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Abstract Let a communication network be modeled by an undirected graph G =
(V ,E) of n nodes and m edges, and assume that edges are controlled by selfish
agents. In this paper we analyze the problem of designing a truthful mechanism for
computing one of the most popular structures in communication networks, i.e., the
single-source shortest paths tree.

More precisely, we will study several realistic scenarios, in which each agent can
own either a single or multiple edges of G. In particular, for the single-edge case,
we will show that: (i) in the classic utilitarian case, the problem can be solved effi-
ciently in O(mn logα(m,n)) time, where α(m,n) is the inverse of the Ackermann’s
function; (ii) in a meaningful non-utilitarian case, namely that in which agents’ val-
uation functions only depend on the edge lengths, the problem can be solved in
O(m + n logn) time. Conversely, for the multiple-edges case, we will show in the
utilitarian case an O(mP + nP logn) time truthful mechanism, where P = O(n)

denotes the number of agents participating in the solution, while in the same non-
utilitarian case we will prove a general lower bound to the approximation ratio that
can be achieved by any truthful mechanism, by showing that no c-approximate mech-

anism can exist, for any fixed c < 5+√
13

3+√
13

.
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1 Introduction

Mechanisms are a classical concept in the theory of non-cooperative games [17]. In
these games there are several independent agents which privately hold part of the data
input, and that have to interact with the system in order to build a solution optimizing
a given system-wide global objective function. However, each agent has her own
intrinsic benefit or loss in participating in any specific solution (called her valuation
function), and may speculate about her data input in the hope of getting a higher
profit. This leads to economically suboptimal resource allocation and is therefore
undesirable. The main objective of mechanism design theory is then to study how to
incentivize the agents—by means of suitable payments—in order to cooperate with
the system. Correspondingly, a mechanism is the coupling of an algorithm computing
a feasible solution with a payment scheme specifying the payments provided to the
agents. Informally, a mechanism is truthful if its payments guarantee that agents are
not encouraged to lie. Then, the problem of combining the game theoretic concept
of designing a truthful mechanism, with the computational complexity requirement
of designing an efficient algorithm, is the focus of the algorithmic mechanism design
(AMD) for selfish agents.

In their seminal paper concerned with AMD [16], Nisan and Ronen addressed the
classic shortest path problem, in which it is given an undirected graph G = (V ,E) of
n nodes and m edges where each edge is owned by a selfish agent, which privately
holds the edge length, and the system-wide goal is that of computing a shortest path
in G between two given endnodes. As soon as, quite naturally, one assumes that the
agent’s valuation function is proportional to the owned edge length (obviously once
that the edge is part of the solution), then this problem enjoys the property of being
utilitarian, in that the quality of any feasible output can be measured by simply sum-
ming up all the agents’ valuations. For utilitarian problems, there exists a well-known
class of truthful mechanisms, i.e., the Vickrey-Clarke-Groves (VCG) mechanisms [5,
8, 21], and therefore the shortest path problem can be solved efficiently (in terms of
runtime for computing the output specification and the payments to the agents) in
O(m+n logn) time [10, 11]. In contrast with VCG-mechanisms, which handle arbi-
trary valuation functions but only utilitarian problems, Archer and Tardos [1] defined
another class of truthful mechanisms, named one-parameter mechanisms, allowing
to solve general (i.e., non-utilitarian) problems, but with the restriction that the data
input held by each agent must be expressed by a single parameter. Network design
non-utilitarian problems occur frequently, since cases in which the solution must op-
timize some objective which cannot be expressed as the sum of the agents’ valuations
abound. By exploiting the results in [1, 16], in a sequence of papers, efficient truthful
mechanisms have been designed for solving several network design problems such
as: the shortest path problem for the case in which agents own nodes [14], the mini-
mum spanning tree problem [15], the NP-hard minimum Steiner tree problem [9], and
the non-utilitarian minimum radius spanning tree problem [19].

In this paper, we focus on the problem of computing one of the most popular
network topologies, that is the single-source shortest paths tree (SPT), in the setting



Algorithmica (2007) 49: 171–191 173

in which each agent can own one or more edges of the underlying graph. What is
interesting here is that an SPT naturally admits both utilitarian and non-utilitarian
formulations. Indeed, as we will discuss later in the paper, it can well happen that
an agent gives an evaluation of her contribution which is simply proportional to her
private input, and this unavoidably makes the problem non-utilitarian. Therefore, we
analyze both scenarios, and we provide the following main results:

• In the utilitarian case, we provide a VCG-mechanism which can be implemented:
(i) for the special single-edge case (i.e., that in which each agent owns a single
edge), in O(mn logα(m,n)) time on a RAM, and in O(mnα(m,n)) time on a
pointer machine, where α(m,n) is the inverse of the Ackermann’s function defined
in [20]; (ii) otherwise, for the general multiple-edges case (i.e., that in which each
agent owns multiple edges), in O(mP + nP logn) time, where P = O(n) denotes
the number of agents participating in the solution.

• In the prominent non-utilitarian case in which the agent’s valuation function is re-
stricted to depend only on the length of each owned edge, we provide both negative
and positive results. On the negative side, for the multiple-edges case, we prove a

general lower bound of 5+√
13

3+√
13

to the approximation ratio that can be achieved
by any truthful mechanism, and moreover we show that no c-approximate addi-
tive mechanism (see Definition 4) can exist, for any fixed c > 1. Concerning posi-
tive results, we give: (i) for the special single-edge case, an exact O(m + n logn)

time one-parameter mechanism; (ii) otherwise, for the general multiple-edges case,
an n-approximate VCG-mechanism which can be implemented in almost optimal
O(mα(m,n)) time, and an exact O(mP + nP logn) time mechanism with verifi-
cation [16].

