by black circles. The
other vertices of the graph are not drawn in, but we can infer their position, since there
must be a vertex at the intersection of a horizontal layer-line and a non-horizontal line
representing an edge. Edges are drawn as solid when they are involved in defining
visibility regions with respect to S and dashed otherwise.

To represent the ordering of points on a particular layer, we next relate the pro-
jections, upward and downward, of sequences of visibility regions onto that layer,
both with each other and with vertices in S. We can view the two projections and
the vertices in S as three sequences such that elements can be identified (that is, as-
signed to be the same point) as long as the order within each sequence is preserved,
as formalized in the next definition.

Definition 9 Given k sequences λ1, . . . , λk of disjoint elements, the sequence λ is
formed by a merge-and-identify operation if each element of λ is associated with at
least one element of some sequence and at most one element of each sequence such
that the order within each λi is preserved.

As there are many different merge-and-identify operations possible on a set of se-
quences, specifying the orderings at each layer is necessary.

Thus, any potential drawing of a graph can be represented in a way that high-
lights a subset S of the vertices, using the definition below. To show the relationships
between G[S] and the rest of the graph, when a vertex s in S is identified with an
endpoint of a boundary, it is required that in any realization, that endpoint must map
precisely to the vertex s. We can then use this notion to require that each edge in G[S]
is represented explicitly.

Definition 10 An h-layer visibility representation with respect to A and S consists
of:

• σ1, σ2, . . . , σh−1, sequences of visibility regions, and

278 Algorithmica (2008) 52: 267–292

• π1,π2, . . . , πh, layer orderings, where each πj is formed by a merge-and-identify
operation of the sequences A[j], UP(σj−1) (defined to be empty for j = 1), and
DOWN(σj) (defined to be empty for j = h),

such that for each edge (u, v) ∈ E(G[S]), u and v are identified, respectively, with
the two endpoints of a boundary of a visibility region.

For convenience, if an element v of UP(σj−1) or DOWN(σj) is identified with the
same element of πj as an element s of A[j] (and hence an element of S), we say that
v is S-identified or, more specifically, s-identified. If v is not S-identified, we say that
v is S-free.

If an element of A[j] appears in πj−1 or πj but is not identified with an endpoint
of a boundary, we view it as being inside a region, as detailed in the formal definition
below.

Definition 11 For any a ∈ A[j] that is not identified with any element of UP(σj−1)

(DOWN(σj)), if ui (di) is the rightmost element of UP(σj−1) (DOWN(σj)) to the left
of a, element a is said to be inside Ri in UP(σj−1) (DOWN(σj)). For a given region
R in σ , we say that there is an element inside R if there is an element inside R in at
least one of UP(σ) and DOWN(σ).

Where appropriate, we may extend the definition to identify a point in a drawing as
being inside the drawing of a region.

Definition 12 For a graph G, R = [σ1, . . . , σh−1;π1, . . . , πh] an h-layer visibility
representation with respect to ordered layer assignment A of S ⊆ V (G), and D an
h-layer plane drawing of G, we say that R is realized by D if the following conditions
hold:

1. for each σj , σj is realized at Lj by a sequence of edges Ej (1 ≤ j ≤ h − 1) such
that Ej contains the first and last edges in the edge-sequence between Lj and
Lj+1, and

2. for each πj , the sequence of vertices formed by replacing in πj each ele-
ment of UP(σj−1) (DOWN(σj)) by the corresponding vertex in UP(σj−1)[Ej]
(DOWN(σj)[Ej]) is consistent with the ordering of vertices in D and for any ver-
tex v replacing a symbol identified with an element a ∈ A[j] (1 ≤ j ≤ h), it must
be the case that v = a.

For convenience, we may refer to an element v of a layer ordering as a vertex, where
the corresponding vertex in the drawing is D(v), the drawing of v. Similarly, a bound-
ary e between visibility regions is an edge such that the corresponding edge in the
drawing is the drawing of e, or D(e); two vertices that are projections of the same
edge are neighbors.

The following special case is useful. We can immediately convert any h-layer
plane drawing D of a graph G into a visibility representation R (the trivial repre-
sentation of D) by defining the region as bounded by consecutive edges in an edge-
sequence between two layers. Each edge in the graph serves as a boundary edge for

Algorithmica (2008) 52: 267–292 279

some visibility region, so each region is bounded by consecutive edges in the edge-
sequence. It is then trivial to see that R is realized by D.

We illustrate the notions described above by means of an example. If we consider
the drawing D consisting of all the edges, solid and dashed, in Fig. 2, the trivial
representation of D has the following sequences of visibility regions:

σ1 = [�,�,�,�,�,�,�,�,�],
σ2 = [�,�,�,�,�,�,�,�,�], and
σ3 = [�,�,�,�,�,�,�,�,�,�].

3.3 Reduced Visibility Representations

The size of the trivial representation is a function of the size of the entire graph rather
than dependent only on h and the size of S; the key problem is that too much infor-
mation is being retained. To reduce the size of the representation, we remove unnec-
essary information by reducing the number of visibility regions. Given a sequence σ

of visibility regions, the meld of a boundary (or, by extension, the two regions it
bounds) results in the replacement of the two bounded regions by a single black one
with shape depending on the shapes of the original regions: the meld of two regions
of the same shape results in a black region of the same shape, and the meld of regions
of different shapes results in a black square.

When viewed as the melding of a sequence in a visibility representation that is
realized by a drawing D, the melding of an edge e can be seen as removing it from
the representation. We say that such an edge is a hidden edge; any other edge is
a revealed edge. Similarly, any vertex that is an endpoint of hidden edges only is
a hidden vertex, and any other vertex is a revealed vertex. We need to apply the
melding operation with some care, however, as we do not wish any of the vertices of
S to be hidden.

