
Algorithmica (2009) 54: 1–24
DOI 10.1007/s00453-007-9116-4

Why Neighbor-Joining Works

Radu Mihaescu · Dan Levy · Lior Pachter

Received: 25 December 2006 / Accepted: 15 October 2007 / Published online: 4 December 2007
© Springer Science+Business Media, LLC 2007

Abstract We show that the neighbor-joining algorithm is a robust quartet method
for constructing trees from distances. This leads to a new performance guarantee that
contains Atteson’s optimal radius bound as a special case and explains many cases
where neighbor-joining is successful even when Atteson’s criterion is not satisfied.
We also provide a proof for Atteson’s conjecture on the optimal edge radius of the
neighbor-joining algorithm. The strong performance guarantees we provide also hold
for the quadratic time fast neighbor-joining algorithm, thus providing a theoretical
basis for inferring very large phylogenies with neighbor-joining.

Keywords Distance methods · Edge radius · Neighbor-joining · Quartets

1 Introduction

The widely used neighbor-joining algorithm [24] has been extensively analyzed
and compared to other tree construction methods. Previous studies have mostly fo-
cused on empirical testing of neighbor-joining. Examples include the comparison of
neighbor-joining with quartet [15] and maximum likelihood [14] methods, compre-
hensive comparisons of multiple programs [13, 16], and detailed testing of the limits
of the neighbor-joining algorithm [17]. These studies have concluded that neighbor-
joining is effective for many problems, and have recommended the algorithm. For
example, in [15] it is remarked that “quartet-based methods are much less accurate

R. Mihaescu · D. Levy · L. Pachter (�)
Department of Mathematics and Computer Science, UC Berkeley, 970 Evans Hall, Berkeley, CA
94720, USA
e-mail: lpachter@math.berkeley.edu

R. Mihaescu
e-mail: mihaescu@math.berkeley.edu

D. Levy
e-mail: levyd@math.berkeley.edu

mailto:lpachter@math.berkeley.edu
mailto:mihaescu@math.berkeley.edu
mailto:levyd@math.berkeley.edu

2 Algorithmica (2009) 54: 1–24

than the simple and efficient method of neighbor-joining”. In a recent study, Tamura
et al. [29] conclude that there are “bright prospects for the application of the NJ and
related methods in inferring large phylogenies”.

Furthermore, new methods are now almost always compared with neighbor-
joining to establish an improvement in performance [2, 8, 11, 19, 20, 23, 27]. In
other words, neighbor-joining has become the standard by which new phylogenetic
algorithms are compared, and continues to surface as an effective candidate method
for constructing large phylogenies. This is remarkable, considering the simplicity of
the neighbor-joining algorithm. We begin with a review of the neighbor-joining al-
gorithm and a very brief description of basic concepts involved. The definitions and
notation are based on [26]. The reader unfamiliar with the concepts described below
should consult this reference for full details.

Throughout the text a phylogenetic X-tree T denotes a binary tree describing the
evolutionary relationships between a set of taxa X, which label the leaves of the tree.
We will also use the term phylogenetic tree when the set X is clear from context.
A cherry of T is a pair of leaves (or taxa) (i, j) ∈ (

X
2

)
such that the path from i to j

in T has length exactly 2 (i.e. i, j have a common “parent” in T).
A split A|B of X is a bipartition X = A∪B and A∩B = ∅. In general we will use

splits of X induced by removing an internal edge of T (which will result in creating
two disconnected trees, one with leaf set A and the other with leaf set B).

A dissimilarity map on X is a map δ : X × X → R satisfying δ(x, y) = δ(y, x),
δ(x, y) ≥ 0 and δ(x, x) = 0 for all x, y ∈ X. A tree metric, or an additive dissimilarity
map, is a dissimilarity map δ for which there exists a tree T with edge lengths l :
E(T) → (0,∞) such that δ(i, j) = ∑

e∈P(i,j) l(e) where P(i, j) is the set of edges
in E(T) on the path from i to j in T . We note that for an additive dissimilarity map,
the tree topology and edge lengths l are uniquely defined.

We are now ready to give the full description of neighbor-joining:

(1) Given a set of taxa X and a dissimilarity map δ : X × X → R, compute the Q-
criterion for δ

Qδ(i, j) = δ(i, j) − 1

n − 2

(∑

k 	=i

δ(i, k) +
∑

k 	=j

δ(j, k)

)
.

Then select a pair a, b that minimize Qδ as motivated by the following theorem:

Theorem 1 (Saitou-Nei [24] and Studier-Keppler [28]) Let δT be the tree metric
corresponding to the tree T . The pair a, b that minimizes QδT

(i, j) is a cherry in
the tree.

(2) If there are more than three taxa, replace the putative cherry a and b with a leaf
jab , and construct a new dissimilarity map where δ(i, jab) = 1

2 (δ(i, a) + δ(i, b)).
This is called the reduction step.

(3) Repeat until there are three taxa.

Although the Q-criterion is easy to compute, the formula seems, at first glance,
somewhat contrived and mysterious. However, the formulation of the Q-criterion is
not accidental and has many useful properties. For example, it is linear in the dis-
tances, it is permutation equivariant (the input order of the taxa don’t matter), and

Algorithmica (2009) 54: 1–24 3

it is consistent, i.e., it correctly finds the tree corresponding to a tree metric. Bryant
[3] has shown that the Q-criterion is in fact the unique selection criterion satisfying
these properties. Gascuel and Steel [12] in an excellent review, provide a very precise
mathematical answer to “what does neighbor-joining do?”, via a proof that neighbor-
joining is a greedy algorithm which “decreases the whole tree length” as computed
by Pauplin’s formula [5, 21].

These results motivate the neighbor-joining algorithm, but they do not offer any
insight into its performance with dissimilarity maps that are not tree metrics. More
importantly, they do not address the central question of the behavior of neighbor-
joining on dissimilarity maps that arise from maximum likelihood estimation of dis-
tances between sequences in multiple alignments. There is one result that addresses
precisely these issues:

Theorem 2 (Atteson [1]) Neighbor-joining has l∞ radius 1
2 .

This means that if the distance estimates are at most half the minimal edge length
of the tree away from their true value then neighbor-joining will reconstruct the cor-
rect tree. Atteson’s theorem shows that neighbor-joining is statistically consistent.
Informally, this means that neighbor-joining reconstructs the correct tree from dis-
similarity maps estimated from sufficiently long multiple alignments. This has been
a widely used justification for the observed success of neighbor-joining, and is re-
garded as the definitive explanation for “when does neighbor-joining work?” [12].

However, as noted in [18], Atteson’s condition frequently fails to be satisfied even
when neighbor-joining is successful. This is also remarked on in [6]: “In practice,
most distances are far from being nearly additive [satisfying Atteson’s condition].
Thus, although important, optimal reconstruction radius is not sufficient for an algo-
rithm to be useful in practice”. Our main result is an explanation of why neighbor-
joining is useful in practice. We obtain our results using a new consistency theorem
(Theorem 16 in Sect. 4). Roughly speaking, our theorem states that neighbor-joining
is successful (globally) when it works correctly (locally) for the quartets in the tree.
Thus, Theorem 16 provides a crucial link between neighbor-joining and quartet meth-
ods, a connection that is first developed in Sect. 3. We also show that Atteson’s theo-
rem is a special case of our theorem.

