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Abstract We consider a single-source network design problem from a game-
theoretic perspective. Gupta, Kumar and Roughgarden (Proc. 35th Annual ACM
STOC, pp. 365–372, 2003) developed a simple method for a single-source rent-or-
buy problem that also yields the best-known approximation ratio for the problem.
We show how to use a variant of this method to develop an approximately budget-
balanced and group strategyproof cost-sharing method for the problem.

The novelty of our approach stems from our obtaining the cost-sharing meth-
ods for the rent-or-buy problem by carefully combining cost-shares for the simpler
Steiner tree problem. Our algorithm is conceptually simpler than the previous such
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cost-sharing method due to Pál and Tardos (Proc. 44th Annual FOCS, pp. 584–593,
2003), and improves the previously-known approximation factor of 15 to 4.6.

1 Introduction

This paper studies the problem of giving good cost-sharing mechanisms for a single-
source network design problem. Imagine a general network design problem, where
the participants (or agents) want to build a network connecting them to a common
source (a server); however, they are autonomous and behave in a selfish (but non-
malicious) fashion. Informally, a cost-sharing mechanism builds a network, and allo-
cates the cost incurred among the agents, so that no group of agents is charged too
much, thus precluding the possibility of their being unhappy and trying to secede
from the system.

The type of problem we consider is where we are given an undirected graph G =
(V ,E), and a set of demands D ⊆ V that want to connect to a common source r . We
want to devise an algorithm that builds a cheap network on the demands D, and also
specify what portion of its cost is paid by which of the participants in the network;
moreover, this should be done in a manner that ensures that the cost paid by any
subset of the participants is “fair”.

To make all this precise, let us consider a network design game on a graph
G = (V ,E). The cost-shares will be specified by a function ξ : 2V × V → R≥0,
where ξ(D, i) will specify the cost share paid by the player i ∈ V when the actual
set of demands is D ⊆ V . To ensure that players are not penalized when they do
not participate in the game, we require that ξ(D, i) = 0 for i �∈ D. For a particular
set D of demands, we use OPT(D) to denote the minimum cost network serving
the users in the set D, and use Alg(D) to denote the cost (or expected cost, in the
case of randomized algorithms) of the network computed by our algorithm. We will
be concerned with designing algorithms and cost-sharing functions ξ that satisfy the
following properties:

1. (β-approximate budget-balance) For any set of demands D, we require that

OPT(D) ≥
∑

i∈D

ξ(D, i) ≥ Alg(D)/β

for some given parameter β ≥ 1. Equivalently, by multiplying the shares by β , we
could require that the cost-shares are at least the total cost of the solution found by
the algorithm, but do not exceed β OPT(D). If β = 1, we say that the cost-sharing
function ξ is budget-balanced.

2. (Cross-monotonicity) For any A ⊆ D and any i ∈ A, ξ(D, i) ≤ ξ(A, i). I.e., the
cost-share of any fixed demand point i should not increase due to other demands
entering the system. This property is also known under the name of population-
monotone.

It is well-known that the two properties above immediately imply the following de-
sirable property (see, e.g., [7] or Lemma 1, for a proof):



100 Algorithmica (2008) 50: 98–119

3. (Fairness) For any A ⊆ D,
∑

i∈A ξ(D, i) ≤ OPT(A). I.e., the cost paid by any
subset of people should not exceed the optimal cost of connecting them alone
and hence they have no incentive to secede. This property is often referred to as
competitiveness.

Cross-monotonicity is a key ingredient used in solving the following type of mech-
anism design problems/games: consider the network design problem with a set of de-
mand nodes D, with each user (or demand) d having an associated utility ud . Since
the users have limited utilities, the service provider has to now decide which subset
of customers it must serve, in addition to designing the network and deciding how to
share the cost between the served customers. A mechanism for solving this problem
is called group strategyproof if no subset of users has an incentive to deviate from
the protocol (e.g., by misreporting their utility) in the hope of improving the outcome
for themselves (e.g., receiving the service at a cheaper cost). Moulin and Shenker [7]
show that having a cross-monotone cost-sharing method for a problem naturally gives
rise to a group strategyproof mechanism for the problem in the following way. We
start with all the customers; if there is some customer whose cost share (computed
w.r.t. the current set of customers) exceeds its utility, we drop it from the set, recom-
pute cost shares and repeat. At the end, we are left with the desired set of customers
and their cost-shares.

As an example of cross-monotonicity, let us consider the MINIMUM SPANNING

TREE game on the complete graph G = (V ,E) with edge weights, given by a set
of players D and a root r /∈ D; the objective is to find the cheapest tree MST(D)

spanning D and r . It must be emphasized that this game does not allow the use of
Steiner vertices in MST(D), and r is not a player, and hence should have no cost-
share. It is not difficult to verify that a budget-balanced and fair cost-sharing scheme
for this game can be found thus: find an MST, root it at r , and set the cost-share for
vertex i ∈ D to be the cost of the edge from i to its parent. However, this scheme is
not cross-monotone, and getting a cross-monotone cost-sharing scheme for the min-
imum spanning tree problem takes more work. Kent and Skorin-Kapov [5] and Jain
and Vazirani [8] developed such budget-balanced and cross-monotone cost-sharing
schemes for the spanning tree game using a directed branching game; let us denote
this cost-sharing scheme by ξMST. It is well-known that a min-cost spanning tree is
a 2-approximation to the min-cost Steiner tree; hence once can infer that the values
1
2ξMST serve also as cross-monotone, 2-approximately budget-balanced cost-shares
for the corresponding Steiner tree game.

The Single-Source Rent-or-Buy Game In this paper we will consider the Single-
Source Rent-or-Buy Network Design game; this combines features of Steiner tree and
shortest paths. The game is defined as follows: we are given a complete undirected
graph G = (V ,E) with edge costs ce satisfying the triangle inequality,1 a special
source (or root) vertex r , and an integer parameter M ≥ 1. There are also a set of
users (also called players or demands) D ⊆ V , each of which is identified with a

1Since we can work with the metric completion of the input graph instead, the assumption of the triangle
inequality is without loss of generality.
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vertex of the graph. We assume that there is a unique player at each vertex. Our
results can be extended (with a slight loss in the performance guarantee) to multiple
players at each vertex, each with a weight dj indicating its amount of demand; we
sketch how to do this in Sect. 6.2.