In order to preserve visibility information about vertices in S, we restrict the melds
that can take place. Ideally we would also like to retain all edges with at least one
endpoint in S, but it is not difficult to see that the number of consecutive triangles
sharing an S-identified apex could be a function of the size of the graph rather than
a function of the size of S. Accordingly, we have to be selective in the choice of
edges to protect, so that the total number of visibility representations we consider is
not a function of n and yet we have preserved all the information we need. To this
end, we ensure that if a vertex of S is inside or bounds a region, the region is white
unless the region is a triangle and S is its apex.

Definition 13 The meld of a boundary e in visibility representation R is a legal
S-meld if in the resulting graph each S-identified vertex either:

1. bounds or is inside white regions only, or
2. is the apex of a triangular region R such that for each R′ ∈ {prev(R),next(R)},

either shape(R′) = shape(R) or color(R′) = white;

the boundary e is then S-meldable. Any other meld operation is an illegal S-meld,
with e being S-unmeldable.

280 Algorithmica (2008) 52: 267–292

Lemma 4 Given the trivial representation of a drawing D, a set S, and any set of
S-meldable edges, any ordering of the melds of those edges will result in the same
visibility representation.

Proof As it is not difficult to see that the melding of an edge in an edge-sequence be-
tween one pair of layers will not have an impact on the representation of another pair
of layers, it will suffice to consider the ordering of edges in one edge-sequence. We
can view these edges as being in a sequence consistent with their appearance in the
edge-sequence. Since any ordering can be achieved by exchanges of adjacent edges,
it will suffice to show that for any pair of edges e and e′, consecutive in the sequence,
the visibility representation R1 resulting from the meld of e followed by the meld of
e′ is the same as the representation R2 resulting from the meld of e′ followed by the
meld of e (where R1 and R2 are both derived from some R containing e and e′ and
created from the trivial representation of D by applying zero or more legal S-melds).

We consider the different ways that e and e′ may be related, and in each case show
that R1 = R2. If there is at least one edge e∗ between e and e′ in the edge-sequence,
the melding of e and e′ change disjoint sequences of regions, and hence can occur
in either order. If instead e and e′ are consecutive in the edge-sequence, they form
boundaries of a region. If, for example, that region is square and each of e, e′ bounds
another square, either order of melds will result in the three squares being replaced by
a single black square. The result follows from a simple case analysis for each possible
shape and color for the three regions bounded by e, e′, or both. �

The most succinct representation of a drawing will result from all legal S-melds
taking place. For a graph G and a set S ⊆ V (G), a reduced visibility representation
with respect to ordered layer assignment A for G is a visibility representation with
respect to A and S in which no legal S-meld is possible; we denote such a representa-
tion as an S-RVR or, without specifying S, simply an RVR. As indicated in the lemma
below, we have now achieved the goal of establishing a representation such that the
number of possibilities is independent of the size of the graph.

Lemma 5 For a given ordered layer assignment A and a set S, the number of possi-
ble h-layer S-RVR’s is at most (4 · |S|)O(h·|S|).

Proof Given a fixed layer assignment, we first determine the number of possible se-
quences of visibility regions at a particular layer, and then determine the total number
of S-RVRs by counting possible merge-and-identify operations.

The size of a particular sequence of visibility regions will depend on the number
of illegal S-melds involving regions in the sequence. As an S-meld is illegal only if
it would result in a non-apex S-identified vertex v being either inside or bounding
a black region, a vertex in S is associated with either one region or a pair of con-
secutive regions in each of the sequences of visibility regions neighboring the layer
on which it resides. Moreover, due to the definition of legal S-melds, there will be at
most one region between the regions associated with consecutive S-identified vertices
on the same layer. Since the length of each sequence at most 4 · |S| and the number
of choices for each region is at most six (three shapes multiplied by two colors) the

Algorithmica (2008) 52: 267–292 281

number of choices for one sequence will be at most 64·|S| or a total of at most 64h·|S|
for all layers.

To count the number of layer orderings, we first consider the number of pos-
sible results of merge-and-identify operations for a single layer. Ignoring the
S-identification in layer orderings for the moment, we observe that each layer order-
ing requires the merge-and-identify of two sequences each of length at most 4 · |S|.
After the first element is chosen, at each point there are at most four choices: choos-
ing the next element in one sequence as the next in the sequence, choosing the next
element in the other sequence as the next in the sequence, or choosing one of these el-
ements as being identified with the current element. Thus the total number of choices
is at most 44·|S|. For the S-identification, each member of S is in one of at most
8 · |S| locations (at a boundary or in a region), giving a total of 44·|S||S|8·|S| or at most
(4 · |S|)8·|S| choices for a particular layer.

To determine the total number of possible representations, counting over all layers,
we obtain the product of the number of sequences of visibility regions and layer order-
ings, or a total of 64h·|S| · (4 · |S|)8h·|S| which is at most (4 · |S|)O(h·|S|), as claimed. �

If we now consider all legal S-melds in Fig. 2, namely those involving dashed
edges, we obtain the following S-RVR R, for S = {s1, . . . , s6}, where identification
is indicated with equal signs:

σ1 = [�,�,�,�,�,�],
σ2 = [�,�,�,�,�,�],
σ3 = [�,�,�,�,�,�],
π1 = [d1, d2, s5, d3, d4, d5, d6 = s6, dlast],
π2 = [u1 = d1, u2 = d2, u3, d4 = s4, u4, d5, u5, u6, d6, ulast = dlast],
π3 = [u1 = d1, u3, d2, d4, u4, u5 = d5, u6 = s3, d6, ulast = dlast], and
π4 = [u1, u2, u3 = s1, u4 = s2, u5, u6, ulast].