In Sect. 5 we present a proof of Atteson’s conjecture on the optimal edge radius of
neighbor-joining. For a dissimilarity map δ whose l∞ distance to a tree metric δT is
less than ε

4 , we prove that the output T ′ of neighbor-joining applied to δ will contain
all edges of T of length at least ε, i.e., neighbor-joining has l∞ edge radius 1

4 . We
say that T ′ contains the edge e if there exists an edge e′ ∈ T ′ such that the split of
the taxa induced by removing e′ from T ′ is the same as that induced by removing e

from T . This result is tight, as [1] provides a counterexample for edge radius larger
than 1

4 . The methods we employ for this result are virtually the same as the ones
used in the proof of Theorem 16, although the proof is non-constructive and based
on an averaging argument. Our results are a stronger version of Atteson’s conjecture,
since we only require a weaker version of the l∞ error bound. In fact, as is shown
in Theorem 34, one is actually constrained to use this weaker condition, as Atteson’s
does not hold inductively. We hence invalidate the proofs of the main results in [30]
and [4].

4 Algorithmica (2009) 54: 1–24

We conclude with a simulation study that establishes the practical significance of
our theorems in Sect. 6.

2 The Shifting Lemma

In this section we provide a few preliminary observations that are necessary for our
results. We begin by reviewing a lemma from [10], namely that there is an alternative
to the reduction step (2) in the neighbor joining algorithm.

Step (2′): if there are more than three taxa, replace the putative cherry a and b

with a leaf jab , and construct a new dissimilarity map where δ(i, jab) = 1
2 (δ(i, a) +

δ(i, b) − δ(a, b)).
Notice that the only difference between (2) and (2′) consists of the addition of

the −δ(a, b) term. On a tree metric, the first version of the algorithm corresponds to
replacing a cherry by a single node whose distance to the rest of the tree is the average
of the distances of the two collapsed nodes. In the second version, the reduction step
is equivalent with replacing the cherry by its “root”, i.e., the point where the path
between the cherry nodes connects to the rest of the tree.

Definition 3 We say the dissimilarity map δ′ is a shift of δ if and only if there exists
a fixed ε and a distinguished taxon a, such that δ′(a, x) = δ(a, x) + ε for all x 	= a

and δ′(x, y) = δ(x, y) for all x, y 	= a.

Lemma 4 (The shifting lemma [10]) Shifting does not affect the outcome of
neighbor-joining.

Proof This follows from the observation that shifting by ε around a changes the value
of Q(x,y) by exactly −2ε, for all pairs x, y. Moreover, the result of collapsing taxa
x, y in the shifted dissimilarity map is the same as the result of collapsing the same
taxa in the initial dissimilarity map, or an ε shift of it. By these two observations, at
each step neighbor-joining will collapse the same pairs as before the shift. �

Corollary 5 The two versions of neighbor-joining are equivalent: they produce trees
with the same topology.

Proof Collapsing x, y by the second reduction method gives a dissimilarity map that
is a δ(x,y)

2 -shift of the one produced by collapsing by the first type of reduction step. �

It is important to notice that the operation of shifting a real tree metric δT by
ε around taxon a corresponds exactly to modifying the length of the leaf edge of
T corresponding to a by exactly ε. So in effect we can allow negative leaf edges
since shifting around all leaves by a large enough constant will make them positive,
while the outcome of the algorithm is the same. Of course, the statement of our edge
radius results does not make sense in the case of negative edge lengths. However,
the only negative edges are the leaf edges, and in that case the statements we make
are vacuous. They hold trivially since neighbor-joining reconstructs the bipartition
consisting of one taxon vs. the rest of the taxa set correctly, regardless of the input.

Algorithmica (2009) 54: 1–24 5

In the remainder of the paper, by a tree metric we will mean a shift of a tree metric,
i.e. a metric corresponding to a tree where leaf edges are allowed to be negative.

3 Quartets and Neighbor-Joining

We now show that for four taxa, neighbor joining is equivalent to the four point
method [7]. We will use the notation (ij : kl) to denote the tree topology on the set
{i, j, k, l} where the pairs (i, j) and (k, l) form cherries separated by a middle edge.
When i, j, k, l are nodes (internal or external) of a tree T , we will say that (ij : kl)

is a quartet of T if the topology induced by T on the four nodes is that indicated by
(ij : kl) .

Proposition 6 Let X = {i, j, k, l} and δ : X × X → R be a dissimilarity map. The
neighbor-joining algorithm will return the tree (ij : kl) where δ(i, j) + δ(k, l) ≤
min(δ(i, k) + δ(j, l), δ(i, l) + δ(j, k)).

This result can be easily derived using the Q-criterion, but we prefer to motivate it
using an alternative formulation of the neighbor-joining criterion formulated in [10].

For a dissimilarity map δ, let

wδ(ij : kl) = 1

2

(
δ(i, k) + δ(i, l) + δ(j, k) + δ(j, l)

) − δ(i, j) − δ(k, l).

Note that for a quartet (ij : kl) in a tree T with corresponding tree metric δT , wδT
(ij :

kl) is double the length of the internal edge in the quartet. In [10] this is called a
“neighborliness” measurement.

Theorem 7 If δT is the tree metric corresponding to a phylogenetic X-tree T and

ZδT
(i, j) = 1

(
n−1

2

)
∑

(k,l)∈(X\{i,j }
2)

wδT
(ij : kl)

then the pair a, b that maximizes ZδT
(i, j) is a cherry in the tree.

Proof Let n = |X|. The sum in ZδT
is over unordered pairs of X − {i, j}. Observe

that for any δ

Zδ(i, j) = −Lδ(T) − Qδ(i, j)

where Lδ(T) = 1
(n−1

2)

∑
x,y∈T δT (x, y) does not depend on i or j . The theorem now

follows directly from Theorem 1. �

Although the naive computation of the Z-criterion requires quadratic time, the
equivalence with the Q-criterion shows that each entry in the Z-matrix is just a sum
of a linear number of distances. One may therefore wonder why the Z-criterion is
worth mentioning at all. We outline a number of reasons why the Z-criterion may be a

6 Algorithmica (2009) 54: 1–24

more natural way to formulate the neighbor-joining selection criterion. For example,
note that in the case of four taxa i, j, k, l, the Z-criterion is just Zδ(i, j) = 1

3wδ(ij :
kl) and Proposition 6 follows immediately from Theorem 7. The Z-criterion also
highlights the fact that for a tree metric, the neighbor-joining selection criterion does
not depend on the length of edges adjacent to leaves. This is remarked on in the proof
of the consistency of neighbor-joining in [3]. Furthermore, for a dissimilarity map δ,
Zδ(i, j) is precisely the difference between the balanced minimum length of δ with
respect to the star tree, and the length with respect to the tree containing the cherry
(i, j) with the remaining taxa unresolved (see Fig. 1 in [12] and the accompanying
discussion).

Finally, the Z-criterion highlights the connection between neighbor-joining and
quartet methods. Recall that the naive quartet method consists of choosing a quartet
for each four taxa using the four point method (Proposition 6), and then returning the
tree consistent with all the quartets (if such a tree exists). This leads us to

Definition 8 A dissimilarity map δ is quartet consistent with a tree T if for every
(ij : kl) ∈ T , wδ(ij : kl) > max(wδ(ik : j l),wδ(il : jk)).

By definition, the naive quartet method will reconstruct a tree T from a dissimi-
larity map δ if δ is quartet consistent with T . We note that this is essentially the same
as the ADDTREE method [25], with the minor difference that ADDTREE always
outputs a tree, albeit potentially the wrong one if δ is not quartet consistent with T .

