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Abstract Ant Colony Optimization (ACO) has become quite popular in recent years.
In contrast to many successful applications, the theoretical foundation of this ran-
domized search heuristic is rather weak. Building up such a theory is demanded to
understand how these heuristics work as well as to come up with better algorithms
for certain problems. Up to now, only convergence results have been achieved show-
ing that optimal solutions can be obtained in finite time. We present the first runtime
analysis of an ACO algorithm, which transfers many rigorous results with respect to
the runtime of a simple evolutionary algorithm to our algorithm. Moreover, we ex-
amine the choice of the evaporation factor, a crucial parameter in ACO algorithms,
in detail. By deriving new lower bounds on the tails of sums of independent Poisson
trials, we determine the effect of the evaporation factor almost completely and prove
a phase transition from exponential to polynomial runtime.
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1 Introduction

The analysis of randomized search heuristics with respect to their runtime is a grow-
ing research area where many results have been obtained in recent years. This class of
heuristics contains well-known approaches such as Randomized Local Search (RLS),
the Metropolis Algorithm (MA), Simulated Annealing (SA), and Evolutionary Algo-
rithms (EAs). Such heuristics are often applied to problems whose structure is not
known or if there are not enough resources such as time, money, or knowledge to
obtain good specific algorithms. It is widely acknowledged that a solid theoretical
foundation for such heuristics is needed.

Some general results on the runtime of RLS can be found in Papadimitriou, Schäf-
fer and Yannakakis [13]. The graph bisection problem has been subject to analysis
of MA [11], where MA can be seen as SA with a fixed temperature. For a long time,
it was an open question whether there is a natural example where SA outperforms
MA for all fixed temperatures. This question has recently been answered positively
by Wegener [15] for instances of the minimum spanning tree problem.

In this paper, we focus on another kind of randomized search heuristics, namely
Ant Colony Optimization (ACO). Like EAs, these heuristics imitate optimization
processes from nature, in this case the search of an ant colony for a common source
of food. Solving problems by ACO techniques has become quite popular in recent
years. Developed by Dorigo, Maniezzo and Colorni [3], they have shown to be a
powerful heuristic approach to solve combinatorial optimization problems such as the
TSP (see [2], for an overview on the problems that these heuristics have been applied
to). From a theoretical point of view, there are no results that provide estimates of the
runtime of ACO algorithms. Despite interesting theoretical investigations of models
and dynamics of ACO algorithms [1], convergence results are so far the only results
related to their runtimes. Dorigo and Blum [1] explicitly formulate the open problem
to determine the runtime of ACO algorithms on simple problems in a similar fashion
to what has been done for EAs.

We solve this problem, starting the analysis of ACO algorithms with respect to
their expected runtimes and success probability after a specific number of steps. RLS,
SA, MA, and simple EAs search more or less locally, and runtime bounds are often
obtained by considering the neighborhood structure of the considered problem. Con-
sidering ACO algorithms, this is different as search points are obtained by random
walks of ants on a so-called construction graph. The traversal of an ant on this graph
is determined by values on the edges which are called pheromone values. Larger
pheromone values correspond to a higher probability of traversing a certain edge,
where the choice of an edge usually fixes a parameter in the current search space.
The pheromone values are updated if a good solution has been constructed in this
random walk. This update depends on the traversal of the ant and a so-called evapo-
ration factor ρ.

The choice of ρ seems to be a crucial parameter in an ACO algorithm. Using
a large value of ρ, the last accepted solution changes the pheromone values by a large
amount such that there is a large probability of producing this solution in the next step.
In contrast to this, the use of a small evaporation factor leads to a small effect of the
last accepted solution such that an improvement may be hard to find in the next step.
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We show that a simple ACO algorithm behaves for very large values of ρ (namely
ρ ≥ 1/3) as the simplest EA called (1 + 1) EA. This algorithm has been studied
extensively with respect to its runtime on pseudo-boolean functions f : {0,1}n → R

(see, e.g. [4]) as well as on combinatorial optimization problems. The list of problems
where runtime bounds have been obtained include some of the best-known polyno-
mially solvable problems such as maximum matchings [7] and minimum spanning
trees [12]. It should be clear that we cannot expect such general heuristics to out-
perform the best-known algorithms for these mentioned problems. The main aim of
such analyses is to get an understanding how these heuristics work. In the case of NP-
hard problems, one is usually interested in good approximations of optimal solutions.
Witt [16] has presented a worst-case and average-case analysis of the (1 + 1) EA for
the partition problem, which is one of the first results on NP-hard problems. All these
results immediately transfer to our ACO algorithm with very large ρ.

