
Algorithmica (2008) 52: 177–202
DOI 10.1007/s00453-007-9147-x

Improved Algorithms and Complexity Results
for Power Domination in Graphs

Jiong Guo · Rolf Niedermeier · Daniel Raible

Received: 15 November 2006 / Accepted: 26 November 2007 / Published online: 7 December 2007
© Springer Science+Business Media, LLC 2007

Abstract The NP-complete POWER DOMINATING SET problem is an “electric
power networks variant” of the classical domination problem in graphs: Given an
undirected graph G = (V ,E), find a minimum-size set P ⊆ V such that all vertices
in V are “observed” by the vertices in P . Herein, a vertex observes itself and all its
neighbors, and if an observed vertex has all but one of its neighbors observed, then
the remaining neighbor becomes observed as well. We show that POWER DOMINAT-
ING SET can be solved by “bounded-treewidth dynamic programs.” For treewidth
being upper-bounded by a constant, we achieve a linear-time algorithm. In partic-
ular, we present a simplified linear-time algorithm for POWER DOMINATING SET

in trees. Moreover, we simplify and extend several NP-completeness results, par-
ticularly showing that POWER DOMINATING SET remains NP-complete for planar
graphs, for circle graphs, and for split graphs. Specifically, our improved reductions
imply that POWER DOMINATING SET parameterized by |P | is W[2]-hard and it can-
not be better approximated than DOMINATING SET.

A preliminary version of this paper appears in the proceedings of the 15th International Symposium
on Fundamentals of Computation Theory (FCT’05), vol. 3623 in LNCS, pp. 172–184, Springer
(2005). Work supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4. Significant portions of this work were done
while all authors were affiliated with the Universität Tübingen.

J. Guo (�) · R. Niedermeier
Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: guo@minet.uni-jena.de

R. Niedermeier
e-mail: niedermr@minet.uni-jena.de

D. Raible
Abteilung Informatik/Wirtschaftsinformatik, Fachbereich IV, Universität Trier, 54286 Trier, Germany
e-mail: raible@uni-trier.de

mailto:guo@minet.uni-jena.de
mailto:niedermr@minet.uni-jena.de
mailto:raible@uni-trier.de

178 Algorithmica (2008) 52: 177–202

Keywords Design and analysis of algorithms · Computational complexity ·
Parameterized complexity · Fixed-parameter algorithms · Graph algorithms · Graphs
of bounded treewidth · (Power) domination in graphs

1 Introduction

Domination is a central theme in graph theory [22–24]. The basic problem is: given
an undirected graph G = (V ,E), determine a minimum-size vertex set D ⊆ V such
that each vertex v is contained in D or v is a neighbor of at least one vertex in D.
The corresponding decision problem DOMINATING SET (DS) is NP-complete and
W[2]-complete [16, 30]. Unless NP-hard problems have slightly superpolynomial-
time algorithms, DOMINATING SET is not polynomial-time approximable better
than �(log |V |) [17]. Numerous variations of DOMINATING SET exist. For instance,
CONNECTED DOMINATING SET—which recently has received particular interest for
routing in ad-hoc networks [2]—additionally requires that the dominating set D in-
duces a connected subgraph of G. Opposite to DOMINATING SET, CONNECTED

DOMINATING SET carries some form of non-locality: the correctness of the con-
nected dominating set cannot be decided by locally checking every direct neighbor-
hood. In this work, we study another “non-local” variant of domination which appears
in electric power networks [12, 21]—POWER DOMINATING SET (PDS). This variant
is motivated by monitoring an electric power network, where one is asked to place a
minimum number of so-called phase measurement units (PMU) at some locations in
the system to measure the state variables (for example, the voltage magnitude). Since
the monitoring PMU devices are expensive, to save costs one naturally comes to the
minimization problem modelled by PDS.

Intuitively, in comparison with CONNECTED DOMINATING SET we have a more
complex degree of non-locality in PDS. Whereas CONNECTED DOMINATING SET

only refers to a property of the solution set, PDS has the non-locality in its domination
mechanism: A vertex may dominate vertices at arbitrary distance when certain con-
ditions are fulfilled. For DS, we have one “observation rule” concerning vertices in
the dominating set: these vertices observe (dominate) themselves and all their neigh-
bors (and nothing else). The goal is to get all vertices observed by a minimum number
of observers. By way of contrast, we have an additional observation rule in the case
of PDS. This rule says that for an already observed vertex whose all but one neigh-
bors are already observed, the one remaining neighbor becomes observed as well.1

Note that the second observation rule brings in non-locality. The graph-theoretical
and algorithmic study of PDS was initiated by Haynes et al. [21] and has been further
pursued for special cases [12, 15, 29]. Haynes et al. showed that PDS is NP-complete
for general graphs as well as for bipartite and chordal graphs. Moreover, they pre-
sented a linear-time algorithm to solve PDS in trees. We improve on their results in
the following ways.

1This is motivated by Kirchhoff’s law in electrical network theory. The original definition of Haynes et
al. [21] is a bit more complicated and the equivalent definition presented here is due to Kneis et al. [27].

Algorithmica (2008) 52: 177–202 179

• We present simplified and “stronger” NP-completeness proofs, (reduction from
DOMINATING SET instead of reduction from 3-SATISFIABILITY), giving all re-
sults of Haynes et al. in a significantly simplified way and additionally implying
NP-completeness also for planar graphs, circle graphs, and split graphs. More-
over, our simple reductions preserve parameterized complexity [16, 18, 30] and
polynomial-time approximability [7, 35]. So we can conclude that, in case of gen-
eral graphs, PDS is W[2]-hard and it is only �(log |V |)-approximable unless un-
likely collapses in structural complexity theory occur.2

• We present a simpler linear-time algorithm for PDS in trees than the one presented
by Haynes et al. [21].

• We develop a concrete dynamic programming algorithm for PDS in graphs of
bounded treewidth, answering an open question of Haynes et al. [21]. In fact, for
treewidth being upper-bounded by a constant this gives a linear-time algorithm
for PDS. To this end, a crucial contribution is the introduction of the concept of
“valid orientations” of undirected graphs. Independently, fixed-parameter tractabil-
ity with respect to parameter treewidth was also shown by Kneis et al. [27] using
descriptive complexity tools. They express PDS in monadic second-order logic,3

which implies algorithms of highly super-exponential running time. In contrast,
we develop a direct algorithm for PDS which can be described and analyzed by
standard means without the “unimplemented” formalism of monadic second-order
logic that implicitly contains a huge overhead. Moreover, our new concept of valid
orientations allows for concrete studies of PDS in further contexts such as directed
graphs [1].

Let us return to the issue of non-locality. Demaine and Hajiaghayi [13], answering
an open question from Alber et al. [3], showed that CONNECTED DOMINATING SET

can be solved by bounded-treewidth dynamic programs. It was not believed before [3]
that such non-local properties as “connectedness” could be captured in this way. In
case of PDS, the “even worse” degree of non-locality appears to make things still
harder. Nevertheless, a concrete dynamic programming solution can be found as we
demonstrate here. Finally, a somewhat different contribution of this work is to initiate
the comparison between classical DS and PDS in terms of algorithmic complexity (to
some extent already taken up by Aazami and Stilp [1] in terms of polynomial-time
approximability). In particular, Table 1 in Sect. 3 leads to several issues for future
research.

2 Preliminaries

We assume basic familiarity with fundamental concepts of algorithmics and graph
theory. All graphs G = (V ,E) in this work are simple and without self-loops.
With V (G) and E(G), we denote the vertex set V and the edge set E of a graph G =

2Basically the same reduction was independently found by Kneis et al. [27]. Independently, Liao and
Lee [29] also have shown the NP-completeness of PDS on split graphs by giving a reduction from 3SAT.
3This confirmed a conjecture made by Petr Hliněný in a discussion with Peter Rossmanith and Rolf Nie-
dermeier at the IWPEC 2004 meeting in Bergen, Norway, September 2004.

180 Algorithmica (2008) 52: 177–202

(V ,E), respectively. For a vertex v in graph G, we denote by NG(v) the open neigh-
borhood of v in G. By NG[v], we refer to the closed neighborhood of v. This nat-
urally generalizes to NG(U) and NG[U] for U being a set of vertices. A subgraph
of G induced by a vertex subset V ′ ⊆ V is denoted by G[V ′].

For notions concerning approximation algorithms we refer to [7, 35], for parame-
terized complexity we refer to [16, 18, 30], and for NP-completeness theory we refer
to the classic of Garey and Johnson [19].

To define power domination in graphs, we use two (simplified) observation rules
due to Kneis et al. [27].

• Observation Rule 1 (OR1): A vertex in the power domination set observes itself
and all of its neighbors.

• Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is adjacent
to d − 1 observed vertices, then the remaining unobserved neighbor becomes ob-
served as well.

In this way, we arrive at the definition of the central problem of this work:

POWER DOMINATING SET (PDS)
Input: An undirected graph G = (V ,E) and an integer k ≥ 0.
Question: Is there a set P ⊆ V with |P | ≤ k which observes all vertices in V

with respect to the two observation rules OR1 and OR2?

Herein, P is called a power dominating set of G. The classical DOMINATING SET

(DS) problem can be defined by simply omitting OR2. The following lemma is due
to Haynes et al. [21].

