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Abstract We prove that a generalization of the edge dominating set problem, in
which each edge e needs to be covered be times for all e ∈ E, admits a linear time
2-approximation for general unweighted graphs and that it can be solved optimally
for weighted trees. We show how to solve it optimally in linear time for unweighted
trees and for weighted trees in which be ∈ {0,1} for all e ∈ E. Moreover, we show
that it solves generalizations of weighted matching, vertex cover, and edge cover in
trees.
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1 Introduction

Domination problems in graphs have been subject of many studies in graph theory,
and have many applications in operations research, e.g., in resource allocation and
network routing, as well as in coding theory.

In this paper we consider a generalization of the edge dominating set (EDS)
problem. Given a graph G = (V ,E), a function b : E → N and a weight function
c : E → Q

+, a b-EDS is a subset F ⊆ E together with a multiplicity me ∈ N
+ for

each e ∈ F , so that each edge in E is adjacent to at least be = b(e) edges in F ,
counting multiplicities. The b-EDS problem is then to find a b-EDS which minimizes∑

e∈F me in the unweighted and
∑

e∈F (c(e) · me) in the weighted case. The b-EDS
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problem generalizes the EDS problem in much the same way that the set multicover
problem generalizes the set cover problem [19].

When be = 1 for all e ∈ E this is the edge dominating set problem (EDS). It is
the least studied problem among the four natural covering problems in graphs: edge
cover (cover V with elements from E), vertex cover (E with V ), dominating set
(V with V ), and EDS (E with E).

Our motivation for studying EDS is that it is a fundamental covering problem
in graphs which simultaneously generalizes and melds vertex cover and edge cover
into a restricted version of the total cover problem [2, 14]. Moreover the weighted
matching problem may be solved as an instance of weighted edge cover, hence a
striking feature of the linear time primal-dual algorithm which we present is that it
solves generalizations of weighted matching, vertex cover, and edge cover in trees.

The unweighted version of EDS is NP-complete even for planar and bipartite
graphs of maximum degree 3 [20] as well as for several other families of graphs [9].
However, there are also families of graphs for which the unweighted EDS problem
is polynomial-time solvable [9, 18]. In particular, linear time algorithms for the un-
weighted version are known for trees [11] and block graphs [10].

Much less is known about the weighted version of the problem. Recently, Fujito
and Nagamochi [5] and Parekh [13] independently discovered a 2-approximation for
the weighted EDS problem; the latter also showed that weighted EDS restricted to
bipartite graphs is no easier to approximate than weighted vertex cover, which is
MAX-SNP-hard [12] and is suspected to have no polynomial time approximation al-
gorithm with approximation ratio asymptotically less than 2. Thus, a 2-approximation
for b-EDS may be the best we can hope for. Indeed, in [1] it is shown that the b-EDS
problem can be approximated within a factor of 8/3, but also that this factor cannot
be improved using the same methods that were used in [5] and [13].

When be ∈ {0,1} for all e ∈ E we call the resulting problem {0,1}-EDS. The
weighted version of {0,1}-EDS is particularly interesting since it is equivalent to
the generalization of weighted vertex cover in which in addition to single vertices,
weights may also be assigned to pairs, {u,v}, of vertices (by adding an edge uv with
buv = 0 if one does not already exist). This generalization may be used to model
a limited economy of scale in existing applications of vertex cover: for a pair of
vertices {u,v} one may stipulate that selecting both u and v costs less than the sum
of the individual costs of u and v.

Our main contributions are linear-time algorithms for three special cases of the
b-EDS problem, a 2-approximation for general unweighted graphs, and optimal al-
gorithms for unweighted trees and the {0,1}-EDS problem for weighted trees. To the

Table 1 Approximation ratios for variants of the EDS problem (∗ denotes a linear time algorithm)

Unweighted Weighted Unweighted Weighted

EDS EDS b-EDS b-EDS

General graphs 2∗ [7] 2 [5, 13] 2∗ (Cor. 2) 8/3 [1]

Bipartite graphs ,, ,, ,, 2 [1]

Trees 1∗ [11] 1∗ (Thm. 3) 1∗ (Thm. 2) 1 (Thm. 1)
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best of our knowledge an exact linear time algorithm was not known for even the
special case of weighted EDS on trees. Table 1 gives an overview of known results
and new results from this paper.