After these general results, we consider the effect of the evaporation factor ρ on
the runtime of our ACO algorithm in detail. As proposed in the open problem stated
by Dorigo and Blum [1], we examine the simplest non-trivial pseudo-boolean func-
tion called ONEMAX and analyze for the first time for which choices of ρ the runtime
with high probability is upper bounded by a polynomial and for which choices it is
exponential. We observe a phase transition from exponential to small polynomial
runtime when ρ crosses the threshold value 1/n. Larger values of ρ imply that the
expected function value of a new solution is determined by the function value of the
best seen solution. Then an improvement will be achieved after an expected polyno-
mial number of steps. In the case of smaller ρ, an improvement does not increase
the expected function value sufficiently. Here exponential lower bounds are obtained
by showing that there is a large gap between the expected value and the best-so-far
function value. Both the proof of the upper and the lower runtime bound contain new
analytical tools to lower bound the tail of a sum of independent trials with different
success probabilities. The new tools may be of independent interest in other proba-
bilistic analyses.

In Sect. 2, we introduce the simple ACO algorithm which we will consider. We
investigate its relation to the (1 + 1) EA in Sect. 3 and transfer the results on this EA
to our algorithm. In Sect. 4, we investigate the choice of the evaporation factor ρ for
the function ONEMAX in greater detail. We finish with some conclusions.

2 The Algorithm

Gutjahr [9] has considered a graph-based ant system and investigated under which
conditions such an algorithm converges to an optimal solution. We consider a sim-
ple graph-based ant system metaheuristic that has been inspired by this algorithm.
Such a heuristic produces solutions by random walks on a construction graph (see,
e.g., [2]). Let C = (V ,E) be the construction graph with a designated start vertex s

and pheromone values τ on the edges. Starting at s, an ant traverses the construction
graph depending on the pheromone value using Algorithm 1. Assuming that the ant is
at vertex v, the ant moves to a successor w of v, where w is chosen proportionally to
the pheromone values of all non-visited successors of v. The process is iterated until
a situation is reached where all successors of the current vertex v have been visited.



246 Algorithmica (2009) 54: 243–255

Algorithm 1 (Construct(C,τ ))

1. v := s, mark v as visited.
2. While there is a successor of v in C that has not been visited:

(a) Let Nv be the set of non-visited successors of v and T := ∑
(v,w)|w∈Nv

τ(v,w).
(b) Choose one successor w of v where the probability of selection of any fixed

u ∈ Nv is τ(v,u)/T .
(c) Mark w as visited, set v := w and go to 2.

3. Return the solution x and the path P(x) constructed by this procedure.

Based on this construction procedure, solutions of our simple ACO algorithm (see
Algorithm 2) called 1-ANT are constructed. In the initialization step, each edge gets
a pheromone value of 1/|E| such that the pheromone values sum up to 1. After that,
an initial solution x∗ is produced by a random walk on the construction graph and
the pheromone values are updated with respect to this walk. In each iteration, a new
solution x is constructed and the pheromone values are updated if this solution is not
inferior to the currently best solution x∗. We formulate our algorithm for maximiza-
tion problems although it can be easily adapted to minimization.

Algorithm 2 (1-ANT )

1. Set τ(u,v) = 1/|E| for all (u, v) ∈ E.
2. Compute x (and P(x)) using Construct(C,τ ).
3. Update(τ,P (x)) and set x∗ := x.
4. Compute x (and P(x)) using Construct(C,τ ).
5. If f (x) ≥ f (x∗), Update(τ,P (x)) and set x∗ := x.
6. Go to 4.

For theoretical investigations, it is common to have no termination condition in
such an algorithm. One is interested in the random optimization time which equals the
number of constructed solutions until the algorithm has produced an optimal search
point. Usually, we try to bound the expected value of this time.