Lemma 1 [21, Observation 4] If G is a connected graph with at least one vertex of
degree three or higher, then there is always a minimum power dominating set which
only contains vertices with degree at least three.

Haynes et al. [21] also showed that, given an arbitrary power dominating set P for
a connected graph with at least one vertex of degree three or higher, one can construct
in linear time a power dominating set P ′ with |P ′| ≤ |P | such that P ′ only contains
vertices with degree at least three.

The following property of a minimum power dominating set will be used by the
dynamic programming algorithm in Sect. 4.2.2.

Lemma 2 Given a connected graph G = (V ,E) with |V | > 2, there always exists
a minimum power dominating set P of G such that, for each vertex u ∈ P , |N(u) \
N [P \ {u}]| ≥ 2.

Proof Given a vertex set P and a vertex u ∈ P , let N(u,P) := N(u)\N [P \{u}] and
use α(P) to denote the number of the vertices u ∈ P with |N(u,P)| ≤ 1. We prove
the lemma by showing that each minimum power dominating set P with α(P) ≥ 1
can be transformed into a new minimum power dominating set P ′ with α(P ′) =
α(P) − 1.

Algorithmica (2008) 52: 177–202 181

Let u ∈ P with |N(u,P)| ≤ 1. Due to Lemma 1 we can assume that |N(u)| ≥ 3.
First, we show that u /∈ N(P \ {u}). Suppose that this is not true. Then N [u] is ob-
served by P \ {u}: in the case |N(u,P)| = 0, this is clear; in the case |N(u,P)| = 1,
apply once OR2 to u. This implies that P \ {u} is a power dominating set as well, a
contradiction to the minimality of P .

Next, we show that there exists a vertex v ∈ N(u) with |N(v) \ N [P \ {u}]| ≥ 2.
Suppose that this is not true. From u /∈ N(P \ {u}), we conclude that N(v) \ N [P \
{u}] ⊆ {u} for all v ∈ N(u). In both bases, |N(u,P)| = 0 and |N(u,P)| = 1, we can
find a vertex v ∈ N(u) that is observed by P \ {u}, and the vertices in N [v], with the
only exception of u, are observed by P \ {u} as well. Then, u gets observed by ap-
plying OR2 to v. If |N(u,P)| = 1, then another application of OR2 to u makes N [u]
observed. This means that P \ {u} is a power dominating set, again a contradiction to
the minimality of P .

After all, we can assume that there exists a vertex v ∈ N(u) with |N(v) \ N [P \
{u}]| ≥ 2. Then, we can construct a new power dominating set for G by setting P ′ :=
P ∪ {v} \ {u}. Note that v has at least two neighbors outside of N [P ′ \ {v}], one of
them being u. This completes the proof of the lemma. �

The central concept of this work are tree decompositions of graphs and their use
with respect to dynamic programming as, e.g., described in [8, 9, 26, 32].

Definition 1 Let G = (V ,E) be a graph. A tree decomposition of G is a pair 〈{Xi :
i ∈ I }, T 〉, where each Xi is a subset of V , called a bag, and T is a tree with the
elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V ;
2. for every edge {u,v} ∈ E, there is an i ∈ I such that {u,v} ⊆ Xi ;
3. for all i, j, k ∈ I , if j lies on the path between i and k in T , then Xi ∩ Xk ⊆ Xj .

The width of 〈{Xi : i ∈ I }, T 〉 equals max{|Xi | : i ∈ I }− 1. The treewidth of G is the
minimum k such that G has a tree decomposition of width k.

The third property is called the consistency property of tree decompositions. By
this definition, a tree is nothing but a graph with treewidth one. To simplify the de-
velopment of dynamic programs we consider tree decompositions with a particularly
simple structure:

Definition 2 A tree decomposition 〈{Xi : i ∈ I }, T 〉 is called nice if T is rooted and
the following conditions are satisfied:

1. Every node of the tree T has at most 2 children.
2. If a node i has two children j and k, then Xi = Xj = Xk (in this case i is called a

JOIN NODE).
3. If a node i has one child j , then one of the following holds:

(1) |Xi | = |Xj | + 1 and Xj ⊂ Xi (in this case i is called an INTRODUCE NODE),
(2) |Xi | = |Xj | − 1 and Xi ⊂ Xj (in this case i is called a FORGET NODE).

Every tree decomposition can be efficiently transformed into a nice tree decompo-
sition:

182 Algorithmica (2008) 52: 177–202

Fig. 1 An example of the
reduction from DS to PDS in
the proof of Theorem 1. The
vertices in V1 are drawn white

Lemma 3 [26, Lemma 13.1.3] Given a graph G = (V ,E) together with an O(|V |)-
nodes width-k tree decomposition, one can find in O(|V |) time a nice tree decompo-
sition of G that also has width k and O(|V |) nodes.

In Sect. 3, we consider the following three graph classes.

Definition 3 A graph G is chordal if each cycle in G of length at least four has at
least one chord. A chord of a cycle is an edge between two vertices of the cycle that
is not an edge of the cycle.

A graph G is a circle graph if G is the intersection graph of chords in a cycle.
A graph G is a split graph if there is a partition of its vertex set into a clique and

an independent set.

We refer to Brandstädt et al. [11] for a survey on graph classes.

3 Complexity Results

Haynes et al. [21] showed the NP-completeness of PDS by giving a reduction from
3-SAT. This also gives that PDS remains NP-complete when the input graph is bipar-
tite or chordal. As DS is the same as PDS without applying OR2, a natural question
arises: does OR2 make PDS more difficult to solve than DS? Intuitively, one would
say yes due to the non-locality of this rule. In this section, we give some first evidence
for this intuition, that is, we show, for general graphs, that PDS is at least as hard to
solve as DS by reducing DS to PDS. We remark that our reduction from DS to PDS is
much simpler than the one from 3-SAT to PDS. Moreover, our reduction implies the
NP-completeness of PDS also in case of bipartite, chordal, circle, and planar graphs.
Polynomial-time inapproximability and parameterized intractability results for DS
transfer to PDS along the same lines.

Theorem 1 POWER DOMINATING SET is NP-complete in bipartite, chordal, circle,
and planar graphs.

Proof Since it can be easily decided whether a vertex set P is a power dominating
set, PDS is in NP. To show NP-hardness, we give a reduction from DS.

Given a DS-instance with G = (V ,E) and the parameter k, we construct a PDS-
instance with G′ = (V ∪ V1,E ∪ E1) and the same parameter k: attach newly intro-
duced degree-one vertices to all vertices from V . Figure 1 illustrates this transforma-
tion.

Algorithmica (2008) 52: 177–202 183

Let D be a dominating set of G. We show that D is a power dominating set of G′.
By definition, all vertices from V are observed by OR1. Applying OR2 to every ver-
tex in V , the vertices in V1 become observed as well. Thus, D is a power dominating
set of G′.

If G′ has a power dominating set P , then we can assume due to Lemma 1 that
each vertex of P has degree at least three. This implies that P ∩ V1 = ∅. In order to
observe a vertex v ∈ V1, OR1 or OR2 has to be applied to v’s only neighbor u ∈ V .
This means that either u ∈ P or u’s neighbors in G cannot be observed by applying
OR2 to u. Hence the vertices in V \ P must be observed by applying OR1 to one of
their neighbors in G. This means that P is a dominating set for G.

It is easy to verify that the reduction preserves the graph properties “bipartite,”
“chordal,” “circle,” and “planar.” Hence, the NP-completeness of PDS follows from
the NP-completeness of DS for bipartite graphs [14], chordal graphs [10], circle
graphs [25], and planar graphs [19]. �

The reduction in the proof of Theorem 1 was independently achieved by Kneis et
al. [27]. Observe that it is a gap-preserving as well as a parameterized reduction. This
implies that all negative results with respect to the approximability and parameterized
tractability with respect to the solution size for DS also are valid for PDS. As a con-
sequence, it is hard to polynomial-time approximate PDS better than �(log |V |) [17]
and PDS is W[2]-hard with the size of the power dominating set as parameter [16].

Next, we show that PDS is NP-complete in split graphs.4 The reduction is from the
NP-complete VERTEX COVER problem [19]: Given an undirected graph G = (V ,E)

and an integer k ≥ 0, is there a set C ⊆ V with |C| ≤ k such that each edge has at
least one endpoint in C?

Theorem 2 POWER DOMINATING SET is NP-complete in split graphs.

Proof For a VERTEX COVER instance with graph G = (V ,E), we construct a split
graph G′ from G as follows. For each edge e = {u,v} ∈ E we add a new vertex we

and two edges between we and u and between we and v to G. We denote the set of the
vertices we by VE . Moreover, we introduce for each vertex v ∈ V a new degree-one
vertex v′ and an edge between v and v′. The set of these vertices is denoted by V1.
Finally, we complete the graph induced by V into a clique. Note that the subgraph
of G′ induced by the vertices in VE ∪ V1 is an independent set. Thus, G′ is a split
graph. See Fig. 2 for an example. We claim that G has a vertex cover of size k iff G′
has a power dominating set of size k. The proof of the claim uses a similar argument
as in the proof of Theorem 1 [31]. �

In summary, Table 1 compares the computational complexity of PDS and DS. By
means of Theorems 1 and 2 we now have established NP-completeness results for

4A reduction from 3SAT to PDS in split graphs has been described by Liao and Lee [29]. Note that
the reduction given in the proof of Theorem 2 is a gap-preserving reduction. This implies that PDS is
MaxSNP-hard in split graphs which does not follow from the previous results [29].

