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Abstract Branch & Reduce and dynamic programming on graphs of bounded
treewidth are among the most common and powerful techniques used in the design
of moderately exponential time exact algorithms for NP hard problems. In this pa-
per we discuss the efficiency of simple algorithms based on combinations of these
techniques. The idea behind these algorithms is very natural: If a parameter like the
treewidth of a graph is small, algorithms based on dynamic programming perform
well. On the other side, if the treewidth is large, then there must be vertices of high
degree in the graph, which is good for branching algorithms. We give several ex-
amples of possible combinations of branching and programming which provide the
fastest known algorithms for a number of NP hard problems. All our algorithms re-
quire non-trivial balancing of these two techniques.

In the first approach the algorithm either performs fast branching, or if there is
an obstacle for fast branching, this obstacle is used for the construction of a path
decomposition of small width for the original graph. Using this approach we give the
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fastest known algorithms for MINIMUM MAXIMAL MATCHING and for counting all
3-colorings of a graph.

In the second approach the branching occurs until the algorithm reaches a sub-
problem with a small number of edges (and here the right choice of the size of sub-
problems is crucial) and then dynamic programming is applied on these subproblems
of small width. We exemplify this approach by giving the fastest known algorithm to
count all minimum weighted dominating sets of a graph.

We also discuss how similar techniques can be used to design faster parameterized
algorithms.

Keywords Exact exponential time algorithms · Parameterized algorithms · NP hard
problems · Treewidth · #3-Coloring · #Minimum dominating set · Minimum
maximal matching · k-Weighted vertex cover

1 Introduction

It is a common belief that exponential time algorithms are unavoidable when we
want to find an exact solution of a NP hard problem. The last few years have seen an
emerging interest in designing exponential time exact algorithms and we recommend
recent surveys [11, 20, 28, 31, 32] for an introduction to the topic.

One of the major techniques for constructing fast exponential time algorithms is
the Branch & Reduce paradigm. Branch & Reduce algorithms (also called search
tree algorithms, Davis-Putnam-style exponential-time backtracking algorithms etc.)
recursively solve NP hard combinatorial problems using reduction rules and branch-
ing rules. Such an algorithm is applied to a problem instance by recursively calling
itself on smaller instances of the problem.

Let us consider a simple example of a branching algorithm: finding an independent
set of maximum size in a graph G = (V ,E). The solution to an instance G of the
problem is derived from the solutions of two smaller subproblems G − {v} and G −
N [v], where v is any given vertex and N [v] is a set of neighbors of v including v.
This is because either v does not belong to the solution, or all its neighbors do not.
Then the running time T (n) of the algorithm on a graph on n vertices can be bounded
by the recurrence T (n − 1) + T (n − |N [v]|). The behavior of such an algorithm is
poor when the degree of v is small and the usual trick used in branching algorithms
is to combine simple branching on vertices of high degree with different branching
rules on vertices of small degrees which (usually) leads to a very complicated case
analysis. Such a situation is quite typical for many branching algorithms.

Treewidth is one of the most basic parameters in graph algorithms. There is a well
established theory on the design of polynomial (or even linear) time algorithms for
many intractable problems when the input is restricted to graphs of bounded treewidth
(see [3] for a comprehensive survey). What is more important for us here is that many
problems on graphs with n vertices and treewidth at most � can be solved in time
O(c�nO(1)), where c is some problem dependent constant. This observation com-
bined with upper bounds on treewidth was used to obtain fast exponential algorithms
for NP hard problems on cubic, sparse and planar graphs [10, 11, 22, 29]. For exam-
ple, a maximum independent set of a graph given with a tree decomposition of width
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at most � can be found in time O(2�n) (see for example [2]). So, a quite natural ap-
proach to solve the independent set problem would be to branch on vertices of high
degree and if a subproblem with all vertices of small degrees is obtained, then use
dynamic programming.

In this paper we show two different approaches based on combinations of branch-
ing and treewidth techniques. Both approaches are based on a careful balancing of
these two techniques. In the first approach the algorithm either performs fast branch-
ing, or if there is an obstacle for fast branching, this obstacle is used for the con-
struction of a path decomposition of small width for the original graph. We call this
technique Branching & Global Application of Width Parameters and exemplify it on
the following problems:

• MINIMUM MAXIMAL MATCHING (MMM): Given a graph G, find a maximal
matching of minimum size.

• #3-COLORING: Given a graph G, count the number of 3-colorings of G.

For MMM, a number of exact algorithms can be found in the literature. Randerath
and Schiermeyer [27] gave an algorithm of time complexity O(1.4422m) for MMM,
where m is the number of edges. Raman et al. [26] improved the running time by
giving an algorithm of time complexity O(1.4422n) for MMM, where n is the num-
ber of vertices. Here, using a combination of branching, dynamic programming over
bounded treewidth and enumeration of minimal vertex covers we give an O(1.4082n)

algorithm for MMM. #3-COLORING is a special case of the more general problem
(d,2)-CONSTRAINT SATISFACTION PROBLEM ((d,2)-CSP). A systematic study of
exact algorithms for (d,2)-CSP was initiated in [1] where an algorithm with running
time O(1.788n) was given for #3-COLORING. In recent years, the algorithms for
(d,2)-CSP have been significantly improved. Notable contributions include papers
by Williams [30] and Fürer and Kasiviswanathan [16]. The current fastest algorithm
for #3-COLORING has running time O(1.770n) [16]. Here we improve this algorithm
with our technique of combining branching and treewidth and give an O(1.6308n)

time algorithm for the problem. This immediately improves the running time of al-
gorithms for counting k-colorings as a consequence.

In the second approach the branching occurs until the algorithm reaches a sub-
problem with a small number of edges (and here the right choice of the size of sub-
problems is crucial) and then dynamic programming on bounded treewidth or path-
width is applied on these subproblems. We term this technique Branching & Local
Application of Width Parameters and exemplify it on the following problem:

• #MINIMUM WEIGHTED DOMINATING SET (#MWDS): Given a weighted graph
G, count the number of dominating sets in G of minimum weight.

Exact algorithms to find a minimum dominating set have attracted a lot of atten-
tion. Recently, several groups of authors independently obtained exact algorithms that
solve the MINIMUM DOMINATING SET problem in a graph on n vertices faster than
the trivial O(2n) time brute force algorithm [14, 19, 27]. The fastest known algo-
rithm computes a minimum dominating set of a graph in time O(1.5137n) [12]. The
algorithm from [12] cannot be used to compute a dominating set of minimum weight
(in a weighted graph), however, as it was observed in [13], the weighted version of



184 Algorithmica (2009) 54: 181–207

the problem can be solved in time O(1.5780n) by similar techniques. In the same
paper it was shown that all minimal dominating sets can be listed in time O(1.7697n)

(later improved to O(1.7170n)), which implies that minimum dominating sets can
be counted in this time. Here we give an algorithm that counts minimum weighted
dominating sets in a weighted graph on n vertices in time O(1.5535n).

Finally we apply our technique to Parameterized Complexity. For decision prob-
lems with input size n, and a parameter k (which typically is the solution size), the
goal here is to design an algorithm with runtime f (k)nO(1) where f is a function de-
pending only on k. Problems having such an algorithm are said to be fixed parameter
tractable (FPT). The book by Downey and Fellows [7] provides a good introduction to
the topic of parameterized complexity. Here, we apply our technique to parameterized
k-WEIGHTED VERTEX COVER. The k-VERTEX COVER problem, asking whether an
input graph has at most k vertices that are incident to all its edges, is a celebrated ex-
ample of a FPT problem. When parameterized by k, this problem can be solved in
time O(n3 + ck), where c is a constant. After a long race of improvements (see for
example [6, 24]), the current best algorithm by Chandran and Grandoni has running
time O(1.2745kk4 + kn) [5].

