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Abstract We obtain faster algorithms for problems such as r-dimensional matching
and r-set packing when the size k of the solution is considered a parameter. We first
establish a general framework for finding and exploiting small problem kernels (of
size polynomial in k). This technique lets us combine Alon, Yuster and Zwick’s color-
coding technique with dynamic programming to obtain faster fixed-parameter algo-
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rithms for these problems. Our algorithms run in time O(n+2O(k)), an improvement
over previous algorithms for some of these problems running in time O(n + kO(k)).
The flexibility of our approach allows tuning of algorithms to obtain smaller constants
in the exponent.

Keywords Parameterized complexity · Fixed parameter tractable · Graph
matching · Set packing · Color coding

1 Introduction

In this paper we demonstrate a general method for solving parameterized packing and
matching problems by first finding a problem kernel, and then showing how color-
coding (the use of nice families of hash functions to color a substructure with distinct
colors) and dynamic programming on subsets of colors can be used to create fixed-
parameter algorithms. The problems we consider include parameterized versions of
r-dimensional matching (a generalization of 3-dimensional matching, from Karp’s
original list of NP-complete problems [11]) and r-set packing (on Karp’s list in its un-
restricted form, and W [1]-complete [2] in its unrestricted parameterized form, hence
unlikely to be fixed-parameter tractable).

Previous efforts in finding fixed-parameter algorithms for these problems (asking
if a given input has a solution of size at most k) have resulted in running times in-
volving a factor of kO(k), namely O((5.7k)k · n) for 3-dimensional matching [3] and
3-set packing [10]. Earlier work did not use the technique of kernelization (finding
a subproblem of size f (k) within which any solution of size k must lie) except for
work on the problem of packing triangles in a graph [7]; that result uses the technique
of crown decomposition [5, 6], a technique that is not used in this paper. Using our
techniques, we improve all these results by replacing the kO(k) factor with a factor
of 2O(k). Kernelization also allows us to make the dependence on k additive, that is,
we can achieve a running time of O(n + 2O(k)) (the hidden constant in the exponent
is linearly dependent on r). We note also that independently, Koutis [13] obtained a
similar improvement, though with worse constants in the exponent.

The techniques we introduce make use of the fact that our goal is to obtain at least
k disjoint objects, each represented as a tuple of values. We first form a maximal set of
disjoint objects and then use this set as a way to bound the number of values outside
the set, forming the kernel which is used in the color-coding dynamic programming.
We are able to reduce the size of the constants inherent in the choice of hash func-
tions in the original formulation of color-coding [1] by applying the coloring to our
kernels only, and using smaller families of hash functions with weaker properties. Al-
though both color-coding and dynamic programming across subsets appear in other
work [5, 15, 17], it is our kernelization technique that permits the improvements. Re-
cent work [4, 12, 14] has produced further improvements through the use of more
sophisticated methods.

After introducing notation common to all the problems in Sect. 2, we first present
the kernelization algorithm for r-DIMENSIONAL MATCHING (Sect. 3), followed by
the fixed-parameter algorithm in Sect. 4. Next, we consider the modifications neces-
sary to solve the other problems in Sect. 5. The paper concludes with a discussion of
tuning the hash functions (Sect. 6).
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2 Definitions

Each of the problems considered in this paper requires the determination of k or more
disjoint structures within the given input: in r-dimensional matching, we find k points
so that no coordinates are repeated, and in r-set packing, we find k disjoint sets. To
unify the approach taken to the problems, we view each structure as an r-tuple; the
problems differ in the ways the r-tuples must be disjoint.

To define the r-tuples, we consider a collection A1, . . . ,Ar of pair-wise disjoint
sets and define A to be A1 × · · · × Ar . We call the elements of each Ai values; given
an r-tuple T ∈ A, we denote as val(T ) the set of values of T , and for any S ⊆ A,
we define val(S) = ⋃

T ∈S val(T ). Depending on the problem, we will either wish to
ensure that tuples chosen have disjoint sets of values or, for r-dimensional matching,
that tuples “disagree” at a particular coordinate.