Notice that for the single-edge case, the non-utilitarian case can be solved more effi-
ciently than the utilitarian one, and essentially this is due to the fact that our specific
non-utilitarian case allows for a faster computation of the payments. Conversely, for
the multiple-edges case, the utilitarian case can be solved exactly through a VCG-
mechanism, while a solution for the non-utilitarian case can only be approximate,
since no multiple-parameter truthful mechanism general techniques are known to
date.

The paper is organized as follows: In Sect. 2 we recall some basic definitions from
both graph theory and algorithmic mechanism design; in Sect. 3 we deal with the
utilitarian version of our problem, while in Sect. 4 we analyze the different solutions
for the non-utilitarian case. Finally, Sect. 5 lists some open problems.

2 Basic Definitions

2.1 Graph Notation

Let G = (V ,E) be an undirected graph, with |V | = n nodes and |E| = m edges, and
with a positive real weight associated with each edge e ∈ E. For a given subgraph
H of G, we will denote by E(H) the set of edges of H , unless otherwise specified.
Given a source node s and a destination node z in G, a path in G between s and z
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is a shortest path, say PG(s, z), if the sum of its edge weights (called distance in G

between s and z, and denoted by dG(s, z)) is minimum. Given a source node s ∈ V ,
we denote by SG(s) a single-source shortest paths tree (SPT) of G rooted at s. Notice
that shortest paths are not unique, in general, and whilst for VCG-mechanisms this
lack of uniqueness is irrelevant, for one-parameter mechanisms the truthfulness can
be guaranteed only if a tie-breaking rule is adopted, as observed in [1]. For the sake
of uniformity, we therefore assume that nodes of G are numbered arbitrarily, and if
we can lead to a node by using different shortest paths, then we choose that in which
the predecessor of such a node has minimum index. Given u,v ∈ V , we denote by
LCA(u, v) the least common ancestor of u and v in SG(s), i.e., the ancestor of both
u and v in SG(s) which is farthest from s.

Let e = (u, v) ∈ E(SG(s)) be a tree edge, with u closer to s than v. Let M(e)

denote the set of nodes in SG(s) reachable from s without passing through edge e,
and let N(e) = V \M(e) be the remaining nodes. Sets M(e) and N(e) define a cut in
G, and C(e) = {f = (x, y) ∈ E\{e} | (x ∈ M(e)) ∧ (y ∈ N(e))} is the set of edges
crossing the cut. Moreover, we denote by ||e|| the cardinality of N(e).

2.2 Mechanism Design

Let a communication network be modeled by a graph G = (V ,E), and assume that
edges of G are owned by selfish agents. We denote by A = {a1, . . . , aN } the set of
agents, and we assume that no agent is necessary, i.e., we assume that the removal
of all the edges belonging to any agent leaves non-empty the set of feasible solutions
for the problem we are solving. In graph-theoretic terms, this means that if we denote
by Ei the set of edges owned by any ai ∈ A, then the graph G − ai = (V ,E\Ei) is
connected. Quite obviously, we assume that for any ai, aj ∈ A, i �= j , we have that
Ei ∩ Ej = ∅.

Each agent ai holds a private information te for each owned edge e ∈ Ei . We call
this value the true type of the edge e. This value depends on various factors (e.g.,
bandwidth, reliability, etc.). Only agent ai knows te, while everything else is public
knowledge. Each agent has to declare to the mechanism a public reported type re
(also called her bid) for each edge e ∈ Ei . In the rest of the paper, for the sake of
avoiding technicalities, we will assume that re > 0,∀e ∈ E. With ti and ri we will
denote the type vector and the reported vector of the agent ai , respectively. We will
denote by t the vector of true types, and by r the vector of bids.

For a given optimization problem defined on G, there exists some set of feasible
solutions F that the mechanism is allowed to choose. For each feasible solution x ∈
F , some measure function μ(t, x) is defined, which depends on the true types. The
mechanism tries to optimize μ(t, x), but of course it does not know t directly.

For every agent ai , a function vi(ti , x) expresses ai ’s valuation with respect to
an output x ∈ F : this is a quantification of the contribution of ai to x. While ti is
known only by the agent ai , the valuation function is public. In order to offset the
costs deriving from these services, the mechanism provides some reward to agents
participating in the computed solution, i.e., the mechanism makes a payment pi(r) to
the agent ai for the service provided in a solution which is computed as a function of
the reported vector r .
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A mechanism is then a pair M = 〈g(r),p(r)〉, where g(r) is an algorithm that,
given agents’ reported types, computes a feasible solution in F , and p(r) is a scheme
which describes the payments provided to the agents. For each agent ai and for each
solution g(r) computed by the mechanism, the utility function of ai is defined as
ui(ti , r) = pi(r) − vi(ti , g(r)). We assume that each agent is selfish, i.e., she always
attempts to maximize her utility. Let r−i denote the vector of all bids besides ri ; the
pair (r−i , ri) will denote the vector r . We say that truth-telling is a dominant strat-
egy for agent ai if bidding ti always maximizes her utility, regardless of what the
other agents bid, i.e., ui(ti , (r−i , ti )) ≥ ui(ti , (r−i , ri)), for all r−i and ri . A mech-
anism is said to be truthful if, for every agent, truth-telling is a dominant strategy.
Moreover, let ε(σ ) denote a positive real function of the input size σ . Then, an ε(σ )-
approximate mechanism is a mechanism which returns a solution g(r) which comes
within a factor ε(σ ) from the optimum, i.e., μ(t, g(r)) ≤ ε(σ ) · μ(t, x∗), where x∗ is
an optimal solution with respect to the vector t . We say that a mechanism is poly-time
computable if g(·) and p(·) are computable in polynomial time, and that it satisfies
the voluntary participation condition if agents never incur in a net loss (i.e., such that
the agents’ utilities are always non-negative).