For k-WEIGHTED VERTEX COVER, also known as REAL VERTEX COVER,
Niedermeier and Rossmanith [25] gave two algorithms, one with running time
O(1.3954k + kn) and polynomial space and the other one using time O(1.3788k +
kn) and space O(1.3630knO(1)). Their dedicated paper on k-WEIGHTED VERTEX

COVER is based on branching, kernelization and the idea of memorization. Their
analysis involves extensive case distinctions when the maximum degree of the re-
duced graph becomes 3. Here, we give a very simple algorithm running in time
O(1.3803kn) and space O(1.2599k + kn). The other problems for which we give
parameterized algorithms include parameterized edge dominating set and its variants.

While the basic idea of our algorithms looks quite natural, the approach is generic
and the right application of our approach improves many known results. The novel
and most difficult part of the paper is the analysis of the algorithms based on our
technique. The running time depends on a careful balancing of different parameters
involved in the algorithm. For MMM and #3-COLORING, we carefully count sub-
problems of different size arising during the recurrence to get the overall improve-
ment. To analyze the running time for #MWDS we investigate the behavior of the
pathwidth of a graph as a function of the measure of the corresponding set cover
instance. The difficulty here is to find the measure of the problem that “balances”
the branching and dynamic programming parts of the algorithm. To choose the right
measure we express the running time of the dynamic programming part as a linear
program and use the solution of this linear programming formulation to balance dif-
ferent parts of the algorithm. Finally for parameterized algorithms we make use of
known “kernels” for the problems and the fact that graphs with maximum degree at
most 2 have constant pathwidth.

We use standard dynamic programming algorithms on graphs of bounded path-
width or treewidth in all of our algorithms. But to use these algorithms it is important
that we have good upper bounds on the pathwidth of the subgraphs arising in our re-
cursive algorithms. We prove several upper bounds on the pathwidth of sparse graphs
that we use in our algorithms. These bounds are of independent interest.
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The rest of the paper is organized as follows. In Sect. 2 we give some basic defi-
nitions and notations we use in the paper. We develop some nontrivial upper bounds
on pathwidth of sparse graphs in Sect. 3. In Sect. 4, we exemplify the technique of
Branching & Global Application of Width Parameters on MMM and #3-COLORING.
In Sect. 5 we give an algorithm for MWDS as an application of Branching & Local
Application of Width Parameters technique. We apply our techniques to parameter-
ized algorithms in Sect. 6. Finally, we conclude with some remarks and open prob-
lems in Sect. 7.

2 Preliminaries

In this paper we consider simple undirected graphs. Let G = (V ,E) be a graph and
let n denote the number of vertices and m the number of edges of G. We denote by
Δ(G) the maximum vertex degree in G. For a subset V ′ ⊆ V , G[V ′] is the graph
induced by V ′, and G − V ′ = G[V \ V ′]. For a vertex v ∈ V we denote the set of its
neighbors by N(v) and its closed neighborhood by N [v] = N(v)∪{v}. Similarly, for
a subset D ⊆ V , we define N [D] = ⋃

v∈D N [v]. An independent set in G is a subset
of pair-wise non-adjacent vertices. A subset of vertices S ⊆ V is a vertex cover in G

if for every edge e of G at least one endpoint of e is in S.
Major tools of our paper are tree and path decompositions of graphs. A tree decom-

position of G is a pair ({Xi : i ∈ I }, T ) where each Xi , i ∈ I , is a subset of V , called
a bag and T is a tree with elements of I as nodes such that we have the following
properties:

1.
⋃

i∈I Xi = V ;
2. for all {u,v} ∈ E, there exists i ∈ I such that {u,v} ⊆ Xi ;
3. for all i, j, k ∈ I , if j is on the path from i to k in T then Xi ∩ Xk ⊆ Xj .

The width of a tree decomposition is equal to maxi∈I |Xi | − 1. The treewidth of a
graph G is the minimum width over all its tree decompositions and it is denoted by
tw(G). We speak of a path decomposition when the tree T in the definition of a tree
decomposition is restricted to be a path. The pathwidth of G is defined similarly to
its treewidth and is denoted by pw(G).

Our O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for a time
complexity of the form O(T (x) ·poly(|x|)) where T (x) grows exponentially with |x|,
the input size.

3 Upper Bounds on Pathwidth of Sparse Graphs

In this section we develop several upper bounds on the pathwidth of sparse graph. We
need the following known bound on the pathwidth of graphs with maximum degree 3
to prove the two lemmas of this section.

Proposition 1 [10] For any ε > 0, there exists an integer nε such that for every
graph G with n > nε vertices and maximum degree at most 3, pw(G) ≤ (1/6 + ε)n.
Moreover, a path decomposition of the corresponding width can be constructed in
polynomial time.
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Using Proposition 1 we prove the following bound for general graphs.

Lemma 1 For any ε > 0, there exists an integer nε such that for every graph G with
n > nε vertices,

pw(G) ≤ 1

6
n3 + 1

3
n4 + 13

30
n5 + 23

45
n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . ,6} and n≥7
is the number of vertices of degree at least 7. Moreover, a path decomposition of the
corresponding width can be constructed in polynomial time.

Proof Let G = (V ,E) be a graph on n vertices. It is well known (see for example [3])
that if the treewidth of a graph is at least 2, then contracting edges adjacent to vertices
of degree 1 and 2 does not change the treewidth of a graph and thus increases its
pathwidth by at most a logarithmic factor. So we assume that G has no vertices of
degree 1 and 2 (otherwise we contract the corresponding edges).

First, we prove the lemma for the special case where the maximum degree of G

is at most 4 by induction on the number n4 of vertices of degree 4 in G. If n4 = 0,
then Δ(G) ≤ 3, and we apply Proposition 1. Let us assume that for n4 ≥ 1 and for
every ε > 0 there exists nε such that for every graph with at least nε vertices and at
most n4 − 1 vertices of degree 4 the lemma holds. Let v ∈ V be a vertex of degree 4.
Every neighbor of v has degree at least 3. Let i ∈ {0, . . . ,4} be the number of degree
3 neighbors of v. Thus v has 4 − i neighbors of degree 4 and

pw(G) ≤ pw(G − v) + 1

≤ n3 − i + (4 − i)

6
+ n4 − 1 − (4 − i)

3
+ ε(n − 1) + 1

≤ n3

6
+ n4

3
+ εn.

Now, suppose that the maximum degree of G is at most 5. We have already proved
the base case where n5 = 0. Let us assume that for some n5 ≥ 1 the statement of the
lemma holds for all graphs with at most n5 − 1 vertices of degree 5, no vertices of
degree at least 6 and at least one vertex of degree at most 4. (The case when the graph
is 5-regular requires special consideration.)

Let v be a vertex of degree 5. Let us first assume that the graph G − v is not
5-regular. It is clear that pw(G) ≤ pw(G − v) + 1. For j ∈ {3, . . . ,5} we denote by
mj the number of degree j neighbors of v. By the induction assumption,

pw(G) ≤ pw(G − v) + 1

≤ n3 − m3 + m4

6
+ n4 − m4 + m5

3
+ 13

30
(n5 − 1 − m5) + 1 + εn.