In the next section we will prove the following extension of Proposition 6:

Theorem 9 If 4 ≤ |X| ≤ 7 and δ : X × X → R is a dissimilarity map that is quartet
consistent with a binary tree T then the neighbor-joining algorithm applied to δ will
construct a tree with the same topology as T . Furthermore, if 5 ≤ |X| ≤ 7 then there
exists ε > 0 such that if ‖δ̃ − δ‖∞ < ε, neighbor-joining applied to δ̃ will reconstruct
a tree with the same topology as T .

As we have pointed out, neighbor-joining is equivalent to the naive quartet method
and ADDTREE for |X| = 4. Theorem 9 states that neighbor-joining is at least as good
as the naive quartet method for trees with at most 7 taxa, and is in fact robust to small
changes in the metric.

Example 10 Let T be the 5 leaf tree shown in Fig. 1 that corresponds to the tree
metric δT , and consider the distorted dissimilarity map δ

δT =

⎛

⎜⎜⎜⎜
⎝

a b c d e

a 0 2 3 6 6
b 2 0 3 6 6
c 3 3 0 5 5
d 6 6 5 0 4
e 6 6 5 4 0

⎞

⎟⎟⎟⎟
⎠

, δ =

⎛

⎜⎜⎜⎜
⎝

a b c d e

a 0 2 3 6 3
b 2 0 3 6 6
c 3 3 0 5 5
d 6 6 5 0 4
e 3 6 5 4 0

⎞

⎟⎟⎟⎟
⎠

.

Note that δ is not quartet consistent with T , because δ(a, e) + δ(b, c) < δ(a, b) +
δ(c, e). However it is easy to verify that neighbor-joining constructs a tree with the

Algorithmica (2009) 54: 1–24 7

Fig. 1 A five leaf tree

Fig. 2 An eight leaf tree

same topology as T . The example shows that neighbor-joining can construct the cor-
rect tree even when the naive quartet method and ADDTREE fail.

The next example shows that Theorem 9 fails for trees with more than 7 taxa.

Example 11 Let T be the 8 leaf tree shown in Fig. 2 and let δT be its corresponding
tree metric.

δT =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

x y a b c m n p

x 0 3 2 2 2 3 3 3
y 3 0 3 3 3 2 2 2
a 2 3 0 0.1 0.4 3 3 3
b 2 3 0.1 0 0.4 3 3 3
c 2 3 0.4 0.4 0 3 3 3
m 3 2 3 3 3 0 0.1 0.4
n 3 2 3 3 3 0.1 0 0.4
p 3 2 3 3 3 0.4 0.4 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

,

8 Algorithmica (2009) 54: 1–24

Fig. 3 The quartet additivity
configuration

Consider the distorted dissimilarity map

δ =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

x y a b c m n p

x 0 2.7 2.6 2.6 2.6 4.4 4.4 4.4
y 2.7 0 4.4 4.4 4.4 2.6 2.6 2.6
a 2.6 4.4 0 0.1 0.4 2.7 2.7 2.7
b 2.6 4.4 0.1 0 0.4 2.7 2.7 2.7
c 2.6 4.4 0.4 0.4 0 2.7 2.7 2.7
m 4.4 2.6 2.7 2.7 2.7 0 0.1 0.4
n 4.4 2.6 2.7 2.7 2.7 0.1 0 0.4
p 4.4 2.6 2.7 2.7 2.7 0.4 0.4 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

that is quartet consistent with T . It is easy to see that Qδ(x, y) = −6.24, while
Qδ(a, b) = Qδ(m,n) = −6.04. Therefore the function Qδ is not minimized at one
of the cherries of T , and the neighbor-joining algorithm applied to δ outputs a tree
different from T , in which x, y form a cherry.

Fortunately, there is a single extra condition which ensures that neighbor-joining
correctly reconstructs a tree. In what follows we say that a leaf x is interior to a
quartet (ij : kl) in a tree T if none of (ik : xl), (ik : xj), (ix : j l), or (kx : j l) are
quartets in T .

Definition 12 A dissimilarity map δ : X × X → R is quartet additive with a tree T

if for every (ij : kl) ∈ T with x interior to (ij : kl), and y not interior to (ij : kl) such
that (ij : xy) is not a quartet of T , we have w(kl : xy) > w(ij : xy) (see Fig. 3).

We conclude with three basic lemmas that are important in the next section. The
proofs are left as an exercise for the reader.

Lemma 13 Quartet consistency and additivity are both invariant with respect to the
shifting operation.

Lemma 14 (Spectator Lemma) For any a, b, x, y, t ∈ X,

2w(ab : xy) = w(tb : xy) + w(at : xy) + w(ab : ty) + w(ab : xt).

The Spectator Lemma is used to prove

Lemma 15 For any a, b, c, i, j, x, y ∈ X,

3w(ab : xy) − 3w(ac : xy) = w(ab : xc) − w(ac : xb) + w(ab : yc) − w(ac : yb),

4w(ab : xy) − 4w(ij : xy) = w∗(ab : x : ij) + w∗(ab : y : ij),

where w∗(ab : x : ij) = w(ab : ix) + w(ab : jx) − w(ax : ij) − w(bx : ij).

Algorithmica (2009) 54: 1–24 9

4 A Consistency Theorem for Neighbor-Joining

Theorem 16 If δ : X × X → R is quartet consistent and quartet additive with a tree
T , then neighbor-joining applied to δ will construct a tree with the same topology
as T .

The proof of the theorem consists of two main parts. First, we show that when
the reduction step collapses a pair of taxa (x, y) which form a cherry in T , then the
dissimilarity metric given by reducing δ is quartet consistent and additive with the
tree T ′ obtained by clipping off the cherry (x, y) and labeling its former root (now a
leaf) with the new taxon thus created in the reduction step. In other words, the node
obtained by collapsing (x, y) in δ is assigned to the location of the common ancestor
of x and y in the true tree T . Note that this only makes sense when x and y do indeed
form a cherry, as this is the only case in which their common ancestor is well defined.
The second part of the inductive proof is showing that given δ quartet consistent and
quartet additive with a tree T , the optimal pair for the reduction step is guaranteed to
form a cherry in T . This clearly completes the inductive argument. We proceed with
the first step.

Lemma 17 Quartet consistency is maintained when reducing a cherry of the refer-
ence tree. Formally, given a pair of taxa x, y ∈ X which form a cherry in T , the result
of collapsing (x, y) in δ is quartet consistent with the topology given by deleting the
leaf edges leading to x and y in T and assigning the new member of the set of taxa
to the new leaf thus formed in T .

Proof Without loss of generality, we may assume that we are collapsing taxa x, y

into taxon z by using the first type of reduction step. For a set U ⊂ X, we let T |U be
the topology induced by T on U . Note that for X1 = X − {x} and X2 = X − {y}, the
two topologies T |X1 and T |X2 are isomorphic under the map f : X1 → X2 defined
by f (u) = u for u 	= x, y and f (y) = x. We furthermore notice that δ|Xi

is quartet
consistent with T |Xi

for i = 1,2 since δ is quartet consistent with T . Therefore δ|Xi

will be quartet consistent with T ′ under identifying y or x with z. We note again that
this property holds if and only if (x, y) form a cherry in T .

Now note that the reduced distance metric δ′ on the set X′ = X − {x, y} ∪ {z}
is in fact a linear combination of the two dissimilarity maps δ|X1 and δ|X2 under
identifying z with y in X1 and x in X2 (We define the restriction of the dissimilarity
map to a subset of its domain in the obvious way).