We now establish a few useful properties that have important consequences in the
correctness of the algorithm. The following lemma is a simple consequence of the
definition of an S-RVR and Lemma 4 above.

Lemma 6 For any drawing D and set S, there is a unique S-RVR obtained by ap-
plying a maximal sequence of legal S-melds to the trivial representation derived from
D.

For convenience, we use triv(D,S) to denote the S-RVR defined in Lemma 6.
We use the fact that a visibility representation is realized by a drawing to prove

the same property for a related visibility representation. The proof of Lemma 7 is a
straightforward case analysis consisting of verifying for each S-meldable edge that
the edges and vertices realizing the remaining boundaries and endpoints realize the
newly-formed regions in the appropriate way.

Lemma 7 For any drawing D and set S, if a visibility representation is realized by
D, then any legal S-meld will result in a visibility representation that is also realized
by D.

282 Algorithmica (2008) 52: 267–292

Lemma 8 follows from Lemma 7 and the observation, made previously, that the
trivial representation is realized by D.

Lemma 8 The RVR triv(D,S) is realized by D.

In order to set up a dynamic programming recurrence, we need to demonstrate
the relationships between RVRs for Gt−1 and Gt . As Gt−1 and Gt differ by a single
vertex, we need to consider how the removal or addition of a vertex to a set S will
alter the corresponding RVR.

For our first case, we consider the situation where t is odd and x is the single vertex
in Pt \ Pt−1. Given an RVR Rt for Gt , we wish to form Rt−1 that, upon adding x

and incident edges, yields Rt . Here the set S will be Pt .
We first define the set of regions that may be altered when x is removed. These

include not only any regions that x is inside or bounds, but also the regions directly
before and after them, as the absence of x, and hence possibly any S-identified vertex
in the region formed, may render one or both of the boundaries S-meldable.

Definition 14 The extended up-neighborhood (extended down-neighborhood) of
a vertex x ∈ π� in an S-RVR R is the subsequence of visibility regions in σ� (σ�−1)
prev(R1),R1, . . . ,Rm,next(Rm) such that x bounds or is inside each region in the
sequence R1, . . . ,Rm, where prev(R1) does not exist if R1 is the first region in σ�

(σ�−1) and next(Rm) does not exist if Rm is the last region in σ� (σ�−1).
The extended neighborhood of x is a pair of subsequences, consisting of the ex-

tended up-neighborhood and the extended down-neighborhood.

In Fig. 2, the extended neighborhood of s4 is ([Q1,Q2,Q3,Q4,Q5], [R2,R3,R4]).
We now consider how the removal of x will change the extended neighborhood.

If the extended up-neighborhood is σ = [prev(R1),R1, . . . ,Rm,next(Rm)] for some
m ≥ 2, then the removal of x and all incident edges will leave a white square, as x

being S-identified guarantees that R1 through Rm are either white or only contain
edges incident on x. Similarly, if σ = [prev(R1),R1,R2,next(R2)], the white region
has its shape determined by the shapes of R1 and R2, as detailed below.

Definition 15 Given an S-RVR R= [σ1, . . . , σh−1;π1, . . . , πh], a layer �, an element
s ∈ S, and an s-identified vertex x ∈ π�, the replacement ρ(σ) of the extended up-
neighborhood (extended down-neighborhood) σ of x is defined as follows:

1. if x bounds more than two regions, then for σ = [prev(R1),R1, . . . ,Rm,next(Rm)],
ρ(σ) is formed by applying all legal (S − {s})-melds to [prev(R1),�,next(Rm)],

2. if x bounds exactly two regions, then for σ = [prev(R1),R1,R2,next(R2)], ρ(σ)

is formed by applying all legal (S − {s})-melds to [prev(R1),R,next(R2)], where
R is the white region formed by the left boundary of R1 and the right boundary of
R2; and

3. if x bounds no regions, then for σ = [prev(R),R,next(R)], ρ(σ) is formed by
applying all legal (S − {s})-melds to [prev(R),R,next(R)].

Algorithmica (2008) 52: 267–292 283

Fig. 3 Removal of s4 from
Fig. 2

In our example in Fig. 2, the replacement of the extended up-neighborhood of s4
is [�,�], as the new white square in place of Q2 through Q4 can be melded with
Q1 but not Q5, as the latter region is bounded by s3, an S-identified vertex. For the
extended down-neighborhood, the replacement is [�,�], for similar reasons.

Definition 16 Given an S-RVR R= [σ1, . . . , σh−1;π1, . . . , πh], a layer �, an element
s ∈ S, and an s-identified vertex x ∈ π�, the (S − {s})-RVR R′ = [σ ′

1, . . . , σ
′
h−1;π ′

1,

. . . , π ′
h] derived from R by removal of x is formed by first setting R′ to R and then

making the following modifications:

1. remove x from π ′
�;

2. replace the extended up-neighborhood of x by its replacement;
3. replace the extended down-neighborhood of x by its replacement; and
4. alter π ′

�+1 and π ′
�−1 to reflect the replacements in the obvious manner.