184 Algorithmica (2008) 52: 177–202

Fig. 2 An example of the
reduction from VERTEX COVER

to PDS in the proof of
Theorem 2. The vertices in VE

and V1 are drawn grey and
white, respectively

Table 1 The first column is taken from Kratsch [28]. Partial k-trees are the same as graphs of treewidth k;
the linear-time result for partial k-trees with fixed k is shown in Sect. 4. The result for interval graphs is
due to Liao and Lee [29]. Empty entries mean that this has not been studied yet

Graph classes DOMINATING SET POWER DOMINATING SET

Bipartite NP-complete NP-complete

Chordal NP-complete NP-complete

Circle NP-complete NP-complete

Comparability NP-complete NP-complete

Planar NP-complete NP-complete

Split NP-complete NP-complete

AT-free Poly. time

Cocomparability Poly. time

Distance hereditary Poly. time

Dually chordal Linear time

Interval Poly. time Poly. time

k-polygon (k ≥ 3) Poly. time

Partial k-tree (k ≥ 1) Linear time Linear time

Permutation Linear time

Strongly chordal Poly. time

PDS on all graph classes where NP-completeness is listed for DS by Kratsch [28].5

Liao and Lee [29] showed that PDS is polynomial-time solvable in interval graphs.

4 Dynamic Program for Graphs of Bounded Treewidth

We have seen in the previous section that PDS is W[2]-hard with respect to the para-
meter k denoting the size of the power dominating set. This means that, in general,
there is basically no hope for an algorithm solving PDS in f (k) · nO(1) time, that
is, restricting the combinatorial explosion only to the parameter k (herein, f (k) is a
computable function only depending on the parameter k and may be exponentially
growing or even worse). By way of contrast, only trivial nO(k) algorithms seem fea-

5Note that the class of comparability graphs is a superclass of the class of bipartite graphs [11]. The NP-
completeness of PDS for this graph class directly follows from the NP-completeness of PDS for bipartite
graphs.

Algorithmica (2008) 52: 177–202 185

PDS-TREES

Input: Rooted tree T with r denoting the root
Output: Minimum power dominating set P

1 Sort the inner nodes of T in a list L according to a post-order traversal of T ;
2 while L = {r} do
3 v ← the first node in L; L ← L \ {v};
4 if v has at least two unobserved children then
5 P ← P ∪ {v};
6 Exhaustively apply the two observation rules to T ;
7 end if
8 end while
9 if r is unobserved then
10 P ← P ∪ {r};
11 end if
12 return P

Fig. 3 Algorithm to compute a minimum power dominating set of a tree

sible for PDS. Hence, the natural question arises whether we can restrict the combi-
natorial explosion to other useful parameters. In fact, we show here that we can do
so. More specifically, we show that PDS can be solved in f (k) · n time when k de-
notes the treewidth of the underlying graph. In other words, PDS is fixed-parameter
tractable with respect to treewidth. Our main result in the following is to show that,
when given a tree decomposition of bounded width for the underlying graph, PDS
can be solved in linear time. To this end, we develop a concrete dynamic program
using tree decompositions of graphs (Sect. 4.2). Before that, we start with the sim-
ple special case of trees (Sect. 4.1). These results improve previous results from the
literature [21, 27].

4.1 Trees

Haynes et al. [21] gave a linear-time algorithm for PDS in trees. As a warm-up for
our algorithm working on graphs of bounded treewidth, we start with a much simpler
linear-time algorithm for these “treewidth-one graphs.” Without loss of generality,
we assume that the input tree T is rooted at a degree-one vertex r and the depth of a
vertex v is defined as the length of the path between v and r . The algorithm follows
a bottom-up strategy, see Fig. 3.

Theorem 3 Algorithm PDS-Trees from Fig. 3 solves POWER DOMINATING SET in
trees in linear time.

Proof First, we prove that the output P of Algorithm PDS-Trees is a power domi-
nating set. The proof is based on an induction on the depth of the vertices u in T ,
denoted by depth(u). Note that the proof works top-down whereas the algorithm
works bottom-up. For depth(u) = 0, it is clear that u which is r is observed due
to the “if”-condition on line 9 of Algorithm PDS-Trees. Suppose that all vertices u

186 Algorithmica (2008) 52: 177–202

with depth(u) < k with k > 0 are observed. Consider a vertex u with depth(u) = k

which is a child of the vertex v. If v ∈ P , then u is observed; otherwise, due to the
induction hypothesis, v is observed. Moreover, if depth(v) ≥ 1, then v’s parent is ob-
served as well. Because of the “if”-condition on line 4 of Algorithm PDS-Trees, v is
not in P only if v has at most one unobserved child during the “while”-loop (line 2) of
Algorithm PDS-Trees processing v. If vertex u is this only unobserved child, then it
gets observed by applying OR2 to v, because v itself and all its neighbors (including
v’s parent and its children) with the only exception of u are observed by the vertices
in P . In summary, we conclude that all vertices in T are observed by P .

Next, we prove the optimality of P by showing a more general statement:

Claim Given a rooted tree T = (V ,E) with root r , Algorithm PDS-Trees outputs a
power dominating set P such that |P ∩ Vu| ≤ |Q ∩ Vu| for any optimal solution Q of
PDS for T and any tree vertex u, where Vu denotes the vertex set of the subtree of T

rooted at u.

Proof of the Claim We use Tu = (Vu,Eu) to denote the subtree of T rooted at ver-
tex u. Let l denote the depth of T , that is, l := maxv∈V {depth(v)}. For each ver-
tex u ∈ V , we define pu := |P ∩ Vu| and qu := |Q ∩ Vu|. We use an induction on
the depth of tree vertices to prove the claim, starting with the maximum depth l and
proceeding to 0.

Since vertices u with depth(u) = l are leaves and Algorithm PDS-Trees adds no
leaf to P , then we have pu = 0 and thus pu ≤ qu for all u with depth(u) = l.

Suppose that pu ≤ qu holds for all u with depth(u) > k with k < l. Consider a
vertex u with depth(u) = k. Let Cu denote the set of u’s children. Then, for all v ∈ Cu,
by the induction hypothesis, we have pv ≤ qv . In order to show pu ≤ qu, we only have
to consider the case that

(a) u ∈ P, (b) u /∈ Q, and (c)
∑

v∈Cu

pv =
∑

v∈Cu

qv. (1)

In all other cases, pu ≤ qu always holds. In the following, we will show that this case
does not apply. We assume that u = r . The argument works also for u = r .

From (c) and, for all v ∈ Cu, pv ≤ qv (induction hypothesis), we know that pv =
qv for all v ∈ Cu. Moreover, (a) is true only if u has two unobserved children v1 and v2
during the “while”-loop of Algorithm PDS-Trees processing u (the “if”-condition on
line 4). In other words, this means that vertices v1 and v2 are not observed by the
vertices in (P ∩Vu) \ {u}. In the following, we show that u has to be included in Q in
order for Q to be a valid power dominating set. To this end, we need the following:

∀x ∈ (Q ∩ Vvi
), 1 ≤ i ≤ 2 : ∃x′ ∈ W(vi,x) : x′ ∈ P (2)

where W(vi,x) denotes the path between vi and x (including vi and x).
Without loss of generality we consider only i = 1. Assume that predicate (2) is

not true for a vertex x ∈ Q ∩ Vv1 . Since x /∈ P , we can infer that px < qx . Since no
vertex from W(v1,x) is in P and, by induction hypothesis, py ≤ qy for all y ∈ Vv1 ,
it follows that px′ < qx′ for all vertices x′ ∈ W(v1,x), in particular, pv1 < qv1 . This

Algorithmica (2008) 52: 177–202 187

contradicts the fact that pvi
= qvi

for all of u’s children vi . Thus, we have shown that
predicate (2) is true.

By predicate (2), for each vertex x ∈ Q ∩ Vvi
(i ∈ {1,2}), there exists a vertex

x′ ∈ P on the path W(vi,x). Thus, if vertex vi is observed by a vertex x ∈ Q∩Vvi
, then

there is a vertex x′ ∈ P ∩W(vi,x) that observes vi . However, (a) in (1) is true only if v1
and v2 are unobserved by the vertices in P ∩Vv1 and P ∩Vv2 . Altogether, this implies
that v1 and v2 cannot be observed by the vertices in Q∩Vv1 and Q∩Vv2 . Since Q is
a solution for PDS in T , we have to take u into Q; otherwise, u has two unobserved
neighbors v1 and v2. OR2 can never be applied to u whatever vertices from V \Vu are
in Q. We can conclude that the case that u ∈ P , u /∈ Q, and

∑
v∈Cu

pv = ∑
v∈Cu

qv

does not apply. This completes the proof of the claim. �

Concerning the running time, we explain how to implement the exhaustive ap-
plication of OR1 and OR2 (line 6 in Fig. 3). Observe that, if OR2 is applicable to
a vertex u during the bottom-up process, then all vertices in Tu can be observed at
the current stage of the bottom-up process. In particular, after adding vertex u to P ,
all vertices in Tu can be observed. Thus, exhaustive application of OR1 and OR2 to
the vertices of Tu can be implemented as pruning Tu from T which can be done in
constant time. Next, consider the vertices in V \ Vu. After adding u to P , the only
possible application of OR1 is that u observes u’s parent v. Moreover, we check the
applicability of OR2 to the vertices x lying on the path from u to r , in the order of
their appearance, the first v, and the last r . As long as OR2 is applicable to a ver-
tex x on this path, we delete x from the list L that is defined in line 1 of Algorithm
PDS-Trees, and prune Tx from T .