One of the most important results in mechanism design theory is the class of the
well-known Vickrey-Clarke-Groves (VCG) mechanisms. A VCG-mechanism applies
to mechanism design problems called utilitarians and enjoys the fundamental prop-
erty of being truthful. A mechanism design problem is called utilitarian if its measure
function satisfies μ(t, x) = ∑

ai∈A vi(ti , x).

Definition 1 (VCG-mechanisms) A mechanism is of the VCG-family if:

1. g(r) ∈ arg minx∈F

{∑
ai∈A vi(ri , x)

}
;

2. For any ai ∈ A, let hi(r−i ) be an arbitrary function independent of ri , and let
A−i = A \ {ai}; then, the payment for ai is

pi(r) = hi(r−i ) −
∑

aj ∈A−i

vj (rj , g(r)).

Basically, VCG-mechanisms handle arbitrary valuation functions, but only utili-
tarian problems. In [1], Archer and Tardos have shown how to design truthful mech-
anisms for non-utilitarian problems under the assumption that the problem is one-
parameter. A problem is called one-parameter if (i) the type of each agent ai can be
expressed as a single parameter ti ∈ R, and (ii) each agent’s valuation has the form
vi(ti , x) = ti wi(r), where wi(r) is called work curve for agent ai , i.e., some amount
of work that depends on the algorithmic output specification x, which in turn is a
function of the reported types vector r . In [1], it is shown that a mechanism for a
one-parameter problem is truthful if and only if it belongs to the following class of
mechanisms:

Definition 2 (One-parameter mechanisms) A mechanism is one-parameter if g(r) is
non-increasing (i.e., wi(r−i , ri) is a non-increasing function of ri , for all ai ∈ A, and



176 Algorithmica (2007) 49: 171–191

all r−i ), and the payment provided to any agent ai has the form:

pi(r−i , ri) = hi(r−i ) + riwi(r−i , ri) −
∫ ri

0
wi(r−i , z)dz, (1)

where hi(r−i ) is an arbitrary function independent of ri .

Moreover, in [1] it is shown that if
∫ +∞

0 wi(r−i , z)dz < +∞ for all ai and all
r−i , then we can use the following payment scheme to obtain a truthful mechanism
satisfying also the voluntary participation condition

pi(r−i , ri) = ri wi(r−i , ri) +
∫ +∞

ri

wi(r−i , z)dz. (2)

3 The Utilitarian Case

Let a communication network be modeled by an undirected graph G = (V ,E) in
which subsets of edges of E are owned by selfish agents. In the following, we will
denote by G and Gt the input graph as weighted with respect to the reported values
and to the true types, respectively.

Suppose that ai holds, as the private type te for each owned edge e ∈ Ei , the length
of the communication link, and thus the time needed to cross it, and assume that the
system-wide goal is to minimize the completion time for delivering a message from a
distinguished node s ∈ V to every node v ∈ V \{s}. This means that the system looks
for an SPT rooted at s of Gt .

3.1 A VCG-Mechanism

By using the notation introduced in the previous section, the problem can be formal-
ized as follows. The set of feasible solutions F is the set of all the spanning trees
(considered in the following as rooted at s) of Gt , and the measure of a solution
T ∈ F is

μ(t, T ) =
∑

v∈V

dT (s, v). (3)

To complete the description of the problem, we have to define the agents’ valu-
ation. It is clear that, if an agent ai participates in the output with an edge e ∈ Ei ,
she will incur in a transmission cost (i.e., the cost for forwarding a message through
that edge). In our scenario it is reasonable to assume that the transmission cost is pro-
portional to the length of the edge, i.e., proportional to the value te . Notice that the
TCP/IP protocol used in Internet for broadcasting a message is the so-called unicast.
In this protocol, if a source wants to send a message to a set of recipients, it must
send a copy of the message for each destination. Therefore, if any solution T ∈ F is
used for broadcasting a message from s to all the other nodes, then the cost for the
agent ai can be expressed as follows:

vi(ti , T ) =
∑

e∈Ei

ve(te, T ),
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where, with a small abuse of notation, with ve(te, T ) we denote the valuation function
of ai with respect to edge e ∈ Ei , which is equal to

ve(te, T ) =
{

te‖e‖ if e ∈ E(T );

0 otherwise.

Indeed, if an agent ai participates in the output T , she will incur a transmission cost
of te for each edge e ∈ E(T ) ∩ Ei and for each message which passes through e, and
the number of these messages is exactly ‖e‖.