The last piece of the proof involves noticing that the condition of quartet consis-
tency with respect to a topology T is a set of linear inequalities (defined by T), on the
values δ(i, j), or “linear in δ” for short. Concretely, this means that any linear combi-
nation of dissimilarity maps that are quartet consistent with a topology T will also be
quartet consistent with T . As noted above, both δ|X1 and δ|X2 are quartet consistent
with T ′, while δ′ is a linear combination of the two under the obvious isomorphisms
(in fact δ′ is the mean of δ|X1 and δ|X2). We conclude that δ′ is quartet consistent
with T ′. �

10 Algorithmica (2009) 54: 1–24

Lemma 18 Quartet additivity is maintained when reducing a cherry of the reference
tree. Formally, given a pair of taxa x, y ∈ X which form a cherry in T , the result of
collapsing (x, y) in δ is quartet additive with respect to the topology given by deleting
the leaf edges leading to x and y in T and assigning the new member of the set of
taxa to the new leaf thus formed in T .

Proof We note that quartet additivity is also a property that is linear in δ. The proof
proceeds identically with the previous lemma.

Proof of Theorem 16 By the above lemmas, it suffices to prove that at any step, the
pair of taxa which maximize the Z-criterion form a cherry. We argue by contradiction.
Let us consider a pair δ, T such that (i, j) is a pair of taxa which maximizes Zδ , but
does not form a cherry in T . Throughout the proof, and in the remainder of the paper,
we multiply Zδ by

(
n−1

2

)
to simplify the formulas.

Case 1: Suppose i or j are part of a cherry. Without loss of generality, assume that
leaf i forms a cherry with leaf k 	= j and let X′ = X − {i, j, k}. Then:

Zδ(i, k) − Zδ(i, j)

=
∑

∀x∈X′
w(ik : xj) − w(ij : xk) +

∑

∀(x,y)∈(X′
2)

w(ik : xy) − w(ij : xy).

Applying Lemma 15 to the second summand, we have:

Zδ(i, k) − Zδ(i, j)

=
∑

∀x∈X′
w(ik : xj) − w(ij : xk)

+ 1

3

∑

∀x,y∈(X′
2)

w(ik : xj) − w(ij : xk) + w(ik : yj) − w(ij : yk)

= n − 1

3

∑

∀x∈X′
w(ik : xj) − w(ij : xk).

Since (ik : xj) is a quartet in T for any x, by consistency w(ik : xj) − w(ij :
xk) > 0 for all x and therefore Zδ(i, k) − Zδ(i, j) > 0, a contradiction.

Case 2: Neither i nor j are part of a cherry. Then, we have a situation as in Fig. 4.
Let I be the set of leaves on the subtree nearest i along the path from i to j and,
similarly, let J be the set of leaves on the subtree nearest j . Without loss of generality,
we assume that |I | ≤ |J | and let the pair a, b ∈ I be a cherry in T . Let X′ = X −
{a, b, i, j}. Then

Zδ(a, b) − Zδ(i, j) =
∑

x∈X′
w(ab : ix) + w(ab : jx) − w(ax : ij) − w(bx : ij)

+
∑

x,y∈(X′
2)

w(ab : xy) − w(ij : xy).

Algorithmica (2009) 54: 1–24 11

Fig. 4 Case 2 in Theorem 16

By Lemma 15,

Zδ(a, b) − Zδ(i, j) =
∑

x∈X′
w∗(ab : x : ij)

+ 1

4

∑

x,y∈(X′
2)

w∗(ab : x : ij) + w∗(ab : y : ij)

= n − 1

4

∑

x∈X′
w∗(ab : x : ij)

First note that if x ∈ X′ is a leaf that is not in I or in J (i.e., the paths from a to x

and b to x intersect the path from i to j), then w(ab : xy) > w(ij : xy) for any leaf
y by quartet consistency. Thus we restrict our attention to the leaves in I and J . Let
I ′ = I − {a, b}. Then, since |I | ≤ |J |, it follows that |I ′| ≤ |X′ − I ′| and we choose
a subset of J that is the same size as I ′. In particular, there exists I ∗ ⊂ J such that
|I ∗| = |I ′| = P . Let I ′ = {x1, . . . , xP }, I ∗ = {y1, . . . , yP } and X′′ = X′ − I ′ − I ∗.
Then by Lemma 15:

4

n − 1

(
Zδ(a, b) − Zδ(i, j)

)

>

P∑

p=1

[w∗(ab : xp : ij) + w∗(ab : yp : ij)] +
∑

x∈X′′
w∗(ab : x : ij)

= 4
P∑

p=1

[w(ab : xpyp) − w(ij : xpyp)] +
∑

x∈X′′
w∗(ab : x : ij).

The first sum is positive by additivity. For the second sum, by Lemma 15 we have

w∗(ab : x : ij)

= w(ab : ix) + w(ab : jx) − w(ax : ij) − w(bx : ij)

= 4w(ab : ij) − 2w(ax : ij) − 2w(bx : ij)

12 Algorithmica (2009) 54: 1–24

= 2

3
[w(ab : ix) − w(ax : ib) + w(ab : jx) − w(ax : jb)

+w(ab : ix) − w(bx : ia) + w(ab : jx) − w(bx : ja)].
Since (ab : ix) and (ab : jx) are all quartets in T , each of the four differences is
positive by consistency. Therefore w∗(ab : x : ij) > 0 and so Zδ(a, b) > Zδ(i, j), a
contradiction. �

Remark 19 Theorem 9 follows from the observation that quartet consistency suffices
in the proof of Theorem 16 when 4 ≤ |X| ≤ 7. Details are omitted.

Corollary 20 Neighbor-joining has l∞ radius of at least 1
2 . Following Atteson’s re-

sults from [1] for the reverse inequality, we conclude that neighbor-joining has l∞
radius equal to 1

2 .

Proof It is easy to see that if δT is a tree metric and δ is a metric with
maxi,j |δT (i, j) − δ(i, j)| < 1

2 mine∈E(T) l(e) where l(e) is the length of edge e in
T , then δ is quartet consistent and quartet additive with T . �

The next corollary extends the Visibility Lemma from [6]. A taxon b is visible
from a with respect to a dissimilarity map δ if

b = argmaxx 	=aZδ(a, x).

Corollary 21 If δ is quartet consistent with a tree T and (a, b) is a cherry of T , then
b is visible from a with respect to δ.

Proof This follows directly from the first step of the proof of Theorem 16. �

The Visibility Lemma is the key to developing a fast neighbor joining algorithm
(FNJ) that has optimal run time complexity O(n2) [6]. In fact, we can conclude that

Corollary 22 If δ is quartet consistent and quartet additive with respect to a tree T

then FNJ will reconstruct T from δ with run time complexity O(n2) (which is also
the size of the algorithm input).

5 The Edge Radius of the Neighbor-Joining Algorithm

In this section we prove a strengthening of the following conjecture about the edge
radius of the neighbor-joining algorithm:

Conjecture 23 (Atteson [1]) Let T be a phylogenetic X-tree with associated tree
metric δT , and let e be an edge of T of length l(e). If δ is a dissimilarity map whose
l∞ distance to δT is less than l(e)

4 , then neighbor-joining applied to δ will reconstruct
the edge e correctly, i.e., the tree T ′ output by neighbor-joining will contain an edge
e′ which induces the same split in the tree T ′ as e induces in T .