The linear running time of the algorithm is then easy to see: The vertices to which
OR2 is applied are removed from the list L immediately after the application of OR2
and are never processed by the instruction in line 3 inside the “while”-loop (Fig. 3).
With proper data structures such as integer counters storing the number of observed
neighbors of a vertex, the application of the observation rules to a single vertex can be
done in constant time. Post-order traversal of a rooted tree is clearly doable in linear
time. �

4.2 Graphs of Bounded Treewidth

Our linear-time algorithm for graphs of bounded treewidth—assuming that the corre-
sponding tree decomposition is given—uses basically the same strategy as the algo-
rithms for DS [3, 6, 33, 34], that is, bottom-up dynamic programming from the leaves
to the root. In the following, we demonstrate that there are two difficulties associated
with OR2 that make PDS “harder” than DS and which cannot be solved by a simple
modification of the algorithms for DS.

First, with OR2, there are more possibilities for a vertex to be observed. More
precisely, the application of OR2 implies that there is a certain “observation depen-
dency” between two vertices, that is, one vertex not in the power dominating set that
becomes observed can make one of its neighbors observed. This observation depen-
dency does not exist in DS. There, the domination status of one vertex that is not in
the dominating set has no effect on the domination status of other vertices. There-
fore, in order to describe this observation dependency in the dynamic programming,

188 Algorithmica (2008) 52: 177–202

the three states defined in the algorithms for DS for the vertices in a bag, namely,
“belonging to the dominating set,” “already dominated at the current bag,” and “not
yet dominated at the current bag,” are not sufficient. Second, only introducing further
vertex states cannot settle the problem with the observation dependency. For exam-
ple, assume that one defines the following additional state for the vertices in a bag:
“already observed at the current bag by applying OR2 to one of its neighbors.” Then,
there could emerge a “cycle of observation dependencies” as follows: Considering
a simple cycle as the input graph, one might assign the new state “observed due to
OR2” to each vertex of the cycle. This is “locally correct” but globally it is false
because the reasoning is done in a circular fashion without “global justification.”

Our answer to these two difficulties is to define, in addition to the vertex states,
three states for the edges in the subgraph induced by the vertices in a bag. In fact,
these states give one of three possible orientations to an undirected edge {u,v}, ori-
enting it from u to v, orienting it from v to u, or leaving it unoriented. These orienta-
tions express observation dependencies.

4.2.1 Valid Orientations of Undirected Graphs

In the following, we define the orientations.

Definition 4 An orientation of an undirected graph G = (V ,E) is a graph D =
(V ,E1∪̇E2) such that, for each {u,v} ∈ E, there is either a directed edge (u, v)

or (v,u) in E1 or an undirected edge {u,v} in E2. The indegree of a vertex v in D,
denoted by d−(v), is defined as |{(u, v) : (u, v) ∈ E1}| and the outdegree of v, de-
noted by d+(v), as |{(v,u) : (v,u) ∈ E1}|. The subgraph D[V ′] induced by V ′ ⊆ V

in D is called a suborientation.

Note that in the standard graph theory literature, an orientation of an undirected
graph G is a directed graph D where there is exactly one of (u, v) and (v,u) in D

for each edge {u,v} in G. Here, we abuse the term orientation to denote a graph
that results from orienting only a subset of edges. A directed edge (u, v) is called an
outgoing edge for u and an incoming edge for v.

Definition 5 A dependency path in an orientation D = (V ,E1 ∪ E2) is a sub-
graph of D consisting of a sequence of vertices and edges v1, e1, v2, e2, . . . , ei−1, vi

with i ≥ 3, satisfying:

1. for all 1 ≤ j, k ≤ i, vj = vk ⇔ j = k,
2. for all 1 ≤ j ≤ i − 1, either ej = (vj , vj+1) ∈ E1 or ej = {vj , vj+1} ∈ E2,
3. and for all 1 ≤ j ≤ i − 1, at least one of ej and ej+1 is from E1.

The vertices v1 and vi are called the tail endpoint and the head endpoint of the de-
pendency path, respectively. A dependency cycle in an orientation is a dependency
path with an edge between vi and v1 which can be undirected only if (v1, v2) ∈ E1
and (vi−1, vi) ∈ E1; otherwise, it is directed. A directed path is a dependency path
with only directed edges.

Observe that a dependency path contains at least one directed edge.

Algorithmica (2008) 52: 177–202 189

Fig. 4 An example of a valid
orientation D of an undirected
graph G. The origin O of D

contains only one vertex,
marked with a rectangular box

Definition 6 A valid orientation D = (V ,E1 ∪ E2) of an undirected graph G =
(V ,E) is an orientation such that

1. ∀v ∈ V : (d−(v) ≤ 1) and (d−(v) = 1 ⇒ d+(v) ≤ 1),
2. and there is no dependency cycle in D.

We call the set of vertices with d−(v) = 0 the origin of D.

Note that each graph is a valid orientation of itself. See Fig. 4 for an example
of a valid orientation. Note that one can decide in O(|E1 ∪ E2|) time by depth-first
search whether an orientation D is valid and, if so, find the origin of D. The following
lemma is also easy to show.

Lemma 4 Let D = (V ,E1 ∪E2) denote a valid orientation of an undirected graph G

with origin O ⊆ V .

1. For each vertex v ∈ V \ O , there is exactly one directed path from the vertices
in O to v.

2. Two directed paths from O to two vertices in V \ O are vertex-disjoint with the
possible exception of their tail endpoints in O .

Proof (1) First, we show that there is at least one directed path from a vertex in O

to v /∈ O . By Definition 6 we have d−(v) = 1 with (u, v) denoting this edge. If u ∈ O ,
then edge (u, v) is the desired path; otherwise, u /∈ O and d−(u) = 1. Again, we apply
the above argument to u. Since graph G contains a finite number of vertices and there
is no dependency cycle, there has to be a vertex x ∈ O with a directed path from x

to v. We denote this path as W .
The uniqueness of path W follows from the fact that, with the only exception of

the tail in O , each vertex on this path has an indegree of exactly one.
(2) A directed path from a vertex in O to a vertex in V \ O cannot pass through

a vertex in O due to Definition 6. Two directed paths crossing at a vertex u ∈ V \ O

would imply d−(u) > 1 or d+(u) > 1 which is not allowed by Definition 6. This
completes the proof. �

With the notations given above, we can introduce the following central orientation
problem.

190 Algorithmica (2008) 52: 177–202

Fig. 5 An example illustrating
the proof of “⇐” of Theorem 4.
Here, we assume that a
dependency cycle is already
built using three directed paths

VALID ORIENTATION WITH MINIMUM ORIGIN (VOMO)
Input: An undirected graph G = (V ,E) and an integer k ≥ 0.
Question: Is there a vertex subset O ⊆ V with |O| ≤ k such that G has a valid
orientation with O as origin?

The following theorem shows that this orientation problem is a reformulation of
PDS. This new problem formulation will be a decisive technical tool for our dynamic
programming strategy to be described in Sect. 4.2.2.

Theorem 4 An undirected graph G has a power dominating set P iff G has a valid
orientation with P as origin.

Proof “⇐”: Having a valid orientation D of G with O ⊆ V as the origin, we show
by contradiction that O is a power dominating set of G. See Fig. 5 for an illustration.
Suppose that O is not a power dominating set. Then, there is a vertex v ∈ (V \ O)

which is not observed by O . Since D is a valid orientation, there is a directed path p1

from a vertex in O to v (Lemma 4). Assume without loss of generality that v is the
first unobserved vertex on p1. Let u denote the predecessor of v on p1. Vertex u

cannot be in O; otherwise v would be observed by OR1. Since u is observed and
OR2 cannot be applied to u to observe v, there is another neighbor of u, denoted
by w, which is not observed by O . Moreover, there is also a directed path p2 in D

from a vertex in O to w. Due to Lemma 4, p1 and p2 should be vertex-disjoint with
the possible exception of their tail endpoints in O . Let x denote the first unobserved
vertex on p2. By applying the above argument now to x, vertex y which is x’s prede-
cessor on p2 has an unobserved neighbor z = x and there is a directed path p3 from
a vertex in O to z. Paths p1, p2, and p3 are pairwise vertex-disjoint ignoring their
tail endpoints in O . We apply this argument further to the first unobserved vertex
on p3 and so on. Since V is finite, we will encounter a vertex on one of the already
considered paths p1,p2,p3, . . . and, then, there exists a dependency cycle in D. This
is a contradiction to the fact that D is a valid orientation.