The RVR derived from the removal of s4 is defined formally as follows:

σ1 = [�,�,�,�,�],
σ2 = [�,�,�],
σ3 = [�,�,�,�,�,�],
π1 = [d1, d2, s5, d3−4, d5, d6 = s6, dlast],
π2 = [u1 = d1−4, u2, u3−4, d5, u5, u6, d6, ulast = dlast],
π3 = [u1−4 = d1, d2, d4, u5 = d5, u6 = s3, d6, ulast = dlast], and
π4 = [u1, u2, u3 = s1, u4 = s2, u5, u6, ulast].

Figure 3 illustrates an underlying drawing associated with the RVR; dashed edges
are retained to indicate why regions are black.

Now suppose t is even and x is the single vertex in Pt−1 \ Pt . Since Pt ⊂ Pt−1,
we observe that Gt−1 = Gt . We will show that for each Pt−1-RVR Rt−1 of Gt−1,
we will obtain the unique Pt -RVR Rt such that Rt represents the changes in Rt−1
that would result from x being removed from S. The key difference between this
situation and the removal of x is that x remains in the representation, perhaps as a
hidden vertex and perhaps as a revealed vertex.

We make use of the notions of extended neighborhoods, as in Definition 14, to
indicate the subsequences of visibility regions that can be altered by x being re-
moved from S. Unlike in Definition 15, where parts of the extended neighborhoods

284 Algorithmica (2008) 52: 267–292

are replaced by white regions formed by the removal of edges incident on x, here
the replacement is by black regions formed by the melding of regions and hiding of
edges incident on x.

Definition 17 Given an S-RVR R = [σ1, . . . , σh−1;π1, . . . , πh], a layer �, an ele-
ment s ∈ S, and an s-identified vertex x ∈ π�, the collapse γ (σ) of the extended
up-neighborhood (extended down-neighborhood) σ of x is formed by applying to σ

all legal (S − {s})-melds.

Again using the example in Fig. 2, the collapse of the extended up-neighbourhood of
s4 is [�,�], the former resulting from the melding of Q1 through Q4, as the bound-
aries are (S − {s4})-meldable, and the latter resulting from Q5, as its boundaries are
(S − {s4})-unmeldable due to the position of s3. The collapse of the extended down-
neighbourhood of s4 results in a white square for R2 and a black square replacing R3
and R4.

Definition 18 Given an S-RVR R= [σ1, . . . , σh−1;π1, . . . , πh], a layer �, an element
s ∈ S, and an s-identified vertex x ∈ π�, the (S − {s})-RVR R′ = [σ ′

1, . . . , σ
′
h−1;π ′

1,

. . . , π ′
h] derived from R by S-freeing x is formed by first setting R′ to R and then

making the following modifications:

1. remove the s-identification of x from π ′
�;

2. replace the extended up-neighborhood of x by its collapse;
3. replace the extended down-neighborhood of x by its collapse; and
4. alter π ′

�+1 and π ′
�−1 to reflect the replacements in the obvious manner.

In our example, the RVR derived from the S-freeing of s4 is the same as the RVR
derived from the removal of s4, though in the underlying drawing the edges asso-
ciated with s4 would be retained (as dashed edges, using the convention of our il-
lustrations). If instead we compared the removal or S-freeing of s3, we would see a
difference. In the removal of s3, the replacement of extended down-neighbourhood
[Q4,Q5,Q6] would be [�,�] since the boundary between Q4 and Q5 would be
S − {s3}-unmeldable (due to the position of s4) and the boundary between Q5 and
Q6 would be removed. However, in the S-freeing of s3, the collapse would be [�,�],
since in this case the boundary between Q5 and Q6 would be retained.

The lemmas below correlate the alterations made to RVRs with alterations made
to drawings. They form the basis of the justification of correctness of the dynamic
programming formulation.

Lemma 9 Suppose x is the single vertex in Pt−1 \ Pt and Rt−1 is a Pt−1-RVR of
Gt−1 with respect to the ordered layer assignment At−1, where x appears on layer �

in π�. Furthermore, consider the Pt -RVR Rt derived from Rt−1 by S-freeing x and
the ordered layer assignment At resulting from removing x from At−1. Then if an h-
layer plane drawing Dt−1 of Gt−1 realizes Pt−1-RVR Rt−1 (with respect to At−1),
Dt−1 is an h-layer plane drawing of Gt that realizes Rt .

Proof Since Gt−1 = Gt and Dt−1 is an h-layer plane drawing of Gt−1, clearly Dt−1
is also a plane drawing of Gt .

Algorithmica (2008) 52: 267–292 285

We observe that since Rt is formed from Rt−1 by a sequence of melds (as indi-
cated in Definition 17), Lemma 7 implies that since Dt−1 realizes Rt−1, Dt−1 also
realizes Rt . This completes the proof of the lemma. �

Lemma 10 Suppose x is the single vertex in Pt \ Pt−1 and Rt is a Pt -RVR of Gt

with respect to the ordered layer assignment At , where x appears on layer � between
p1 and p2 in π�. Furthermore, consider any Pt−1-RVR Rt−1 derived from Rt by
the removal of x and the ordered layer assignment At−1 resulting from removing x

from At . Then if an h-layer plane drawing Dt−1 of Gt−1 realizes Pt−1-RVR Rt−1,
then by adding D(x) between D(p1) and D(p2) in Dt−1 and by adding each edge
(D(x),D(y)) for y a neighbor of x in Pt−1, we form an h-layer plane drawing Dt

of Gt that realizes Rt .

Proof Since Dt−1 is planar and Dt differs from Dt−1 only in the addition of D(x)

and edges between D(x) and drawings of the neighbors of x, to prove that Dt is
a plane drawing, we need only ensure that for each neighbor y of x in G[Pt] D(x) is
visible to D(y) in Dt−1; the proof that Dt realizes Rt follows from the fact that all
edges (D(x),D(y)) are then added to form Dt .