We introduce further notation to handle the discussion of r-tuples. Given a tuple
T ∈ A, the ith coordinate of T , denoted T (i), is the value of T from set Ai . Two
r-tuples T and T ′ are linked if they agree in some coordinate i, that is, when there
exists some i in {1, . . . , r} such that T (i) = T ′(i). We denote this fact as T ∼ T ′. If
T ∼ T ′ does not hold then we say that T and T ′ are independent, denoted T �∼ T ′.

We can now define our first problem, r-DIMENSIONAL MATCHING, in which the
input is a set of r-tuples and the goal is to find at least k independent tuples.

r-DIMENSIONAL MATCHING

Instance: A set S ⊆ A = A1 × · · · × Ar for some collection A1, . . . ,Ar of pair-wise
disjoint sets.
Parameter: A non-negative integer k.
Question: Is there a matching P for S of size at least k, that is, is there a subset P of
S where for any T ,T ′ ∈P , T �∼ T ′ and |P| ≥ k?

In forming a kernel, we will be able to reduce the number of tuples that contain a
particular value or set of values. To describe a set of tuples in which some values are
specified and others may range freely, we will need an augmented version A∗

i of each
Ai so that A∗

i = Ai ∪ {∗}, i ∈ {1 . . . , r}; the stars will be used to denote positions at
which values are unrestricted. We will refer to special tuples, patterns, drawn from
the set A∗ = A∗

1 ×· · ·×A∗
r . Associated with each pattern will be a corresponding set

of tuples. More formally, given R ∈ A∗, we set A[R] = A′
1 × · · · × A′

r where

A′
i =

{
Ai if R(i) = ∗,

{R(i)} otherwise.

As we will typically wish to consider the subset of S extracted using the pattern, we
further define, for any S ⊆ A, the set S[R] = A[R] ∩S . We finally define free(R) as
the number of ∗’s in R, namely the number of unrestricted positions in the pattern;
free(R) will be called the freedom of R.

3 A Kernel for r-DIMENSIONAL MATCHING

Recall that a kernel is a subproblem of size depending only on k within which any
solution of size k must lie. The idea behind our kernelization technique is that if a



170 Algorithmica (2008) 52: 167–176

large number of tuples match a particular pattern, we can remove some of them (this
is known as a reduction rule). For each pattern R, the threshold size for the set of
retained tuples is a function f (free(R), k), which we define later.

The following gives a general family of reduction rules for the r-DIMENSIONAL

MATCHING problem with input SI and parameter k. For each application of the func-
tion Reduce, if the size of the subset SI [R] of S extracted using the pattern R is
greater than the threshold, then |S| is reduced by removing enough elements of SI [R]
to match the size of the function f .

Function Reduce(SI ,R) where R ∈A∗ and 1 ≤ free(R) ≤ r − 1.
Input: A set SI ⊆ A and a pattern R ∈A∗.
Output: A set SO ⊆ SI .

SO ← SI .
If |SI [R]| > f (free(R), k)

then remove all but f (free(R), k) tuples of SI [R] from SO .
output SO .

To form the kernel, we apply the function Reduce on all patterns R ∈ A∗ in order
of increasing freedom, as in the following routine.

Function Fully-Reduce(SI )
Input: A set SI ⊆ A.
Output: A set SO ⊆ SI .

SO ← SI .
For i = 1, . . . , r − 1 do

for all R ∈ A∗ where free(R) = i, SO ← Reduce(SO,R).
output SO .

The next three lemmas prove that the above function computes a kernel; the two
lemmas after that show how a slight modification can be used to bound the size of
that kernel.

We say that a set S ⊆ A is (�, k)-reduced if for any R ∈A∗ such that free(R) = �,
Reduce(S,R) = S (where 1 ≤ � ≤ r − 1). For notational convenience we define any
set S ⊆ A to be 0-reduced; we can assume the input has no repeated tuples. As a
direct consequence of the definition, if a set S is (�, k)-reduced, then for each pattern
R such that free(R) = �, |S[R]| ≤ f (�, k).