The objective is to connect each player j to the source r via some path Pj , on
which one unit of bandwidth has been allocated. What makes the game interesting is
that aggregating paths is beneficial, in tune with the idea of economies of scale. Hence
there are two different actions that can be performed by each edge: either the edge
can be bought at cost Mce, but then an arbitrary amount of bandwidth can be sent on
that edge (and hence an arbitrary number of paths Pj can use it); or bandwidth on the
edge can be rented at cost ce per unit bandwidth (and hence if the paths for some set
S of players were using the edge, then the edge would cost ce × |S|; in the general
weighted case, the cost would be ce times the total weight of the players in S). As
usual, any edge can be used for any of the users. Our main theorem is the following:

Theorem 1 There is a cross-monotone cost-sharing method for the Single-Source
Rent-or-Buy network design game that is also β-budget-balanced, where β = 4.6.
Furthermore, these cost-shares can be computed in deterministic polynomial time.

This improves on the results of Pál and Tardos [11], who gave a 15-approximate
cross-monotone cost-sharing scheme for the problem. They use a primal-dual algo-
rithm to build the network and obtain cost-shares.

We construct the claimed cost-shares based on expected costs in the approxima-
tion algorithm of Gupta et al. [4]. Loosely speaking, that algorithm works by ran-
domly reducing the network design problem to computing Steiner trees over subsets
of terminals; we show that if we use the function 1

2ξMST to allocate approximate cost-
shares to each vertex in this resulting Steiner game, then the expected cost share of
a vertex (taken over the random reduction) gives us the cross-monotone cost-shares
claimed in Theorem 1. However, since the variances of the random variables involved
may be large in general, computing these expected costs in polynomial time is non-
trivial. (In fact, a similar method to obtain cost-shares was proposed independently
by Leonardi and Schäfer [9], who showed a budget-balance factor of 4(1 + ε) for
any ε > 0 for their cost-shares; however, they left open the problem of the efficient
computation of these costs.) To do this computation, we have to give a new alterna-
tive analysis of the algorithm of [4]; this analysis allows us to give a derandomization
using a small sample space, which has some additional useful properties that help
ensure cross-monotonicity.

As is standard, we often use the symbol e to denote an edge in G. The same sym-
bol will also be used in some places to denote the base of the natural logarithm; since
the two usages are sufficiently distinct, we hope this does not cause confusion. Log-
arithms will be to the base two, unless specified otherwise. The rest of this paper is
organized as follows. The basic algorithm and the idea for computing cost-shares are
discussed in Sect. 2; Sect. 3 proves some basic properties of the cost-sharing scheme,
such as cross-monotonicity. Section 4 gives a way of analyzing our algorithm—
bounding β , in particular—that is different from the one of [4]. This proof is used
as a starting-point in Sect. 5 to show that our estimate of β from Sect. 4 changes
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negligibly in our derandomized algorithm. Finally, further extensions are described
in Sect. 6.

2 The Algorithm and the Cost-Sharing

We will use an algorithm SimpleCFLsuggested by Gupta et al. [4] for the equivalent
problem of connected facility location (without facility costs). First, let us recall the
algorithm from [4]. Here α > 0 is a constant that will be chosen later.

S1. Mark each demand j independently with probability α/M , and let D′ be the set
of marked demands.

S2. Construct a minimum spanning tree T on F = D′ ∪ {r}. (This is a 2-approximate
Steiner tree on F .) The elements of F are called the open facilities.

S3. Assign each demand j ∈ D to its closest open facility i(j) in F .

The algorithm suggests a simple and intuitive idea for the cost-shares: each player
pays a cost proportional to the expected cost incurred by it on running the above algo-
rithm. For a given a sequence of coin-tosses, the players in D′ will pay for buying the
MST, where their shares are derived from the cross-monotone cost-sharing scheme
ξMST for the MST problem given in [5, 8]. All other players (players in D \ D′) will
pay for renting their shortest paths to F . The cost-shares defined for a particular set
of coin-tosses exactly cover the cost of the solution built. From [4] we know that this
algorithm is a β-approximation algorithm for some constant β . To get β-approximate
cost-shares we divide the above defined shares by β . Formally:

ξ(D, j) = 1

β
E[MξMST(F, j) + �(j,F )], (2.1)

where �(j, S) is the length of a shortest-path from j to the closest vertex of the set S,
and the expectation is over the coin tosses. (Note that the set F = D′ ∪ {r} depends
on the coin tosses.)

Outline of the Proof There are two parts to proving the result: we first have to
show that the properties of the cost-shares claimed in Theorem 1 are indeed satisfied;
i.e., they are β-budget-balanced and cross-monotone. These properties are proved in
Sect. 3.

The technically involved part of the proof involves showing that our cost-shares
can be computed in (deterministic) polynomial time. A little thought will convince
the reader that this is not obvious, even with the results of Gupta et al. [4]. Indeed, we
need to estimate the expectations in (2.1) for each of the players, but the random vari-
ables in (2.1) do not have small variance in general. Furthermore, it is unclear how
to derandomize the proof of [4], since it relies on some severe conditioning. To take
care of this problem, we give a proof of the performance guarantee of the SimpleCFL
algorithm different from the one given by [4]; this is done in Sect. 4. Our new proof
will yield a somewhat worse constant than that of [4], but allow us to derandomize
the algorithm by marking the demands in Step (S1) in t-wise independent fashion
for a constant t ; this appears in Sect. 5. Using t-wise independent random choices in
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Step (S1) allows us to use a polynomial-sized sample space, letting us compute ex-
pectations such as those of (2.1) in (deterministic) polynomial time, by considering
all the points in the sample space. However, we need to make sure that the properties
of the expectation proved in Sect. 3 (fairness and cross-monotonicity) also hold for
the expectation using t-wise independent random choices. Interestingly, the proper-
ties of a particular construction of t-wise independent random variables turns out to
be crucial, as described in the proof of Theorem 4.

3 Properties of the Cost-Sharing Scheme

Recall that given an instance of the game specified by a set of demands D, a cost-
sharing scheme for the game is simply a function ξ(D, i) (with ξ(D, i) = 0 for
i �∈ D). We now need to show that the function defined in (2.1) is a cost-sharing
scheme with the properties we care about, namely, approximate budget-balance, fair-
ness, and cross-monotonicity. As mentioned in the introduction, it is well-known that
these three properties are not independent, and that a cross-monotone and approxi-
mately budget balanced cost-sharing is always fair.

Lemma 1 If a cost-sharing function ξ is approximately budget balanced and cross-
monotone then it is also fair.

Proof Consider a subset A ⊆ D. By cross-monotonicity, it follows that
∑

i∈A ξ(D, i)

≤ ∑
i∈A ξ(A, i). Now using the upper bound in the approximate budget-balance

property gives us
∑

i∈A ξ(A, i) ≤ OPT(A), and completes the proof of the lemma. �

We will need the following facts about the cost-sharing scheme ξMST:

Theorem 2 ([5, 8]) There exists an efficiently computable cost-sharing scheme ξMST

for the Minimum Spanning Tree game that is budget-balanced and cross-monotone.