“⇒”: We prove this direction by describing a process which, for a given undirected
graph G = (V ,E) with a power dominating set P , constructs a valid orientation D

of G with P as origin.

Algorithmica (2008) 52: 177–202 191

Let V ′ := V and Vo := ∅. The process simulates the applications of OR1 and OR2
and moves the vertices from V ′ to Vo. The sets V ′ and Vo store the unobserved and
the observed vertices, respectively. For each vertex v ∈ V \ P , the process directs
exactly one of the edges incident to v. An integer c counting the rounds of moves is
initialized to zero and will be increased by one for each vertex moving from V ′ to Vo.
In addition, the process records the number of the round when vertex v is moved
from V ′ to Vo in an integer variable tv ; the value of tv is set to the current value of c

when moving v.
At the beginning, all vertices from P are moved from V ′ to Vo in an arbitrary order.

Note that the count c increases continuously and variables tv are set for each moved
vertex v. Then, the process considers vertices v ∈ V ′ which satisfy the following
condition:

(�) v ∈ N(u) for the vertex u ∈ P which has the minimum tu among all vertices w ∈
P with V ′ ∩ N(w) = ∅.

The process moves vertex v from V ′ to Vo and edge (u, v) is inserted into E1. This
operation is executed for all vertices in V ′ ∩ N(P). Note that now all applications of
OR1 are simulated and Vo contains the vertices observed by OR1.

After that, if V ′ is not empty, then all vertices in V ′ have to be observed by OR2.
Since P is a power dominating set, as long as V ′ is non-empty the process can always
find a vertex v ∈ V ′ which satisfies the following condition:

(��) v ∈ N(u), where u ∈ Vo with (N [u] \ {v}) ⊆ Vo.

Then, edge (u, v) is added to E1 and V ′ := V ′ \ {v} and Vo := Vo ∪ {v}. After re-
peatedly applying this operation to each vertex in V ′, all edges in E which have no
corresponding directed edges in E1 are added to E2 and D := (V ,E1 ∪ E2). It is ob-
vious that this process terminates after |V | rounds because P is a power dominating
set of G.

In the following, we prove that D is a valid orientation with P as origin.
It is clear that D is an orientation. In the process described above, we can also

observe that d−(v) = 0 for all v ∈ P and a vertex is removed from V ′ only if it has
received an incoming edge in E1. Hence, we have P = {v ∈ V : d−(v) = 0}. The
first condition in the definition of valid orientations (Definition 6) is clearly satisfied
by D: The vertices in P have no incoming edge and, because of (�), every vertex u ∈
N(P) has exactly one incoming edge from a vertex v ∈ N(u) ∩ P which has the
minimum tv among all vertices in N(u) ∩ P . A vertex u ∈ V \ (P ∪ N(P)) is moved
from V ′ to Vo immediately after one of u’s incident edges is directed to u. Thus, for
all vertices v ∈ V , it holds d−(v) ≤ 1. Moreover, if a vertex u with d−(u) = 1 has an
outgoing edge (u, v), then u /∈ P , vertex v is observed by applying OR2 to u, and v /∈
P ∪N(P). Since, by (��), the process adds edge (u, v) to E1 for a vertex v ∈ V \(P ∪
N(P)) only if (N [u] \ {v}) ⊆ Vo, the edge (u, v) is the only directed edge outgoing
from u. Therefore, we obtain that d+(v) ≤ 1 for all vertices v ∈ V with d−(v) = 1.
It remains to show that there is no dependency cycle in D.

Suppose that there is a dependency cycle in D and we order the vertices of this
cycle v0, v1, v2, . . . , vi with i > 2 and v0 = vi according to their appearance on the
cycle. To simplify the presentation, we assume that vj = vj mod i .

192 Algorithmica (2008) 52: 177–202

We show that no vertex from P can be on this cycle: Suppose that this dependency
cycle contains a vertex of P , that is, vj ∈ P with 0 ≤ j < i. The edge between vj−1
and vj has to be undirected, since the process directs no edge to a vertex in P . Obvi-
ously, the edge between vj−2 and vj−1 has to be a directed edge, (vj−2, vj−1) ∈ E1.
Since a vertex from P has no incoming edge, we have vj−1 /∈ P . As described above,
the process firstly moves vertices in P from V ′ to Vo, then vertices in N(P), and then
vertices in V \ (P ∪ N(P)). Since vj−1 ∈ N(vj) ⊆ N(P) and (vj−2, vj−1) ∈ E1, it
can be deduced that vj−2 ∈ P . Because of (�) we can also infer tvj−2 < tvj

. Then,
we apply the above argument for vj again to vj−2 and can conclude that vj−4 ∈ P

and tvj−4 < tvj−2 . By applying the same argument to vj−4 and further vertices, we
would have tvj

< tvj
and, thus, the dependency cycle cannot contain vertices from P .

Hence, the dependency cycle only consists of vertices from V \ P and the di-
rected edges on this cycle represent the applications of OR2. If the edge between vj

and vj+1 is a directed edge, then tvj+1 > tvj
: The process gives tvj+1 a value greater

than tvj
after adding (vj , vj+1) to E1. If the edge between vj and vj+1 is an

undirected edge, then (vj+1, vj+2) ∈ E1 (the third point in Definition 5). Because
of (��), vj+2 can be moved from V ′ to Vo and edge (vj+1, vj+2) can be added to E1
only if all vertices in N [vj+1] \ {vj+2} are already moved from V ′ to Vo. Thus, we
know tvj

< tvj+2 . By applying this argument again and again to all directed and undi-
rected edges in a cyclic fashion, we will get tvj

> tvj
. Hence, there is no dependency

cycle and D is a valid orientation with P as the origin. �

With VOMO and Theorem 4, we have an alternative formulation of PDS. The ad-
vantage of VOMO is that, by orienting undirected edges, a dependency cycle, which
corresponds to a cycle of observation dependencies in the power domination context,
can be easily detected in the dynamic programming on the tree decomposition.

4.2.2 Dynamic Programming on Tree Decompositions

In what follows, we describe a dynamic programming procedure solving VOMO on
graphs of bounded treewidth. As a consequence of Theorem 4, we thus also arrive at
a solution for PDS.

Given an undirected, connected graph G = (V ,E) with V := {v1, v2, . . . , vn} and
a nice tree decomposition 〈{Xi : i ∈ I }, T 〉 of G with treewidth k, let Ti denote the
subtree of T rooted at node i and let Gi denote the subgraph of G induced by the
vertices in the bags of Ti , that is, Gi := G[⋃j∈V (Ti)

Xj]. Furthermore, we use Yi to
denote (

⋃
j∈V (Ti)

Xj) \ Xi .

Definition of States During a bottom-up process our dynamic programming algo-
rithm computes for every bag Xi the possible valid orientations of the subgraph Gi

and stores the sizes of the origins of the valid orientations. Herein, the valid orienta-
tions of Gi are characterized by the bag states. A bag state s of a bag Xi is a com-
bination of the states for all ordered pairs of vertices in Xi , the states of all vertices
in Xi , and the states of the edges in G[Xi]. Next, we will define the states for vertex
pairs, for vertices, and for edges, respectively. Herein, we use s(uv), s(v), and s(e)

to denote the state of an ordered pair of vertices u ∈ Xi and v ∈ Xi , the state of a
vertex v ∈ Xi , and the state of an edge e ∈ E(G[Xi]).

Algorithmica (2008) 52: 177–202 193

Fig. 6 The four dependency
path types from Definition 7

The decisive point in the dynamic programming is to detect the dependency cy-
cles in all possible orientations Di for Gi when reaching bag Xi . The dependency
cycles inside suborientations Di[Xi] can be detected by exhaustive search in Di[Xi]
which consists of at most k vertices. However, for each pair of vertices u and v

in Xi with u = v, the detection of dependency cycles passing through some vertices
in Yi is more involved. Such cycles consists of several dependency paths, some lying
in Di[Xi] and others lying completely in Di[Yi]. By storing information about all
dependency paths between all pairs of vertices u,v ∈ Xi that, with the exception of u

and v, only pass through vertices in Yi , we will be able to detect all corresponding de-
pendency cycles by exhaustive search in O(k!) time. More specifically, we define for
each pair of vertices in Xi several states reflecting the information about such depen-
dency paths. Herein, let V (p) be the set of the vertices on a dependency path p. We
use puv to denote a dependency path with u and v as the tail and the head endpoint,
respectively. The path puv is called a dependency path from u to v.

Definition 7 There are four types of dependency paths puv from u to v in an orien-
tation D:

• Type 1: The first edge (between u and its successor on puv) as well as the last edge
(between v and its predecessor on puv) of puv are directed edges.

• Type 2: The first edge of puv is a directed edge but the last edge is undirected.
• Type 3: The last edge of puv is a directed edge but the first edge is undirected.
• Type 4: Both the first edge and the last edge of puv are undirected edges.

In addition, the function g maps a dependency path p to one of the four types, that
is, g(p) ∈ {Type 1, Type 2, Type 3, Type 4}.