We first observe that if the edge (D(x),D(y)) exists in Dt−1, then since Dt is
formed from Dt−1 by the addition of a vertex and incident edges, the edge will also
exist in Dt . Moreover, since Dt−1 realizes Rt−1, if (x, y) is an edge in Rt−1, then
(D(x),D(y)) is an edge in Dt−1 (and hence in Dt). As Rt−1 is derived from Rt by
the removal of x, the only edges (D(x),D(y)) that do not exist in Dt−1 are those for
which the edge (x, y) was removed in the formation of Rt−1.

To complete the proof, we need to show that if (x, y) was removed in the formation
of Rt−1, then D(x) is visible to D(y) in Dt−1. We consider separately the cases in
which x has one or more neighbors y. If x has more than one neighbor, then by
Definition 15, all neighbors of x are in a white square, and hence by Lemma 3 are
visible to x, as needed. If instead x has a single neighbor, then by Definition 15,
y is in a triangular region or a white square, and thereby visible to x, completing the
lemma. �

3.4 Fixed-Parameter Recognition Algorithm

The algorithm works by constructing a dynamic programming table, in which the
entry TABLE〈t,A,R〉 indicates whether or not it is possible to obtain a proper h-layer
plane drawing of Gt that realizes the Pt -RVR R with respect to A. The order of
evaluation is by increasing t , starting at 1 and ending at p. For fixed t , the entries can
be computed in any convenient order.

For a bag Pt , ordered layer assignment A of Pt , and Pt -RVR R with respect to A,
a necessary condition for TABLE〈t,A,R〉 to be YES is that no edges in G[Pt] violate
the conditions of a proper h-layer plane drawing. That is, we must ensure that the
drawing of G[Pt] consistent with A is itself a proper h-layer plane drawing of G[Pt];
there is only one such drawing as each vertex of the graph has its position in D fixed
by A.

We now describe how to fill in the dynamic programming table. For t = 1, the base
case of our dynamic programming recurrence, we consider all possible ordered layer

286 Algorithmica (2008) 52: 267–292

assignments of the vertices in P1. For any P1 and A such that the drawing of G[P1]
consistent with A is not a proper h-layer plane drawing, we set TABLE〈1,A,R〉 to
NO for all values of R. If instead the drawing D of G[P1] consistent with A is a
proper h-layer plane drawing, then for R = triv(D,P1) (or the trivial representation
of D, since there are no P1-meldable edges in G[P1]), we set TABLE〈1,A,R〉 to
YES, and set TABLE〈1,A,R′〉 to NO for each R′ �= R.

To define the general recurrence, we need to consider two different cases, namely
for |Pt | = w + 1 (t odd) and |Pt | = w (t even). In the first case, Pt−1 is missing
exactly one vertex that is in Pt , and the algorithm checks the single table entry defined
by removing that vertex. In the second case, Pt−1 has exactly one vertex x that is not
in Pt ; we consider only an R that can be derived from R′ by S-freeing x, where R′
is a Pt−1-RVR corresponding to a YES-entry for t − 1. Both of these tasks can be
done in constant time (for fixed h and w). In each case, we first check if the drawing
of G[Pt] consistent with A is a proper h-layer plane drawing, and if not, enter NO.
Details of the remaining steps are given below.

To compute TABLE〈t,A,R〉 for odd t , we note that |Pt | = w + 1 and |Pt−1| = w.
Let x be the single vertex in Pt \ Pt−1. The algorithm computes the ordered layer
assignment A′ formed by removing x from A and the Pt−1-RVR R′ of Gt−1 de-
rived from R by removal of x, and then sets TABLE〈t,A,R〉 to YES if and only if
TABLE〈t − 1,A′,R′〉 is YES.

To compute TABLE〈t,A,R〉 for even t , we note that |Pt | = w and |Pt−1| = w +1.
Let x be the single vertex in Pt−1 \Pt . Note that vertex x is in both Gt and Gt−1; the
only difference between these two graphs is that x �∈ Pt and hence does not appear in
the ordered layer assignment A or visibility representation R.

The algorithm determines, for each YES entry of the form TABLE〈t − 1,A′,R′〉,
the Pt -RVR R derived from R′ by S-freeing x and the ordered layer assignment A

formed by removing x from A′, and then sets TABLE〈t,A,R〉 to YES. Each other
table entry of the form TABLE〈t, ·, ·〉 is set to NO.

This concludes the description of the dynamic programming algorithm. Once we
prove the theorem below, we are justified in saying that G has a proper h-layer plane
drawing if and only if some entry TABLE〈p,∗,∗〉 is YES.

Theorem 2 The entry TABLE〈t,A,R〉 is YES if and only if R is an Pt -RVR with
respect to A that is realized by some proper h-layer plane drawing of Gt .

Proof Our proof is in two parts. We first show by induction on t that if the entry
TABLE〈t,A,R〉 is YES then it is possible to obtain a proper h-layer plane drawing of
Gt that realizes R.

Base Case In the base case of the algorithm, for each possible ordered layer as-
signment A there is at most one P1-RVR R for P1 such that TABLE〈1,A,R〉 is set
to YES. For any such A and R, the algorithm sets TABLE〈1,A,R〉 to be YES pre-
cisely when R is the trivial representation of D of G[P1] consistent with A. It follows
immediately that D is a proper h-layer plane drawing of G1 = G[P1] that realizes R.

Induction Step To complete the proof, it will suffice to show that if the entry
TABLE〈t,A,R〉 is YES, then there exists an h-layer plane drawing D that realizes R.