Organization In Sect. 2 we expose a relationship between the maximum weighted
matching problem and the unweighted b-EDS problem; we use this relationship to an-
alyze an algorithm of Preis [16] and show that it is also a linear time 2-approximation
for the unweighted b-EDS problem. This generalizes a known relationship between
maximal matchings and (unweighted) edge dominating sets.

In Sect. 3 we show that the weighted b-EDS problem is solvable in polynomial
time on trees. We also present exact linear-time algorithms which solve the un-
weighted b-EDS problem, and the weighted {0,1}-EDS problem on trees. The latter
is a primal-dual algorithm and the proof for the optimality of the returned solution
shows that the algorithm can also generate an optimal dual solution. If the weights
c(e) are integral for all e ∈ E, then the dual solution is integral as well and is a max-
imum size set of edges such that each edge e has at most c(e) edges adjacent to it.
This problem is a common generalization of the maximum independent set problem
and the maximum strong matching problem. An exact linear time algorithm for the
latter on trees is known [3].

Notation We will use the following notation for a simple undirected graph G =
(V ,E). The neighbors of a vertex v ∈ V are denoted by δ(v) = {u ∈ V : ∃uv ∈ E}.
The edges incident upon the vertex v ∈ V are denoted by N(v) and the set of edges
adjacent with an edge e ∈ E plus the edge e itself is denoted by N(e), i.e. N(uv) =
N(u) ∪ N(v) for any uv ∈ E.

2 The Unweighted b-EDS Problem for General Graphs

For general graphs, the weighted EDS problem admits a 2.1-approximation based
on a natural linear program relaxation of the problem, whose integrality gap is also
2.1 [2]. A corresponding linear relaxation for the weighted b-EDS problem yields an
8
3 -approximation for general graphs and a 2-approxi-mation for bipartite graphs [14].
This relaxation can be strengthened to yield a 2-approximation for weighted EDS
[5, 13]; however, the corresponding strengthening fails to deliver a 2-approximation
for weighted b-EDS.

The unweighted EDS and b-EDS problems, however, can be approximated more
easily due to their relation to matching problems. Harary’s book [7] demonstrates
that there always exists a minimum cardinality EDS which is also a maximal match-
ing. Since any maximal matching is also an EDS, the minimum cardinality maximal
matching and the unweighted EDS problems are equivalent. In contrast Fujito [4]
showed that the minimum weighted maximal matching problem is much more diffi-
cult than weighted EDS. Any maximal matching in a graph has size at least one half
times the size of a maximum matching. Therefore, finding any maximal matching,
which can be easily done in linear time, yields a 2-approximation for the unweighted
EDS problem.

An issue with extending the relationship described above to the minimum un-
weighted b-EDS problem is that a maximal matching is not necessarily a feasible
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b-EDS. Using the resemblance of the maximum weight matching problem to the dual
of a natural linear formulation for b-EDS, we exhibit a connection between weighted
matchings and b-edge dominating sets that generalizes the relationship between max-
imal matchings and edge dominating sets. Given a matching M and a vector b ∈ N

|E|,
let b|M ∈ N

|E| denote the vector which for each component e ∈ M has value be, and
has value 0 for all other components.

Lemma 1 For any matching M and any vector b ∈ N
|E|,

∑
e∈M be is at most twice

the weight of a minimum size (counting multiplicities) b-EDS.

Proof Consider the following pair of dual LP’s, LP 1 being the linear programming
relaxation for the unweighted b-EDS problem and LP 2 being the relaxation for the
weighted strong matching problem. We call P and R the

LP 1: min1 · x, subject to LP 2: maxb · y, subject to

x(N(e)) ≥ be for all e ∈ E y(N(e)) ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ E

sets of feasible fractional solutions of LP 1 and LP 2, respectively. Let now M be a
matching in the graph. By setting the dual variables to ye = 1/2 for each e ∈ M , and
to ye = 0 for each e ∈ \M , we obtain such a feasible solution y ∈ R to LP 2, since
each edge e ∈ E can be adjacent with at most two edges from M . Using duality we
have

b(M)/2 = b · y ≤ max
y∈R

b · y = min
x∈P

1 · x ≤ OPT .

Hence the weight b(M) of the solution we return is at most 2 · OPT . �

Corollary 1 For any matching M and any vector b ∈ N
|E|, if b|M is a feasible b-EDS

then it is a 2-approximate unweighted b-EDS.

Corollary 1 motivates the following definition: we say a matching M is b-
feasible if b|M is a feasible b-EDS. Thus any matching algorithm that returns a b-
feasible matching M is a 2-approximation for the unweighted b-EDS problem. Be-
fore presenting a linear time algorithm, we present a very simple O(|E| · log |V |)
2-approximation for unweighted b-EDS.