For all possible values of m = (m3,m4,m5), we have that

13

30
≤ 1 + 1

6 (m4 − m3) + 1
3 (m5 − m4)

1 + m5
.
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(The equality is obtained when m = (m3,m4,m5) = (0,1,4) which corresponds to
the case when v has four neighbors of degree 5 and one of degree 4.) Thus,

pw(G) ≤ n3

6
+ n4

3
+ 13

30
n5 + εn.

If the graph obtained from G − v by contracting edges adjacent to vertices of
degree 1 and 2 is 5-regular, then all neighbors of v in G are of degree 3. Let u

be a vertex of degree 5 in G − v. Since G − u − v is not 5-regular and pw(G) ≤
pw(G − u − v) + 2, we have that

pw(G) ≤ pw(G − u − v) + 2

≤ 2 + n3 − 5

6
+ n4 + 5

3
+ 13

30
(n5 − 7) + εn <

n3

6
+ n4

3
+ 13

30
n5 + εn.

Thus the lemma holds for all non 5-regular graphs. Since the removal of one vertex
changes the pathwidth by an additive factor of at most 1, for sufficiently large n

this additive factor is dominated by εn, and we conclude that the lemma holds for
5-regular graphs as well.

Using similar arguments one can proceed with the vertices of degree 6 (we skip
the proof here). The critical case here is when the vertex of degree 6 has 5 neighbors
of degree 6 and one neighbor of degree 5.

For vertices of degree at least 7 we just use the fact that adding a vertex to a graph
can increase its treewidth by at most one. �

The following result bounds treewidth in terms of both the number of vertices and
the number of edges and is very useful when we have information about the average
degree rather than the maximum degree of the graph.

Lemma 2 For any ε > 0, there exists an integer nε such that for every connected
graph G with n > nε vertices and m = βn edges, β ∈ [1.5,2], the treewidth of G is
at most (m − n)/3 + εn. Moreover, a tree decomposition of the corresponding width
can be constructed in polynomial time.

Proof First we show the result assuming that the maximum degree Δ(G) of the graph
is bounded by 4 we then extend this result without any degree constraint.

Let n3 be the number of vertices of degree 3 in G and n4 be the number of vertices
of degree 4 in G. Since the contraction of an edge adjacent to a vertex of degree one
and two does not change the treewidth of a graph, we assume that n3 = n − n4. Thus
3
2n3 + 2n4 = βn. Since n4 = (2β − 3)n and n3 = (4 − 2β)n, by Lemma 1 we have
that

tw(G) ≤ pw(G) ≤ 1

3
(2β − 3)n + 1

6
(4 − 2β)n + εn

= β − 1

3
n + εn = m − n

3
+ εn.

Now we extend the result without any assumptions on the degrees of the vertices
of G. We show this by induction on n≥5, the number of vertices of degree at least 5.
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We have already shown that the lemma holds if n≥5 = 0. Let us assume that for
n≥5 ≥ 1, for every ε > 0 there exist nε such that for every graph with at least nε

vertices and at most n≥5 − 1 vertices of degree at least 5 the lemma holds. Let v ∈ V

be a vertex of degree at least 5. Observe that G − v has at most m − 5 edges and that
m − 5 ≤ 2(n − 1). Now we have

tw(G) ≤ tw(G − v) + 1 ≤ m − 5 − (n − 1)

3
+ 1 + εn

≤ m − n

3
+ εn = (β − 1)n

3
+ εn. �

4 Branching and Global Application of Width Parameters

In this section we give the fastest known exact algorithms for MMM, its variants
and #3-COLORING. Our algorithms either branch on a vertex or compute a path
decomposition of the original graph. Once it computes a path decomposition, it stops
branching and finds the solution of the problem by applying an algorithm based on
dynamic programming on graphs of bounded pathwidth/treewidth for the problem.

4.1 Minimum Maximal Matching

Given a graph G = (V ,E), any set of pairwise disjoint edges is called a matching
of G. A matching M is maximal if there is no matching M ′ such that M ⊂ M ′. The
problem of finding a maximum matching is well studied in algorithms and combi-
natorial optimization. One can find a matching of maximum size in polynomial time
but there are many versions of matching which are NP hard. Here, we give an exact
algorithm for one such version [17]. More precisely, the problem we study is:

• MINIMUM MAXIMAL MATCHING (MMM): Given a graph G = (V ,E) find a
maximal matching of minimum cardinality.

We need the following proposition which is a combination of two classical results
due to Moon and Moser [23] and Johnson, Yannakakis and Papadimitriou [21].

Proposition 2 [21, 23] Every graph on n vertices contains at most 3n/3 = O(1.4423n)

maximal (with respect to inclusion) independent sets. Moreover, all these maximal in-
dependent sets can be enumerated with polynomial delay.

The VERTEX COVER problem is the complement of the INDEPENDENT SET prob-
lem, that is, S ⊆ V is a vertex cover of G if and only if V \ S is an independent set
of G and hence Proposition 2 can be used for enumerating minimal vertex covers as
well. Our algorithm also uses the following characterization of a MMM.

Proposition 3 [26] Let G = (V ,E) be a graph and M be a minimum maximal match-
ing of G. Let

V [M] = {v | v ∈ V and v is an end point of some edge of M}
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Fig. 1 Algorithm findMMM(G,H,C)

be a subset of all endpoints of M . Let S ⊆ V [M] be a vertex cover of G. Let M ′ be a
maximum matching in G[S] and M ′′ be a maximum matching in G − V [M ′], where
V [M ′] is the set of the endpoints of edges of M ′. Then X = M ′ ∪ M ′′ is a minimum
maximal matching of G.

Note that in Proposition 3, S does not need to be a minimal vertex cover.
Finally, we give a lemma for finding a minimum maximal matching on graphs of

bounded treewidth, which we use as a subroutine in our algorithm. The proof of the
lemma is based on standard dynamic programming on graphs of bounded treewidth
and we omit it here.

Lemma 3 There exists an algorithm to compute a minimum maximal matching of a
graph G in time O(3pnO(1)) when a path decomposition of G of width at most p is
given.

Now we are ready to describe our algorithm for MMM which uses Propositions 2,
3 and Lemma 3 as subroutines. Our detailed algorithm is depicted in Fig. 1. The algo-
rithm of Fig. 1 outputs either a path decomposition of the input graph G = (VG,EG)

(of reasonable width) or a minimum maximal matching of G. The parameter G of the
Algorithm findMMM always corresponds to the original input graph, H = (VH ,EH )

is a subgraph of G and C is a vertex cover of G − VH . To solve MMM we run
findMMM(G,G,∅). The algorithm consists of three parts.

Branch (lines 1–5). The algorithm branches on a vertex v of maximum degree and
returns the matching of minimum size found in the two subproblems created ac-
cording to the following rules:
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(R1) Vertices N(v) are added to the vertex cover C and N [v] is deleted from H ;
(R2) Vertex v is added to the vertex cover C and v is deleted from H .

Compute path decomposition (lines 6–8). The algorithm outputs a path decompo-
sition using Lemma 4 (discussed later). Then the algorithm stops without back-
tracking and a minimum maximal matching is found using the pathwidth algorithm
of Lemma 3.

Enumerate minimal vertex covers (lines 9–17). The algorithm enumerates all min-
imal vertex covers of H . For every minimal vertex cover Q of H , S = C ∪ Q is a
vertex cover of G and the characterization of Proposition 3 is used to find a mini-
mum maximal matching of G.