Algorithmica (2008) 52: 267–292 287

Case 1: t is Odd (|Pt | = w + 1) In the statement of the algorithm, TABLE〈t,A,R〉
is YES for odd t if and only if TABLE〈t − 1,A′,R′〉 is YES for A′ the ordered layer
assignment resulting from removing x ∈ Pt \ Pt−1 from A and R′ the Pt−1-RVR of
Gt−1 derived from R by removal of x. We then apply the induction hypothesis to
conclude that since TABLE〈t − 1,A′,R′〉 is YES, there must exist an h-layer plane
drawing D′ of Gt−1 that realizes R′. By Lemma 10, we can then construct a drawing
D that realizes R, as needed.

Case 2: t is Even (|Pt | = w) For even t , the algorithm sets TABLE〈t,A,R〉 to YES
if and only if R is derived from R′ by S-freeing x and A is formed from A′ by
removing x, where TABLE〈t − 1,A′,R′〉 is YES. As in the previous case, we apply
the induction hypothesis to conclude that there must exist an h-layer plane drawing
D′ of Gt−1 that realizes R′. By Lemma 9, D′ is an h-layer plane drawing of Gt that
realizes R, as needed.

We next show that if there exists an h-layer plane drawing of Gt that realizes R,
then the entry TABLE〈t,A,R〉 is YES.

Base Case Since V (G1) = P1, a particular choice of ordered layer assignment A

for P1 completely determines the formation of the RVR. In particular, a h-layer plane
drawing D of Gt realizes R precisely when R is the trivial representation of D. In
this case, by the base case of the algorithm, the associated table entry will be YES.

Induction Step We now make use of the following induction hypothesis: if there
exists an h-layer plane drawing of Gt−1 with respect to A′ that realizes R′, then the
entry TABLE〈t − 1,A′,R′〉 is YES.

Case 1: t is Odd (|Pt | = w + 1) Suppose that D is an h-layer plane drawing of Gt

that realizes R. In order to show that TABLE〈t,A,R〉 is YES, by the definition of the
algorithm, we need to show that TABLE〈t − 1,A′,R′〉 is YES, where x is the single
vertex in Pt\Pt−1, A′ is formed by removing x from A, and R′ is the Pt−1-RVR of
Gt−1 derived from R by removal of x. In order to prove that TABLE〈t − 1,A′,R′〉 is
YES, by the induction hypothesis it suffices to show that there exists an h-layer plane
drawing of Gt−1 with respect to A′ that realizes R′.

To complete this case, we will construct a drawing D′ and prove that D′ is an
h-layer plane drawing of Gt−1 with respect to A′ that realizes R′. In particular, we
form D′ from D by removing D(x) and all incident edges; since Gt−1 is a subgraph
of Gt and D is a drawing of Gt , it is not difficult to see that D′ is a h-layer plane
drawing of Gt−1. The association of edges in D′ with boundaries in R′, as required
in Definition 12, will follow from the association of edges in D with boundaries in R,
as the edges removed from D to form D′ are associated with the boundaries removed
in the replacement of the extended neighbourhood of x. Finally, by Lemma 7, the
subsequent melding will not change the fact that the resulting RVR is realized by D,
as needed to complete the proof of this case.

Case 2: t is Even (|Pt | = w) We suppose that D is an h-layer plane drawing of Gt

that realizes R, and observe that since in this case Gt = Gt−1, D is also an h-layer

288 Algorithmica (2008) 52: 267–292

plane drawing of Gt−1. We let x ∈ Pt−1\Pt and form A′ from A by adding x as in D.
To complete the proof, we need to show that there exists R′ such that D realizes R′,
apply the induction hypothesis to show that TABLE〈t − 1,A′,R′〉 is YES, and show
that R is derived from R′ by S-freeing x in order to conclude that TABLE〈t,A,R〉 is
YES, as needed.

We construct R′ by applying all legal Pt−1-melds to the trivial representation of
D, that is, R′ = triv(D,Pt−1). Since by Lemma 8 R′ is realized by D, by the in-
duction hypothesis, TABLE〈t − 1,A′,R′〉 is YES. Finally, we show that R is derived
from R′ by S-freeing x by noting that R = triv(D,Pt), since the changes due to col-
lapse consist exactly of melding edges that are Pt−1-unmeldable but Pt -meldable. �

To determine the complexity of the algorithm, we recall that the number of bags
and thus the number of table entries is O(n). Each table entry can be computed in
time depending only on h and w, and in this case w = h. Thus the total running
time is O(n). An actual drawing can be obtained by tracing back through the table in
standard dynamic programming fashion. This concludes the proof of Theorem 1.

A straightforward estimation of the constants involved in our linear-time algo-
rithms shows that the dynamic programming can be completed in time hchn for some
small c. Since the problem is NP-complete when h is not a parameter, we would
expect h to appear in the exponent, and the only possible improvement would be to
replace the h in the base of this expression by some constant. However, the cost of
finding the path decomposition on which to perform the dynamic programming dom-
inates this; it is 232h3

n. We discuss the prospects for improving this in the last section
of the paper.

4 Edge Removals, Crossings, and Other Variants

Our extensions follow from the bounded pathwidth of the variants. Consider a proper
r-planarizable h-layer graph. The h-layer planar subgraph obtained by removing the
appropriate r edges has a path decomposition of width at most h − 1 by Lemma 1.
By placing both endpoints of each of the r removed edges in each bag of the path
decomposition, we form a path decomposition of the original graph of width at most
h + 2r − 1. In a proper k-crossing h-layer drawing we can delete at most k edges to
remove all crossings. By the same argument as above we obtain the following lemma.