Since the spanning tree connects D and r , we will use the notation ξMST(D ∪
{r}, i) and ξMST(D, i) interchangeably; however, the results of [5, 8] will always
ensure that ξMST(D ∪ {r}, r) = 0.

To prove approximate budget-balance, we will need the following result bounding
the performance of the algorithm SimpleCFL; its proof appears in Sects. 4 and 5.

Theorem 3 The expected cost of the algorithm SimpleCFLon a set of demands D

is at most β OPT(D) (where β = 4.6), even if the demands are marked in a t-wise
independent fashion in Step (S1), for a suitably large constant t .

Note that this is a stronger form of the performance guarantee proved in [4] (albeit
with a worse constant), since it requires only constant-wise independence of the ran-
dom variables. Armed with this result, we are now in a position to prove the properties
of the function ξ defined in (2.1), and thus to prove Theorem 1.
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Notation In our randomized algorithm, Yj will denote the indicator random variable
for demand j getting marked. Given a sample point ω (i.e., the underlying sequence
of coin-tosses) in our probability space, Yj (ω) will be the following deterministic
quantity: 1, if j gets marked due to this sequence of coin-tosses, and 0 otherwise.

The above two theorems imply that ξ is β-approximately budget-balanced—for
any random sample ω, ξ shares exactly the cost of the solution built:

Lemma 2 The function ξ is β-approximately budget-balanced.

Proof Consider the cost-shares βξ . For a fixed random sample ω, let Fω denote the
set of facilities; i.e., Fω = {r}∪ {j ∈ D | Yj (ω) = 1}. Also let c(MST(Fω)) denote the
cost of an MST for Fω. From our definition of ξ(D, i), we get the following:

∑

i∈D

βξ(D, i) = Eω

[
M

∑

i∈D

ξMST(Fω, i) +
∑

i∈D

�(i,Fω)

]
(3.2)

= Eω

[
M × c(MST(Fω)) +

∑

i∈D

�(i,Fω)

]
, (3.3)

using the facts that ξMST is a cost-share function and hence ξMST(Fω, i) = 0
for i /∈ Fω, and that ξMST is budget-balanced and thus

∑
i∈Fω

ξMST(Fω, i) =
c(MST(Fω)).

Now it is easy to see that the cost-shares βξ recover the cost of the solution con-
structed, and hence are at least Alg(D). This is true, as for each element of the sample
space ω, M × c(MST(Fω)) + ∑

i �(i,Fω) is the cost of the solution which opens
facilities at Fω.

To see that
∑

i∈D ξ(D, i) ≤ OPT(D), note that the final expression in (3.2) is the
expected cost of running SimpleCFL on the set of demands D, and hence Theorem 3
implies that the expectation is no more than βOPT(D), and thus

∑
i∈D ξ(D, i) ≤

OPT(D). �

3.1 Details of the Limited-Independence Marking

Before presenting the specific type of t-wise independent random marking that we
will use, it would be useful to see how β depends on α; recall that α was a parameter
used to determine the marking probability in Step (S1) of the algorithm SimpleCFL.
We show first in bound (4.18) of Sect. 4.2 that

β ≤ max

{
2(1 + α),

2(2e2α + eα − 2)

e2α − 1

}
(3.4)

under fully-independent marking. We then show in Sect. 5.2 that this bound changes
negligibly if t is a sufficiently large constant: if t = a log(1/ε) where a is an absolute
constant, then the r.h.s. of (3.4) gets multiplied at most by (1 + ε). Thus, setting
α = 1.296, we will be able to guarantee that β ≤ 4.6.
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In order to prove that the expectation using t-wise independent random marking is
cross-monotone, we need a particular choice of random marking. Let F be a field of
size ≥ n, with |F| chosen large enough so that 
α|F|/M�/|F| is sufficiently close to
α/M ; in particular, suppose |F| ≥ Ω(M logn), say. Let the elements of the field be
{a1, a2, . . . , a|F|}, and let the vertices V of the graph be labeled by the first n elements
{a1, a2, . . . , an}. Let S be any pre-specified subset of F with |S| = 
α|F|/M�. To get
a sample, generate ω = (x0, x1, . . . , xt−1) uniformly at random from F

t , and define
Yi to be 1 if

∑t−1
j=0 xja

j
i lies in S , and Yi = 0 otherwise. By construction, we have

Pr[Yi = 1] ∼ α/M . In particular, since |F| ≥ Ω(M logn), we have

α/M ≤ Pr[Yi = 1] ≤ α/M + 1/|F| = (α + o(1))/M;

by (3.4) and the few sentences following it, we see that this replacement of α by
α + o(1) impacts β only by an additive o(1) factor. Therefore, in all our arguments
below, we will assume that Pr[Yi = 1] = α/M for all i ∈ D. It is well-known that the
Yi generated as above are all t-wise independent; see, e.g., [1, 6]. Note that the above
distribution is generating n coin tosses Yi , while we need only |D| of them; however,
we can just ignore all the Yj for j /∈ D.

For a fixed ω ∈ F
t , let Fω denote the set of facilities; i.e., Fω = {r} ∪ {j ∈ D |

Yj (ω) = 1}.

Theorem 4 Assuming that the random marking is done using the t-wise independent
random variables explained above, or using independent random variables, then the
function ξ is cross-monotone, i.e., ξ(A, i) ≥ ξ(D, i) for any A ⊆ D.

Proof The particular type of t-wise independent distribution that we use has the fol-
lowing natural but crucial property: for any choice of ω ∈ F

t , if the set of marked
demands in the run of SimpleCFL on A is A′(ω) and the set of marked demands in
the run on D is D′(ω), then A′(ω) ⊆ D′(ω). (To our knowledge, this crucial property
need not necessarily hold for all t-wise independent distributions.) Define the joint
probability p(F,E) to be the probability of selecting an element of the sample space
ω such that the marked demands in the run of SimpleCFLon A is F and on D it is E.
Note that p(F,E) > 0 only if F ⊆ E. A joint probability with this property can also
be defined for the case when the marking is fully independent.