From the above assumptions, it immediately follows that the problem is utilitarian.
Indeed, the measure function (3) can be rewritten as

μ(t, T ) =
∑

v∈V

dT (s, v) =
∑

e∈E(T )

te‖e‖ =
∑

e∈E

ve(te, T )

=
N∑

i=1

∑

e∈Ei

ve(te, T ) =
N∑

i=1

vi(ti , T ).

This means that we can use a VCG-mechanism to solve the utilitarian SPT prob-
lem. Therefore, let M1 be a mechanism in this class defined as follows:

1. The algorithmic output specification selects an SPT SG(s) = (V ,E′) of G;
2. Let G − ai = (V ,E\Ei). Then, the payment function for ai is defined as1

pi(r) =
∑

v∈V

dG−ai
(s, v) −

(

μ(r,SG(s)) −
∑

e∈E′∩Ei

re‖e‖
)

. (4)

Notice that the above payments obey Definition 1, since the term
∑

v∈V dG−ai
(s, v)

corresponds to hi(r−i ), while the term in parenthesis corresponds to

μ(r,SG(s)) −
∑

e∈E′∩Ei

re‖e‖ =
∑

e∈E′
re‖e‖ −

∑

e∈E′∩Ei

re‖e‖

=
∑

e∈E′\Ei

ve(re, SG(s)) =
∑

aj ∈A−i

vj (rj , g(r)).

Hence, the mechanism is a (truthful) VCG-mechanism. Furthermore, the above pay-
ment scheme (more precisely, the fact that hi(r−i ) is set to be equal to the measure
of an optimal solution in the graph G − ai ) induces a so-called pivotal mechanism,
which can be shown to satisfy the voluntary participation condition [5].

3.2 Mechanism Time Complexity

The algorithmic question is now the following: how fast can the above mechanism be
computed?

1Recall that from the assumption that no agent is necessary, graph G − ai is connected, and therefore
dG−ai

(s, v) is bounded for any v ∈ V ; also recall that G − ai is weighted with respect to the reported
types, and thus distances are computed according to these weights.
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3.2.1 The Multiple-Edges Case

First of all, the SPT SG(s) can be found in O(m + n logn) time [6]. On the other
hand, to compute pi(r) for each ai ∈ A participating in the solution (an agent which
participates with no edge in the solution clearly receives a payment equal to 0), we
start by observing that the term in parenthesis in (4) can be found in O(n) time for
all the agents, by means of a modified post-order visit of SG(s) in which at each
node v we maintain both the total length of all the paths emanating from v towards
its descendants in SG(s) (in order to compute μ(r,SG(s))), and the size of the sub-
tree of SG(s) rooted at v (in order to compute ‖e = (u, v)‖). Thus, it remains to
find all the distances dG−ai

(s, v), for every v ∈ V . A brute-force solution consists of
computing a new SPT of the graph G − ai from scratch. In this way, if we denote
by P ≤ min{N,n − 1} the number of agents participating in the solution, we have
that computing all the payments takes O(mP + nP logn) time. In the worst case,
P = n − 1, and thus the mechanism requires O(mn + n2 logn) time. Improving this
bound would require to circumvent the bottleneck of recomputing from scratch all
the SPTs, but unfortunately this sounds as hard as the dynamic SPT problem, and
thus we left the problem of beating the trivial upper bound open for further research.
However, for the special notable case in which each agent controls only a single
edge, we show in the following how to improve (on a RAM) the above bound to
O(mn logα(m,n)) time. Notice that the best improvement is for sparse graphs (i.e.,
for m = �(n)), where it amounts to an almost logarithmic factor.

3.2.2 The Single-Edge Case

Let then us assume that for each ai ∈ A, we have |Ei | = 1. This means, there are m

agents, each owning a distinct edge of G. In the sequel, for the purpose of simpli-
fying the notation, the appropriate functions will be indexed by using e. With these
assumptions, if we denote by G − e the graph G after the removal of edge e, the
payment scheme of the mechanism M1 can be rewritten as follows:

pe(r) =
⎧
⎨

⎩

∑

v∈V

dG−e(s, v) − (μ(r, SG(s)) − re‖e‖) if e ∈ E′;

0 otherwise.

(5)

Once again, to compute pe(r) for each e ∈ E′, the bottleneck is to find all the dis-
tances dG−e(s, v), for every v ∈ V . As before, a brute-force solution, consisting in
computing for each edge e ∈ E′ a new SPT of the graph G − e from scratch, would
take O(mn + n2 logn) time. Thus, to improve this performance, we need to adopt a
different strategy, as explained in the following.

At a very high-level, our method works as follows. We start by computing, for
all the pairs v, v′ ∈ V , the distance dG(v, v′). Then, we solve n − 1 subproblems.
Each subproblem is identified by a distinct destination node z ∈ V \{s}, and involves
computing the distance dG−e(s, z) for each edge e of the path PG(s, z) in SG(s)

between s and z. The solutions of these subproblems will be then properly composed
to find, for each e ∈ E′, all the distances dG−e(s, v), for every v ∈ V .
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Let e be an edge on PG(s, z), and let PG−e(s, z) be a replacement shortest path
for e, i.e., a path from s to z in G − e of (minimum) length dG−e(s, z). The prob-
lem of finding all the replacement shortest paths, one for each edge of PG(s, z), has
been efficiently solved in O(m + n logn) time on a pointer machine [11], and in
O(mα(m,n)) time on a word RAM [12], respectively. Both algorithms are based on
a pre-computation of the SPTs SG(s) and SG(z). We now show how to improve (on
a RAM) the above results to O(m logα(m,n)) time (once that SG(s) and SG(z) are
given):

Proposition 1 Let PG(s, z) be a shortest path joining s and z, and assume that
for any v ∈ V , distances dG(s, v) and dG(z, v) are given. Then, the set of dis-
tances D(s, z) = {dG−e(s, z) | e ∈ E(PG(s, z))} can be computed on a RAM in
O(m logα(m,n)) time.