Figure 6 illustrates the four path types. Observe that, if there are two dependency
paths puv and pvu in a valid orientation D, then g(puv) = Type 1 and g(pvu) =
Type 1, and at least one of puv and pvu is Type 4 or one is Type 2 and the other
is Type 3; otherwise, there is a dependency cycle in the suborientation D[V (puv) ∪
V (pvu)] which we call a “path type conflict.” The states for an ordered vertex pair uv

with u = v in Xi are defined according to the possible types of dependency paths
from u to v in Di[Yi ∪ {u,v}]: There are 16 states for an ordered vertex pair uv

according to the 16 possible subsets of {Type 1, Type 2, Type 3, Type 4}. Such a
state means that there is at least one dependency path between the vertex pair of

194 Algorithmica (2008) 52: 177–202

Fig. 7 The five states of a
vertex v in a bag

each path type contained in the subset. With these vertex pair states, we can simply
detect a dependency cycle at a bag Xi : check, for every two vertices u and v in Xi ,
whether there exists a path type conflict between s(uv) and s(vu), or whether there
is a dependency path from u to v (or from v to u) in Di[Xi] whose type together with
one type in s(vu) (or in s(uv)) builds a path type conflict.

Next, we define five vertex states s(v) for every vertex v in a bag Xi (see Fig. 7
for an illustration):

• s(v) = 1: there is exactly one directed edge from a vertex in Yi to v and no directed
edge from v to vertices in Yi ;

• s(v) = 2: there is exactly one directed edge from a vertex in Yi to v and exactly
one directed edge from v to a vertex in Yi ;

• s(v) = 3: there is no directed edge between v and the vertices in Yi ;
• s(v) = 4: there are at least two directed edges from v to the vertices in Yi and there

is no directed edge from the vertices in Yi to v;
• s(v) = 5: there is exactly one directed edge from v to a vertex in Yi and no directed

edge from the vertices in Yi to v.

Note that, by the definition of valid orientations, a vertex in a valid orientation cannot
have more than one incoming edge and a vertex with N−(v) = 1 cannot have more
than one outgoing edge. Hence, the above list covers all possible cases that need to
be considered.

Furthermore, we define three edge states s(e) for the edges e = {u,v} in G[Xi]:
• s(e) = uv: edge e is directed from u to v,
• s(e) = vu: edge e is directed from v to u, and
• s(e) =⊥: edge e is undirected.

As a consequence, for a bag Xi with |Xi | ≤ k, we have at most 16k(k−1) · 5k ·
3k(k−1)/2 bag states. In the following, we say that a valid orientation D is under the
restriction of a bag state s of the bag Xi if D satisfies the following conditions:

• the orientations in D of the edges in G[Xi] coincide with their states given by s,
• for each ordered vertex pair uv with u ∈ Xi and v ∈ Xi , the types of the depen-

dency paths from u to v in D[Yi ∪ {u,v}] coincide with s(uv), and
• for each vertex v ∈ Xi , the orientations of the edges between v and the vertices

in Yi coincide with s(v).

In the bottom-up dynamic programming we use a mapping Ai for each bag Xi

which stores, for each bag state s, the minimum size of the origins of all possible
valid orientations of Gi under the restriction of s. Due to the following easy-to-prove
lemma, in the computation of the values for Ai we do not count vertices v for the size
of an origin with d−(v) = 0 and d+(v) ≤ 1.

Algorithmica (2008) 52: 177–202 195

Lemma 5 For a connected, undirected graph G = (V ,E) with |V | > 2, there is
always a valid orientation with a minimum origin O ⊆ V such that each vertex v ∈ O

has in G at least two neighbors from V \O which are not neighbors of other vertices
in O .

Proof The claim follows directly from Lemma 2 and the equivalence between PDS
and VOMO in Theorem 4. �

Now, we have defined the states for a bag in a nice tree decomposition and pro-
ceed with the description of our dynamic programming for VOMO, which consists of
an “initialization” and an “update phase.” In the following, we use valid(G[Xi], si)
to denote the procedure deciding whether the edge states si(e) of the edges e

in G[Xi] form a valid orientation of G[Xi]. Since G[Xi] contains at most k ver-
tices, valid(G[Xi], si) needs at most O(k!) time. Procedure valid(G[Xi], si) returns
true if si implies a valid orientation of G[Xi]; otherwise, it returns false.

Initialization For each leaf node i with bag Xi of the tree decomposition T , we
initialize Ai as follows. For each bag state si , we set Ai(si) := +∞ if

(∃v ∈ Xi : si(v) = 3) ∨ (∃uv : u ∈ Xi ∧ v ∈ Xi ∧ si(uv) = ∅)

∨ (valid(G[Xi], si) = false);
and, otherwise,

Ai(si) :=|{v ∈ Xi : ∃e = {v,u} ∈ E(G[Xi]), e′ = {v,w} ∈ E(G[Xi]) with

u = w ∧ si(e) = vu ∧ si(e
′) = vw}|.

By this initialization step, we make sure that only those bag states are taken into
consideration where the edge states form a valid orientation. Also, since Yi = ∅,
s(v) for each v ∈ Xi should be assigned the vertex state 3, that is, there is no directed
edge between v and vertices in Yi , and s(uv) for each ordered vertex pair u ∈ Xi

and v ∈ Xi should be assigned the vertex pair state ∅, that is, there is no dependency
path from u to v in Di[Yi ∪ {u,v}]. Note that, due to Definition 6 and Lemma 5, as
vertices in the origin we count only the vertices in Xi which are the tails of at least
two directed edges in the valid orientation formed by the edge states in si .

Update Phase After the initialization, we visit the bags of the tree decomposition
bottom-up from the leaves to the root, determining the corresponding mappings Ai

in each step. For each bag state si of a bag Xi , the following needs to be done:

1. Check whether the edge states given by si form a valid orientation of G[Xi].
2. Compute the set Ssi of “with si compatible bag states” sj (or “with si compatible

bag state pairs” sj and sl for join nodes) of a child bag Xj (or two child bags Xj

and Xl for join nodes). The formal definition of compatible bag states (and com-
patible bag state pairs) will be given individually for forget, insert, and join nodes,
respectively (see the Appendix).

196 Algorithmica (2008) 52: 177–202

3. For a node i with a child node j , if Gi contains more edges than Gj , then, for each
compatible bag state sj (or each compatible bag state pair) in Ssi , check whether
a valid orientation of Gj under the restriction of sj can be extended to a valid
orientation for Gi under the restriction of si , that is, whether a valid orientation
for Gj under the restriction of sj combined with the orientations of the newly
introduced edges in Gi which are given by si results in a valid orientation of Gi .
For a node i with two children, the test whether the combination of two valid
orientations is still a valid orientation of Gi can be carried out in a similar way.

4. Based on the mappings Aj for all compatible bag states (or bag state pairs) in Ssi ,
evaluate Ai(si).

The details of the dynamic programming are technical but use more or less stan-
dard methods. Hence, we defer these details into the Appendix.

When reaching the root of T , we can determine the minimum size of the origin of
a valid orientation of G in the mapping A of the root node. Altogether, we thus arrive
at the following central result.

Theorem 5 For an n-vertex graph with given width-k tree decomposition, VALID

ORIENTATION WITH MINIMUM ORIGIN can be solved in O(ck2 · n) time for a con-
stant c.

Proof The correctness of the algorithm follows directly from the description (also
see Appendix). Concerning the running time, the most time-consuming part of the
algorithm is the determination of the mapping Ai for a join node, where, for each bag
state, we have to examine all possible bag state pairs, one from each child bag. As
described above, there are less than 16k2 · 5k · 3k2

bag states and, for each bag state s,
there can be at most (16k2 · 5k · 3k2

)2 bag state pairs which are compatible to s. For
each compatible bag state pair (sj , sl), the dominating factor for the running time
is to determine whether two valid orientations of Gj and Gl under the restrictions
of sj and sl , respectively, can be combined into a valid orientation of Gi under the
restriction of si . This can be done in O(k!) time (see Appendix). In summary, this
results in a worst-case running time of O((16k2 · 5k · 3k2

)3 · k!) for a join node. �

Together with Theorem 4, we obtain our main result.

Theorem 6 For an n-vertex graph with given width-k tree decomposition, POWER

DOMINATING SET can be solved in O(ck2 · n) time for a constant c.

5 Conclusion

Besides improving the exponential worst-case complexity of our dynamic program-
ming algorithm in Sect. 4, there are several avenues for future work.

• Table 1 has several empty entries concerning the complexity of POWER DOM-
INATING SET (PDS) in graph classes which we did not address here but have

Algorithmica (2008) 52: 177–202 197

been addressed for DOMINATING SET (DS) [28]. In particular, is there a “signifi-
cant” difference between the complexities of DS and PDS (also see the discussion
in Sect. 1 and the very recent work of Aazami and Stilp [1])?

• Which graph classes where PDS is NP-complete allow for better than factor-
�(logn) polynomial-time approximation algorithms?

• How do fixed-parameter tractability results for DS in planar graphs [3–5] transfer
to PDS?

• Are there nontrivial polynomial-time data reduction rules for PDS similar to those
we have for DS [5]?

• Are there further “distance from triviality” parameterizations [20] that make PDS
algorithmically feasible?