Lemma 11 If G is a k-crossing h-layer graph (respectively, r-planarizable h-layer
graph), then G has pathwidth at most h + 2k − 1 (respectively, h + 2r − 1).

Theorem 3 There is a f (h, r) ·n time algorithm to determine whether a given graph
on n vertices is a proper r-planarizable h-layer graph, and if so, produces a drawing.

Proof Sketch The main change to the dynamic programming algorithm described in
Sect. 3 is an additional dimension to the table representing an edge removal budget
of size at most r . The entry TABLE〈t,A,R, c〉 indicates whether or not it is possible,
by removing at most r − c edges, to obtain a proper h-layer plane drawing of Gt that
realizes Pt -RVR R with respect to ordered layer assignment A. �

Algorithmica (2008) 52: 267–292 289

Theorem 4 There is a f (h, k) ·n time algorithm to determine whether a given graph
on n vertices is a proper k-crossing h-layer graph, and if so, produces a drawing.

Proof Sketch We proceed in a fashion similar to Theorem 3. We modify the graph
representation of the previous section to include two different types of edges, black
edges not involved in crossings, and up to 2k red edges which may be involved in
crossings. We then extend the notion of a visibility representation to include end-
points of red edges in the layer orderings and the notion of legal melds to ensure that
in an RVR no red edge is inside or bounds a black region. Moreover, we allow only
RVRs in which the number of crossings of red edges is at most k.

In our algorithm, the entry TABLE〈t,A,R〉 indicates whether or not it is possible
to obtain a proper h-layer drawing of Gt that realizes a Pt -RVR R with respect to
ordered layer assignment A such that a subset of edges maps to the set of red edges
in R, where the only crossings in the graph involve red edges. We can then obtain a
solution if and only if some entry TABLE〈p,∗,∗〉 is YES.

The modification of an RVR due to the removal or S-freeing of a vertex is simi-
lar to the modification used for the h-layer plane drawing algorithm, though colors
of associated edges must be taken into account in the total count of red edges and
crossings.

The analyses of the various subroutines depends, as before, on the number of
layers, and in this case also on the number of red edges. �

Again, a straightforward estimation of the constants involved in our linear-time
algorithms shows that if s = h + 2k + 2r is the sum of the parameters, then the
dynamic programming can be completed in time scsn for some small c. The cost of
finding the path decomposition, 232s3

n, still dominates.
We now describe how the algorithms above can be modified to take into account

the directions of edges and stretch. For a downward drawing of a digraph, we can
run the algorithm on the underlying undirected graph. The only modification needed
is when we check that, for a given bag Pt and ordered layer assignment A of Pt , no
edges in the drawing of G[Pt] consistent with A violate the conditions of a proper
h-layer plane drawing. To this check we add the restriction that all edges are directed
downward; the choices of A which satisfy this restriction are a subset of the ones
checked in the undirected case.

Suppose a graph G is stretchable h-layer planar. By Lemma 1, the graph G′ (de-
fined in Sect. 2.2) has pathwidth at most h − 1. Since graphs of bounded pathwidth
are closed under edge contraction, G also has bounded pathwidth. To handle stretch
in the dynamic programming, we consider placements not only of new vertices but
also of dummy vertices. The total number of possibilities to consider at any step of the
dynamic programming is still a function only of h and w (the bag size). The bound
on the total number of dummy vertices, if used, need not be a parameter, though the
running time is multiplied by this bound.

Theorem 5 For each of the following classes of graphs, there are FPT algorithms
that decide whether or not an input graph belongs to the class, and if so, produces an
appropriate drawing, with the parameters as listed:

290 Algorithmica (2008) 52: 267–292

1. h-layer planar, k-crossing or r-planarizable graphs, (h,∞)-stretched, (a,∞)-
stretched, or (a, b)-stretched, with parameters h, k, and r ;

2. radial graphs (drawn on h concentric circles), with k crossings or r edges re-
moved, (h,∞)-stretched, (a,∞)-stretched, or (a, b)-stretched, with parameters
h, k, and r ;

3. digraph versions of the above classes such that the drawings are downward;
4. multigraph versions of the above classes, where edges can be drawn as curves;

and
5. versions of any of the above classes of graphs where some vertices have been

preassigned to layers and some vertices must respect a given partial order.

Proof Sketch These classes have bounded pathwidth, and the basic dynamic pro-
gramming scheme can be modified to deal with them. �

5 Conclusions and Open Problems

Mutzel [27] writes “The ultimate goal is to solve these [layered graph drawing] prob-
lems not levelwise but in one step”. In this paper we employ bounded pathwidth
techniques to solve many layered graph drawing problems in one step and without
the preassignment of vertices to layers.

Our algorithms should be considered a theoretical start to finding more practical
FPT results; as such, in establishing the fixed-parameter tractability of the results, we
have not attempted to optimize the running time, nor the counting in Lemma 5. In
a companion paper [11, 12] we use other FPT techniques to shed light on the case
of 2-layer drawings, obtaining better constants. Later work has examined the role of
width and drawings [7, 13, 15, 19, 30] and focused on experimental work [31] and
related problems [16].

Improving the general result might involve finding more efficient ways to compute
the path decomposition (perhaps with a modest increase in the width) for the classes
of graphs under consideration.