Proposition 1 The greedy algorithm for the maximum weight matching problem
(with weights b ∈ N

|E|) that repeatedly selects the edge of greatest weight that main-
tains a matching, always returns a matching that is also b-feasible.

Proof The greedy algorithm also satisfies Lemma 2 below and thus the proof is the
same as the proof of Lemma 3. �

It is not difficult to see that any matching of maximum weight with respect to b is
b-feasible. Lemma 1 also implies that any feasible b-EDS has size at least 1

2 the cost
of a maximum weight matching with respect to b, thus if a b-EDS algorithm always
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returns a b-EDS that is a matching when copies of an edge are removed, then the
algorithm is a 1

2 -approximation for the maximum weight matching problem.
Preis [16] gave a linear time algorithm, which, given a weighted graph, computes

a maximal matching with weight at least one half times the weight of any matching.
The algorithm incrementally adds edges to a matching M . A vertex u is called free
(w.r.t. to M), if u is not incident with any edge in M . We will use the following
lemma, which gives a necessary condition for an edge to be added to the matching,
to show that Preis’s algorithm always generates a b-feasible matching.

Lemma 2 ([16, Lemma 3]) If an edge uv is added to M during the algorithm, then
u and v are free and neither u nor v are adjacent to a free vertex with an edge of
higher weight than the weight of the edge uv.

Lemma 3 Preis’s algorithm always generates a b-feasible matching.

Proof First, note that each edge e ∈ M is covered be times by itself. Since M is a
maximal matching, any edge e = uv in E \M must be adjacent to some edge f = vw

in M . If bf ≥ be, then e is covered. Otherwise, Lemma 2 says that u was not a free
vertex at the time when f was added to M . But then there must be an edge tu ∈ M ,
which was added to M before f , i.e. t , u and v were free vertices at the time tu was
considered. Using Lemma 2 again, we must have btu ≥ be. �

Corollary 2 The unweighted b-EDS problem on general graphs can be 2-approxima-
ted in linear time.

3 The b-EDS Problem for Trees

3.1 The General Case

Many problems which are hard to solve optimally or even approximate for general
graphs become considerably easier when restricted to a small family of graphs. The
same is true for the weighted b-EDS problem when we restrict the possible inputs to
trees.

In this section we will show that the weighted b-EDS problem on trees can be
solved optimally as a linear program. A square matrix A is called totally unimodular
if every square sub-matrix of A has determinant +1, −1 or 0. Totally unimodular
matrices play an important role in linear programming due to the following lemma.

Lemma 4 ([8, 17]) If A ∈ Z
m×n is a totally unimodular matrix and b ∈ Z

m, then
every extreme point of the polyhedron {x ∈ R

n : Ax ≤ b, x ≥ 0} 
= ∅ has integer co-
ordinates.

Ghouila-Houri [6] gave the following sufficient condition for a matrix to be totally
unimodular.
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Lemma 5 An m × n matrix A with entries in {1,0,−1} is totally unimodular if for
every J ⊆ {1, . . . , n} there exist a partition J = J1 ∪ J2 such that for any 1 ≤ j ≤ m

it holds that |∑i∈J1
aij − ∑

i∈J2
aij | ≤ 1.

We now prove that the constraint matrix for the EDS problem for any tree is totally
unimodular. To the best of our knowledge this is the first proof of this fact in the
literature.

Lemma 6 Let T = (V ,E) be a tree on n vertices. Let A = (aij ) be the edge-edge
adjacency matrix of T with 1’s on the diagonal, i.e. aij = 1 for all ij ∈ E, aij = 0
for all ij /∈ E and aii = 1 for all 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1 and i 
= j . Then A is
totally unimodular.

Proof According to Lemma 5 it is enough to show that we can partition any E′ ⊆ E

into two sets of edges E1 and E2, so that for any e ∈ E we have |N(e) ∩ E1| −
|N(e) ∩ E2| ∈ {−1,0,1}. This is equivalent to saying that for any E′ ⊆ E there is
a labeling π : E → {1,0,−1} such that π(e) = 0 if and only if e ∈ E \ E′ and that
�(e) := |∑f ∈N(e) π(f )| ≤ 1 for any e ∈ E.