Proof Since a replacement shortest path PG−e(s, z) joining s and z must contain an
edge in C(e), it follows that it corresponds to a path of length

dG−e(s, z) = min
f =(x,y)∈C(e)

{
dG−e(s, x) + rf + dG−e(y, z)

}
. (6)

Observe that dG−e(s, x) = dG(s, x), since x is reachable in SG(s) from s without
passing through e. Concerning dG−e(y, z), the following holds (see also [13]):

Lemma 1 Let e = (u,u′) be an edge on PG(s, z), with u closer to s than u′, and let
f = (x, y) ∈ C(e). Then, y is reachable in SG(z) from z without passing through e,
and thus dG−e(y, z) = dG(y, z).

Proof Suppose, for the sake of contradiction, that the claim is false. Then, y is a
descendant of both u and u′ in SG(z). This means that PG(z, y) makes use of e, and
so we have (since subpaths of shortest paths are shortest paths) that PG(u′, y) is a
subpath of PG(z, y). Therefore, from the assumption that re > 0,∀e ∈ E, we have

dG(u′, y) = re + dG(u, y) > dG(u, y).

On the other hand, since y is reachable in SG(s) from s by passing through e, we have
that PG(s, y) makes use of e, and so we have that PG(u,y) is a subpath of PG(s, y).
Hence

dG(u, y) = re + dG(u′, y) > dG(u′, y),

that is, we have a contradiction. �

From the above lemma, it follows that (6) is equivalent to

dG−e(s, z) = min
f ∈C(e)

{
dSG(s)(s, x) + rf + dSG(z)(y, z)

}

= min
f ∈C(e)

{
�(f ) := dG(s, x) + rf + dG(y, z)

}
. (7)
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Since distances in G from s and z are given in input, it follows that �(f ) (called
the label of edge f ) is available in O(1) time for any given f ∈ C(e). Thus, finding
dG−e(s, z) reduces to select an edge associated with e, say fe, having minimum label
over all the O(m) edges of C(e). However, since there are O(n) edges in PG(s, z),
this means that an exhaustive search would find D(s, z) in O(mn) time. Thus, we
need a different approach. To this respect, we make use of a Split-Findmin struc-
ture [7]. This is a data structure operating on a collection of disjoint sequences of
elements. Initially, there is only one sequence containing all the elements, and each
element j has a key κ(j) := +∞. Then, the structure supports the following opera-
tions:

split(j ): Split the sequence containing j into two sequences of elements: one up
to and including j , the other sequence taking the rest;
findmin(j ): Return the element (and the associated key) in j ’s sequence with min-
imum key;
decrease-key(j,K): Set κ(j) := min{κ(j),K}.
For our purposes, we initialize a Split-Findmin structure, say Q, in which the ini-
tial sequence consists of the n vertices of SG(s), as sorted in any arbitrary post-
order, each with key +∞. After, we associate with each non-tree edge f the cor-
responding label �(f ), and we associate with each node u of PG(s, z), the set of
non-tree edges F(u) = {f = (x, y) ∈ E \ E′ | LCA(x, y) = u}. We then consider
all the edges in PG(s, z), one after the other, in the order of their occurrence start-
ing from s. Let 〈(u0 = s, u1), (u1, u2), . . . , (uq−1, uq = z)〉 denote this sequence of
edges of PG(s, z). Throughout the execution of this procedure, two invariants in Q
are maintained:

(I1): Every sequence in Q corresponds to some rooted subtree of SG(s) (the initial
sequence is associated with SG(s));

(I2): When edge (ui−1, ui) is considered, i = 1, . . . , q , it holds that for any y ∈ V

in the subtree of SG(s) rooted at ui , key κ(y) corresponds to the label of a
minimum-label edge (not in SG(s), by definition) connecting y to a vertex
outside the current y’s sequence (i.e., outside the subtree of SG(s) currently
containing y).

Let us now see how Q is used. We start by considering the edge e1 = (s, u1). Be-
cause of the post-order arrangement of the nodes, s is the rightmost element in the
initial n-element sequence. Then, we perform one split centered at the element pre-
ceding s in the sequence (this will sever s), and one additional split (in any arbitrary
order) for each of the children of s in SG(s), to reestablish invariant (I1). After, we
focus on the sequence associated with the child of s in PG(s, z), namely u1, and we
restore invariant (I2) by performing a number of decrease-key operations. More pre-
cisely, we consider all the edges f = (x, y) ∈ F(s) such that y is a descendant of u1

in SG(s), and we issue the operation decrease-key(y, �(f )). Afterwards, we per-
form a findmin(u1) operation, which will return a key κ(u1) = �(fe1), where fe1

is an edge belonging to PG−e1(s, z), and �(fe1) is exactly the distance dG−e1(s, z).
Figure 1 depicts this first step of the procedure.
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Fig. 1 The initial sequence
corresponding to SG(s) is split
after considering edge
e1 = (s, u1). Dashed edges are
those for which a decrease-key
operation is performed.
Eventually, a findmin(u1)
operation will return an edge
minimizing (7) with respect
to e1

At the generic ith step, edge (ui−1, ui) is considered, and operations in Q are
performed as described above, by letting ui−1 and ui now taking the place of s and
u1, respectively. This process goes ahead until the last edge of PG(s, z) is considered.