Algorithmica (2009) 54: 1–24 13

Since the necessary l∞ error bound needed for the neighbor-joining algorithm to
reconstruct an edge correctly is 1

4 of the length of the edge, we say that the edge
radius of neighbor-joining is 1

4 . This result is optimal. In [1], Atteson presents an

example where the statement fails for l∞ error larger than l(e)
4 .

For ease of exposition, in what follows we will drop the requirement that the in-
put trees are binary. In other words, we will allow internal nodes of degree higher
than three. Note that an internal node of degree at least 4 corresponds to one or more
internal edges of length 0 in a binary tree. We also continue to allow negative leaf
edges. Since in this section we are only concerned with recovering splits correspond-
ing to edges of at lest a certain length in the reference tree, edges of zero size can
easily be allowed as our requirements for reconstructing them become null. Also,
since leaf edges are recovered correctly by design (they correspond to trivial splits),
negative leaf edges can easily be allowed without affecting the analysis. This is also
a consequence of Lemma 4.

Definition 24 Let T be a tree and e a non-leaf edge of length l in T , corresponding to
the split A|B of X. We say that a dissimilarity map δ is A|B-consistent with respect
to the tree metric δT if the following conditions hold

• δ(x, y) − δT (x, y) <
l(e)

4 for all pairs x, y ∈ A and all pairs x, y ∈ B ,

• |δ(x, y) − δT (x, y)| < l(e)
4 for all pairs x ∈ A and y ∈ B .

We are ready to state the main theorem of the section

Theorem 25 If δ is an A|B-consistent dissimilarity map with respect to the tree T

and the tree metric δT , then the neighbor-joining algorithm applied to δ will output
a tree T ′ which contains A|B among its edge-induced splits.

This implies more than Atteson’s conjecture since we are not imposing a lower
bound on the estimated distances between taxa situated on the same side of the split.
This observation is crucial; we show in Theorem 34 that Atteson’s condition as orig-
inally stated in [1] does not hold inductively. As we will see, Lemma 7 in [1] fails
if one is only trying to recover a specific edge in the tree, because non-neighboring
pairs may be collapsed during the agglomeration steps.

The proof of Theorem 25 is based on two propositions. In Proposition 26, we
show that agglomerating a pair of elements in A or a pair of elements in B preserves
A|B-consistency. It therefore suffices to show that at every step of the algorithm, the
Z-criterion is maximized for a pair that lies either in A or in B . This is shown in
Proposition 27 by an averaging argument. We will assume, by way of contradiction,
that there is a pair of leaves (i, j) with i ∈ A, j ∈ B and Zδ(i, j) maximal. To obtain
a contradiction, we will assume without loss of generality that |A| ≤ |B| and show
that, on average, Zδ(a1, a2) − Zδ(i, j) > 0 where the average is taken over all pairs
a1, a2 ∈ (

A
2

)
. Consequently, there must be at least one pair of elements x, y ∈ A such

that Zδ(x, y) > Zδ(i, j).

Proposition 26 Given an A|B-consistent dissimilarity map δ, with respect to a
tree T , collapsing a pair of taxa x, y ∈ A will result in a metric δ′ which is A′|B-

14 Algorithmica (2009) 54: 1–24

Fig. 5 The collapsing lemma

consistent with respect to a tree T ′. Here A′ is the set of taxa obtained by replacing
x, y by the collapsed node z in A.

Proof As before, we assume without loss of generality that we are using the first vari-
ant of the reduction step. Now shift the new dissimilarity map δ′ by δT (x,y)

2 around the
new taxon z. Again, this can be done without affecting the outcome of the algorithm.
In effect, this is equivalent to defining the distances with respect to z in the following
manner:

δ′(z, a) = 1

2
(δ(x, a) + δ(y, a) − δT (x, y)).

Now let e be the edge in T corresponding to the A|B split. Let l be its length. Let
p be the path in T that joins x and y. Then e 	∈ p and let o be the internal point of T

where a path from e reaches p. Consider the new tree T ′ where the taxa x and y are
removed and the new taxon z is placed exactly at the internal point o. δT ′ and A′ are
defined in the obvious way and δ′ is defined by collapsing x, y in δ according to the
reduction described above.

Let T0 . . . Tk be the subtrees of T hanging off the path p and let T0 be the one
that contains e. We now observe that δ′(a, b) = δ(a, b) and δT ′(a, b) = δT (a, b) for
a, b 	= z. In this case the errors remain the same. For b ∈ B , and therefore b ∈ T0, we
observe that

δT ′(z, b) = δT (o, b) = 1

2
(δT (x, b) + δT (y, b) − δT (x, y)).

Algorithmica (2009) 54: 1–24 15

Therefore

|δ′(z, b) − δT ′(b, z)| = |(δ(x, b) − δT (x, b)) + (δ(y, b) − δT (y, b)|1

2
<

l

4
.

Now for all i let oi be the point of the path p that is the root of the subtree Ti .
Then for any a ∈ A, so a ∈ Ti for i 	= 0 or a ∈ T0 ∩ A,

δ′(z, a) = δT ′(a, oi) + [(δ(x, a) − δT (x, a)) + (δ(y, a) − δT (y, a))]/2

= δT ′(a, z) + [(δ(x, a) − δT (x, a)) + (δ(y, a) − δT (y, a))]/2 − δT (o, oi)

< δT ′(a, z) + l

4
− δT (o, oi).

Therefore δ′ is A′|B-consistent with respect to T ′ and T ′ “contains” the edge e. �

Now assume that the pair (i, j) which maximizes Zδ(i, j) is such that i ∈ A,
j ∈ B . Without loss of generality, we assume that |A| ≤ |B|.
Proposition 27

S(δ : A, i, j) =
∑

(a1,a2)∈(A
2)

[Zδ(a1, a2) − Zδ(i, j)] > 0.

That is, there exist x, y ∈ (
A
2

)
such that Zδ(x, y) > Zδ(i, j).

We prove the proposition by comparing the differences between the dissimilarity
values and the true tree metric δT , with counts of the contested edge in the averaging
step. The calculation is elementary but tedious, and requires a few lemmas and some
notation:

Let M be the set of all dissimilarity maps δ : X ×X → R on a set X. We represent
a linear function f : M → R by

δ �→
∑

∀(a,b)∈(X
2)

αf (a, b)δ(a, b).

Similarly, if Mτ is the set of all tree metrics on a set X, we represent a linear function
f : Mτ → R by

δT �→
∑

∀e∈E(T)

βf,T (e)l(e).

More explicitly, βf,T (e) is the coefficient of l(e) in f (δT), when the metric δT cor-
responds to the edge lengths l. If T is obvious from the context, we will write βf,T

as βf .
For a tree T , note that an edge e divides the leaves into two sets. For a given tree

leaf i, we define N+
e (i) as the set of leaves on the same side of e as i and N−

e (i) as
the set of leaves on the far side of e from i. By a slight abuse of notation, we will also
use N+

e (i) and N−
e (i) to denote the number of elements in their respective sets when

such use does not give rise to confusion.

16 Algorithmica (2009) 54: 1–24

Lemma 28 Let a, b be leaves in a tree T . Then

βZ(a,b)(e) =
{−(N+

e (a) − 1)(N−
e (a) − 1) if e ∈ Pab;

N−
e (a)(N−

e (a) − 1), otherwise.