With this additional property, we can prove that the scheme ξ is cross-monotone.
To see this, note that

ξ(A, i) = 1

β

∑

F,E

p(F,E)[MξMST(F, i) + �(i,F )]

≥ 1

β

∑

F,E

p(F,E)[MξMST(E, i) + �(i,E)] = ξ(D, i),

where the inequality uses the fact that the support of p(F,E) is only on pairs with
F ⊆ E, and the cross-monotonicity of ξMST. �
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4 A New Analysis of the Performance of SimpleCFL

Suppose first that the marking is done fully independently in Step (S1); we now give a
way of analyzing SimpleCFL that is different from the one of [4]. We will then use this
proof in Sect. 5 to show that our estimate of β changes negligibly when we conduct a
t-wise independent marking for a large-enough (but constant) value of t . Recall that
a solution to the Connected Facility Location Problem with demands D is given by
the facilities F and the Steiner tree on them, with the cost being

∑
j∈D �(j, i(j)) +

Mc(T ). Of the two terms in the sum, the former cost is referred to as the connection
cost, and the latter is the Steiner cost. Let OPT be an optimal solution with facilities
F ∗ and tree T ∗, and let C∗ and S∗ = Mc(T ∗) be the connection and Steiner costs in
OPT; also let Z∗ = C∗ + S∗.

The bound for the Steiner cost S is the same as in [4]: we consider the optimal
solution OPT, and compute the expected cost assuming that we construct the Steiner
tree in Step (S2) using the paths of the optimal solution. We present the formal proof
in Lemma 3; part (a) of this lemma will only be required in Sect. 5. The random
variables Yj are as defined in Sect. 3.1.

Lemma 3 (a) The expected cost S of Step (S2) of SimpleCFL is bounded by a non-
negative linear combination of the values {E[Yj ] : j ∈ D}; (b) this non-negative linear
combination is at most

2(S∗ + αC∗). (4.5)

Proof Consider the optimal solution OPT: it connects each j ∈ D to a facil-
ity i∗(j) ∈ F ∗ via a shortest path, and hence pays a connection cost of C∗ =∑

j∈D �(j, i∗(j)). Let F be as defined in Step (S2). Define a graph connecting F

thus: buy all the edges in T ∗, and then for each j ∈ F , buy the edges in the short-
est path from j to i∗(j) used by OPT. Note that we pay Mce for each edge e in
Step (S2), and hence pay Mc(T ∗) = S∗ for edges of T ∗. For the random paths we
add, the expected cost of the path between j and i∗(j) is E[Yj ]×M�(j, i∗(j)). Thus,
the expected total cost of this graph that connects up F is at most

S∗ +
∑

j∈D

E[Yj ] × M�(j, i∗(j)).

Since we buy a minimum spanning tree in Step (S2), the expected buying cost of our
tree T is at most twice the expression just seen; i.e., at most

2

(
S∗ +

∑

j∈D

E[Yj ] × M�(j, i∗(j))

)
, (4.6)

proving part (a) of the lemma. Since E[Yj ] = α/M , we get part (b) of the lemma. �

Massaging the Optimal Solution Before we proceed to bound the connection costs,
let us modify OPT to get another solution OPT′, which costs more than OPT, but
which has some more structure that allows us to complete the argument. The new
solution has the following properties:
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P1. OPT′ opens facilities at F ′ ⊆ F ∗, and these are connected by a cycle T ′ instead
of a tree T ∗; each demand j is now connected to the facility i′(j), which is not
necessarily its closest facility.

P2. The number of demands assigned to a facility in F ′, except perhaps the root r , is
a multiple of M . (We will call this the mod-M constraint.)

Lemma 4 There is a solution OPT′ with the properties above, which has connection
cost C′ ≤ C∗ + S∗ and Steiner cost S′ ≤ 2S∗. Hence, the total cost of OPT′ is Z′ ≤
C∗ + 3S∗.

Proof Modifying the assignment of demands to nodes in F ∗ to satisfy the mod-M
constraint is fairly simple. Given the tree T ∗, we process this in a two-pass fashion.
The first pass goes bottom-up, starting at the leaves which must all be in F ∗, and
making sure that each node satisfies the mod-M property by sending some b < M

demand from the node to its parent in the tree. OPT has nodes that are not in F ∗, and
hence cannot be facilities in F ′. We eliminate these nodes during a top-down pass,
where we distribute their demand among their children. The details are as follows.

Given the tree T ∗, we process this in a two-pass fashion. The first pass goes
bottom-up, starting at the leaves which must all be in F ∗. Consider a vertex all of
whose descendants satisfy the mod-M property, and let x be the demand currently
assigned to it. If x = aM + b, where b < M , we send b units of demand from x to
its parent. The number of demands assigned to each is now a multiple of M . Fur-
thermore, the increase in connection cost is b < M times the distance between x and
its parent; this ensures that every node (except possibly r) has demands that are a
multiple of M .

Of course, we may now have demands gathering at nodes of OPT that are not
in F ∗; handling this is fairly simple in a top-down fashion. We will send some of
the demand back down the tree from parents to children; however, we maintain the
invariant that at most M units of demand will be sent down an edge. Let a vertex
v /∈ F ∗ have aM demand (and let us assume we have handled all its ancestors). Since
at least (a −1)M of this demand must have been collected in the bottom-up pass, and
each child could have only sent < M demand upwards, there must be ≥ a children of
v sending demands to it. We choose any a of these children and send back M units
of demand along those edges.

To complete the argument, note that the net demand sent along an edge of T ∗
was either b units upwards, or M − b units downwards, and hence the cost of this
movement can be changed to S∗, thus obtaining that C′ ≤ C∗ + S∗. Furthermore,
since we finally do not use any new facilities, and can even close the facilities with
no demands assigned to it, F ′ ⊆ F ∗. Finally, the cycle property is obtained by taking
an Eulerian tour of T ∗ and replacing it by a cycle by short-cutting repeated vertices
using the metric property. This at most doubles the Steiner cost, giving S′ ≤ 2S∗. �

Back to Bounding the Connection Cost From now on, we shall only consider the
modified solution OPT′. For simplicity, by making copies of nodes if necessary, we
can assume that each node in F ′ has been assigned M demands. Recall that T ′ is a
cycle which contains r . (See Fig. 1.) Starting from r , let us name the facilities on T ′
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Fig. 1 The transformed
instance OPT′

in (say) clockwise order r = f0, f1, . . . , fk, fk+1 = r . (Hence referring to fl makes
sense for all l, since we can just consider l mod (k + 1).)

Let Dl be the set of demands assigned to fl , and hence |Dl | = M for l �= 0 by
assumption (P2). Let us abuse notation and add r to D0. Let P ′

l be the portion of
the cycle T ′ joining fl and fl+1, and let c(P ′

l ) denote the length of P ′
l , and hence

S′ = M
∑k

l=0 c(P ′
l ). Let C′

l be the total connection cost of the demands in Dl in the

solution OPT′ (with C′ = ∑k
l=0 C′

l ). Our algorithm chooses, in Step (S3), the cheap-
est assignment of demands to nodes in F . Thus, to bound the expected connection
cost, it suffices to bound the expected connection cost of an arbitrary experiment that
assigns demands to nodes in F . We present one such experiment next in Sect. 4.1, and
analyze it; in Sect. 4.2, we present and briefly analyze an improved experiment. We
have chosen this approach since there are several details to be handled in Sect. 4.2;
handling these seems easier if we start with the simpler approach of Sect. 4.1 as a
warmup.