The conditions under which these different parts of the algorithm are executed have
been carefully chosen to optimize the overall running time of the algorithm, including
the pathwidth algorithm of Lemma 3. Note that a path decomposition is computed at
most once in an execution of the algorithm as it stops right after outputting the path
decomposition. Also note that the minimal vertex covers of H are only enumerated
in a leaf of the search tree corresponding to the recursive calls of the algorithm.

We define a branch node of the search tree of the algorithm to be a recursive call
of the algorithm. A branch node is uniquely identified by the triple (G,H,C), that is
the parameters of findMMM. Now we give a theorem which proves the correctness
and the time complexity of the algorithm.

Theorem 1 A minimum maximal matching of a graph on n vertices can be found in
time O(1.4082n).

Proof We first show the correctness of the algorithm and then bound its running time.

Correctness The algorithm either branches on a vertex of degree at least 3, or pro-
duces a path decomposition of G, or enumerates minimal vertex covers as subrou-
tines. The correctness of the step where a path decomposition of G is computed
follows from Lemma 3 and the correctness of the branching step is obvious.

If minimal vertex covers of H are enumerated, then the algorithm finds a set of
edges X by making use of Proposition 3 for all possible sets S = C ∪ Q, where Q is
a minimal vertex cover of H . Consider a subset of vertices Q′ ⊆ VH such that C ∪Q′
forms the set of end points of a minimum maximal matching M of G. Observe that
Q′ is a vertex cover of H . Hence if Q ⊆ Q′ is a minimal vertex cover of H then
S = C ∪ Q is a vertex cover of G and by applying Proposition 3 for S, a minimum
sized maximal matching is obtained for G. Hence, all the minimal vertex covers of
H are enumerated as possible candidates for Q.

Time Analysis In the rest of the proof we upper bound the running time of this
algorithm. For the running time analysis, it is essential to prove a good bound on the
width of the path decomposition of G, obtained by the algorithm.

Lemma 4 Let G = (V ,E) be the input graph and (G,H,C) be a branch node of the
search tree of our algorithm then the pathwidth of the graph is bounded by pw(H) +
|C|. In particular,
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(a) If Δ(H) ≤ 3, then pw(G) ≤ ( 1
6 + ε)|VH | + |C| for any ε > 0.

(b) If Δ(H) ≤ 2, then pw(G) ≤ |C| + 2.

A path decomposition of the corresponding width can be found in polynomial time.

Proof Let T = VG \ (VH ∪ C) be the set of vertices the algorithm removed from
H and did not include in C. Note that the set of endpoints of a maximal matching
forms a vertex cover of G. Thus when Algorithm findMMM decides that a vertex v

is not in the vertex cover C, that is it places it in T , all its neighbors are included
in C. Hence, for every branch node (G,H,C) of the search tree of the algorithm
we have the following (a) T is an independent set, and (b) N [VH ] ∩ T = ∅. Hence
the pathwidth of G[VH ∪ T ] is equal to pw(H). Given a path decomposition P of
G[VH ∪ T ], we obtain a path decomposition P ′ of G by adding C to every bag of P .
The pathwidth of P ′ is therefore bounded by pw(H) + |C|. The remaining part of
the lemma follows from Proposition 1 and the fact that graphs with maximum degree
at most 2 have pathwidth at most 2. �

Let us resume the proof of the theorem. Let α = 0.17385 and β = 0.31154. First,
consider the conditions under which a path decomposition may be computed. By
combining the pathwidth bounds of Lemma 4 and the running time of the algorithm
of Lemma 3, we obtain that MMM can be solved in time

O∗(max(3(1+5α)/6,3β)n)

when the path decomposition part of the algorithm is executed.
Assume now that the path decomposition part is not executed. Then, the algo-

rithm continues to branch when the maximum degree Δ(H) of the graph H is 3.
And so, |C| > αn when Δ(H) first becomes 3. At this point, the set C has been ob-
tained by branching on vertices of degree at least 4 and we investigate the number of
subproblems obtained so far. Let L be the set of nodes in the search tree of the algo-
rithm that correspond to subproblems where Δ(H) first becomes 3. Note that we can
express |L| by a two parameter function A(n, k) where n = |V (H)| and k is the min-
imum number of vertices that have to be added to C to continue branching. Initially,
n = |V (G)| and k = αn. This function can be upper bounded by a two parameter
recurrence relation corresponding to the unique branching rule of the algorithm:

A(n, k) = A(n − 1, k − 1) + A(n − 5, k − 4).

When the algorithm branches on a vertex v of degree at least 4 the function is called
on two subproblems. If v is not added to C ((R1)), then |N [v]| ≥ 5 vertices are
removed from H and |C| increases by |N(v)| ≥ 4. If v is added to C ((R2)), then
both parameters decrease by 1.

Let r be the number of times the algorithm branches in the case (R1). Observe that
r ∈ [0, k/4]. Let Lr be a subset of L such that the algorithm has branched exactly r

times according to (R1) in the unique paths from the root to the nodes in Lr . Thus,
|L| is bounded by

∑k/4
i=0 |Li |.

To bound the number of nodes in each Li , let l ∈ Li and Pl be the unique path from
l to the root in the search tree. Observe that on this path the algorithm has branched
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k − 4i times according to (R2) and i times according to (R1). Hence, the length of
the path Pl is k −3i. By counting the number of sequences of length k −3i where the
algorithm has branched exactly i times according to (R1), we get |Li | ≤

(
k−3i

i

)
. Thus

if the path decomposition is not computed, the time complexity T (n) of the algorithm
is

T (n) = O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

T ′(n − 5i − (k − 4i))

⎞

⎠

= O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

T ′(n − i − k)

⎞

⎠ (1)

where T ′(n′) is the time complexity to solve a problem on a branch node (G,H,C) in
L with n′ = |VH |. (Let us remind that in this case the algorithm branches on vertices
of degrees 3 and enumerates minimal vertex covers of H .) Let p = (β − α)n. To
bound T ′(n′), we use similar arguments as before and use Proposition 2 to bound the
running time of the enumerative step of the algorithm. Thus we obtain the following.

T ′(n′) = O∗
⎛

⎝
p/3∑

i=0

(
p − 2i

i

)

3
n′−4i−(p−3i)

3

⎞

⎠

= O∗
⎛

⎝3(n′−p)/3
p/3∑

i=0

(
p − 2i

i

)

3−i/3

⎞

⎠ . (2)

We bound T (n′) by O(3(n′−p)/3dp) for some constant d ∈ (1,2), the value of d

will be determined later. Substituting this in (1), we get:

T (n) = O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

3
n−i−k−p

3 dp

⎞

⎠ = O∗
⎛

⎝3(1−β)n/3dp

k/4∑

i=0

(
k − 3i

i

)

3−i/3

⎞

⎠ .

Further suppose that
∑k/4

i=0

(
k−3i

i

)
3−i/3 sums to O(ck) for a constant c ∈ (1,2),

then the overall time complexity of the algorithm is bounded by

O∗((3(1−β)/3dβ−αcα)n).

Claim c < 1.3091 and d < 1.3697.

Proof The sum over binomial coefficients
∑k/4

i=0

(
k−3i

i

)
3−i/3 is bounded by (k/4)B

where B is the maximum term in this sum. Let as assume that B = (
k−3i

i

)
3−i/3 for

some i ∈ {1,2, . . . , k/4}. To compute the constant c, let r := c − 1. We obtain

B =
(

k − 3i

i

)

3−i/3 ≤ (1 + r)k−3i

ri
3−i/3.