Let us now analyze the time complexity of this procedure. Since �(f ) is available
in O(1) time for a fixed non-tree edge f , labeling all the non-tree edges takes O(m)

time. Concerning the Split-Findmin operations, in total there are O(m) operations:
O(n) splits (one for each subtree whose root is adjacent to some node of PG(s, z)),
O(n) findmins (one for each node of PG(s, z)), and O(m) decrease-keys (at most
one for each non-tree edge). This takes on a RAM O(m logα(m,n)) time [18]. Other
costs, such as the post-order traversal and finding least common ancestors, are lin-
ear [2]. From this, the claim follows. �

We are now ready to prove the main result of this section:

Theorem 1 For the special case in which each agent owns a single edge of G, mech-
anism M1 can be computed on a RAM in O(mn logα(m,n)) time.

Proof As observed before, the output specification can be computed in O(m +
n logn) time [6]. As far as the payment scheme is concerned, we proceed as follows.
First, we find the all-pairs distances in G in O(mn logα(m,n)) time [18], and then
we solve each of the n − 1 above described subproblems in O(m logα(m,n)) time.
Then, for each edge e = (u, v) ∈ E′, we extract in O(n) time from the solutions of the
subproblems all the distances dG−e(s, x), for every x in the subtree of SG(s) rooted at
v (all the other nodes clearly maintain their distance from s in G− e). After this step,
pe(r) can be found in O(n) time, since as already shown before, μ(r,SG(s))− re‖e‖
can be obtained for all the agents in O(n) time. Since we have to compute exactly
n − 1 payment functions, one for each tree edge, the claim follows. �

Notice that on a pure pointer machine model, under the same assumptions of The-
orem 1, the mechanism M1 can be computed in O(mnα(m,n)) time, since in this
case the Split-Findmin data structure requires O(mα(m,n)) time for solving any
given subproblem [18].
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4 A Meaningful Non-Utilitarian Case

The utilitarian scenario assumes that each agent, in doing her valuation, starts from
the assumption that each atomic operation will involve a traffic load on the owned
edge which is proportional to the edge length times the size of the corresponding
appended subtree of SG(s). However, in another reasonable scenario, an agent might
evaluate her participation to an output T ∈ F simply as follows:

vi(ti , T ) =
∑

e∈Ei

ve(te, T ),

where

ve(te, T ) =
{

te if e ∈ E(T );

0 otherwise.
(8)

This scenario is realistic whenever the agent starts from the assumption that each
atomic operation will involve a traffic load on the owned edge which is proportional
only to the edge length (this can happen, for instance, when the transmission protocol
replicates at each node a given message once for each descending node, like in the
Internet Protocol multicast [4], so that each tree edge will simply afford the cost of
forwarding a single message).

This setting makes the problem non-utilitarian, since the measure function asso-
ciated with the SPT problem does not equal the sum of the agents’ valuations. In
the following, we show how to approach the problem from different perspectives.
In Sect. 4.1 we provide an exact one-parameter truthful mechanism for the particular
case in which each agent owns a single edge, while in Sect. 4.2 we address the general
case and (i) we prove lower bounds to the approximation ratio that can be achieved
by any truthful mechanism; (ii) we provide an approximate VCG-mechanism, and
(iii) we design an exact truthful mechanism with verification, a weaker model of
mechanism introduced in [12]. In either case we make use of the pointer machine
computational model, since we cannot take advantage of the addressing capabilities
of a RAM, as we did for the utilitarian case. For the sake of brevity, we will re-
fer to our non-utilitarian SPT problem as to the non-utilitarian case, though several
non-utilitarian settings can in principle be postulated.

4.1 A One-Parameter Mechanism for the Single-Edge Case

Consider the case in which each agent controls a single edge of G. As in Sect. 3.2.2,
we simplify the notation by indexing the appropriate functions by e, and we assume
that the agents apply a direct valuation, and thus the valuation of an agent ae has the
form as in (8). Let now g(r) denote the output specification of an algorithm comput-
ing an SPT of G. It is easy to see that in this case the problem can be solved through
a one-parameter mechanism [1], since for each agent ae, we can rewrite the valuation
(8) as ve(te, g(r)) = te we(r), where

we(r) =
{

1 if e ∈ E(g(r));

0 otherwise.
(9)
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Indeed, for each agent ae, if we denote by θe the maximum reported type for e such
that e belongs to the computed solution (the so-called threshold value), then the func-
tion we(r−e, re) is equal to 1 for 0 ≤ re ≤ θe, and is equal to 0 for any re > θe, which
implies that g(r) is non-increasing. Moreover, as far as the payment scheme is con-
cerned, observe that for the single-edge case, the assumption we did that no agent
is necessary, means that G is 2-edge-connected (i.e., there are no bridges). Conse-
quently, the maximum reported type for being part of a solution is bounded. From
this, the integral

∫ +∞
0 we(r−e, z)dz is bounded for all the edges, and then we can ap-

ply the payment (2) for an agent ae participating in the solution (for all other agents,
the payment is obviously equal to 0), which can now be rewritten as

pe(r−e, re) = rewe(r−e, re) +
∫ +∞

re

we(r−e, z)dz = re + θe − re = θe.