4.1 A Candidate Assignment

Here we consider the following experiment: if Dl ∩ F �= ∅, then we assign all the
demands in Dl to the element in Dl ∩ F that is closest to fl . Else we have to assign
these demands to some other open facility (i.e., “go outside Dl”). In this case, con-
sider the smallest t > 0 such that Dl+t ∩ F �= ∅; let s = l + t . Note that r ∈ D0, and
so t ≤ k. We now send all the demands in Dl to the facility in Ds closest to fs . If we
assign demands in Dl to a marked node in Dl+t , then a path for each demand in Dl

goes through fl,P
′
l , P

′
l+1, . . . ,P

′
l+t−1, and then from fl+t to the element in Dl+t ∩F

closest to it. We will bound the expected cost of these paths, which in turn will bound
the expected connection cost of SimpleCFL.

Let us define some random variables. Let Xi be the indicator variable that Di ∩
F = ∅ in our algorithm. (Note that X0 = 0 with probability 1.) Let Ai be the distance
from fi and the closest element of Di ∩ F ; if Di ∩ F is empty, then Ai can be set
to 0. By the above arguments, the assignment cost of the M demands in Dl is at most

C′
l + M

k∑

i=l

(Xl · · ·Xi)c(P
′
i ) + M

k∑

i=l

(Xl · · ·Xi−1)(1 − Xi)Ai. (4.7)
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Indeed, the first term is the distance traveled by the demands in Dl to reach fl , the
second term expresses the fact that demands use Pi (and pay Mc(P ′

i )) if and only if
Dl, . . . ,Di all do not intersect F , and the third term implies that we incur a cost of
MAi if we assign demands in Dl to the closest member of Di ∩ F .

Note that Xi and Xj are independent for i �= j , and that E[Xi] = (1−α/M)M = q.
To bound M · E[(1 − Xi)Ai], let the distances from fi to the members of Di be

0 ≤ a1 ≤ a2 ≤ · · · ≤ aM, with
∑

j

aj = C′
i . (4.8)

Now,

E[(1 − Xi)Ai] =
M∑

j=1

aj × α/M × (1 − α/M)j−1.

Note that the coefficients of aj decrease as j increases, and hence subject to the
constraints (4.8), the expectation is maximized when all the aj ’s are equal to C′

i/M .
This yields

E[(1 − Xi)Ai] ≤ (C′
i/M)[1 − (1 − α/M)M ] = (C′

i/M)(1 − q). (4.9)

Let Cl be the expected connection cost of the demands in Dl in our current experi-
ment. Combining the above-seen facts with the inequality (4.7), we get that for l > 0,

Cl ≤ C′
l + M

k∑

i=l

c(P ′
i )q

i−l+1 +
k∑

i=l

C′
i (1 − q)qi−l . (4.10)

Note that C0 = C′
0; adding this to the sum of (4.10) over all l, the total expected

connection cost is

C ≤
k∑

l=0

C′
l + M

k∑

i=1

c(P ′
i )

i∑

l=1

qi−l+1 +
k∑

i=1

C′
i (1 − q)

i∑

l=1

qi−l (4.11)

≤ C′ + M

k∑

i=1

c(P ′
i )

q
1 − q

+
k∑

i=1

C′
i (1 − q)

1

1 − q

≤ 2C′ + q
1 − q

S′. (4.12)

However, q ≤ 1/eα , and hence the second term is at most 1/(eα − 1). Now using
Lemma 4 to replace C′ by C∗+S∗ and S′ by 2S∗, we see that the expected connection
cost of our algorithm can be bounded by:

C ≤ 2C∗ + 2eα

eα − 1
S∗. (4.13)

Adding with (4.5), the total expected cost is at most C + S ≤ 2(1 + α)C∗ + (2 +
2eα

eα−1 ) · S∗. Since the optimal cost is Z∗ = C∗ + S∗, we choose α ≈ 1.35 to minimize
the approximation ratio, and get the following result.
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Theorem 5 The algorithm SimpleCFL is a β = 4.7-approximation algorithm
for CFL.

If we were to use an 1.55-approximation for Steiner tree [12] to buy edges in
Step (S2), we would be getting an improved approximation ratio of 4.2 for CFL,
while the analysis of [4] gets a 3.55 approximation. However, we need to use the
2-approximation algorithm of the MST, as there is a cross-monotone cost-sharing
function ξMST for the MST problem.

4.2 A More Refined Assignment

We now present an improved 4.6-approximation. The idea behind the improvement
is a natural one: instead of always going clockwise to look for the closest cluster
Dl with a facility in it, we can look both clockwise and counter-clockwise for the
closest cluster with a facility, breaking ties randomly. As one might expect, we show
that this decreases the cost (see (4.18)), since it is no longer the case that a cluster
with a facility in its neighboring counter-clockwise cluster goes several hops in the
clockwise direction to find a (farther) facility.

More formally, let us modify the experiment of Sect. 4.1 to assign the demands
to facilities in F as follows. Choose just one global “tie-breaker” bit TB at random.
When Dl ∩ F = ∅ and we go outside Dl , instead of always going around the cycle
in a clockwise order, consider the smallest t > 0 such that either Dl+t or Dl−t has an
non-empty intersection with F ; let Ds be the corresponding set with Ds ∩ F �= ∅. If
both Dl+t and Dl−t intersect F , then we break the tie randomly using TB: if TB = 0,
then we choose Dl−t (i.e., set Ds to be Dl−t ); else if TB = 1, we set Ds to be Dl+t .
The same bit TB is used by all groups Dl . Note that r ∈ D0, and so t ≤ 
k/2�. We
now send all the demands in Dl to the facility in Ds closest to fs .