We will prove by induction on |V | that such a labeling exists for any E′ ⊆ E and
that it also satisfies |�(v)| ≤ 1 where �(v) := ∑

f ∈N(v) π(f ) for any v ∈ V . Note
that if such a labeling π exists, than −π clearly also satisfies the condition.

The base case |V | = 1 is trivial. Let now |V | ≥ 2 and let v0 ∈ V be an arbitrary
vertex of T . Let Ti = (Vi,Ei) (1 ≤ i ≤ k) be the connected components of T − {v0},
which are trees as well. Let vi be the neighbor of v0 in Ti and ei = v0vi . For every
1 ≤ i ≤ k let πi be a labeling of Ei with πi(e) = 0 if and only if e ∈ Ei \ E′, which
exists by the inductive hypothesis. They also satisfy |�i(vi)| ≤ 1 for every 1 ≤ i ≤ k.
If we set π(ei) = 0 for 1 ≤ i ≤ k and π(e) = πi(e) whenever e ∈ Ei , we obtain a
labeling π : E → {1,0,−1} such that �(ei) = |�i(vi)| ≤ 1 and �(v0) = 0, i.e. π

satisfies the claim. However, the edges incident with v0 which are in E′ are falsely
labeled 0. We will show how to label these edges with 1 or −1 and maintain the
desired properties.

We can assume w.l.o.g. that for some 0 ≤ s ≤ k we have that {ei : 1 ≤ i ≤ s} ⊆ E′
and {ei : s + 1 ≤ i ≤ k} ⊆ E \ E′. Further assume that |�(vi)| = 1 for 1 ≤ i ≤ s0 and
that |�(vi)| = 0 for s0 < i ≤ s for some 0 ≤ s0 ≤ s.

We will switch the labellings πi for 1 ≤ i ≤ s0 if necessary to obtain �(vi) = 1
for 1 ≤ i ≤ �s0/2� and �(vi) = −1 for �s0/2� < i ≤ s0. Then we define π(ei) = −1
for 1 ≤ i ≤ �s0/2� and π(ei) = 1 for �s0/2� < i ≤ s0. The edges es0+1, . . . , es will
be labeled with 1 and −1 so that we have �(v0) ∈ {0,1}. The numbers of edges
labeled 1 and −1, respectively, will depend on the parity of s and s0 and differ by
at most 1. If �(v0) = 1, then we also switch the labellings πi of those trees Ti with
i > s for which �(vi) = 1 to −πi to ensure that �(ei) ≤ 1 for those indices i.

It is easy to check that the conditions on π remain true for all edges and vertices
of T . �
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Using Lemma 4 and Lemma 6 we immediately have

Theorem 1 The b-EDS problem on weighted trees can be solved optimally in
strongly polynomial time.

The algorithm to solve the b-EDS problem on trees relies on solving a linear pro-
gram. However, we would prefer a combinatorial algorithm, ideally running in linear
time. This is indeed possible if we restrict the trees to have either uniform weights
(Sect. 3.2) or if we restrict ourselves to the {0,1}-EDS problem on weighted trees.

3.2 The Unweighted b-EDS Problem for Trees

A linear time algorithm for the unweighted EDS problem on trees was first given by
Mitchell and Hedetniemi [11] and later simplified by Yannakakis and Gavril [20]. The
unweighted b-EDS problem on trees can also be solved by an easy greedy algorithm
in linear time. Call an edge e of a tree a leaf edge if it is incident with a leaf.

For any tree T there will always be an optimal solution to the b-EDS problem
which does not use any leaf edges (unless T is a star), since any edge adjacent with a
leaf edge covers at least those edges covered by the leaf edge.

Therefore we can recursively solve the problem by first finding a vertex v which
is incident with exactly one non-leaf edge e, then setting the multiplicity of e to the
maximum b-value of the leaf edges incident with v and finally removing those leaf
edges and updating the b-values of e and those edges adjacent with e in the remaining
tree.

Any optimal solution to the b-EDS problem on that updated tree plus the multi-
plicity of the edge e as determined before will give an optimal solution to the original
instance. A formal proof of this fact is straightforward and we omit it in here.

Theorem 2 The unweighted b-EDS problem on trees can be solved optimally in lin-
ear time.

3.3 The Weighted {0,1}-EDS Problem for Trees

To the best of our knowledge no linear time algorithm for the weighted EDS prob-
lem on trees has appeared in the literature. Algorithm 1 is a linear time primal-dual
algorithm, which solves the weighted {0,1}-EDS problem on trees (indeed a gener-
alization of the weighted EDS problem) optimally in linear time.