Another approach to laying out proper h-layer planar graphs is to use the obser-
vation that such graphs are k-outerplanar, where k = � 1

2 (h + 1)�. One could use an
algorithm to find such an embedding in O(k3n2) time [4], and then apply Baker’s
approach of dynamic programming on k-outerplanar graphs [1]. However, this ap-
proach depends heavily on planarity, and so does not appear to be amenable to allow-
ing crossings or edge deletions.

If we relax the requirement of using h layers, recent work gives an f (k) · n2 al-
gorithm for recognizing graphs that can be embedded in the plane with at most k

crossings [23]. A very similar approach would work for deleting r edges to leave a
graph planar. Unfortunately, the approach relies on deep structure theorems from the
Robertson-Seymour graph minors project, and so is even more impractical. Never-
theless, since the maximum planar subgraph problem is of considerable interest to
the graph drawing community, this should provide additional incentive to consider
FPT approaches. A very recent linear-time algorithm for this problem [25] may also
prove useful.

Algorithmica (2008) 52: 267–292 291

If we relax the requirement of planarity, we ask only if r edges can be deleted
from a DAG to leave its height at most h. This is easily solved in time O(((h + 1)

(r + 1))r + n); find a longest directed path (which cannot have length more than
(h + 1)(r + 1)), and recursively search on each of the graphs formed by deleting one
edge from this path to see if it requires only r − 1 deletions.

Acknowledgements We would like to thank the Bellairs Research Institute of McGill University for
hosting the International Workshop on Fixed Parameter Tractability in Graph Drawing, which made this
collaboration possible.

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1),
153–180 (1994)

2. Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.)
Proc. Graph Drawing: 8th Internat. Symp. (GD’00). Lecture Notes in Computer Science, vol. 1984, pp.
229–240. Springer, New York (2001)

3. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms 21, 358–402 (1996)

4. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain dis-
tance measures. Algorithmics 5, 93–109 (1990)

5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

6. Carpano, M.J.: Automatic display of hierarchized graphs for computer aided decision analysis. IEEE
Trans. Syst. Man Cybern. 10(11), 705–715 (1980)

7. Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. J. Graph. Algorithms
Appl. 8(2), 161–177 (2004)

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice-Hall, New York (1999)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
10. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N.,

Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complex-
ity of layered graph drawing. In: Meyer auf der Heide, F. (ed.) European Symposium on Algorithms,
pp. 488–499 (2001)

11. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N.,
Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach
to two-layer planarization. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Proc. 9th Internat. Symp. on
Graph Drawing (GD ’01). Lecture Notes in Computer Science, vol. 2265, pp. 1–15. Springer, New
York (2002)

12. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N.,
Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach
to two-layer planarization. Algorithmica 45(2), 159–182 (2006)

13. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing mini-
mization revisited. J. Discrete Algorithms (2007). doi:10.1016/j.jda.2006.12.008

14. Diestel, R.: Graph theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York
(2000)

15. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput.
34(3), 553–579 (2005)

16. Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing
minimization. Algorithmica 40(1), 15–31 (2004)

17. Eades, P., Whitesides, S.: Drawing graphs in two layers. Theor. Comput. Sci. 131(2), 361–374 (1994)
18. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–

403 (1994)
19. Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. J. Graph. Algorithms

Appl. 9(2), 205–238 (2005)

http://dx.doi.org/10.1016/j.jda.2006.12.008

292 Algorithmica (2008) 52: 267–292

20. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Methods
4(3), 312–316 (1983)

21. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing directed graphs. IEEE
Trans. Softw. Eng. 19(3), 214–230 (1993)

22. Gupta, A., Nishimura, N., Proskurowski, A., Ragde, P.: Embeddings of k-connected graphs of path-
width k. Discrete Appl. Math. 145(2), 242–265 (2005)

23. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302
(2004)

24. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958
(1992)

25. Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In: Proc. 39th Annual ACM
Symposium on Theory of Computing (STOC ’07), pp. 382–390. ACM Press, New York (2007)

26. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)
27. Mutzel, P.: Optimization in leveled graphs. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of

Optimization, vol. 4, pp. 189–196. Kluwer, Dordrecht (2001)
28. Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Proc. Internat. Symp. on Graph

Drawing (GD ’95). Lecture Notes in Computer Science, vol. 1027, pp. 447–458. Springer, Berlin
(1996)

29. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system struc-
tures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

30. Suderman, M.: Pathwidth and layered drawings of trees. Int. J. Comput. Geom. Appl. 14(3), 203–225
(2004)

31. Suderman, M., Whitesides, S.: Experiments with the fixed-parameter approach for two-layer pla-
narization. J. Graph. Algorithms Appl. 9(1), 149–163 (2005)

32. Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level graphs. Pap. Tech.
Group Electron. Comput. IECEJ 38, 1–12 (1977)

33. Warfield, J.N.: Crossing theory and hierarchy mapping. IEEE Trans. Syst. Man Cybern. 7(7), 505–523
(1977)

34. Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bull. Math. Biol. 48(2), 189–195
(1986)

	On the Parameterized Complexity of Layered Graph Drawing
	Abstract
	Introduction
	Preliminaries
	Graphs and Pathwidth
	Layered Graph Drawing

	Proper h-Layer Plane Drawings
	Bounded Pathwidth and Dynamic Programming
	Visibility Representations
	Reduced Visibility Representations
	Fixed-Parameter Recognition Algorithm
	Base Case
	Induction Step
	Case 1: t is Odd (|Pt| = w+1)
	Case 2: t is Even (|Pt| = w)
	Base Case
	Induction Step
	Case 1: t is Odd (|Pt| = w+1)
	Case 2: t is Even (|Pt| = w)

	Edge Removals, Crossings, and Other Variants
	Conclusions and Open Problems
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