Let the random variables Xi and Ai be as in Sect. 4.1. We will not go over the
analysis of this experiment in the same level of detail, but let us point out some of
the salient ideas: for some facility in Di to be used by ≥ κ groups of larger index
(say), we must have: (i) Xi = 0, and (ii) either all 2κ groups Di+1, . . . ,Di+2κ do not
intersect F , or only the last one does and we choose Di with probability half. Like
in (4.11), the expected total cost will again be a non-negative linear combination of
the values {C′

i} and {c(P ′
i )}. Using the idea outlined in this paragraph, as well as

expressions analogous to (4.9) and (4.10) in the previous analysis, we can verify that
the coefficient of C′

i (in this linear combination) will be at most

1 + (1 − q) + 2(1 − q)
∑

κ≥1

(
q2κ + 1

2
q2κ−1(1 − q)

)
≤ 1 + (1 − q) + q = 2. (4.14)

Analyzing the coefficient of c(P ′
i ) needs more work. Assume without loss of gen-

erality that �k/2� ≤ i ≤ k; the complementary case is similar. Given a set T of in-
dices, let U(T ) denote the event that Xj = 1 for all j ∈ T ; informally, the “U” de-
notes “unmarked”. We consider when the demands in group Dl will use the path P ′

i ;
we will do so by considering the cases l ≤ i and l > i.
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Case I: l ≤ i. Let Al be the event that the demands in group Dl use the path P ′
i . For

Al to hold, the following event Bl should also happen: Bl ≡ U({j : |j − l| ≤ i − l}).
So,

Pr[Al] = Pr[Bl] × Pr[Al | Bl] = q2(i−l)+1 × Pr[Al | Bl].
Now, if k + 1 − l ≥ l, it is easy to see by symmetry (since TB is equally likely to be
0 or 1) that Pr[Al | Bl] ≤ 1/2; thus we have

if k + 1 − l ≥ l, then Pr[Al] ≤ q2(i−l)+1/2. (4.15)

Next, suppose k+1 < 2l. Define an event Cl : Cl ≡ U({j : i +1− l ≤ |j − l| ≤ k− l}).
We have Pr[Al | (Bl ∧ Cl )] = 1/2, by symmetry. Also, a moment’s thought reveals
that

Pr[Al | (Bl ∧ Cl )] = 1 − (1 − q)/2 = (1 + q)/2.

Thus we have

Pr[Al] = q2(i−l)+1 · (Pr[Cl | Bl] · (1/2) + Pr[Cl | Bl] · (1 + q)/2)

= q2(i−l)+1 · ((1 − q2(k−i)) · (1/2) + q2(k−i) · (1 + q)/2)

= q2(i−l)+1 · (1/2) · (1 + q2(k−i)+1).

Comparing with (4.15), we see that if l ≤ i, then Pr[Al] ≤ q2(i−l)+1 · (1/2) · (1 +
q2(k−i)+1). Summing over all l ≤ i, we get that the total contribution of all Dl , l ≤ i,
to the coefficient of c(P ′

i ) in the expected connection cost, is at most

q
2(1 − q2)

· (1 + q2(k−i)+1). (4.16)

We now move to the next case.
Case II: i < l ≤ k. Let Al be as in Case I. Now define B′

l ≡ U({j : |j − l| ≤
l− (i +1)}). Once again, B′

l is a necessary condition for Al . Also note that Pr[B′
l] = 0

if k + 1 − l ≤ l − (i + 1); thus, we can restrict attention to those l > i such that
l ≤ l0

.= �(k + i + 1)/2�. Now, since l > i, it is easy to see that Pr[Al | B′
l] ≤ 1/2;

also, Pr[B′
l] = q2(l−i−1)+1. Summing over all l ∈ [i+1, l0], we get a total contribution

of

(1/2) ·
l0−i∑

j=1

q2j−1 ≤ q
2(1 − q2)

· (1 − qk−i+1). (4.17)

Adding with (4.17), the coefficient of c(P ′
i ) in the expected connection cost is seen

to be at most

q
2(1 − q2)

· (2 + q2(k−i)+1 − qk−i+1) ≤ q
1 − q2

≤ e−α

1 − e−2α
= eα

e2α − 1
.
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So, the total expected connection cost is at most 2C′ + eα

e2α−1
· S′. Using Lemma 4

to replace C′ by C∗ + S∗ and S′ by 2S∗, the expected connection cost is at most

2C∗ + 2(e2α + eα − 1)

e2α − 1
· S∗.

Adding with (4.5), the total expected cost is at most

2(1 + α)C∗ + 2(2e2α + eα − 2)

e2α − 1
· S∗. (4.18)

Since the optimal cost is Z∗ = C∗ + S∗, we choose α = 1.296 to minimize the ap-
proximation ratio to get the following result.

Theorem 6 The algorithm SimpleCFL is a β = 4.6-approximation algorithm
for CFL.

5 Analysis of the Limited-Independence Marking

We start with some useful derandomization tools in Sect. 5.1, and then analyze the
limited-independence marking in Sect. 5.2.

5.1 Derandomization Tools

We will use the following theorem, which appears as Lemma 2.3 in [2]:

Theorem 7 ([2]) Let t ≥ 4 be an even integer. Suppose X1, . . . ,Xn are t-wise in-
dependent random variables taking values in [0,1]. Let X = X1 + · · · + Xn and
μ = E[X], and let λ > 0. Then

Pr[|X − μ| ≥ λ] ≤ Ct ·
(

tμ + t2

λ2

)t/2

,

where Ct = 2
√

πt · e1/(6t) · (5/(2e))t/2 ≤ 8.

See [13] for tail-bounds similar to the above.
We next present some notation.

– For each group Dj , let Zj,1,Zj,2, . . . ,Zj,M be the respective indicator random
variables for the demands in Dj getting marked by our algorithm, when these
demands are considered in nondecreasing order of distance from fj .

– Let A be any set of ordered pairs {(j, k)}. Then, N(A) is the indicator random vari-
able for the event “for all (j, k) ∈ A, Zj,k = 0”. Also, T (A) denotes

∑
(j,k)∈A Zj,k .

(“N” stands for “none”, and “T ” for “total”.)

We now give two types of upper-bounds on E[N(A)]:
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Lemma 5 Let t1 and t2 be any even positive integers such that t1, t2 ≤ t (recall that
the marking is done in a t-wise independent manner). The following hold for any set
A of ordered pairs {(j, k)}.
(i) Let IE(s,A) be the random variable denoting the inclusion-exclusion expansion

of N(A) truncated at the sth level; i.e.,

IE(s,A) =
s∑

r=0

(−1)r
∑

A′⊆A:|A′|=r

∏

(j,k)∈A′
Zj,k.

Then, the inequality N(A) ≤ IE(t1,A) holds always; also,

E[IE(t1,A)] ≤ (1 − α/M)|A| +
(

eα|A|
Mt1

)t1

. (5.19)

(ii) Let NCM(t2,A) denote the “normalized central moment” (T (A)−α|A|/M)t2

(α|A|/M)t2
.

Then, the inequality N(A) ≤ NCM(t2,A) holds always; also,

if 4 ≤ t2 ≤ α|A|/M, then E[NCM(t2,A)] ≤ 8 · (2t2)
t2/2 · (α|A|/M)−t2/2.