Then, by applying the general definition of a one-parameter mechanism [1], and
by using the payment scheme (2), we obtain the following mechanism M2 for the
non-utilitarian SPT problem:

1. The algorithmic output specification selects an SPT SG(s) = (V ,E′) of G;
2. The payment function for ae is defined as the threshold θe, if e ∈ E′, and 0 other-

wise.

We can now prove the following result:

Theorem 2 The mechanism M2 is a truthful mechanism satisfying the voluntary
participation condition for the single-edge non-utilitarian SPT problem, and it can
be computed on a pointer machine in O(m + n logn) time.

Proof The truthfulness follows from the fact that M2 is a one-parameter mechanism
as we showed above. Moreover, since we use the payment scheme (2), the voluntary
participation condition is guaranteed as well.

From the time complexity point of view, once again the output specification can
be computed in O(m + n logn) time. Concerning the payments, we have to compute
all the thresholds θe, for each e ∈ E′. Let now e = (u, v) ∈ E′, with u closer to s

that v. Then, e remains in SG(s) as long as dG(s,u) + re ≤ dG−e(s, v), from which
it follows that θe = dG−e(s, v) − dG(s,u). As shown in [13], computing dG−e(s, v)

is equivalent to selecting a non-tree edge such that

dG−e(s, v) = min
f =(x,y)∈C(e)

{
dG−e(s, x) + rf + dG−e(y, v)

}
. (10)

The selection of all the non-tree edges (one for each tree edge) satisfying (10)
costs O(mα(m,n)) time [13]. This means that we can compute all the payments
in O(mα(m,n)) = O(m + n logn) time, from which the claim follows. �

4.2 On the Complexity of the Multiple-Edges Case

In this section, we analyze the case in which each agent can own multiple edges, by
reporting both positive and negative results as far as the solvability of the problem is
concerned.
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4.2.1 A General Lower Bound

Before proving a general lower bound to the approximation ratio that any truthful
mechanism can achieve, we recall two basic properties of any truthful mechanism.
For any agent ai ∈ A, let us denote by gi(t) the set Ei ∩ E(T = g(t)). Moreover,
given a set X ⊆ Ei of edges, we will use t (X) to denote

∑
e∈X te . Notice that t (gi(t))

is equal to ai ’s valuation vi(ti , g(t)). The following two claims are essentially quoted
from [16].

Claim 1 (Independence) Let M = 〈g(·),p(·)〉 be a truthful mechanism for the non-
utilitarian SPT problem, let t and t ′ be type vectors, and let ai be an agent. If t−i = t ′−i

and gi(t) = gi(t
′), then pi(t) = pi(t

′).

From the above claim, given a truthful mechanism, we can represent the payment
that the mechanism returns to an agent by using the following well defined function.

Definition 3 Let M = 〈g(·),p(·)〉 be a truthful mechanism for the non-utilitarian
SPT problem, let t be a type vector, and let ai be an agent. For a set X ⊆ Ei of edges,
we define the payment returned to ai for X as:

pi(X, t−i ) =
{

pi(t−i , t
′
i ) if ∃t ′i s.t. X = gi(t−i , t

′
i );

0 otherwise.
(11)

Claim 2 (Maximization) Let M = 〈g(·),p(·)〉 be a truthful mechanism for the non-
utilitarian SPT problem, let t be a type vector, and let Xt = gi(t). Then, for each
agent ai , we have

pi(Xt , t−i ) − t (Xt ) ≥ p(X, t−i ) − t (X), ∀X ⊆ Ei. (12)

Intuitively, Claim 2 states that, for each agent ai , a truthful mechanism must
choose a subset Xt ⊆ Ei of edges which maximizes ai ’s utility.2 We can now prove
our general lower bound. We start by showing the following

Proposition 2 Let k be any real value larger than or equal to 2. Then, there does
not exist any c-approximate truthful mechanism for the non-utilitarian SPT problem
when agents own multiple edges, for any fixed c < L(k) = min

{ 3k
2k+1 ,1 + 1

k

}
, even in

the special case in which each agent owns a subset of edges incident to a node.

Proof Let 0 < ε < 1/k, and let M be a suitably large value. Consider the situation
in Fig. 2(a), where each edge e is labeled with its true type value te. Suppose that an
agent, say a1, owns the set of edges {e1, e2}, which are both incident to s, while the
remaining edges are arbitrarily owned by other agents. Now, for the sake of contradic-
tion, suppose M is a truthful c-approximate mechanism, with c < L(k). Then, since

2Note that in the non-utilitarian scenario, the valuation of an agent ai depends only on the subset X ⊆ Ei

of edges that the mechanism selects in the solution. Thus, it is easy to see that the formula p(X, t−i )− t (X)

in (12) represents the utility of ai with respect to any solution T such that E(T ) ∩ Ei = X.
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Fig. 2 The two instances used
to prove the lower bounds

L(k) ≤ 3/2 for every k ≥ 2, the solution selected by M must be T = (V , {e0, e1, e3})
(otherwise M cannot be c-approximate for M large enough).

Let now 
p = p1({e1, e2}, t−1) − p1({e1}, t−1). The following lemma holds:

Lemma 2 
p ≥ 1 + 1/k.