Algorithmica (2009) 54: 181–207 193

Here we use the well known fact that for any x > 0 and k ∈ {0, . . . , n},
(

n

k

)

≤ (1 + x)n

xk
.

By choosing r to be the minimum positive root of (1+r)−3

r
3−1/3 − 1, we arrive at

B < (1 + r)k for r ∈ (0.3090,0.3091). Thus c < 1.3091. The value of d is computed
in a similar way. �

Finally, we get the following running time for Algorithm findMMM by substitut-
ing the values for α, β , c and d :

O∗(max(3(1−β)/3dβ−αcα,3(1+5α)/6,3β)n) = O(1.4082n). �

4.2 Some Variations of MMM

In this subsection we give exact algorithms for two problems which are closely related
to MINIMUM MAXIMAL MATCHING.

• MINIMUM EDGE DOMINATING SET (MEDS): Given a graph G = (V ,E), find
a minimum set of edges D ⊆ E such that every edge of G is either in D or is
adjacent to an edge in D.

• MATRIX DOMINATION (MD): Given a m × n matrix M with entries {0,1}, find a
minimum set of non-zero entries in M that dominates all other, that is, a minimum
sized subset C ⊆ {1,2, . . . ,m} × {1,2, . . . , n} such that Mi,j = 1 for all (i, j) ∈ C

and whenever Mi,j = 1, there exists an (i′, j ′) ∈ C for which either i = i′ or j = j ′.

Our algorithm for MEDS depends on an old result which shows that every minimum
maximal matching is a MEDS [18].

Proposition 4 [18] Let G = (V ,E) be a graph. Then every minimum maximal
matching of G is a minimum edge dominating set.

Proposition 4 in connection with Theorem 1 gives us the following corollary.

Corollary 1 A MINIMUM EDGE DOMINATING SET of a graph with n vertices can
be found in time O(1.4082n).

MATRIX DOMINATION reduces to finding a MEDS in a bipartite graph [18]. We
obtain an improved algorithm for MATRIX DOMINATION by using the fact that all
minimal vertex covers of a triangle free graph (and a bipartite graph in particular) on
n vertices can be listed in time O∗(2n/2) [4]. The proof of the following theorem is
similar to the one of Theorem 1.

Theorem 2 Given a matrix M of size m × n with entries in {0,1}, MATRIX DOMI-
NATION can be solved in time O(1.3918m+n).
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Proof To solve MATRIX DOMINATION we solve MMM on a bipartite graph on
n + m vertices. As observed by Byskov [4], all minimal vertex covers of a triangle
free graph (and a bipartite graph in particular) on n + m vertices can be listed in time
O∗(2(n+m)/2). Thus the minimal vertex covers of the graph H in Algorithm find-
MMM can be listed faster, and similar to Theorem 1 we can estimate the running time
of the algorithm in this case by balancing the running time of the algorithm based on
a path decomposition of the graph with

O∗((2(1−β)/2dβ−αcα)n+m) (3)

where O(d(β−α)(n+m)) is solution to
∑p/3

i=0

(
p−2i

i

)
2−i/2 while O(cα(n+m)) is solution

to
∑k/4

i=0

(
k−3i

i

)
2−i/2. The values we get for the constants are: α ≤ 0.16110, β ≤

0.30091, d ≤ 1.3744, c ≤ 1.3127. Substituting these values in (3), we obtain the
claim of the theorem. �

4.3 Counting 3-Colorings (#3-COLORING)

A proper coloring of a graph is an assignment of colors to its vertices such that no
edge is monochromatic. Given a graph G = (V ,E), COLORING problem asks for
a proper coloring of V , minimizing the number of colors used on the vertices. The
problem of 2-COLORING, that is, can the given graph be colored with at most 2
colors is polynomial time solvable (bipartite graph testing) but r-COLORING is NP-
complete for any r ≥ 3 [17]. Here we look at the counting version of 3-COLORING

which is defined below.

• 3-COLORING: Given a graph G = (V ,E) find a function c : V → {R,B,G} such
that for every {u,v} ∈ E we have c(u) = c(v).

We denote by #3-COLORING the problem to count all 3-colorings of a graph. Our
algorithm for #3-COLORING is very similar to the one presented for MMM. Here
we give a simple description for the algorithm without going into details.

We associate two colors {R,BG}, with every vertex and branch on this color set.
While branching if we decide to color a vertex v with R then we color its neighbors
BG and remove N [v] from the graph else we color v with BG and remove it from the
graph. Let C1 be the set of vertices of G which are colored R and let C2 = V \ C1 be
the vertices colored BG. Now G has a 3-coloring respecting this precoloring if and
only if G[C2] is bipartite and the number of 3-colorings respecting this precoloring is
the number of 2-colorings of G[C2] which is 2t , where t is the number of connected
components of G[C2]. Hence, given a fixed precoloring of a graph G with R and BG,
we can compute the number of 3-colorings respecting this precoloring in polynomial
time.

We also need the following dynamic programming algorithm on graphs with
bounded treewidth for our algorithm.

Lemma 5 Given a graph G = (V ,E) with a tree decomposition of G of width �,
#3-COLORING can be solved in time O(3�nO(1)).
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As in the algorithm for MMM we have three phases in the algorithm. Here H

is the induced subgraph on uncolored vertices of G at some recursive step in the
algorithm.

Branch. The algorithm branches on a vertex v of maximum degree in H and returns
the sum of #3-COLORING found in the two subproblems created according to the
following rules:

(R1) The vertices in N(v) are added to the color class C2, v is added to the color
class C1 and N [v] is deleted from H ;

(R2) The vertex v is added to the color class C2 and v is deleted from H .

Compute path decomposition. If the maximum degree of H is at most 3 and the
size of C2 is at most 0.3342n or if the maximum degree of H is at most 2 and the
size of C2 is at most 0.44517n, then this is a step for applying pathwidth algorithm
on the original graph. At this point, the algorithm outputs a path decomposition and
the algorithm stops without backtracking. Then #3-COLORING is solved using the
pathwidth algorithm of Lemma 5 on the original graph G.

Enumerate 2-colorings of H . When the maximum degree of H is at most 2 and
the size of C2 does not satisfy the conditions of path decomposition phase then the
algorithm enumerates all possible two colorings with R and BG of H to get the
coloring of whole graph G with R and BG.

Let us observe here that the analysis and the algorithm for #3-COLORING remains the
same except the role of C in the algorithm for MMM is taken by C2 in the algorithm
for #3-COLORING. If we replace C with C2 in Lemma 4 then we get the same upper
bounds on the pathwidth of the original graph G. In the algorithm for #3-COLORING

we enumerate all proper 2 colorings of H . This is different than enumerating maximal
independent sets of H as we did in the algorithm for MMM. This change leads to use
of different α and β than in MMM to optimize the running time of the algorithm for
#3-COLORING. Let T (n) denote the time taken by the algorithm for #3-COLORING

on graphs on n vertices. For a fixed α ≤ 0.3342, β ≤ 0.44517, we fix k = αn and
p = (β − α)n. Then the running time of the algorithm is bounded by the following
sum when pathwidth algorithm is not used on the graph.

T (n) = O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

T ′(n − 5i − (k − 4i))

⎞

⎠

= O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

T ′(n − i − k)

⎞

⎠ ,

and

T ′(n′) = O∗
⎛

⎝
p/3∑

i=0

(
p − 2i

i

)

2n′−4i−(p−3i)

⎞

⎠ = O∗
⎛

⎝2(n′−p)

p/3∑

i=0

(
p − 2i

i

)

2−i

⎞

⎠ .