For a rooted tree and a vertex v, we donate by ch(v) the children of v, by gch(v)

the grandchildren of v, by Ech(v) the edges between v and its children, and by
Egch(v) all edges between children and grandchildren of v. Moreover, gp(v) denotes
the grandparent of v.

Our algorithm uses a primal-dual approach. We consider the tree to be rooted at a
root vertex v0. Starting with a leaf vertex v, we consider the edges incident with the
parent vertex of v and their respective b and c-values. Depending on these values, we
modify the b and c values of these edges and reduce the instance by removing edges
incident with the parent of v. The changes made will be used to set the dual solution.
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Algorithm 1 EDS(T , b, c) for {0,1}-EDS

Input: An instance (T = (V ,E), b, c) of the {0,1}-EDS problem, where T is a tree rooted at some

v0 ∈ V .

Output: A minimum cost {0,1}-EDS of T .

1: if T is a star rooted at v0 then

2: return ∅ if b(e) = 0 for all e ∈ E else return argmin{c(e) : e ∈ E}
3: else

4: Let v be a leaf of maximum depth and w = gp(v).

5: if b(e) = 0 for all e ∈ Egch(w) then

6: S =
⋃

s∈ch(w):b(ws)=1

argmin{c(e) : e ∈ Ech(s)}; α = c(S)

7: f = argmin{c(e) : e ∈ N(w)}; ε = c(f ); β = min{α, ε}
8: c′(e) = c(e) − β for all e ∈ N(w)

9: if α < ε then

10: b′(e) = 0 for all e ∈ Ech(w); S′ = S

11: else

12: b′(e) = 0 for all e ∈ N(w); S′ = {f }
13: F =EDS(T − gch(w), b′, c′)
14: if F ∩ N(w) = ∅ then

15: return F ∪ S′ else return F

16: else

17: Let s ∈ ch(w) and t ∈ gch(w) be such that b(st) = 1.

18: if c(ws) < min{c(e) : e ∈ Ech(s)} then

19: b′(e) = 0 for all e ∈ N(w); c′(ws) = 0

20: return EDS(T − ch(s), b′, c′) ∪ {ws}
21: f = argmin{c(e) : e ∈ N(s)}
22: b′(ws) = 0; c′(ws) = c(ws) − c(f ); F =EDS(T − ch(s), b′, c′)
23: if ws ∈ F then

24: return F else return F ∪ {f }

After solving the problem on the reduced and modified instance, it is possible to
construct an optimal solution for the original instance using these dual values. The
basic idea for this is similar to the argument used for the unweighted case in Sect. 3.2
above. However, having non-uniform weights may result in edges incident upon a
leaf being part of the optimal solution. Therefore, there will be more cases to be
considered, and, in particular, we will have to make sure that the algorithm still runs
in linear time. The details are shown in the proof of the following theorem.

Theorem 3 Algorithm 1 solves the weighted {0,1}-EDS problem on trees optimally.

Proof Let F ∗ be the solution returned by the algorithm. Due to the recursive nature of
the algorithm one can verify (for all cases that can occur) that F ∗ is indeed a feasible
{0,1}-EDS of the instance (T , b, c) by using the fact that the recursively obtained
solution F is a feasible solution to the reduced instance.
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To prove the optimality of F ∗ we will show that there exists a dual solution y with
dual variables y(e) for all e with b(e) = 1, such that 1 · y = c(F ∗), which proves
the optimality of F ∗. Remember that the dual constraints are y(N(e)) ≤ c(e) for all
e ∈ E.

We will prove this claim by induction on the size of T . The claim is trivially true
in the base case, i.e. when T is a star rooted at v0.

Let us now assume T is not a star rooted at v0. All variables used in this proof are
as they are defined in the algorithm.

We first consider the case when b(e) = 0 for all e ∈ Egch(w). Let y′ be a fea-
sible solution to the dual of the instance EDS(T , b′, c′), which has the property that
c′(F ) = 1 ·y′. Such a y′ exists by the inductive hypothesis. In all cases (whether α < ε

or not and whether F ∩ N(w) = ∅ or not) we will have that c(F ∗) = c′(F ) + β , i.e.
to prove the claim we have to be able to raise the y′-value of some edges by a total of
β while still keeping y′ a feasible solution to the dual of the instance EDS(T , b, c).
There are several cases to consider. If F ∩N(w) 
= ∅, then we can raise the dual vari-
able of an arbitrary edge incident upon w by β . The new dual solution is feasible for
the dual of EDS(T , b, c), since c′(e) = c(e)−β for all e ∈ N(w) and because y′ was
feasible for the dual of EDS(T , b′, c′).