(5.20)

Proof The upper bounds that are claimed to hold always on N(A) in (i) and (ii),
easily follow from the fact that t1 and t2 are even. Bound (5.19) follows from the
statement and proof of Theorem 2 in [3]. Bound (5.20) follows from Theorem 7,
using the fact that the “tμ + t2” term in Theorem 7 is at most 2tμ if t ≤ μ. �

5.2 The Analysis

Let ε be an arbitrary positive constant lying in (0,1). We now prove that if the de-
mands are marked in t-wise independent fashion where t = a log(1/ε) for a suitably
large constant a, then the expected approximation ratio is at most (1+ε) times what it
is, in our analysis of independent marking in Sect. 4.2. The random bit (tie-breaker)
TB introduced in Sect. 4.2 is still chosen independently of the marking; this only
multiplies the size of our small sample space by a factor of 2.

By Lemma 3(a), we get that for the Steiner cost, we can continue to use the bound
(4.5) even under t-wise independent marking; it is the connection cost that needs
work. We now show that the expected total connection cost under the algorithm of
Sect. 4.1 changes very little under limited-independence marking; we then briefly
sketch the small modifications required for the algorithm of Sect. 4.2.

Recall the algorithm of Sect. 4.1. The total connection cost is a random variable
that is the sum of three quantities: (i) the deterministic value

∑
l C

′
l , which represents

the cost of all demands in each Dl first getting routed to fl ; (ii) the value that cor-
responds to unsuccessfully traveling through some Dl , and (iii) the total cost paid in
traveling from fi to the closest marked demand in Di , once Di is identified as the
closest cluster. We will only show that the expected total cost of (iii) gets multiplied
by at most (1+ ε) due to our t = a log(1/ε)-wise independent marking; the argument
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for the term (ii) is analogous, and, in fact, simpler. Specifically, we will show the fol-
lowing. Let i be the index of some arbitrary but fixed Di . We show that the expected
value of the random variable

φ
.=

i∑

j=1

MXjXj+1 · · ·Xi−1 · (1 − Xi)Ai

gets multiplied by at most (1 + ε). (Since i is fixed, we have not subscripted φ as φi ;
this remark also holds for some other definitions below.)

We now show how to use Lemma 5 to upper-bound E[φ]. Let a1, a2, . . . , aM be
the distances of the demands in Di from fi , written in nondecreasing order. Then,
expanding the “(1 − Xi)Ai” part of φ, we see that

φ =
i∑

j=1

MXjXj+1 · · ·Xi−1 ·
[

M∑

u=1

auZi,u ·
u−1∏

�=1

(1 − Zi,�)

]
.

Fix u arbitrarily, and let zu
.= Zi,u ·∏u−1

�=1 (1−Zi,�)] ·∑i
j=1 XjXj+1 · · ·Xi−1. We aim

to show that E[zu] is multiplied by at most (1+ε) in our t-wise independent marking,
as compared to the fully-independent marking. For j = 0,1, . . . , i − 1, define Aj =
{(r, s) : (i − j) ≤ r ≤ (i − 1), 1 ≤ s ≤ M}. Thus we get

zu = Zi,u · N({(i, �) : 1 ≤ � ≤ u − 1}) ·
i−1∑

j=0

N(Aj ).

Now let a1 be a sufficiently large constant. Define a2 to be the smallest even in-
teger that is at least 2e log(1/ε), t1 to be the smallest even integer that is at least
2ea1 log(1/ε), and t2 to be the largest even integer that is at most a1 log(1/ε)/4.
There are two cases: a1 log(1/ε) ≤ i − 1, or a1 log(1/ε) > i − 1; we start with the
harder first case.

Case I: a1 log(1/ε) ≤ i − 1. Break up the expression for zu into two sums, one for
“small” j and the other for “larger” j :

Zi,u · N({(i, �) : 1 ≤ � ≤ u − 1}) ·
∑

j≤a1 log(1/ε)

N(Aj )

+ Zi,u · N({(i, �) : 1 ≤ � ≤ u − 1}) ·
∑

j>a1 log(1/ε)

N(Aj ).

Thus, by Lemma 5, zu is always bounded by the sum of the following two random
variables:

Zi,u · IE(a2, {(i, �) : 1 ≤ � ≤ u − 1}) ·
∑

j≤a1 log(1/ε)

IE(t1,Aj ), (5.21)

Zi,u · IE(a2, {(i, �) : 1 ≤ � ≤ u − 1}) ·
∑

j>a1 log(1/ε)

NCM(t2,Aj ). (5.22)
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If we expand the expectations of these two random variables using the linearity of
expectation, we get terms each of which is a product of some of the random variables
Z·,·; importantly, the number of factors in each such term is at most 1 + a2 + t1 and
1 + a2 + t2 respectively. Thus, if we choose t = 1 + a2 + t1 (recall that t1 ≥ t2), then
the expectations of these two random variables become

E[Zi,u] · E[IE(a2, {(i, �) : 1 ≤ � ≤ u − 1})] ·
∑

0≤j≤a1 log(1/ε)

E[IE(t1,Aj )], (5.23)

E[Zi,u] · E[IE(a2, {(i, �) : 1 ≤ � ≤ u − 1})] ·
∑

j>a1 log(1/ε)

E[NCM(t2,Aj )] (5.24)

respectively. We next use (5.19) and (5.20) to bound these values; we will see that
choosing the constant a1 large enough results in E[zu] being at most (1 + ε) times
what it is with independent marking.

The expression (5.23) is at most

α

M
·
(

(1 − α/M)u−1 +
(

eα(u − 1)

Ma2

)a2
)

·
∑

0≤j≤a1 log(1/ε)

((1 − α/M)Mj + (eαj/t1)
t1);

i.e., at most

α

M
· ((1 − α/M)u−1 + (eα/a2)

a2)

·
∑

0≤j≤a1 log(1/ε)

((1 − α/M)Mj + (eαa1 log(1/ε)/t1)
t1).

Similarly, the expression (5.24) is at most

α

M
· ((1 − α/M)u−1 + (eα/a2)

a2) ·
∑

j>a1 log(1/ε)

(8 · (2t2/(αj))t2/2).

Thus, if the demands are marked in t-wise independent fashion, then E[zu] is at
most (α/M) · ((1 − α/M)u−1 + (eα/a2)

a2) times
∑

0≤j≤a1 log(1/ε)

((1−α/M)Mj +(eαa1 log(1/ε)/t1)
t1)+

∑

j>a1 log(1/ε)

(8 ·(2t2/(αj))t2/2).