We take a general view and consider optimization for pseudo-boolean goal func-
tions f : {0,1}n → R for n ≥ 3 using the canonical construction graph in our set-
ting, Cbool = (V ,E) (see Fig. 1) with s = v0. In the literature, this graph is also
known as Chain [10]. Optimizing bitstrings of length n, the graph has 3n + 1 ver-
tices and 4n edges. The decision whether a bit xi , 1 ≤ i ≤ n, is set to 1 is made

Fig. 1 Construction graph for pseudo-boolean optimization
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at node v3(i−1). In case that the edge (v3(i−1), v3(i−1)+1) is chosen, xi is set to 1
in the constructed solution. Otherwise xi = 0 holds. After this decision has been
made, there is only one single edge which can be traversed in the next step. In case
that (v3(i−1), v3(i−1)+1) has been chosen, the next edge is (v3(i−1)+1, v3i ), and other-
wise the edge (v3(i−1)+2, v3i ) will be traversed. Hence, these edges have no influence
on the constructed solution and we can assume τ(v3(i−1),v3(i−1)+1) = τ(v3(i−1)+1,v3i ) and
τ(v3(i−1),v3(i−1)+2) = τ(v3(i−1)+2,v3i ) for 1 ≤ i ≤ n. We call the edges (v3(i−1), v3(i−1)+1)

and (v3(i−1)+1, v3i ) 1-edges and the other edges 0-edges. We define the 1-potential
as the sum of pheromone values on 1-edges and call the edges (v3(i−1), v3(i−1)+1) and
(v3(i−1), v3(i−1)+2) as well as (v3(i−1)+1, v3i ) and (v3(i−1)+2, v3i ) complementary to
each other.

The pheromone values are chosen such that at each time
∑

(u,v)∈E τ(u,v) = 1 holds.
In addition, it seems to be useful to have bounds on the pheromone values (see,
e.g., [1]) to ensure that each search point has a positive probability of being cho-
sen in the next step. We restrict each τ(u,v) to the interval [ 1

2n2 , n−1
2n2 ] and ensure

∑
(u,·)∈E τ(u,·) = 1

2n
for u = v3i , 0 ≤ i ≤ n − 1, and

∑
(·,v) τ(·,v) = 1

2n
for v = v3i ,

1 ≤ i ≤ n. This can be achieved by normalizing the pheromone values after an up-
date and replacing the current value by 1

2n2 if τ(u,v) < 1
2n2 and by n−1

2n2 if τ(u,v) > n−1
2n2

holds. As a consequence, the probability that a certain bit is set to 1 by the con-
struction procedure is the pheromone value on the corresponding 1-edges multiplied
by 2n.

Depending on whether edge (u, v) is contained in the path P(x) of the accepted
solution x, the pheromone values are updated to τ ′ in the procedure Update(τ,P (x))
as follows:

τ ′
(u,v) = min

{
(1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
,
n − 1

2n2

}

if (u, v) ∈ P(x),

and

τ ′
(u,v) = max

{
(1 − ρ) · τ(u,v)

1 − ρ + 2nρ
,

1

2n2

}

if (u, v) /∈ P(x).

Due to the bounds on the pheromone values, the probability of fixing xi as in an
optimal solution is at least 1/n. Hence, the 1-ANT finds an optimum for each pseudo-
boolean function f regardless of ρ in expected time at most nn.

3 1-ANT and (1 + 1) EA

We consider the relation between the 1-ANT and a simple evolutionary algorithm
called (1 + 1) EA, which has extensively been studied with respect to its runtime
distribution. The (1 + 1) EA starts with a solution x∗ that is chosen uniformly at
random and produces in each iteration a new solution x from a currently best so-
lution x∗ by flipping each bit of x∗ with probability 1/n. Hence, the probabil-
ity of producing a certain solution x with Hamming distance H(x,x∗) to x∗ is
(1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗).
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Algorithm 3 ((1 + 1) EA)

1. Choose x∗ ∈ {0,1}n uniformly at random.
2. Construct x by flipping each bit of x∗ independently with probability 1/n.
3. Replace x∗ by x if f (x) ≥ f (x∗).
4. Go to 2.

In the following, we consider the 1-ANT with values of ρ at least n−2
3n−2 , which is

for large n approximately 1/3. In this case, we show that the 1-ANT behaves as the
(1 + 1) EA on each function. This also means that the 1-ANT has the same expected
optimization time as the (1 + 1) EA on each function.

Theorem 1 Choosing ρ ≥ (n − 2)/(3n − 2), the 1-ANT has the same runtime distri-
bution as the (1 + 1) EA on each function.

Proof In the initialization step of the (1 + 1) EA, a bitstring is chosen uniformly at
random, which means that Prob(xi = 1) = Prob(xi = 0) = 1/2 for all i, 1 ≤ i ≤ n.
As τ(u,v) = 1/(4n) holds for each edge (u, v) ∈ E, the probability to choose the edge
(v3i , v3i+1) equals the probability of choosing the edge (v3i , v3i+2) at vertex v3i ,
0 ≤ i ≤ n − 1, and is 1/2. Hence, the 1-ANT chooses the first solution uniformly at
random from the search space {0,1}n as the (1 + 1) EA.