Proof For a tree metric δT , wδT
(ab : xy) is twice the length of the splitting path if

(ab : xy) is a quartet of T and negative the length of the path otherwise. Hence, if an
edge e is on the path from a to b, then there is no quartet (ab : xy) such that e is on
the splitting path. Hence, the edge e is only counted negatively, once for every pair
x, y with x ∈ N+

e (a) − {a} and y ∈ N+
e (b) − {b} = N−

e (a) − {b}. There are exactly
(N+

e (a) − 1)(N−
e (a) − 1) such pairs (x, y).

If e is not on the path from a to b, then for any pair of elements (x, y) ∈ (N−
e (a)

2

)
,

(ab : xy) are exactly the quartets of T of the form (ab : ··) with e is on the splitting

path. Consequently, βZ(a,b)(e) = 2
(N−

e (a)

2

) = N−
e (a)(N−

e (a) − 1). �

Lemma 29 Let an edge e define a split A|B and assume |A| ≤ |B|. Then

S(δT : A, i, j) ≥
(|A|

2

)
(|B| − 1)(n − 1)l(e).

Proof For ease of exposition, in the remainder of the paper we will use S(δT) for
S(δT : A, i, j).

It is enough to show that

βS(δT)(e) =
(|A|

2

)
(|B| − 1)(n − 1),

and for any other edge e′ ∈ T , βS(δT)(e
′) ≥ 0. Note that since e is never on the path

between a1 and a2 for any pair a1, a2 ∈ A, βZ(a1,a2) is the same for any choice of
a1, a2. Also, e is on the path between i and j , so by application of Lemma 28:

βS(δT :A,i,j)(e) =
∑

(a1,a2)∈(A
2)

βZ(a1,a2)(e) − βZ(i,j)(e)

=
(|A|

2

)
[βZ(a1,a2)(e) − βZ(i,j)(e)]

=
(|A|

2

)
[|B|(|B| − 1) + (|A| − 1)(|B| − 1)]

=
(|A|

2

)
(|B| − 1)(n − 1).

Let t be either vertex of the edge e. Assume we have an edge e′ 	= e such that e′ is
in the subtree spanned by B , denoted e′ ∈ [B]. Then e′ is never on the path between
a1 and a2, so βZ(a1,a2)(e

′) = N−
e′ (t)(N

−
e′ (t) − 1) for any pair a1, a2 ∈ A. If e′ is on

the path between i and j , then βZ(i,j)(e
′) < 0, so clearly βS(δT :A,i,j)(e

′) > 0. If e′ is
not on the path between i and j , then βZ(i,j)(e

′) = βZ(a1,a2)(e
′) and βS(δT)(e

′) = 0.

Algorithmica (2009) 54: 1–24 17

The proof of the final case that needs to be considered, namely e′ ∈ [A] consists of a
trivial, yet slightly lengthy, counting argument. We only present a brief sketch.

Again, in the case when e′ is on the path between i and j , then βZ(i,j)(e
′) < 0, so

clearly βS(δT :A,i,j)(e
′) > 0. For e′ not on the path from i to j , let A′ = N−

e′ (i) ⊂ A. Let
α = |A′|. Then a simple counting argument shows that βZ(i,j)(e

′) = 2
(
α
2

)
, whereas

for f = ∑
(a1,a2)∈(A

2)
Zδ(a1, a2) we have βf (e′) = 2

(
α
2

)(|B|
2

)
. Since |B| > |A|, this

concludes the proof. �

Lemma 30 Let a, b be elements of the leaf set X of size n. Then:

αZ(a,b)(x, y) =

⎧
⎪⎨

⎪⎩

−(
n−2

2

)
if |{a, b} ∩ {x, y}| = 2;

1
2 (n − 3) if |{a, b} ∩ {x, y}| = 1;

−1 if |{a, b} ∩ {x, y}| = 0.

Proof The term δ(a, b) occurs in all
(
n−2

2

)
w(ab : xy) terms in Z(a, b), each time

with a coefficient of −1. To compute αZ(a,b)(a, x), we note that δ(a, x) occurs in
all (n − 3) terms of the form w(ab : x·) with a coefficient of 1

2 . The same holds for
αZ(a,b)(b, x). Lastly, δ(x, y) for x, y 	= a, b occurs only in one term, w(ab : xy), with
coefficient −1. �

Lemma 31 Let a, a1 	= a2 ∈ A − {i} and b, b1 	= b2 ∈ B − {j}. We have

(1) αS(δ)(i, j) = 1
2 (|A| − 1)(|B| − 1) + (|A|

2

)(
n−2

2

)
,

(2) αS(δ)(i, a) = −(|B|
2

) − 1
2 (n − 3)

(|A|
2

)
,

(3) αS(δ)(j, a) = 1
2 (|A|−1)(|B|−1)− 1

2 (n−3)
(|A|

2

) = − 1
4 (n−1)(|A|−1)(|A|−2),

(4) αS(δ)(i, b) = 1
2 (|A|−1)(|B|−1)− 1

2 (n−3)
(|A|

2

) = − 1
4 (n−1)(|A|−1)(|A|−2),

(5) αS(δ)(j, b) = −(|A|
2

) − 1
2 (n − 3)

(|A|
2

)
,

(6) αS(δ)(a, b) = 1
2 (|A| − 1)(|B| − 1) + (|A|

2

)
,

(7) αS(δ)(a1, a2) = −(|B|
2

) + (|A|
2

)
,

(8) αS(δ)(a1, a2) = −(|A|
2

) + (|A|
2

) = 0.

There are 1, |A|− 1, |A|− 1, |B|− 1, |B|− 1, (|A|− 1)(|B|− 1),
(|A|−1

2

)
and

(|B|−1
2

)

of each of these terms, respectively.

Proof Let S1(δ) = ∑
(a1,a2)∈(A

2)
Zδ(a1, a2) Note that

αS1(δ)(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

−(|B|
2

)
if |{x, y} ∩ A| = 2;

1
2 (|A| − 1)(|B| − 1) if |{x, y} ∩ A| = 1;

−(|A|
2

)
if |{x, y} ∩ A| = 0.

18 Algorithmica (2009) 54: 1–24

We provide the proof for the first case, where x, y ∈ A (the other cases are similar).
Let A′ = A − {x, y}, then:

αS1(δ) = αZδ(x,y)(x, y) +
∑

a∈A′
[αZδ(a,x)(x, y) + αZδ(a,y)(x, y)]

+
∑

a1,a2∈(A′
2)

αZδ(a1,a2)(x, y)

= −
(

n − 2

2

)
+ |A′|

[
1

2
(n − 3) + 1

2
(n − 3)

]

+
(|A′|

2

)
(−1)

= 1

2
(n − |A|) [|A| − n + 1] = −

(|B|
2

)
.

Identities (1)–(8) now follow after some elementary algebra and Lemma 30. �

Lemma 32

S(δT) − S(δ) <
l

8
(|A| − 1)(n − 1)(3|A|n − n − 2|A|2 − 6|A| + 4)

Proof Let δ be an A|B-consistent metric and set δ̃ = δT − δ. Note that for all x, y ∈(
X
2

)
,

αS(δ̃)(x, y)δ̃(x, y) < |αS(δ̃)(x, y)| l
4
.