On the other hand, under fully-independent marking,

E[zu] = α

M
· (1 − α/M)u−1 ·

i−1∑

j=0

(1 − α/M)Mj . (5.25)

Recalling the definitions of a1, a2, t1 and t2, it is easy to verify that if a1 is chosen as
a sufficiently large constant, then the former value is at most (1 + ε) times the latter.
This completes the analysis of Case I.
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Case II: a1 log(1/ε) > i − 1. We follow the above analysis; we need not consider
the case of larger j . Now, under limited-independence marking, the bound on E[zu]
is simpler: it is at most

(α/M) · ((1 − α/M)u−1 + (eα/a2)
a2)

·
∑

0≤j≤i−1

((1 − α/M)Mj + (eαa1 log(1/ε)/t1)
t1).

Once again, this is at most (1 + ε) times the r.h.s. of (5.25).

Modifications Required for the Algorithm of Sect. 4.2 We now sketch the few mod-
ifications required. Conditional on T B = 1, the demands in Dl will get routed to:

– Dl , iff Xl = 0;
– Dl+t for some t > 0, iff Xl(1 − Xl+t )

∏t−1
j=1(Xl+jXl−j ) holds; and to

– Dl−t for some t > 0, iff XlXl+t (1 − Xl−t )
∏t−1

j=1(Xl+jXl−j ) holds.

Similar remarks hold conditional on T B = 0. The expected connection cost is 1/2
times the cost conditional on T B = 1, plus 1/2 times the cost conditional on T B = 0.
Consider the case where T B = 1. The total connection cost can then be verified to
still be a non-negative linear combination of terms of the form: “a product of some
Xj ’s, multiplied by at most one term of the form (1−Xl)Al”. Furthermore, it remains
true of the total connection cost that the expected values of: (a) the coefficient of any
c(P ′

i ), and (b) the total term multiplying any term of the form (1 − Xl)Al , are both
Θ(M). Using these observations, the above type of analysis can be seen to hold for
the algorithm of Sect. 4.2 also.

6 Further Extensions

6.1 Handling Facility Costs

For the model of connected facility location where there are facility opening costs as
well, we can run a slight variant of the algorithm above:

F1. Mark each demand j ∈ D independently with probability 1/M , and let D′ be the
set of marked demands.

F2. Compute a ρFL-approximate metric facility location solution with the original
distances and facility opening costs, but where the demand value for any j ∈ D′
is M , and is 0 for j �∈ D′. Let F be the set of open facilities returned by this
algorithm.

F3. Construct a ρST -approximate Steiner tree T on F ∪ {r}.
F4. Assign each demand j ∈ D to its closest open facility i(j) in F .

The cost analysis is very similar to that of Theorem 2, and we only sketch the
important ideas here. Let O∗,C∗ and S∗ denote the facility opening costs, connection
costs and Steiner costs of the optimal solution. Note that opening the same set of
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facilities as OPT is also a feasible solution to the facility location instance in Step (F2)
with expected cost (O∗ + C∗), and hence we pay

A1
.= ρFL(O∗ + C∗) (6.26)

in expectation, where ρFL is the approximation guarantee of the algorithm used in
Step (F2). Now a proof along the lines of Lemma 3 implies that there is a Steiner tree
connecting these facilities with expected cost (S∗ + C∗ + A1), and hence the tree we
construct in Step (F3) costs at most ρST times that, which is

A2
.= ρST (S∗ + C∗ + ρFL(C∗ + O∗)). (6.27)

Finally, we have to bound the connection costs of Step (F4): one can use an analysis
very similar to Sect. 4.2, but in addition to the expected cost of 2C∗ + 2e

e−1S∗ paid
there, one also has to pay an additional cost to go from the marked demands in D′ to
the facilities in F : this costs A1 in expectation. Hence the expected assignment cost
in Step (F4) is

A3
.= 2C∗ + 2e

e−1S∗ + (C∗ + O∗)ρFL. (6.28)

Adding up the three expressions above, we get a bound on the expected cost of at
most

ρFL(2 + ρST )O∗ + (1 + ρFL)(2 + ρST )C∗ + (ρST + 2e/(e − 1))S∗. (6.29)

Now using the best known approximation factors of ρFL = 1.52 [10] and ρST =
1.55 [12], we get a 8.94-approximate algorithm for the case of non-zero cost for
opening facilities. (A better performance can be obtained by choosing α carefully.)

To get cross-monotonic cost shares, we can instead use the ρFL = 3 approxi-
mate Facility Location algorithm of Pál and Tardos [11] and its accompanying cross-
monotone cost sharing scheme ξFL, the MST heuristic with ρST = 2 for Steiner tree
(and use its cross-monotone cost-sharing scheme ξMST as well). This gives us an
approximation factor of β = 16; now setting the cost-share of each demand j to be

ξ(D, j) = 1

β
E[MξMST(D′ ∪ r, j) + MξFL(D′, j) + �(j,D′ ∪ r)], (6.30)

can give us a β-approximate cross-monotone cost sharing scheme for CFL with fa-
cility costs as well.

6.2 Handing Non-Uniform Demands

The discussion in the previous sections assumed that each of the demands j ∈ D

had a weight dj = 1; i.e., it wanted to send just one unit of demand to the root.
Moreover, we assumed that there was only one player at each vertex in D. Let us
briefly indicate how these assumptions can be discharged; in this section, we do not
attempt to optimize the constants, sacrificing the performance guarantees in favor of
sketching the main ideas.
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Let us note that handling the assumption of a single player at every vertex is sim-
ple: if there were nv players at vertex v, we create nv new vertices, attach each of
them to v using zero-cost edges, and place a unique player from v on each of the new
vertices.

To handle arbitrary weights dj for demand j , we first take care of the follow-
ing two special cases separately, which ensure that the values of dj all lie within a
multiplicative factor of n2 of each other.

Heavy Vertices: If the weight dj of vertex j is at least M , we can deterministically
mark the vertex j in Step (S1). It can be shown that OPT would have connected
these vertices up in its Steiner tree as well, and hence this causes no loss in quality.

Light Vertices: If the weight dj of node j is at most M/n2, then we do not mark
j at all in Step (S1): note that the total weight

∑
j∈V dj of such nodes is at most

n ·M/n2 = M/n. The expected cost of the Steiner tree can only go down due to this
change, and a slight variant on the proof of Theorem 6 will show that the expected
assignment cost only increases by a factor of (1 + 1/n)—essentially, throwing back
the demand of M/n in any subtree can only cause an increase of a factor of (1+1/n)

in the expected assignment cost.

Having performed these operations, we can now rescale and assume that the weights
dj lie in [n,n3], and that the parameter M is greater than n3. We round the weights dj

down to the closest integer �dj�: this decreases each weight by at most a (1 + 1/n)

factor, and hence alters only the lower order terms of our performance guarantee.
And finally, we replace the player at j by �dj� players: a long but straight-forward
reworking of the proofs in Sect. 4 shows that the algorithm is a constant-factor ap-
proximation even with general weights, and gives us the desired cost-shares.
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