We now show that our reduction function does not change a yes-instance of
r-DIMENSIONAL MATCHING into a no-instance, nor vice versa. Given a set S ⊆ A
and a non-negative integer k, we denote as μ(S, k) the set of all matchings for
S of size at least k. If μ(S, k) is non-empty, S is a yes-instance. The following
lemma shows that upon applying the reduction rule to an (� − 1, k)-reduced set us-
ing a pattern R of freedom �, yes-instances will remain yes-instances. The proof
requires the precise definition of f (�, k), which is that f (0, k) = 1 and f (�, k) =
� · (k − 1) · f (� − 1, k) + 1 for all � > 0. It is easy to see that f (�, k) ≤ �!k�.
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Lemma 1 For any �,1 ≤ � ≤ r − 1, the following holds: If S ⊆ A, S is (� − 1, k)-
reduced, and S ′ = Reduce(S,R) for some R such that free(R) = �, then μ(S, k) �= ∅
if and only if μ(S ′, k) �= ∅.

Proof Since S ′ ⊆ S , μ(S ′, k) �= ∅ implies μ(S, k) �= ∅. Supposing now that
μ(S, k) �= ∅, we choose P ∈ μ(S, k) where |P| = k and prove that μ(S ′, k) �= ∅.
In essence, we need to show that either P ∈ μ(S ′, k) or that we can form a matching
P ′ ∈ μ(S ′, k) using some of the tuples in P .

Denote by Ŝ the set S ′[R], that is, the tuples retained when Reduce is applied to
S using pattern R to form S ′. Clearly if either P contained no tuple in S[R] or the
single tuple T ∈ P ∩ S[R] was selected to be in Ŝ , then P ∈ μ(S ′, k), completing
the proof in these two cases. More formally, we can describe these situations using a
partition of the set of indices into IR = {i | R(i) �= ∗}, the indices that are not stars,
and I ∗

R = {i | R(i) = ∗}, the indices that are stars. In the first case, no tuple T ∈ P
exists where for all i ∈ IR T (i) = R(i), and hence P ∩ S[R] = ∅. This implies that
P ⊆ S ′ and hence the proof is complete as P ∈ μ(S ′, k). In the second case, for some
T ∈ P , for all i ∈ IR we have T (i) = R(i), and so if T ∈ Ŝ then P ⊆ S ′, as needed.

In the case where T ∈ P and T �∈ Ŝ , we show that there is a tuple T ′ ∈ Ŝ that can
replace T to form a new matching, formalized in the claim below.

Claim There exists a T ′ ∈ Ŝ that is independent from each T̃ ∈P − {T }.

Proof We first show that for any i ∈ I ∗
R and any T̃ ∈ P − {T } there exist at most

f (� − 1, k) r-tuples in Ŝ that agree with T̃ at position i. The set of r-tuples in S[R]
that agree with T̃ at position i is exactly the set of tuples in S[R′] where R′ is obtained
from R by replacing the ∗ in position i by T̃ (i). We use the size of this set to bound
the size of the set of tuples in Ŝ that agree with T̃ at position i. As S is (� − 1, k)-
reduced and free(R′) = �−1, we know that |S[R′]| ≤ f (�−1, k). Since in the special
case where � = 1, we directly have |S[R′]| ≤ 1 = f (0, k), the bound of f (� − 1, k)

holds for any T̃ and any i.
To complete the proof of the claim, we determine the number of elements of Ŝ

that can be linked with any T̃ and show that at least one member of Ŝ is not
linked with any in the set P − {T }. If we fix a tuple (T̃ ) and a free position
i ∈ I ∗

R , the statement proved in the paragraph above says that there are at most

f (� − 1, k) r-tuples in Ŝ linked with it. But there are � choices of free posi-
tion for each tuple T̃ , and |P − {T }| = k − 1 choices of tuples T̃ . Thus at most
� · (k − 1) · f (� − 1, k) = f (�, k) − 1 elements of Ŝ will be linked with elements
of P − {T }. Since |Ŝ| = f (�, k), this implies the existence of some T ′ ∈ Ŝ with the
required property. �

The claim above implies that P ′ = (P − {T }) ∪ {T ′} is a matching of S of size k.
As T ′ ∈ Ŝ , P ′ is also a matching of S ′, and thus μ(S ′, k) �= ∅. �

Lemma 2 If S ⊆ A and S ′ is the output of routine Fully-Reduce(S), then (a) S ′ is
an (r − 1, k)-reduced set and (b) μ(S, k) �= ∅ if and only if μ(S ′, k) �= ∅.
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Proof The proof of part (a) follows from induction on i, the number of iterations
of the loop, and two simple observations: for any R ∈ A∗ and any (free(R) − 1, k)-
reduced set S ⊆ A, Reduce(S,R) is also a (free(R)−1, k)-reduced set; and after the
application of Reduce for every R such that free(R) = �, the resulting set is (�, k)-
reduced. Since at the outset SI is trivially 0-reduced, at the end of iteration r − 1
claim (a) will hold.