This follows directly from the fact that αS(δ)(x, y) < 0 for all cases where x, y ∈ A

or x, y ∈ B , together with the signs of the terms in the Lemma 31 and the definition
of A|B-consistency. It follows that

S(δ̃) =
∑

x,y∈(X
2)

αS(δ̃)(x, y)δ̃(x, y) <
∑

x,y∈(X
2)

|αS(δ̃)(x, y)| l
4
,

and the lemma follows by summing the terms appearing in Lemma 31. �

Proof of Proposition 27 and Theorem 25 By Lemma 29 and 32 it suffices to show
that

l

2
|A|(|A| − 1)(|B| − 1)(n − 1)

− l

8
(|A| − 1)(n − 1)(3|A|n − n − 2|A|2 − 6|A| + 4) ≥ 0.

This inequality follows from the fact that we chose |A| ≤ |B| and consequently
2|A| ≤ n. Thus, the pair of leaves that maximize (Z·, ·) are both in A. The theorem
now follows from Proposition 26. �

Algorithmica (2009) 54: 1–24 19

Fig. 6 Example for Theorem 34

We conclude by stating that our analysis holds trivially for the fast neighbor-
joining algorithm of [6]. This follows from the observation that for an A|B-consistent
dissimilarity map δ, no pair x, y with x ∈ A and y ∈ B can maximize the Z(·, ·) cri-
terion, and therefore the maximizing pair, which has to be visible from both of its
members, has both taxa on the same side of the partition A|B .

Corollary 33 If δ is an A|B-consistent dissimilarity map with respect to a tree T ,
then FNJ applied to δ will reconstruct a tree T ′ which contains A|B among its set of
edge-induced splits.

We conclude with a final comment on A|B-consistency and our proof of Theo-
rem 25.

Theorem 34 Let δT be a tree metric and δ a dissimilarity map whose l∞ distance
to δT is less than β

4 where β is the length of some edge in T . Then it may be that an
intermediate tree produced during the agglomeration steps of the neighbor-joining

algorithm has l∞ distance greater than β
4 to any tree metric.

In essence the above theorem shows that Atteson’s edge radius bound, as originally
stated, does not hold inductively and cannot be used in an inductive proof of his
conjecture, as attempted in [30] and [4], which in fact only prove the base case,
without properly showing that the inductive hypothesis carries through. This result
justifies the need for using the stronger condition of A|B-consistency and for many
of the preliminary lemmas and computations involved in the proof of Theorem 25.

Proof Consider the phylogenetic tree T in Fig. 6, with leaf set S = X ∪ {i, j, a, b}
where |X| = n. Suppose that the leaf edges corresponding to i, j, a, b all have
length α. The lengths of the other visible edges, i.e. the ones not belonging to T |X
are as in Fig. 6. Also suppose that the edges on the subtree T |X have total length ≤ ε,
where we will let ε become arbitrarily small.

Consider the following dissimilarity map δ with ‖δ − δT ‖∞ = 1:

(1) δ(i, j) = δT (i, j) − 1,
(2) δ(p) = δT (p) + 1 for p = (a, b), (a, i), (b, j),
(3) δ(p) = δT (p) for p = (a, j), (b, i),
(4) δ(x, y) = δT (x, y) for x, y ∈ X,

20 Algorithmica (2009) 54: 1–24

(5) δ(i, x) = δT (i, x) + 1 for x ∈ X,
(6) δ(j, x) = δT (j, x) + 1 for x ∈ X,
(7) δ(a, x) = δT (a, x) − 1 for x ∈ X,
(8) δ(b, x) = δT (b, x) − 1 for x ∈ X.

Minimizing the neighbor-joining Q criterion is equivalent to maximizing

Yδ(k, l) = 2δ(k, l) +
∑

t∈S−{k,l}
δk,l(t)

where δk,l(t) = δ(k, t) + δ(l, t) − δ(k, l).
First we show that for large enough n, small enough ε and with β > 4, the pair that

maximizes Y is (i, j). Note that for x, y ∈ X, Y(x, y) = ∑
t∈{i,j,k,l} 2δx,y(t) + O(ε),

which converges to a constant as ε → 0. However, as n → ∞, Y(i, j) ≈ 2nβ . There-
fore for small enough ε and large enough n, (i, j) will dominate any pair (x, y) ∈ (

X
2

)
.

Since β > 4 and ‖δ − δT ‖∞ = 1, using a similar argument as above we can also con-
clude that the optimum pair must consist of two leaves from {i, j, a, b}.

Finally, we need to show that Y(i, j) > Y(k, l) where either k or l is equal to a

or b. Note that for any k, l ∈ {i, j, a, b},

Y(k, l) = 2δ(k, l) +
∑

t∈{a,b}
δk,l(t) +

∑

t∈X

δk,l(t).

The first and second summands are constants in n, while the third is composed of
n sub-terms which are roughly equal, up to small variations of size at most O(ε),
depending on the location of t in T |X . Since we can choose ε arbitrarily small, we can
therefore ignore this error. Now place a fictitious node v at the root of T |X (the right
hand side of the edge of length β). Then letting n → ∞, we see that asymptotically,

Y(k, l) ≈ nδk,l(v).

Here we extend the definition of δ to v by extending δT to v in the natural way and
defining the error δ − δT for pairs involving v in the same way as for other leaves in
X. It is now easy to verify that

(1) δi,j (v) = δ(i, v)+ δ(j, v)− δ(i, j) = 2(α +β +1.75)+1+1− (2α+3.5−1) =
2β + 3,

(2) δi,a(v) = δj,b(v) = δ(i, v)+ δ(a, v)− δ(i, a) = 2(α +β + 1.75)+ 1 − 1 − (2α +
1) = 2β + 2.5,

(3) δj,a(v) = δi,b(v) = δ(j, v)+δ(a, v)−δ(j, a) = 2(α +β +1.75)+1−1− (2α +
3.5) = 2β ,

(4) δa,b(v) = δ(a, v)+δ(b, v)−δ(a, b) = 2(α+β+1.75)−1−1−(2α+3.5+1) =
2β − 3.

Therefore asymptotically, (i, j) will be collapsed in the first step of neighbor-
joining applied to δ.

Now consider the reduced distance matrix δ′ : S′ ×S′ → R, where the leaves i and
j are replaced by a new leaf u. That is, S′ = S −{i, j} ∪ {u}. We restrict our attention
to the set {a, b,u, x} for an arbitrary leaf of x of X. Since the total length of T |X is

Algorithmica (2009) 54: 1–24 21

O(ε), we can in fact approximate expressions involving δ(,̇x) by δ(,̇v) up to O(ε)

error. We do so for the sake of simplicity.
Simple calculations now give

δ′(a,u) = δ′(b,u) = 2α + 2.25,

δ′(a, x) = δ′(b, x) = α + β + 0.75,

δ′(a, b) = δ(a, b) = 2α + 4.5,

δ′(u, x) = α + β + 2.75,

and thus:

δ′(a,u) + δ′(x, b) = δ′(b,u) + δ′(x, a) = δ′(x,u) + δ′(a, b) − 4.25 = β + 3α + 3.

Now suppose that there is some additive tree metric μ such that ‖δ′ − μ‖∞ ≤ 1.
Then by adding this to the above equality we obtain that

μ(x,u) + μ(a, b) − μ(b,u) − μ(x, a) ≥ 4.25 − 4 > 0

and similarly

μ(x,u) + μ(a, b) − μ(a,u) − μ(x, b) ≥ 4.25 − 4 > 0.