This paper particularly aims at stimulating a comparative study concerning the
computational complexities of DS and PDS. So far, we are not aware of a graph
class where DS is polynomial-time solvable and PDS is NP-complete or vice versa.
In other words, the point is to better understand which role the second, non-local
observation rule of PDS plays from an algorithmic viewpoint. We believe that PDS
offers a promising field of research not only because of its practical importance but
also because it allows for a compact problem formulation within which one can nicely
study effects of non-locality by comparing the “local” DS with the “non-local” PDS
problem. To understand this phenomenon in greater depth is a challenge for future
research.

Acknowledgement We are grateful to two anonymous referees of Algorithmica for their constructive
feedbacks. In particular, one of the referees pointed out how to simplify the proofs of Lemma 2 and
Theorem 1.

Appendix: Details of the Dynamic Programming

Forget Nodes Suppose that node i is a forget node with child node j , that is, Xi :=
{xi1, . . . , xini

} and Xj := {xi1, . . . , xini
, x}. Since Gi and Gj contain the same set of

edges, each valid orientation of Gj is also a valid orientation of Gi .
For each bag state si of node i, we compute the set Ssi containing the bag states sj

of node j that are compatible with si . Note that, if there exists an edge between a
vertex v ∈ Xi and the vertex x, then the orientation of edge {v, x} can result in a
difference between si(v) and sj (v). For example, a vertex with sj (v) = 4 having
an edge {v, x} with sj ({v, x}) = vx should have si(v) = 5. The reason is that now
vertex v has two outgoing edges to vertices in Yi , the new one being (v, x). Herein,
we say that sj is compatible with si with respect to a vertex v ∈ Xi if one of the
following is true:

• si(v) = sj (v) ∧ ({x, v} /∈ E ∨ ((e = {x, v} ∈ E) ∧ (sj (e) =⊥))),
• sj (v) = 3 ∧ si(v) = 1 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = xv)),
• sj (v) = 1 ∧ si(v) = 2 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = vx)),
• sj (v) = 5 ∧ si(v) = 2 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = xv)),
• sj (v) = 4 ∧ si(v) = 4 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = vx)),
• sj (v) = 5 ∧ si(v) = 4 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = vx)),
• sj (v) = 3 ∧ si(v) = 5 ∧ ((e = {x, v} ∈ E) ∧ (sj (e) = vx)).

198 Algorithmica (2008) 52: 177–202

To define the compatibility of sj with respect to an ordered vertex pair, we intro-
duce a so-called concatenation function of path types. This partial function maps two
given path types to a path type. If the path resulting by identifying the head endpoint
of a path of the first path type and the tail endpoint of a path of the second path type
is a dependency path, then this function is defined and returns the type of the result-
ing path; otherwise, it is not defined. For example, if the first path type is Type 1
and the second is Type 2, then the function returns Type 2; if the first path type is
Type 2 and the second is Type 3, the resulting path is not a dependency path and the
concatenation function is not defined.

We say that sj is compatible with si with respect to an ordered vertex pair uv

with u ∈ Xi and v ∈ Xi if si(uv) extends sj (uv) by concatenating the path types
in sj (ux) and the path types in sj (xv) and by adding the type of the possible de-
pendency path from u to v formed by edges {u,x} and {v, x}. For example, if
edges e = {u,x} and e′ = {v, x} are in E and sj (e) = ux and sj (e

′) =⊥, then
we have a Type-2-path from u to v passing through x. Hence, sj is compatible
with si with respect to uv if sj (uv) = {Type 1, Type 4}, sj (ux) = ∅, sj (xv) = ∅,
and si(uv) = {Type 1, Type 2, Type 4}.

The bag states sj ∈ Ssi that are compatible with si have to satisfy the following
conditions:

• for each e ∈ E(G[Xi]), si(e) = sj (e),
• sj is compatible with si with respect to each v ∈ Xi , and
• sj is compatible with si with respect to each ordered vertex pair uv with u ∈ Xi

and v ∈ Xi .

Then, evaluate the mapping Ai of Xi as follows: For each bag state si , set

Ai(si) := min
sj ∈Ssi

{Aj(sj)}.

Note that, if Ssi = ∅ for an si , then Ai(si) = +∞. The computation of Ai(si) is
correct since Gi and Gj have the same set of edges and, thus, each valid orientation
of Gi is also a valid orientation of Gj .

Introduce Nodes Suppose that node i is an introduce node with child node j , that
is Xi := {xj1, . . . , xjnj

, x} and Xj := {xj1, . . . , xjnj
}.

Procedure valid(G[Xi], si) can decide whether the edge states contained in si form
a valid orientation of G[Xi] in O(k!) time. For each bag state si of node i, we com-
pute the set Ssi containing the with si compatible bag states sj of node j which
satisfy

(∀e ∈ E(G[Xj]) : si(e) = sj (e)) ∧ (∀v : si(v) = sj (v)) ∧ (∀uv : si(uv) = sj (uv)),

where u,v ∈ Xj .
Note that the introduction of a new vertex x does not change the number of di-

rected edges between a vertex v ∈ Xj and the vertices in Yi ; thus, si(v) = sj (v).
The types of the dependency paths remain the same for each ordered vertex pair uv

with u ∈ Xj and v ∈ Xj , that is, si(uv) = sj (uv). Moreover, since there is no edge

Algorithmica (2008) 52: 177–202 199

between the new vertex x ∈ Xi and the vertices in Yi (due to the consistency property
of tree decompositions), we set Ssi := ∅ for bag states si where si(x) = 3 or where
there is a vertex v ∈ Xj with si(vx) = ∅ or si(xv) = ∅.

The next task is to decide whether a valid orientation of Gj under the restriction of
a bag state sj ∈ Ssi can be extended to a valid orientation of Gi under the restriction
of si . Herein, note that Gi has one more vertex x than Gj and, hence, we have to take
into account the states of the edges incident to x in G[Xi]. Observe that the conditions
for a valid orientation can be violated by a vertex in N(x) ∩ Xi or by a dependency
cycle passing through vertex x. First, for each vertex v in N(x) ∩ Xi , we can easily
find out the indegree and outdegree of v in the orientation of Gj under the restriction
of sj , based on the information stored in sj (v) and sj (e) for all edges e in E(Gj)

incident to v. Together with the orientation of edge e = {v, x} given by si(e), the
indegree and outdegree of v in the orientation of Gi under the restriction of si can
be easily determined. Hence, to check whether a vertex v ∈ N(x) ∩ Xi violates the
vertex-degree conditions of a valid orientation, that is, d−(v) ≤ 1 and d−(v) = 1 ⇒
d+(v) ≤ 1, can be done in O(k2) time because there can be at most O(k2) edges
between vertices in Xj . Second, if there is a dependency cycle passing through x in
the orientation of Gi under the restriction of si , then it consists of some consecutive
dependency paths between some pairs of the vertices in Xj and two edges incident
on x. By accessing the information about the dependency path types stored in sj (vu)

for each ordered vertex pair with u,v ∈ Xj , an exhaustive search running in O(k!)
time can easily decide whether there are such dependency cycles. Altogether, we can
in O(k!) time decide whether a valid orientation of Gj under the restriction of a bag
state sj ∈ Ssi can be extended to a valid orientation of Gi under the restriction of si .
If the valid orientation of Gj under the restriction of sj ∈ Ssi cannot be extended to a
valid orientation of Gi under the restriction of si , then we remove sj from Ssi .

Finally, we compute the mapping Ai(si) for si based on the mappings Aj(sj) for
all sj ∈ Ssi . By orienting the edges which are incident to the new vertex x accord-
ing to the edge states given by si , vertex x could have more than one outgoing edge.
Moreover, the outdegrees of vertices v ∈ Xi which are adjacent to x and have outde-
gree one in the valid orientation of Gj under the restriction of sj could also become
two. As a consequence, we should add x and those of x’s neighbors which now have
outdegree two into the origin of the valid orientation of Gi under the restriction of si .
Therefore, we introduce in the following two functions B and f to cope with these
possible new origin vertices.

The mapping Ai for Xi is computed as follows: For each bag state si , set

Ai(si) := min
sj ∈Ssi

{Aj(sj) + fsi (x) + |Bsi (sj)|},

where fsi (x) = 1 if there exist at least two edges e = {u,x} and e′ = {v, x} in G[Xi]
with si(e) = xu and si(e

′) = xv; otherwise, fsi (x) = 0. The function Bsi (sj) returns
the set of vertices u ∈ (N(x)∩Xj) which satisfy one of the following two conditions:

• sj (u) = 5 and si({u,x}) = ux or
• sj (u) = 3, si({u,x}) = ux, and si({u,v}) = uv for an edge {u,v} ∈ E(G[Xi])

with v = x.

200 Algorithmica (2008) 52: 177–202

Roughly speaking, fsi (x) = 1 covers the case that x has to be added to the origin
and the set returned by Bsi (sj) contains the vertices which are in the origin of the
valid orientation of Gi but not in the origin of the valid orientation of Gj . Note that,
if Ssi = ∅ for a si , then Ai(si) = +∞.

Join Nodes Suppose that i is a join node with child nodes j and l, that is Xi :=
{xi1, . . . , xini

} and Xi = Xj = Xl . The considerations for join nodes are almost the
same as for forget and introduce nodes. There are two points to note here.