Part (b) can also be proved by induction on the number of iterations of the loop
by showing that for any iteration μ(Sb, k) �= ∅ if and only if μ(Sa, k) �= ∅, where
Sb is equal to SO before the iteration and Sa is equal to SO after the iteration. In
particular, we apply Lemma 1 repeatedly within each iteration (once for each pattern
R used). By repeating this for � = 1, . . . , r − 1 we finally transform any set S into a
(r − 1, k)-reduced set S ′ such that μ(S, k) �= ∅ if and only if μ(S ′, k) �= ∅. �

We now use a maximal matching in conjunction with the function Fully-Reduce
defined above to bound the size of the kernel. The following lemma is a direct conse-
quence of the definition of an (r − 1, k)-reduced set.

Lemma 3 For any (r − 1, k)-reduced set S ⊆ A, any value x ∈ val(A) is contained
in at most f (r − 1, k) r-tuples of S .

We now observe that if we have a maximal matching in a set S of r-tuples, we can
bound the size of the set as a function of r , the size of the matching, and f (r − 1, k),
as each r-tuple in the set must be linked with at least one r-tuple in the matching, and
the number of such links is bounded by f (r − 1, k) per value.

Lemma 4 If S ⊆ A is an (r − 1, k)-reduced set containing a maximal matching M
of size at most m, then S contains no more than r · m · f (r − 1, k) r-tuples.

Proof Suppose that M is a maximal matching of size at most m in S . Clearly,
|val(M)| ≤ r · m. As M is maximal, for any r-tuple T ∈ S , val(T ) ∩ val(M) �= ∅.
From Lemma 3 we know that each value in val(M) appears in at most f (r − 1, k)

r-tuples of S . Since any r-tuple of S contains at least one of the r · m values
in val(M), we conclude that |S| ≤ r · m · f (r − 1, k). �

Lemma 4 suggests a kernel for the r-DIMENSIONAL MATCHING problem in the
function that follows; Lemma 5 shows the correctness of the procedure and size of
the kernel.

Function Kernel-Construct(S)
Input: A set S ⊆ A.
Output: A set K ⊆ S .

S ′ ←Fully-Reduce(S).
Find a maximal matching M of S ′.
If |M| ≥ k then output any subset K of M of size k and stop;
otherwise output K ← S ′.
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Lemma 5 If S ⊆ A and K is the output of the function Kernel-Construct(S), then
(a) |K| ∈ O(r!kr) and (b) μ(S, k) �= ∅ if and only if μ(K, k) �= ∅.

Proof To see that part (a) holds, if |M| ≤ k − 1, then since K = S ′ is an (r − 1, k)-
reduced set, by Lemma 4 |K| ≤ r · (k − 1) · f (r − 1, k) ≤ r!kr . If instead |M| ≥ k,
then |K| = k ∈ O(r!kr).

To prove part (b), we first observe that since K ⊆ S , clearly μ(K, k) ⊆ μ(S, k),
and hence if μ(K, k) �= ∅, then μ(S, k) �= ∅. Suppose now that μ(S, k) �= ∅. In the
case K = S ′, by Lemma 2, S ′ is (r − 1, k)-reduced and μ(S ′, k) �= ∅. In the case
K ⊆ M the result μ(K, k) �= ∅ follows trivially. �

Note that function Kernel-Construct can be computed in time O(n) for fixed r ,
simply by looking at each tuple in turn and incrementing the counter associated with
each of the 2r − 1 patterns derived from it, deleting the tuple if any such counter
overflows its threshold.