Fig. 7 Conditions satisfied as a function of sequence length. 35 trees with 20 taxa each were simulated 100
times for 28 different sequence lengths. 100 alignments were generated for each tree. The figure shows,
for each of the 9 800 000 dissimilarity maps generated from the simulations, whether neighbor-joining
reconstructed the correct tree, and whether additivity, consistency and Atteson’s criterion were satisfied.
Note that the x-axis is logarithmic

22 Algorithmica (2009) 54: 1–24

Fig. 8 Details on the percent of quartets satisfying the additivity and consistency conditions when neigh-
bor-joining succeeds

This contradicts the four point condition necessary for μ to be a tree metric. There-
fore, we have given an example of a dissimilarity map δ and a tree metric δT with an
edge of length β , such that ‖δ − δT ‖∞ <

β
4 , and yet the l∞ distance of the reduced

dissimilarity map after the first agglomeration step from any tree metric is greater
than β

4 . �

The significance of Theorem 34 is that it shows that an inductive proof of Atteson’s
conjecture is not possible without relaxing the hypothesis. Thus, the proof of the
partial result in [30] and the proof of [4] are incorrect. At the same time, Theorem 34
also identifies an undesirable property of neighbor-joining which is very common
among greedy optimization algorithms. We hope that further investigations in this
direction can yield more robust versions of the algorithm.

6 Simulation Results and Conclusion

We performed a series of simulations to test how frequently Theorem 16 explains
the success of the neighbor-joining algorithm. Trees with 20 taxa were generated by
agglomerating pairs at random. We generated 35 such trees and set their edge lengths
to 0.1. We then used seq-gen [22] to build 100 alignments with the Jukes Cantor
model for each of 28 sequence lengths between 100 and 10,000 base pairs. From
these we obtained dissimilarity maps using the dnadist program from the PHYLIP
package [9]. Our Java API then computed the w-matrix for each dissimilarity map,

Algorithmica (2009) 54: 1–24 23

tested the consistency and additivity conditions against the true tree, checked to see
if the dissimilarity map satisfied Atteson’s criterion (Theorem 2), and computed the
neighbor-joining tree. The results are summarized in Fig. 6.

We note that our conditions of additivity and consistency are satisfied for sequence
lengths an order of magnitude smaller than required for Atteson’s criterion to hold.
Moreover, even when the additivity and consistency conditions are not satisfied for
every quartet, they do hold true for upwards of 99% and 94% of quartets respectively,
even at sequence length 100 (Fig. 7). Hence, applying an averaging argument similar
to the one we employed in the proof of Atteson edge radius conjecture, we may obtain
“on average” conditions that explain even more of the cases where neighbor-joining
succeeds.

Acknowledgements Radu Mihaescu was supported by a National Science Foundation graduate fellow-
ship, and partially by the Fannie and John Hertz Foundation. Lior Pachter was partially supported by NIH
grant R01HG2362 and NSF grant CCF0347992. Dan Levy was supported by NIH grant GM68423.

References

1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic reconstruction. Algorith-
mica 25, 251–278 (1999)

2. Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted neighbor-joining: a likelihood-based approach to
distance-based phylogeny reconstruction. Mol. Biol. Evol. 17(1), 189–197 (2000)

3. Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J. Classif. 22(1), 3–15
(2005)

4. Dai, W., Xu, Y., Zhu, B.: On the edge l∞ radius of Saitou and Nei’s method for phylogenetic recon-
struction. Theor. Comput. Sci. 369(1–3), 448–455 (2006)

5. Desper, R., Gascuel, O.: The minimum evolution distance-based approach to phylogenetic inference.
In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford
(2005)

6. Elias, I., Lagergren, J.: Fast neighbor joining. In: Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP’05) (2005)

7. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suffice to build (almost) all trees, I.
Random Struct. Algorithms 14(2), 153–184 (1999)

8. Farris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D., Kluge, A.G.: Parsimony jackknifing outper-
forms neighbor-joining. Cladistics 12, 99–124 (1996)

9. Felsenstein, J.: PHYLIP (phylogeny inference package) version 3.5c. Tech. report, Department of
Genetics, University of Washington, Seattle (1993)

10. Gascuel, O.: A note on Sattath and Tversky’s, Saitou and Nei’s, and Studier and Keppler’s algorithms
for inferring phylogenies from evolutionary distances. Mol. Biol. Evol. 11(6), 961–963 (1994)

11. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence
data. Mol. Biol. Evol. 14(7), 685–695 (1997)

12. Gascuel, O., Steel, M.: Neighbor-joining revealed. Mol. Biol. Evol. 23(11), 1997–2000 (2006)
13. Hall, B.G.: Comparison of the accuracies of several phylogenetic methods using protein and DNA

sequences. Mol. Biol. Evol. 22(3), 792–802 (2005)
14. Huelsenbeck, J., Hillis, D.: Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42(3),

247–264 (1993)
15. John, K.St., Warnow, T., Moret, B., Vawter, L.: Performance study of phylogenetic methods: (un-

weighted) quartet methods and neighbor joining. J. Algorithms 48, 174–193 (2003)
16. Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and

unequal evolutionary rates. Mol. Biol. Evol. 11, 459–468 (1994)
17. Kumar, S., Gadagker, S.R.: Efficiency of the neighbor-joining method in reconstructing evolutionary

relationships in large phylogenies. J. Mol. Evol. 51, 544–553 (2000)
18. Levy, D., Yoshida, R., Pachter, L.: Beyond pairwise distances: neighbor joining with phylogenetic

diversity estimates. Mol. Biol. Evol. 23, 491–498 (2006)

24 Algorithmica (2009) 54: 1–24

19. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: a tool for construction of phylo-
genetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48 (1994)

20. Ota, S., Li, W.H.: NJML: a hybrid algorithm for the neighbor-joining and maximum likelihood meth-
ods. Mol. Biol. Evol. 17(9), 1401–1409 (2000)

21. Pauplin, Y.: Direct calculation of tree length using a distance matrix. J. Mol. Evol. 51, 41–47 (2000)
22. Rambaut, A., Grassly, N.C.: Seq-Gen: an application for the Monte Carlo simulation of DNA se-

quences evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238 (1997)
23. Ranwez, V., Gascuel, O.: Improvement of distance-based phylogenetic methods by a local maximum

likelihood approach using triplets. Mol. Biol. Evol. 19(11), 1952–1963 (2002)
24. Saitou, N., Nei, M.: The neighbor joining method: a new method for reconstructing phylogenetic

trees. Mol. Biol. Evol. 4(4), 406–425 (1987)
25. Sattath, S., Tversky, A.: Additive similarity trees. Psychometrika 42(6), 319–345 (1977)
26. Semple, C., Steel, M.: Phylogenetics. Graduate Series in Mathematics and its Applications. Oxford

University Press, Oxford (2003)
27. Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximum likelihood method for recon-

structing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996)
28. Studier, J.A., Keppler, K.J.: A note on the neighbor-joining method of Saitou and Nei. Mol. Biol.

Evol. 5, 729–731 (1988)
29. Tamura, K., Nei, M., Kumar, S.: Prospects for inferring very large phylogenies by using the neighbor-

joining method. Proc. Natl. Acad. Sci. 101, 11030–11035 (2004)
30. Xu, Y., Dai, W., Zhu, B.: A lower bound on the edge l∞ radius of Saitou and Nei’s method for

phylogenetic reconstruction. Inf. Process. Lett. 94, 225–230 (2005)

	Why Neighbor-Joining Works
	Abstract
	Introduction
	The Shifting Lemma
	Quartets and Neighbor-Joining
	A Consistency Theorem for Neighbor-Joining
	The Edge Radius of the Neighbor-Joining Algorithm
	Simulation Results and Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