Here T ′(n′) is the running time of the algorithm on H when its maximum degree is
3 and the size of C2 (vertices colored with BG) is at least 0.3342n . We bound T (n′)
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by O∗(2(n′−p)dp) for some constant d ∈ (1,2), the value of d will be determined
later. Substituting this in the expression for T (n), we get

T (n) = O∗
⎛

⎝
k/4∑

i=0

(
k − 3i

i

)

2n−i−k−pdp

⎞

⎠ = O∗
⎛

⎝2(1−β)ndp

k/4∑

i=0

(
k − 3i

i

)

2−i

⎞

⎠ .

Further suppose that
∑k/4

i=0

(
k−3i

i

)
2−i sums to O(ck) for a constant c ∈ (1,2), then

the overall time complexity of the algorithm is bounded by

O∗((2(1−β)dβ−αcα)n).

Similar to the analysis in the algorithm for MMM, we get values for α, β , c and d .
Finally, we get the following running time for the algorithm for #3-COLORING by
substituting the values for α = 0.3342, β = 0.44517, c = 1.2538 and d = 1.2972

O∗(max(2(1−β)dβ−αcα,3(1+5α)/6,3β)n) = O(1.6308n).

This gives us the following theorem.

Theorem 3 Let G = (V ,E) be an undirected graph on n vertices then #3-
COLORING can be solved in O(1.6308n) time.

This improves on the O(1.770n) time algorithm presented in [16]. We can also
use this to obtain faster algorithms for counting k-colorings as done in [1].

5 Branching and Local Application of Width Parameters

In this section, we give an algorithm to count all minimum dominating sets of a graph.
The recursive part of this algorithm uses a transformation to the SET COVER problem
as in [19]. The analysis of the algorithm is largely based on the Measure & Conquer
analysis in [12].

5.1 Counting Minimum Dominating Sets

Given a graph G = (V ,E) a set D ⊆ V is called a dominating set for G if every
vertex from V is either in D, or adjacent to some vertex in D. We define the problem
of finding a minimum weighted dominating set as follows:

• MINIMUM WEIGHTED DOMINATING SET (MWDS): Given a graph G = (V ,E)

with a weight function w : V → R
+, find a dominating set D ⊆ V of minimum

weight w(D) = ∑
v∈D w(v).

We denote by #MWDS the counting version of MWDS where the objective is to
count all dominating sets of minimum weight. We also need the definition of
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• MINIMUM WEIGHTED SET COVER (MWSC): Given a set of elements U and a
collection S of non-empty subsets of U along with weight function w : S → R

+,
find a subset S ∗ ⊆ S of minimum weight w(S ∗) = ∑

S∈S ∗ w(S) which covers U ;
that is,

⋃

S∈S ∗
S = U .

We denote by #MWSC the problem of counting all set covers of minimum weight.
The frequency of an element u ∈ U is the number of sets S ∈ S in which u is

contained. We denote it by freq(u).
#MWDS can be reduced to #MWSC by imposing U = V and S = {N [v] |

v ∈ V }. Given a weight function w(v) for MWDS we define the corresponding
weight for a set S ∈ S as follows,

w(S) = w(S = {N [v] | v ∈ V }) = w(v).

Thus D is a dominating set of G if and only if {N [v] | v ∈ D} is a set cover of
{N [v] | v ∈ V }.

We also need a reduction from MWSC to a version of MWDS called

• MINIMUM RED-BLUE WEIGHTED DOMINATING SET (RBWDS): Given a bi-
partite graph G = (V ,E) with a bipartition V = VRed ∪VBlue and a weight function
w : V → R

+, find D ⊆ VRed of minimum weight such that every vertex in VBlue is
adjacent to a vertex of D.

To an instance (U , S,w) of MWSC one can associate an incidence graph GS ,
which is a bipartite graph on the vertex set S ∪ U with the bipartition (S, U ), and
vertices S ∈ S and u ∈ U are adjacent if and only if u is an element of S. Let us
observe, that S has a cover of weight k if and only if its incidence graph has a red-
blue (with VRed = S and VBlue = U ) dominating set of weight k.

Now we give an algorithm that counts minimum weight dominating sets in a
weighted graph on n vertices in time O(1.5535n). The basic idea is as follows. First
we turn the instance for #MWDS into an instance for #MWSC (this idea was first
used by Grandoni [19]) and perform branching on large sets and sets of size three
containing elements of high degree. After the branching step, we turn the instance
for #MWSC into an instance for RBWDS on bipartite graphs and use dynamic pro-
gramming to count its all solutions.

We also need the following result which can be obtained by a standard dynamic
programming technique.

Lemma 6 All minimum red-blue weighted dominating sets of a bipartite graph G

with bipartition (VRed,VBlue) given together with a path decomposition of G of width
at most p can be counted in time O(2pnO(1)).

We consider a recursive algorithm countMWSC for solving #MWSC. The algo-
rithm depends on the following observation.

Lemma 7 For a given instance of (S,w), if there is an element u ∈ U (S) that belongs
to a unique S ∈ S , then S belongs to every set cover.
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Fig. 2 Algorithm countMWSC(S,w)

Let us go through the Algorithm countMWSC; see Fig. 2. First, if |S| = 0 then
the size of the minimum weighted set cover is 0 and the number of such set covers
is 1. Otherwise (lines 3–5), the algorithm tries to reduce the size of the problem by
checking whether the condition of Lemma 7 is applicable. Specifically, if there is
an element u ∈ S′ of frequency one, then S′ has to be in every minimum set cover.
Thus we remove S′ and all its elements from the other sets S ∈ S . Namely re-
move(S′, S) = {Z | Z = S \ S′, S ∈ S}.

If the condition of Lemma 7 does not apply, then we choose a set S ∈ S of max-
imum cardinality. If |S| ≤ 3 and for every S ∈ S the degree of all its elements is
at most 6 then we solve the problem with the algorithm countPW. We discuss this
algorithm and its complexity later.

Otherwise we branch on the following two smaller subproblems. The first sub-
problem (remove(S, S),w) corresponds to the case where S belongs to the mini-
mum set cover. Whereas in the subproblem (S \ {S},w), S does not belong to the
minimum set cover.

Finally we compare the weights of the two subproblems and return the total weight
and number (lines 13–18).

The function countPW computes a minimum set cover for a specific instance
(S,w). Namely, S consists of sets with cardinalities at most 3 and for every S ∈ S
the degree of all its elements is at most 6. For such a set S , the function countPW
does the following:

– Construct the incidence graph GS of S ;
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– Count the number of minimum red-blue dominating sets in GS (to perform this
step, we construct a path decomposition of GS and run the dynamic programming
algorithm described in Lemma 6).

We show that the running time of the algorithm countMWSC is O(1.2464|S|+|U |).
The analysis is based on the Measure & Conquer technique [11, 12] combined with
a linear programming formulation of the running time of countPW. The analysis of
the branching part of the algorithm is quite similar to analysis from [12].

Let ni be the number of subsets S ∈ S of cardinality i and let mj be the number of
elements u ∈ U of frequency j . We use the following measure k = k(S) of the size
of S :

k(S) =
∑

i≥1

wini +
∑

j≥1

vjmj ,

where the weights wi, vj ∈ (0,1] will be fixed later. Note that k ≤ |S| + |U |. Let

Δwi = wi − wi−1, if i ≥ 2 and Δvi =
{

vi − vi−1, if i ≥ 3,

v2, if i = 2.