Let Ssi be the set of the bag state pairs (sj , sl) that are compatible with si .
Note that, due to the consistency property of tree decompositions, Yj ∩ Yl = ∅. Be-
cause Yi = Yj ∪ Yl , the indegree (outdegree, respectively) of v in G[Yi ∪ {v}] is
equal to the sum of the indegrees (outdegrees, respectively) of v in G[Yj ∪ {v}] and
in G[Yl ∪ {v}]. For example, if sj (v) = 1 and sl(v) = 5, then v has an incoming edge
from a vertex in Yj and an outgoing edge to a vertex in Yl and, thus, si(v) = 2. There-
fore, we say that si is compatible with sj and sl with respect to vertex v ∈ Xi if one
of the following is true:

• si(v) = 1 ∧ ((sj (v) = 1 ∧ sl(v) = 3) ∨ (sj (v) = 3 ∧ sl(v) = 1)),
• si(v) = 2 ∧ ((sj (v) = 2 ∧ sl(v) = 3) ∨ (sj (v) = 3 ∧ sl(v) = 2) ∨ (sj (v) = 1 ∧

sl(v) = 5) ∨ (sj (v) = 5 ∧ sl(v) = 1)),
• si(v) = 3 ∧ sj (v) = 3 ∧ sl(v) = 3,
• si(v) = 4 ∧ ((sj (v) = 4 ∧ sl(v) ≥ 3) ∨ (sj (v) ≥ 3 ∧ sl(v) = 4) ∨ (sj (v) = 5 ∧

sl(v) = 5)),
• si(v) = 5 ∧ ((sj (v) = 5 ∧ sl(v) = 3) ∨ (sj (v) = 3 ∧ sl(v) = 5)).

With the fact that Yj ∩ Yl = ∅, a dependency path from vertex u ∈ Xi to vertex
v ∈ Xi passing through vertices in Yj is then, with the exceptions of u and v, vertex-
disjoint with any dependency path from u to v passing through vertices in Yl . Thus,
the set of dependency paths from u to v passing through vertices in Yi is then the
union of the set of dependency paths from u to v passing through vertices in Yj and
the set of dependency paths from u to v passing through vertices in Yl . Therefore,
we say that si is compatible with sj and sl with respect to an ordered vertex pair uv

with u ∈ Xi and v ∈ Xi if si(uv) is the union of sj (uv) and sl(uv).
In summary, the bag state pairs (sj , sl) ∈ Ssi that are compatible with si satisfy the

following conditions:

• for each e ∈ E(G[Xi]), si(e) = sj (e) = sl(e),
• si is compatible with sj and sl with respect to each v ∈ Xi , and
• si is compatible with sj and sl with respect to each ordered vertex pair uv with u ∈

Xi and v ∈ Xi .

The next task is to check whether the combination of the two valid orientations of
graph Gj and Gl which are under the restrictions of sj and sl , respectively, is a valid
orientation of Gi under the restriction of si . This can be done in almost the same way
as for the introduce nodes. The running time is O(k!).

Finally, in order to compute the mapping Ai(si) for a bag state si , observe that,
by combining two valid orientations of Gj and Gl , there could emerge new origin
vertices in the valid orientation of Gi . For example, a vertex v ∈ Xi has in each of the

Algorithmica (2008) 52: 177–202 201

two valid orientations of Gj and Gl only one outgoing edge, one to a vertex in Yj and
one to a vertex in Yl . Since Yi = Yj ∪ Yl , vertex v has now two outgoing edges in the
valid orientation of Gi resulting from the combination of the valid orientations of Gj

and Gl . The function B introduced below counts such new origin vertices. Moreover,
there could be vertices in Xi which are in the origins of both valid orientations of Gj

and Gl . Hence, by combining the two valid orientations and summing up the size of
the origins of the two valid orientations, there could be some vertices counted twice.
In order to avoid such double counting we introduce a function C in the computation
of Ai(si).

For each bag state si , the determination of Ai is done as follows:

Ai(si) := min
(sj ,sl)∈Ssi

{Aj(sj) + Al(sl) + |Bsi (sj , sl)| − |Csi (sj , sl)|},

where function Bsi (sj , sl) returns the set of new origin vertices v ∈ Xi , that
is, sj (v) = 5 and sl(v) = 5 and there is no edge e = {u,v} ∈ E(G[Xi]) with si(e) =
uv, and function Csi (sj , sl) contains the vertices v ∈ Xi which satisfy one of the
following conditions:

• there are at least two edges e = {u,v}, e′ = {v,w} in E(G[Xi]) with si(e) = vu

and si(e
′) = vw,

• sj (v) = 5 and sl(v) = 5 and there is exactly one edge e = {u,v} in E(G[Xi])
with si(e) = vu, or

• sj (v) = 4 and sl(v) = 4.

References

1. Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domination with propagation.
In: Proc. 10th APPROX/11th RANDOM. Lecture Notes in Computer Science, vol. 4627, pp. 1–15.
Springer, Berlin (2007)

2. Adjih, C., Jacquet, P., Viennot, L.: Computing connected dominating sets with multipoint relays.
Ad Hoc Sens. Wirel. Netw. 1(1–2), 27–39 (2005)

3. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for
Dominating Set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

4. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F., Stege, U.: A refined
search tree technique for Dominating Set on planar graphs. J. Comput. Syst. Sci. 71(4), 385–405
(2005)

5. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data reduction for Dominating Set. J. ACM
51(3), 363–384 (2004)

6. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like prob-
lems. In: Proc. 5th LATIN. Lecture Notes in Computer Science, vol. 2286, pp. 613–628. Springer,
Berlin (2002)

7. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complex-
ity and Approximation—Combinatorial Optimization Problems and Their Approximability Proper-
ties. Springer, Berlin (1999)

8. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209,
1–45 (1998)

9. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations. In: Proc. 32nd WG.
Lecture Notes in Computer Science, vol. 4271, pp. 1–14. Springer, Berlin (2006)

10. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput. 11, 191–199 (1982)
11. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Monographs on Discrete

Mathematics and Applications (1999)

202 Algorithmica (2008) 52: 177–202

12. Brueni, D.J., Heath, L.S.: The PMU placement problem. SIAM J. Discrete Math. 19(3), 744–761
(2005)

13. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and
PTASs. In: Proc. 16th SODA, pp. 590–601. ACM/SIAM, New York (2005)

14. Dewdney, A.K.: Fast Turing reductions between problems in NP: chap. 4; reductions between NP-
complete problems. Technical report, Department of Computer Science, University of Western On-
tario, Canada, 1981

15. Dorfling, M., Henning, M.A.: A note on power domination in grid graphs. Discrete Appl. Math.
154(6), 1023–1027 (2006)

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
17. Feige, U.: A threshold of lnn for approximating Set Cover. J. ACM 45(4), 634–652 (1998)
18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, New York (1979)
20. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from

triviality. In: Proc. 1st IWPEC. Lecture Notes in Computer Science, vol. 3162, pp. 162–173. Springer,
Berlin (2004)

21. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs: applied to
electric power networks. SIAM J. Discrete Math. 15(4), 519–529 (2002)

22. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Pure and Ap-
plied Mathematics, vol. 209. Dekker, New York (1998)

23. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs, Pure and Ap-
plied Mathematics, vol. 208. Dekker, New York (1998)

24. Haynes, T.W., Henning, M.A.: Domination in graphs. In: Gross, J.L., Yellen, J. (eds.) Handbook of
Graph Theory, pp. 889–909. CRC Press, Boca Raton (2004)

25. Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Appl. Math. 36, 25–34
(1992)

26. Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Science, vol.
842. Springer, Berlin (1994)

27. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination complexity. Inf.
Process. Lett. 98(4), 145–149 (2006)

28. Kratsch, D.: Algorithms. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.) Domination in Graphs:
Advanced Topics, pp. 191–231. Dekker, New York (1998)

29. Liao, C.S., Lee, D.T.: Power dominating problem in graphs. In: Proc. 11th COCOON. Lecture Notes
in Computer Science, vol. 3595, pp. 818–828. Springer, Berlin (2005)

30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)
31. Raible, D.: Algorithms and complexity results for power domination in networks. Master’s thesis,

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany (2005). (In German)
32. Reed, B.A.: Algorithmic aspects of tree width. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in

Algorithms and Combinatorics, pp. 85–107. Springer, Berlin (2003)
33. Telle, J.A., Proskurowski, A.: Practical algorithms on partial k-trees with an application to

domination-like problems. In: Proc. 3rd WADS. Lecture Notes in Computer Science, vol. 709, pp.
610–621. Springer, Berlin (1993)

34. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J.
Discrete Math. 10(4), 529–550 (1997)

35. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

	Improved Algorithms and Complexity Results for Power Domination in Graphs
	Abstract
	Introduction
	Preliminaries
	Complexity Results
	Dynamic Program for Graphs of Bounded Treewidth
	Trees
	Graphs of Bounded Treewidth
	Valid Orientations of Undirected Graphs
	Dynamic Programming on Tree Decompositions
	Definition of States
	Initialization
	Update Phase

	Conclusion
	Acknowledgement
	Appendix: Details of the Dynamic Programming
	Forget Nodes
	Introduce Nodes
	Join Nodes

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