Assume that the best solution so far constructed by the 1-ANT is x∗. This implies
that the edges of the construction graph corresponding to this solution have been
updated in the last update operation. Before the update, the value τ(u,v) of each edge
(u, v) ∈ P(x∗) was at least 1

2n2 and the value τ(u,v) of edges (u, v) �∈ P(x∗) was at

most n−1
2n2 .

We inspect the case of an edge (u, v) ∈ P(x∗) in greater detail and consider the
function

h(ρ) := (1 − ρ) · τ(u,v) + ρ

1 − ρ + 2nρ
≥ (1 − ρ) · 1

2n2 + ρ

1 − ρ + 2nρ
= 1

2n2
· 1 + (2n2 − 1)ρ

1 + (2n − 1)ρ
=: h′(ρ).

For each fixed n ≥ 1, h′(ρ) is a non-decreasing function. Using ρ ≥ (n − 2)/

(3n − 2), we get

h(ρ) ≥ 1 + (2n2 − 1) n−2
3n−2

2n2 + (4n3 − 2n2) n−2
3n−2

= 2n3 − 4n2 + 2n

4n4 − 4n3
= n − 1

2n2
.

Hence, the pheromone value of each edge (u, v) ∈ P(x∗) is n−1
2n2 after the update.

The pheromone value of each edge (u, v) �∈ P(x∗) is 1
2n2 as the sum of the pheromone

values of two complementary edges is 1
2n

. After this update, the probability to choose

in the next solution x the bit xi = x∗
i is 2n(n−1)

2n2 = 1 − 1
n

and the probability to choose

xi = 1 − x∗
i is 2n

2n2 = 1/n. Hence the probability to produce a specific solution x that

has Hamming distance H(x,x∗) to x∗ is (1/n)H(x,x∗) · (1 − 1/n)n−H(x,x∗) as in the
case of the (1 + 1) EA. �
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4 1-ANT on OneMax

In the following, we inspect the choice of ρ in detail for a simple pseudo-boolean
function called ONEMAX defined by ONEMAX(x) = ∑n

i=1 xi . This is the simplest
non-trivial function that can be considered and analyses of ACO algorithms for such
simple functions are explicity demanded by Dorigo and Blum [1]. Note that due to
results on the (1 + 1) EA by Droste, Jansen and Wegener [4], the expected optimiza-
tion time of the 1-ANT is O(n logn) on each linear function if ρ ≥ (n − 2)/(3n − 2)

holds.
We prepare ourselves by considering the effects of pheromone updates for a so-

lution x∗ in greater detail. Let τ(e) and τ ′(e) be the pheromone values on edge e

before respectively after the update. If e ∈ P(x∗), τ ′(e) ≥ τ(e) and τ ′(e) ≤ τ(e) oth-
erwise. The amount by which the pheromone value is increased on a 1-edge equals
the amount the pheromone value is decreased on the complementary 0-edge. How-
ever, the change of a pheromone value depends on the previous value on the edge. In
the following lemma, we bound the relative change of pheromone values. We call an
edge saturated if and only if its pheromone value is either 1

2n2 or n−1
2n2 .

Lemma 2 Let e1 and e2 be two edges of Cbool and let τ1 respectively τ2 be their
current pheromone values in the 1-ANT. Let τ ′

1 respectively τ ′
2 be their updated

pheromone values for the next accepted solution x. If e1, e2 ∈ P(x∗) and none of the
edges is saturated before or after the update, then |(τ ′

1 −τ1)− (τ ′
2 −τ2)| ≤ ρ|τ1 −τ2|.

Proof W.l.o.g., τ2 ≥ τ1. Since e1, e2 ∈ P(x∗) and no edge is saturated,

τ ′
1 = (1 − ρ)τ1 + ρ

1 − ρ + 2nρ
and τ ′

2 = (1 − ρ)τ2 + ρ

1 − ρ + 2nρ
.

This implies

(τ ′
1 − τ1) − (τ ′

2 − τ2) = ρ − τ12nρ − (ρ − τ22nρ)

1 − ρ + 2nρ
≥ 0.

Second, since the denominator is at least 1, we obtain

τ ′
1 − τ ′

2 ≤ ρ(τ2 − τ1) + (τ1 − τ2), implying (τ ′
1 − τ1) − (τ ′

2 − τ2) ≤ ρ|τ1 − τ2|.