In the other case (F ∗ = F ∪ S′ and β = α), we raise the y′-value of each edge ws

with s ∈ ch(w) and b(ws) = 1 by min{c(e) : e ∈ Ech(s)}. In the way β was defined,
this raises the y′-values of edges incident upon w by a total of β . Now the dual
constraints are satisfied for all edges in Egch(w). Further, since c′(e) = c(e) − β for
all e ∈ N(w) and since y′ was feasible for the dual of EDS(T , b′, c′), the new (raised)
dual variables are also feasible for the dual of EDS(T , b, c).

We finally have to consider the case when b(st) = 1 for some s ∈ ch(w) and
t ∈ gch(w) (lines 17–25 in the algorithm). Let y′ be a feasible solution to the dual of
the instance EDS(T − ch(s), b′, c′), which has the property that c′(F ) = 1 · y′.

If the condition in line 18 is satisfied, we can set y′(st) = c(ws) to obtain a feasible
solution to the dual of EDS(T , b, c). We raised the value of 1 · y′ by c(ws) and also
the value of the solution by c(ws) by adding the edge ws to the solution (line 20). On
the other hand, if the latter condition is not satisfied, then we can set y′(st) = c(f )

and the same analysis applies. �

The algorithm can be implemented to run in linear time using a BFS ordering of
the vertices that lets us easily find a leaf of maximum depth in the rooted tree.

The weighted {0,1}-EDS problem generalizes some well-known other domina-
tion problems. Therefore Algorithm 1 also provides linear-time algorithms for these
problems on trees. We start with the weighted vertex cover problem.

Lemma 7 The weighted vertex cover problem for trees can be solved optimally in
linear time by solving a weighted {0,1}-EDS instance on a tree in linear time.

Proof Let T = (V ,E), cv ∈ R
+ for all v ∈ V be an instance of the weighted vertex

cover problem for trees. We build a tree T ′ = (V ∪V ′,E ∪E′) with V ′ = {v′ : v ∈ V }
and E′ = {vv′ : v ∈ V }, i.e. we add an extra edge incident with each vertex of T . We
set be = 1 for every e ∈ E and be = 0 for every e ∈ E′. Furthermore, we set c′

vv′ = cv
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for all v ∈ V and c′
e = ∞ for all e ∈ E. Then any {0,1}-EDS of T ′ of finite weight

corresponds to a vertex cover of T having the same weight, and vice versa (an edge
vv′ ∈ E′ is in the {0,1}-EDS if and only if v is in the vertex cover). �

Moreover, our algorithm can also be used to solve the weighted edge-cover prob-
lem for trees optimally in linear time.

Lemma 8 The weighted edge cover problem for trees can be solved optimally in
linear time by solving a weighted {0,1}-EDS instance on a tree in linear time.

Proof Let T = (V ,E), ce ∈ R
+ for all e ∈ E be an instance of the weighted edge

cover problem for trees. We build a tree T ′ = (V ∪V ′,E ∪E′) with V ′ = {v′ : v ∈ V }
and E′ = {vv′ : v ∈ V }, i.e. we add an extra edge incident with each vertex of T . We
set be = 0 for every e ∈ E and be = 1 for every e ∈ E′. Furthermore, we set c′

vv′ = ∞
for all v ∈ V and c′

e = ce for all e ∈ E. Then any {0,1}-EDS of T ′ of finite weight
corresponds to an edge cover of T having the same weight, and vice versa (an edge
e ∈ E′ is in the {0,1}-EDS if and only if e is in the edge cover). �

4 Conclusion

In this paper we considered the b-edge dominating set problem. We provided a linear-
time 2-approximation algorithm for this problem in general unweigthed graphs, and
several optimal algorithms for some cases of this problem on trees.

As Theorem 1 shows, the weighted b-EDS problem on trees for a general function
b can be solved using a linear programming formulation of the problem. However,
we do conjecture the following:

Conjecture 1 The weighted b-EDS problem on trees can be solved optimally in
linear time.

We also showed that the weighted b-edge dominating set problem generalizes the
weighted vertex cover problem and the weighted edge-cover problem. In addition we
mention, that the maximum weight matching problem can be reduced to the weighted
edge cover problem in linear time [15] and therefore Algorithm 1 can also be used to
solve the maximum weight matching problem for trees in linear time.
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