4 An FPT Algorithm for r-DIMENSIONAL MATCHING

While it suffices to restrict attention to the kernel K when seeking a matching of
size k, exhaustive search of K does not lead to a fast algorithm. To obtain such an
algorithm, we combine the color coding technique of Alon et al. [1] with dynamic
programming on subsets of colors.

In its original form, the color-coding technique of Alon et al. makes use of a fam-
ily of hash functions F = {f : U → X} with the property that for any S ⊆ U with
|S| ≤ |X|, there is an f ∈ F that is 1-1 on X. The original idea, in the context of
our problem, would be to look for a matching of size k whose values receive distinct
colors under some f ∈ F . In our case, the universe U is the set of values appearing
in tuples in the kernel of the problem, which has size O(kr), and the set of colors X

has size rk. The family of hash functions F used by Alon et al. is of size bounded
by 2c|X|, which is 2O(rk) in our case. In Sect. 6 we will consider modifications to-
wards improving this approach.

The conference presentation of this work [8] gave a more complicated algorithm.
We thank Alexander Golynski who, on seeing our exposition, pointed out a simpli-
fication which we present here. In the simple algorithm, the dynamic programming
space has two dimensions: the choice of hash function φ, and a set of values Y used
by a matching. We define

Bφ(Y ) =
{

1 if there exists a matching P ′ ⊆ S where val(P ′) = Y,

0 otherwise.

The number of dynamic programming problems thus defined is 2O(rk), since there
are 2O(rk) choices for φ and 2rk choices for Y . The base case for the dynamic pro-
gramming recurrence is Bφ(∅) = 1, and the recurrence is:

Bφ(Y ) =
{

1 if there exists an r-tuple T where Bφ(Y − val(T )) = 1,

0 otherwise.
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The cost of computing one table entry is O(kr), since this is the number of tuples in
K. Noting that kernel construction takes time O(n), we have the following theorem.

Theorem 1 The problem r-DIMENSIONAL MATCHING can be solved in time
O(n + 2(c+1)rk).

5 A Kernel and FPT Algorithm for Set Packing

We can now define other problems addressable by our technique. For r-SET PACK-
ING, the input r-tuples are subsets of elements from a base set A, each of size at
most r , and the goal is to find at least k r-tuples, none of which share elements. More
formally:

r-SET PACKING

Instance: A collection C of sets drawn from a set A, each of size of at most r .
Parameter: A non-negative integer k.
Question: Does C contain at least k mutually disjoint sets, that is, for S ⊆ A = Ar , is
there a subset P of S where for any T ,T ′ ∈ P , val(T ) ∩ val(T ′) = ∅ and |P| ≥ k?

To obtain a kernel for r-SET PACKING, we can adapt the ideas developed for
r-DIMENSIONAL MATCHING. To avoid introducing new notation, we will continue
to refer to sets of tuples. As with r-DIMENSIONAL MATCHING, we first apply a
reduction rule that limits the number of tuples containing a particular value or set of
values, and then use a maximal set of disjoint objects to bound the size of the kernel.

For r-SET PACKING, the tuples in question are drawn from the same base set (A,
V (G), or E(G)) respectively, resulting in the tuples being sets of size at most r ,
as position within a tuple is no longer important. But since the Ai ’s are no longer
disjoint, the potential for conflicts increases. As a consequence, we define a new
function g for use in the function Reduce: g(0, k) = 1 and g(�, k) = � · r(k − 1) ·
g(� − 1, k) + 1 for all � > 0. By replacing f by g in the definition of the function
Reduce, we obtain a new function SetReduce and the notion of a set being (�, k)-set-
reduced, and by replacing Reduce by SetReduce in the function Fully-Reduce, we
can obtain a new function Fully-SetReduce. Instead of finding a maximal matching,
we find a maximal set of disjoint sets. It then remains to prove analogues of Lemmas 1
through 5; sketches of the changes are given below.