Taking the absolute value of (τ ′
1 − τ1) − (τ ′

2 − τ2), the claim follows. �

In the following, we will figure out which values of ρ lead to efficient runtimes
of the 1-ANT and which do not. Intuitively, 1/n is a threshold value for ρ since the
denominator 1 − ρ + 2nρ of the normalization factor diverges for ρ = ω(1/n) and
is 1 − ρ − o(1) for ρ = o(1/n). We will make precise that there is a phase transi-
tion in the behavior of the 1-ANT on ONEMAX when ρ is asymptotically smaller
respectively larger than 1/n.
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4.1 Exponential Lower Bounds

Choosing ρ = 0, the pheromone value on each edge is 1/(4n) at each time step.
This implies that the expected optimization time of the 1-ANT on ONEMAX is 2n as
each solution is chosen uniformly at random from {0,1}n. In the following, we show
that the optimization time with overwhelming probability still is exponential if ρ is
convergent to 0 only polynomially fast.

Assume that the currently best solution x∗ has value k. Then the following lemma
gives a lower bound on the probability of overshooting k by a certain amount in the
next accepted step. All asymptotics are with respect to n, the number of variables.

Lemma 3 Let X1, . . . ,Xn ∈ {0,1} be independent Poisson trials with success prob-
abilities pi , 1 ≤ i ≤ n. Let X := X1 + · · · + Xn, μ := E(X) = p1 + · · · + pn and
σ := √

Var(X). For any 0 ≤ k ≤ n − σ , let γk = max{2, (k − μ)/σ }. If σ → ∞ then
Prob(X ≥ k + σ/γk | X ≥ k) = �(1).

Proof Since the Xi are bounded and σ diverges, Lindeberg’s generalization of the
Central Limit Theorem [6, Chap. VIII.4] holds s. t. the distribution of X converges to
a Normal distribution with expectation μ and variance σ 2. We use approximations of
the Normal distribution (with the common notion �(x) for its cumulative distribution
function) and distinguish two cases.

If 2 maximizes γk , we even show p̃k := Prob(X ≥ k + σ/γk) = �(1). Let
d̃k := (k + σ/γk − μ)/σ be the normalized deviation from the expectation. Since by
our assumptions (k − μ)/σ ≤ 2, we obtain d̃k = O(1). The Central Limit Theorem
implies p̃k = (1 ± o(1))(1 − �(d̃k)) = �(1).

Now let γk > 2. Let pk := Prob(X ≥ k), dk := (k − μ)/σ , and let p̃k and d̃k as
above. By our assumptions, 2 ≤ dk ≤ d̃k ≤ dk + 1/dk . We have to bound p̃k/pk from
below. We reuse the Central Limit Theorem and employ the inequalities

(
1

x
− 1

x3

)

· 1√
2π

· e−x2/2 < 1 − �(x) <
1

x
· 1√

2π
· e−x2/2

(see [5, Chap. VII.1]). Hence,

p̃k

pk

≥ 1 − o(1)

1 + o(1)
·
(

dk

d̃k

− dk

(d̃k)3

)

· e−(1/2)((d̃k)
2−(dk)

2).

The first fraction and the term in brackets are �(1). Finally, e−(1/2)((d̃k)
2−(dk)

2) =
�(1) since (d̃k)

2 − (dk)
2 ≤ (dk + 1/dk)

2 − (dk)
2 ≤ 2 + 1/(dk)

2 ≤ 3. �

Using this lemma, we are able to prove an exponential lower bound on the runtime
of the 1-ANT on ONEMAX. In order to show that the success probability in an ex-
ponential number of steps is still exponentially small, we assume that ρ = O(n−1−ε)

for some constant ε > 0.

Theorem 4 Let ρ = O(n−1−ε) for some constant ε > 0. Then the optimization time
of the 1-ANT on ONEMAX is 2�(nε/3) with probability 1 − 2−�(nε/3).
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Proof The main idea is to keep track of the 1-potential defined in Sect. 2. Note
that the 1-potential multiplied by n equals the expected ONEMAX-value of the next
constructed solution x. If the 1-potential is bounded by 1/2 + O(1/

√
n), Chernoff

bounds yield that the probability of ONEMAX(x) ≥ n/2+n1/2+ε/3 is bounded above
by 2−�(nε/3). We will show that with overwhelming probability, the 1-potential is
bounded as suggested.

Starting with initialization, we consider a phase of length �2cnε/3� for some con-
stant c to be chosen later and show that the probability of obtaining the optimum
in the phase is 2−�(nε/3). To this end, we study four properties that the whole phase
simultaneously fulfills with probability 1 − 2−�(nε/3) each. If any of the properties is
not valid, we say that a failure occurs.