Intuitively, Δwi(Δvi) is the reduction of the size of the problem corresponding to the
reduction of the cardinality of a set (the frequency of an element) from i to i −1. Note
that this also holds for Δv2, because the new element of frequency one is removed
before next branching. And thus we get the total reduction 1 − (1 − v2) = v2.

Theorem 4 Algorithm countMWSC solves #MWSC in time O(1.2464|S|+|U |).

Proof In order to simplify the running time analysis, we make the following assump-
tions:

– v1 = 1;
– wi = 1 for i ≥ 6 and vi = 1 for i ≥ 6;
– 0 ≤ Δwi ≤ Δwi−1 for i ≥ 2.

Note that this implies wi ≥ wi−1 for every i ≥ 2.
Let Ph(k) be the number of subproblems of size h ∈ {0, . . . , k}, solved by

countMWSC to solve a problem of size k. Clearly, Pk(k) = 1. Consider the case
h < k (which implies |S| = 0). If the condition in line 3 of the algorithm holds, we
remove one set from S . Thus the reduction of size of the problem is at least w1

(worst case, |S| = 1) and Ph(k) ≤ Ph(k − w1). Otherwise, let S be the subset se-
lected in line 6. If |S| ≤ 3 and for every S ∈ S the degree of all its elements is at most
6 (line 7), no subproblem is generated. Otherwise, we branch on two subproblems
Sout = (wout, nout) and Sin = (win, nin).

Consider subproblem Sout. It corresponds to the case where S does not belong
to the set cover. The size of Sout decreases by w|S| because of the removal of S.
Let mi be the number of elements of S with frequency i. Note that there cannot be
elements of frequency 1. Consider an element u ∈ S with frequency i ≥ 2. When we
remove S, the frequency of u decreases by one. Thus, the size of the subproblem
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decreases by Δvi . The overall reduction due to the reduction of the frequencies is at
least

∑

i≥2

miΔvi =
6∑

i=2

miΔvi.

Finally, the total reduction of the size of Sout is

w|S| +
6∑

i=2

miΔvi.

Now consider the subproblem Sin. The size of Sin decreases by w|S| because of the
removal of S. Since we also remove all elements from S, we also get the reduction of
size

∑

i≥2

mivi =
6∑

i=2

mivi + m≥7.

Here m≥7 is the number of elements with frequency at least 7. Let S′ be the set shar-
ing the element u with S (S′ ∩ S = ∅). Note that |S′| ≤ |S|. When we remove u,
the cardinality of S′ is reduced by one. This implies a reduction of size Sin by
Δw|S′| ≥ Δw|S|. Thus the overall reduction of the size of Sin due to the reduction
of the cardinalities of the sets S′ is at least

Δw|S|
∑

i≥2

(i − 1)mi ≥ Δw|S|

(
6∑

i=2

(i − 1)mi + 6 · m≥7

)

.

Finally, the total reduction of the size of Sin is

w|S| +
6∑

i=2

mivi + m≥7 + Δw|S|

(
6∑

i=2

(i − 1)mi + 6 · m≥7

)

.

Putting all together, for all possible values of |S| ≥ 3 and for all values mi such
that

6∑

i=2

mi + m≥7 = |S|

(except if |S| = 3, then we choose only those sets of mi where m≥7 = 0), we have
the following set of recursions

Ph(k) ≤ Ph(k − Δkout) + Ph(k − Δkin),

where

Δkout = w|S| +
6∑

i=2

miΔvi,
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Δkin = w|S| +
6∑

i=2

mivi + m≥7 + Δw|S|

(
6∑

i=2

(i − 1)mi + 6 · m≥7

)

.

Since Δw|S| = 0 for |S| ≥ 7, we have that each recurrence with |S| ≥ 8 is “dom-
inated” by some recurrence with |S| = 7. Thus we restrict our attention only to the
cases where 3 ≤ |S| ≤ 7. We need to consider a large number of recursions (1653).
For every fixed 9-tuple (w1,w2,w3,w4,w5, v2, v3, v4, v5) the number Ph(k) is up-
per bounded by αk−h, where α is the largest number from the set of real roots of the
set of equations

αk = αk−Δkout + αk−Δkin

corresponding to the different combinations of values |S| and mi . Thus to estimate
Ph(k) we need to choose the weights wi and vj minimizing α.

Let K denote the set of the possible sizes of the solved subproblems. Note that
|K| is polynomially bounded. Thus the total number P(k) of subproblems is

P(k) ≤
∑

h∈K

Ph(k) ≤
∑

h∈K

αk−h.

After performing branching the algorithm calls the countPW algorithm. Thus the
total running time of the algorithm on an instance of measure k is

O∗
(

∑

h∈K

αk−h · βh

)

= O∗(max{α,β}k).

Here O(βhnO(1)) is the running time of the countPW algorithm on a problem of
size h. So we need to choose the weights wi and vj minimizing both α and β . To
estimate the running time of countPW we use the idea of measure and conquer
combined with linear programming.

Let us remind that countPW is called on an instance of #MWSC with all sets
of size at most 3 and elements of frequency at most 6. There are no elements of
frequency 1. Let S be an instance of set cover of measure k and let GS be its inci-
dence graph. Then GS is a bipartite graph with the bipartition (X = S, Y = U (S)).
By Lemma 6, the running time of the dynamic programming algorithm on GS is
O(βknO(1)) = O(2pw(GS )nO(1)). Let us remind that both constants α and β depend
on the choice of the weights in the measure function. In the remaining part of the
proof we show how to choose the weights that balance the branching and dynamic
programming parts of the algorithm.

We denote by Xi all vertices of X of degree i. Let xi = |Xi |. We define Yj ⊆ Y
and yj in the same way for every j ∈ {2, . . . ,6}. We need the following lemma.

We need to evaluate the running time of countPW on an instance of S of mea-
sure k. This gives us the following:

k = k(S) =
3∑

i=1

wixi +
5∑

j=2

vjyj + y6. (4)
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Here the values wi and vj are taken from the analysis of the countMWSC algo-
rithm. By counting edges of GS , we arrive at the second condition

x1 + 2x2 + 3x3 =
6∑

j=2

j · yj . (5)

By Lemma 1,

pw(GS ) ≤ 1

6
(x3 + y3) + 1

3
y4 + 13

30
y5 + 23

45
y6. (6)

Combining (4), (5), and (6) we conclude that the pathwidth of GS is at most the
maximum of the following linear function

1

6
(x3 + y3) + 1

3
y4 + 13

30
y5 + 23

45
y6 → max

subject to the following constraints:

measure:
3∑

i=1

wixi +
5∑

j=2

vjyj + y6 = k,

edges: x1 + 2x2 + 3x3 =
6∑

j=2

j · yj ,

variables: xi ≥ 0, i ∈ {1,2,3},
yj ≥ 0, j ∈ {2, . . . ,6}.

The running time of countPW is O∗(2pw(G)). Thus everything boils down to finding
the measure that minimizes the maximum of α and the objective function of the
LP obtained from the pathwidth bounds. Finding such weights is an interesting (and
nontrivial) computational problem on its own; see [8].

We numerically obtain the following values of the weights.

wi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1039797, if i = 1,

0.4664084, if i = 2,

0.8288271, if i = 3,

0.9429144, if i = 4,

0.9899772, if i = 5,

and vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5750176, if i = 2,

0.7951411, if i = 3,

0.9165365, if i = 4,

0.9771879, if i = 5.