Each of the lemmas can be modified by replacing f by g, Reduce by SetRe-
duce, and Fully-Reduce by Fully-SetReduce, with the analogue of Lemma 5 yield-
ing a kernel of size O(kr). The need for g instead of f is evident in the proof of
the claim in the analogue of Lemma 1. Here we count the number of r-tuples T̂ in
Ŝ such that val(T̂ ) ∩ val(T̃ ) �= ∅. Before, “linked” meant agreeing in some coordi-
nate; now it means “sharing a common value”. Hence the counting of such r-tuples
changes. For a fixed tuple T̃ , there are r choices of value to be shared, and at most
g(� − 1, k) tuples that can share that value. The number of choices for T̃ is the num-
ber of tuples in P −{T } (that is, k −1) multiplied by g(�−1, k). In total this gives us
r · (k − 1) · g(� − 1, k) = g(�, k) − 1 elements of Ŝ with nonempty intersection with
values in elements of P − {T }, as needed to show that there is a T ′ with the required
property. We then have the following lemma, analogous to Lemma 5:
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Lemma 6 For the problem r-SET PACKING, if S ⊆ A and K is the output of the
function Kernel-Construct(S), then (a) |K| ∈ O(rrkr) and (b) S has a set of at least k

disjoint sets if and only if K has a set of at least k such objects.

To obtain an algorithms for r-SET PACKING, we adapt the ideas developed for
r-DIMENSIONAL MATCHING; as in that case we form a kernel, find a maximal set of
disjoint sets, and then use dynamic programming and color-coding to find a solution
of size k, if one exists.

The analysis of the algorithms depends on Lemma 6, resulting in the theorem
below.

Theorem 2 The problem r-SET PACKING can be solved in time O(n + 2O((c+1)rk)).

6 Choosing Hash Functions

To construct the family of hash functions F = {f : U → X} with the property that for
any subset S of U with |S| = |X|, there is an f ∈F that is 1-1 on S, Alon et al. used
results from the theory of perfect hash functions together with derandomization of
small sample spaces that support almost �-wise independent random variables. They
were able to construct a family F with |F | = 2O(|X|) log |U |, and this is what we
used in Sect. 4. However, they made no attempt to optimize the constant hidden in
the O-notation, since they were assuming |X| fixed and |U | equal to the size of the
input.

In our case (and in any practical implementation of the algorithms of Alon et al.),
it would be preferable to lower the constant in the exponent as much as possible. We
have one advantage: kernelization means that |U | in our case is O(kr), not O(n),
and so we are less concerned about dependence on |U | (note that |S| = (r − 1)k in
our case). Two other optimizations are applicable both to our situation and that of
Alon et al. First, we can allow more colors, i.e. |X| = α(r − 1)k for some constant α.
This will increase the number of dynamic programming problems, since the number
of choices for C (in determining the number of Bφ,W (Z,C)) grows from 2(r−1)k

to
(
α(r−1)k
(r−1)k

) ≤ (eα)(r−1)k . But this may be offset by the reduction in the size of the
family of hash functions, since allowing more colors makes it easier to find a perfect
hash function. Second, for some of the work on the theory of perfect hash functions
used by Alon et al., it is important that the hash functions be computable in O(1)

time, whereas in our application, we can allow time polynomial in k.
As an example of applying such optimization, we can make use of the work of

Slot and van Emde Boas [16]. They give a scheme based on the pioneering work of
Fredman, Komlós, and Szemerédi [9] that in our case results in a family F of size
24|S|+5 log |S|+3|U |, where |X| = 6|S|, and it takes O(k) time to compute the value of a
hash function. We will not explore this line of improvement further beyond underlin-
ing that there is a tradeoff between the power of the family of hash functions we use
and the size, and we have some latitude in choosing families with weaker properties.

Another possibility, also discussed by Alon et al., is to replace the deterministic
search for a hash function (in a family where the explicit construction is complicated)
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by a random choice of coloring. A random 2|S|-coloring of U is likely to be 1-1 on
a subset S with failure probability that is exponentially small in |S|. However, this
means that a “no” answer has a small probability of error, since it could be due to the
failure to find a perfect hash function.

Very recently, Chen et al. report improved bounds on the size of the family F of
hash functions [4]. They show that there is an algorithm that, in O(6.4|X||U |) steps,
can construct a family F of hash functions with the properties we require, where
|F | = O(6.4|X||U |). Their paper also improves the upper bound to O(6.1|X||U |),
and discusses consequent improvements on the running times of our algorithms.
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