1. The best-so-far ONEMAX-value is in the interval [n/2 − n1/2+ε/3, n/2 +
n1/2+ε/3].

2. The 1-potential is 1/2 ± O(1/
√

n).
3. All pheromone values are 1/(4n) ± o(1/n).
4. The total number of successful steps (i.e., steps that replace the best-so-far solution

and subsequently update pheromone) is bounded by O(n2ε/3).

When we fix a property and prove that it holds with probability 1−2−�(nε/3) at the
next time step, we may work under the assumption that all four properties are fulfilled
up to the current step. Since we consider only failure probabilities of 2−�(nε/3) and
at most 2cnε/3

time steps, the total failure probability is still bounded by 2−�(nε/3) for
the whole phase if c is a small enough constant.

For the first property, Chernoff bounds show that the initial solution has a
ONEMAX-value of at least n/2 − n1/2+ε/3 with probability 1 − 2−�(nε/3). Since the
value is non-decreasing in the run, this proves the lower bound of the interval. It has
already been mentioned above that its upper bound follows from the second property
by Chernoff bounds and that the failure probability is 2−�(nε/3).

We turn to the second property. In a successful step leading to ONEMAX-value
n/2 + i (where i may be negative), it holds that n + 2i pheromone values on 1-edges
are increased and n − 2i are decreased. Assuming the third property, we apply
Lemma 2. This yields that the 1-potential is changed by at most 4|i|(1 ± o(1))ρ

due to the considered successful step. Hence, assuming the first property, we bound
|i| by n1/2+ε/3, and using the fourth property, the total change of the 1-potential over
all O(n2ε/3) successful steps is at most

O(n2ε/3) · 4n1/2+ε/3 · (1 ± o(1))ρ = O(n1/2+ε) · O(n−1−ε) = O(1/
√

n)

by our assumption on ρ. This proves the second property since the initial 1-potential
is 1/2.

The third property is easily proven assuming that the fourth property holds. Using
the assumption on ρ, the total change of pheromone on any edge is bounded above
by

O(n2ε/3) · ρ = O(n2ε/3) · O(n−1−ε) = o(1/n),

and the property follows since the initial pheromone values are 1/(4n).
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We finally prove the fourth property. Let the best-so-far ONEMAX-value be k.
We apply Lemma 3 with respect to the value of the next constructed solution; let μ

be its expectation. By the second property, μ ≥ n/2 − O(
√

n). Using the first prop-
erty, we obtain k − μ = O(n1/2+ε/3). Moreover, we translate the pheromone value
on the 1-edges of the i-th bit, 1 ≤ i ≤ n, into the probability pi of obtaining a 1
and use the third property. This means that pi = 1/2 ± o(1) holds for all bits, hence

σ =
√∑n

i=1 pi(1 − pi) = �(n1/2). Thus, we have γk = O(nε/3). The lemma now
yields that with probability �(1), the next successful step increases k by at least
�(n1/2−ε/3). We apply Chernoff bounds on the number of successes that lead to
such an increase and ignore the other successful steps. Therefore, if we choose an
appropriately large constant c′ then c′n2ε/3 successes with probability 1 − 2−�(n2ε/3)

increase the ONEMAX-value by at least 2n1/2+ε/3. This would lead to a ONEMAX-
value of more than n/2 + n1/2+ε/3, which does not happen according to the first
property. Hence, with a probability of 1 − 2−�(nε/3), the number of successes is
O(n2ε/3), which proves the fourth property. Since the sum of all failure probabili-
ties is 2−�(nε/3), the proof is complete. �

4.2 Polynomial Upper Bounds

In the following, we consider for which values of ρ the optimization time of the
1-ANT on ONEMAX with high probability is still polynomial. We will show that the
function value of the last accepted solution determines the expected value of the next
solution almost exactly if ρ = �(n−1+ε), ε > 0 an arbitrary constant. To determine
the expected time to reach an improvement, we give a lower bound on the probability
of overshooting the expected value by at least a small amount. Again the asymptotics
should be understood with respect to n, which in this case is used to define intervals
for success probabilities, and which at the same time bounds the number of variables
from above.

Lemma 5 Let X1, . . . ,Xt ∈ {0,1}, t ≤ n, be independent Poisson trials with suc-
cess probabilities pi ∈ [1/n,1 − 1/n], 1 ≤ i ≤ t . Let X := X1 + · · · + Xt and
μ := E(X) = p1 + · · · + pt . If μ ≤ t − 1 then Prob(X ≥ μ + 1/2) = �(1/n).