With these weights the optimum of LP is obtained on x3 = 0.7525 and y6 = 0.3762
and all other variables equal to 0.

This gives us the total running time O(1.2464k(S)) = O(1.2464|U |+|S|). The
space used by the algorithm during the dynamic programming part is bounded by
O(1.2464|U |+|S|).

The four worst case recurrences for the branching algorithm are listed in Table 1.
This finalizes the proof. �
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Table 1 Worst case recurrences
for the branching algorithm |S| m2 m3 m4 m5 m6 m≥7

4 0 0 0 4 0 0

4 0 0 0 0 4 0

5 0 0 0 0 0 5

6 0 0 0 0 0 6

As we mentioned already, #MWDS can be reduced to #MWSC by imposing
U = V and S = {N [v] | v ∈ V }. The size of the corresponding #MWSC instance is
at most 2n, where n is the number of vertices in G. Thus, we have

Corollary 2 The #MWDS problem can be solved in O(1.24642n) = O(1.5535n)

time.

6 Application to Parameterized Algorithms

In this section we show the versatility of our techniques by applying them to parame-
terized problems.

6.1 Weighted Vertex Cover

Here we apply our technique to design a simple fixed parameter tractable algorithm
for the parameterized version of WEIGHTED VERTEX COVER problem.

• k-WEIGHTED VERTEX COVER (k-WVC): Given a graph G = (V ,E), a weight
function w : V → R

+ such that for every vertex v, w(v) ≥ 1 and k ∈ R
+, find a

vertex cover of weight at most k, where the weight of a vertex cover C is w(C) =∑
v∈C w(v).

Now, we present an algorithm that combines Branch & Reduce and dynamic pro-
gramming on graphs of bounded treewidth. It is well known that a minimum vertex
cover can be found in time O(2�nO(1)) in a graph of treewidth at most �.

Proposition 5 [2] Given a graph G with weights on its vertices and a tree decompo-
sition of G of width at most �, a minimum weighted vertex cover of G can be found
in time O(2�nO(1)).

We need kernelization for our algorithm for weighted vertex cover. The main idea
of kernelization is to replace a given instance (I, k) by a simpler instance (I ′, k′)
using some data reduction rules in polynomial time such that (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance and |I ′| is bounded by a function of k alone.
We state the kernelization proposition of [25] that we use in our algorithm.

Proposition 6 [25] Let G = (V ,E) be a graph, w : V → R
+ such that for every

vertex v, w(v) ≥ 1 and k ∈ R
+. There is an algorithm that in time O(kn + k3) either

concludes that G has no vertex cover of weight at most k, or outputs a kernel of size
at most 2k.
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First we apply Proposition 6 to obtain a kernel of size at most 2k. Then, as long as
the maximum degree of the graph is at least 4, the algorithm branches on a vertex v

of maximum degree; two subproblems are created according to the following rules:

(1) add v to the partially constructed vertex cover and delete v from the graph;
(2) add N(v) to the partially constructed vertex cover and delete N [v] from the

graph.

If the maximum degree of the graph is at most 3, then by Proposition 1, a tree de-
composition of small tree width (tw) can be found on the kernel of size 2k in polyno-
mial time and we can use a O(2twnO(1)) dynamic programming algorithm to solve
k-WEIGHTED VERTEX COVER. The correctness is clear from the presentation and
the running time of the algorithm is dominated by the following recurrences on T (k).

T (k) ≤ T (k − 1) + T (k − 4) [Branching Step],

T (k) ≤ 22k/6nO(1) [Treewidth Step].

Though the gap between the solutions of the above two recurrences are huge, it is
hard to balance them. The problem is that the known bound on the size of the kernel
remains fixed even though the average degree or the maximum degree of the graph
decreases. This results in the following theorem.

Theorem 5 k-WVC on a graph on n vertices can be solved in time O(1.3803knO(1))

and space O(1.2599knO(1)).

This simple algorithm is comparable to the best known parameterized
algorithm for weighted vertex cover which runs in time O(1.3788knO(1)) and space
O(1.3603knO(1)) [25].

6.2 Parameterized Edge Dominating Set and Its Variants

In this subsection we show that Branching & Global Application of Width Parameters
can be used to obtain the fastest known parameterized algorithm for the following
problem.

• k-WEIGHTED EDGE DOMINATING SET (k-WEDS): Given a graph G = (V ,E),
a weight function w : E → R

+ such that for every edge e, w(e) ≥ 1 and k ∈ R
+,

find a set of edges D ⊆ E of weight w(D) = ∑
e∈D w(e) at most k such that every

edge of E \ D is adjacent to an edge in D.

Observe that if a graph G has an edge dominating set of weight at most k then
it has a vertex cover of weight at most p = 2k. As in the algorithm for MMM, we
construct a partial vertex cover C of G by branching on vertices of maximum de-
gree. As observed by Fernau [9], if G \C has maximum degree one, a corresponding
edge dominating set for G can be found in polynomial time. Using this and branch-
ing on vertices of degree at least 2, Fernau obtains an algorithm with running time
O(2.6181knO(1)).
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Here we branch on vertices of degree at least 3. That is we pick a vertex v of degree
at least 3 and include either v or N(v) in C. This gives us the following recurrence
on p: T (p) = T (p − 1) + T (p − 3), which solves to O(1.465572p) = O(2.1480k).

Now, suppose that the algorithm has reached a branch node (G,H,C) of the recur-
rence tree and Δ(H) ≤ 2. Then by Lemma 4, the pathwidth of the graph G is bounded
by |C| + 1. Again, we use a different strategy based on the size of |C| at the branch
node. If |C| ≤ αp (α to be determined later) then we compute a path decomposition of
width � and apply an algorithm with running time O(3�nO(1)) similar to the algorithm
of Theorem 3 to obtain a minimum edge dominating set. Otherwise, the algorithm
continues branching on vertices of degree 2 of H in time 1.6181p−αp . To obtain the
optimal value of α, we solve the equation 1.465572αp1.6181p−αp = 3αp and obtain
α = 0.4018. This gives us a running time of O(1.55501pnO(1)) = O(2.4181knO(1))

for k-EDGE DOMINATING SET.
We observed in Sect. 4.2 that an exact algorithm for EDGE DOMINATING SET also

implies exact algorithms for MINIMUM MAXIMAL MATCHING and MATRIX DOMI-
NATION. Thus, we obtain the following result for k-WEIGHTED EDGE DOMINATING

SET and its related problems.

Theorem 6 k-WEIGHTED EDGE DOMINATING SET, k-MINIMUM MAXIMAL

MATCHING and k-MATRIX DOMINATION can be solved in time O(2.4181knO(1)).

7 Conclusion

Branching and dynamic programming on graphs of bounded treewidth are very pow-
erful techniques to design efficient exact algorithms. In this paper, we combined
these two techniques in different ways and obtained improved exact algorithms for
#MWDS, MMM and its variants. We also applied the technique to design fixed pa-
rameter tractable algorithms and obtained fast algorithms for k-WVC and k-WEDS
which also shows the versatility of our technique. The most important aspects of this
technique are that the resulting algorithms are very elegant and simple while at the
same time the analysis of these algorithms is non-trivial.

It would be interesting to find some other applications of the techniques presented
here in the design of exact exponential time algorithms and fixed parameter tractable
algorithms.
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