Proof We look for a choice of the pi that minimizes Prob(X ≥ μ + 1/2). The work
by Gleser [8] establishes Schur-convexity of this probability w.r.t. the pi , hence a
minimum is obtained if as many pi as possible take their extremal values. It follows
that at most one pi is distinct from 1/n and 1 − 1/n. We obtain three sets of prob-
abilities, up to two of which can be empty: Let t� be the number of pi that are 1/n,
th be the number of those that are 1 − 1/n and ta ∈ {0,1} be the number of those
that take a third value a, 1/n < a < 1 − 1/n. Let X�, Xh and Xa be the sums of the
random variables belonging to the corresponding sets, then X = X� + Xh + Xa , and
let μ� = t�/n, μh = th(1 − 1/n) and μa = taa be the corresponding expectations.

It always holds that Xh = th ≥ μh with probability (1−1/n)th = �(1). We distin-
guish several cases according to the expectations defined by the other two sets. Note
that μ�,μa ≤ 1.
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Case 1a: μ� = 0 and μa = 0. Hence, ta = t� = 0 and th = t . Therefore, Xh = t ≥
μ + 1 holds with probability (1 − 1/n)t = �(1).

Case 1b: μ� = 0 and μa > 0. Hence, t� = 0 and ta = 1. Therefore, we have Xa = 1
with probability a = �(1/n). Altogether, Xh + Xa ≥ th + ta + t� = t ≥ μ + 1 holds
with probability �(1/n).

Case 2a: 0 < μ� < 1/4 and μa < 1/4. Then we have X� ≥ 1 ≥ μ� + 3/4 with
probability �(1/n) and altogether, Xh + X� ≥ th + μ� + 3/4 ≥ μh + μ� + 3/4 +
(μa − 1/4) = μ + 1/2 with probability �(1/n).

Case 2b: 0 < μ� < 1/4 and μa ≥ 1/4. Then X� ≥ 1 ≥ μ� + 3/4 with probability
�(1/n) and Xa = 1 ≥ μa with probability a = �(1), altogether Xh + Xa + X� ≥
μh + μa + μ� + 3/4 with probability �(1).

Case 3: μ� ≥ 1/4. Then t� ≥ n/4 and Prob(X� ≥ 3) ≥ (
n/4

3

)
(1/n)3(1 − 1/n)n/4−3

= �(1). Altogether, Xh + X� ≥ th + 3 ≥ μh + μ� + 2 ≥ μh + μa + μ� + 1 = μ + 1
with probability �(1). �

The result of Lemma 5 is asymptotically tight as shows the following instance: let
t = n/2, p1 = · · · = pt−1 = 1 − 1/n and pt = 1/n. Since 
μ+ 1/2� = t , it holds that
Prob(X ≥ μ + 1/2) ≤ 1/n.

To prove the following theorem, we need another tail inequality on the sum of
independent trials. It is in a Chernoff-Hoeffding style, however, requires knowledge
of a variance.

Lemma 6 Let X1, . . . ,Xn be independent random variables such that Xi −E(Xi) ≤
b for 1 ≤ i ≤ n. Then for any t > 0

Prob(X1 + · · · + Xn ≥ t) ≤ e
− t2

2 Var(X)+2bt/3 .

See, e.g., [14] for further references.

Theorem 7 Choosing ρ = �(n−1+ε), ε > 0 a constant, the optimization time of the
1-ANT on ONEMAX is O(n2) with probability 1 − 2−�(nε/2).

Proof We assume ρ ≤ 1/2 since the result follows from Theorem 1 otherwise. In
contrast to previous definitions, an edge is called saturated if its pheromone value
is n−1

2n2 and called unsaturated otherwise. Let x∗ be a newly accepted solution and
denote by S the set of saturated 1-edges and by U the set of unsaturated 1-edges
after the pheromone update. Let k = ONEMAX(x∗) and decompose k according to
k = ks + ku, where ks denotes the number of ones in x∗ whose corresponding 1-edges
belong to S and ku to the number of ones in x∗ whose 1-edges belong to U . The prob-
ability that the edges of S contribute at least ks to the next (not necessarily accepted)
solution x is at least (1 − 1/n)ks = �(1).

Consider the 1-potential (i.e., the sum of pheromone values) P ∗ of all edges of U
before x∗ updates the pheromone values. Let μ∗ = P ∗n be the expected ONEMAX-
value w.r.t. these edges before the update. Depending on P ∗ and ku, we compute
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P(ρ), their 1-potential after the update:

P(ρ) = (1 − ρ)P ∗ + 2kuρ

(1 − ρ) + 2nρ
.

We denote by μ = P(ρ) · n the expected ONEMAX-value w.r.t. the edges of U
after the update has occurred. Under certain assumptions, we will prove that with
probability 1 − 2−�(nε), μ + 1/2 > ku. Since ku is an integer, Lemma 5 shows that
the probability of producing in the next solution x at least 
μ + 1/2� ≥ ku + 1 ones
by the U -edges is at least �(1/n). Consider the difference

μ − ku ≥ (1 − ρ)P ∗ + 2kuρ

(1 − ρ) + 2nρ
· n − ku = (μ∗ − ku)(1 − ρ)

(1 − ρ) + 2nρ
.

We exploit that ρ ≤ 1/2, implying 1−ρ ≥ 0. Hence, if μ∗ −ku ≥ 0 then μ ≥ ku >

ku − 1/2 anyway. Assuming μ∗ − ku < 0, we can lower bound the last fraction by
(μ∗ − ku)/(2nρ). Hence, if we can prove that ku − μ∗ < nρ, we obtain μ > ku − 1/2
as desired. We will bound the probability of a large deviation ku − μ∗ keeping track
of the variance of the random number of ones on the U -edges. Let v∗ be the variance
before the pheromone values have been updated with respect to x∗ and denote by v

the variance after the update. If v∗ ≤ (nρ)3/2, then Lemma 6 yields

Prob(ku − μ∗ ≥ nρ) ≤ e
− (nρ)2

2v∗(1+nρ/(3v∗)) = 2−�(
√

nρ) = 2−�(nε/2).

However, we cannot show that v∗ ≤ (nρ)3/2 is likely for all points of time. Therefore,
we will prove v ≥ v∗/(4nρ) for any time step. This will show that v is large enough
to compensate a large ku − μ∗ in the following step (constructing x).

Suppose v∗ > (nρ)3/2. Then v∗ ≥ √
v∗nρ, and by Lemma 6,

Prob(ku − μ∗ ≥ √
v∗nρ) ≤ e

− (
√

v∗nρ)2

2v∗+2
√

v∗nρ/3 ≤ e
− v∗nρ

2v∗+2v∗/3 = 2−�(nε).

Hence, with probability 1 − 2−�(nε), (ku − μ∗)/(2nρ) ≤ √
v∗/(2nρ), implying

μ ≥ ku − √
v∗/(2nρ). Due to the assumptions v∗ > (nρ)3/2, v ≥ v∗/(4nρ) and

nρ = �(nε), it follows that v → ∞. Hence, we can apply Lindeberg’s generaliza-
tion of the Central Limit Theorem for the number of ones on U . The probability of
producing at least ku + 1 ones on these edges is bounded below by the probability
of producing at least 1 + μ + √

v∗/(2nρ) ones on these edges. By the Central Limit
Theorem, this has probability �(1) since

√
v ≥ √

v∗/(2nρ).
We still have to show that v ≥ v∗/(4nρ). It is sufficient to show a statement on

the success probability for each edge (u, v) of the construction graph. Consider the
expression τ ′

(u,v) ≥ (1−ρ)τ(u,v)

1−ρ+2nρ
. The last fraction is at least τ(u,v)

4nρ
since ρ ≤ 1/2.

The S -edges contribute with probability �(1) at least ks to the next solution, and
(if no failure of probability 2−�(nε/2) occurs) with probability �(1/n), the U -edges
contribute at least ku + 1. At most n − 1 improvements suffice, and, by Chernoff
bounds, cn2 steps contain at least n − 1 improvements with probability 1 − 2−�(n)

for an appropriate constant c. Since ρ ≤ 1/2, ε ≤ 1 must hold. Hence, the sum of all
failure probabilities in O(n2) steps is 2−�(nε/2). �
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5 Conclusions

For the first time, bounds on the runtime of a simple ACO algorithm have been ob-
tained. Choosing a large evaporation factor, it behaves like the (1 + 1) EA and all
results on this algorithm transfer directly to our ACO algorithm. In addition, we have
inspected the effect of the evaporation factor in detail for the function ONEMAX and
figured out the border between a polynomial and an exponential optimization time
almost completely. Thereby, we have developed new techniques for the analysis of
randomized search heuristics.
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