Proof For the sake of contradiction, suppose 
p < 1 + 1/k, and consider the fol-
lowing new type profile t ′ = (t−1, t

′
e1

= te1, t
′
e2

= 1 + 1/k). Since t−1 is not changed,
from Claim 1 we have that all the payments returned to a1 remain the same. Then,
from Claim 2, M must select the output that maximizes a1’s utility, and it is easy to
see that M will still select T . Indeed, if e2 enters in the solution then a1’s utility be-
comes strictly lower, since a1 incurs in an additional cost of 1 + 1/k, but she receives
only an additional payment of 
p < 1 + 1/k.

Let μ = μ(t ′, T ) be the measure of the solution computed by the mechanism,
and let μOPT be the measure of an optimal solution. It is easy to see that μ = 3 + ε

and μOPT = 2 + 1/k + ε. It follows that the approximation ratio achieved by the
mechanism is

ρ = μ

μOPT
= 3k + kε

2k + 1 + kε

which goes to 3k
2k+1 for ε that goes to 0. Since c < L(k) ≤ 3k

2k+1 , we obtain a con-
tradiction, since we can always choose ε small enough so that ρ > c (and thus, M
cannot be c-approximate), and the lemma follows. �

Now consider the following new type profile t ′′ = (t−1, t
′′
e1

= ε, t ′′e2
=

1 + 1
k

− ε). Once again, t−1 is not changed and thus all the payments returned to a1

remain the same. From Lemma 2 we have that 
p ≥ 1 + 1/k. Thus, from Claim 2,
M must select a solution which maximizes a1’s utility, and then such a solution
must be T ′ = (V , {e0, e1, e2}). Clearly, for ε small enough, the optimal solution is
T ∗ = (V , {e0, e1, e3}). Thus, the approximation ratio achieved by the mechanism is

ρ = μ(t ′′, T ′)
μ(t ′′, T ∗)

= ε + 1 + 1/k

3ε + 1
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which goes to 1 + 1/k for ε that goes to 0. Since c < L(k) ≤ 1 + 1/k, we obtain a
contradiction, since we can always choose ε small enough so that ρ > c (and thus,
M cannot be c-approximate). From this, the claim follows. �

From the above proposition, we immediately have the following:

Theorem 3 There does not exist any c-approximate truthful mechanism for the non-

utilitarian SPT problem when agents own multiple edges, for any fixed c < 5+√
13

3+√
13

,
even in the case in which each agent owns a subset of edges incident to a node.

Proof The claim follows from Proposition 2 by choosing k in order to maximize
L(k) = min

{ 3k
2k+1 ,1 + 1

k

}
. Let f (k) = 3k

2k+1 and g(k) = 1 + 1/k. A trivial compu-

tation shows that L(k) is maximum when f (k) = g(k), i.e., when k = k̄ = 3+√
13

2 .

Thus we obtain a lower bound of L(k̄) = f (k̄) = g(k̄) = 5+√
13

3+√
13

. �

4.2.2 A Tighter Lower Bound for Additive Mechanisms

We now use similar arguments to prove a tighter lower bound for a particular class of
mechanisms, named additive mechanisms [16]:

Definition 4 A mechanism is called additive if for each agent ai , each type profile t

and each set X ⊆ Ei of edges, pi(X, t−i ) = ∑
e∈X pi({e}, t−i ).

Theorem 4 Any additive truthful mechanism for the non-utilitarian SPT problem
when agents own multiple edges, can be forced to compute a solution which is arbi-
trarily far from the optimal one.

Proof Let k ≥ 1, let 0 < ε < 1/k, and let M be a suitably large value. Consider the
situation in Fig. 2(b), where each edge e is labeled with its true type value te. Suppose
that an agent, say a1, owns the set of edges {e1, e2}, while the remaining edges are
owned by other agents in an arbitrary way. The proof is by contradiction. Let M be
an additive truthful c-approximate mechanism, for some constant c > 1. Then, for M

large enough, the solution selected by M must be T = (V , {e0, e1, e3}).
The following lemma holds:

Lemma 3 For any positive real value k, we have p1({e2}, t−1) ≥ 1/k.

Proof Suppose p1({e2}, t−1) < 1/k, and consider the new type profile t ′ = (t−1, t
′
e1

=
1 − ε, t ′e2

= 1/k). Since t−1 has not changed, from Claim 1 once again all the pay-
ments returned to a1 remain the same. It is easy to see that the solution which maxi-
mizes a1’s utility (and that the mechanism must select from Claim 2) is still T , while,
for ε small enough, the optimal one is T ∗ = (V , {e0, e2, e3}). Thus, the ratio between
the corresponding measures is

μ(t ′, T )

μ(t ′, T ∗)
= 2k

2εk + 2
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which goes to k for ε that goes to 0. This contradicts the fact that M is a c-
approximate mechanism, since we can choose k arbitrarily large. �

Now consider a new type profile t ′′ = (t−1, t
′′
e1

= ε, t ′′e2
= 1

k
− ε). It is easy to see

that a1 obtains a strictly positive additional utility from e1 (since p1({e1}, t−1) is
unchanged and t ′′e1

< te1 ), and from e2 (from Lemma 3). Then, the solution computed
by the mechanism must contain both e1 and e2, and thus such solution will be T ′ =
(V , {e0, e1, e2}). On the other hand, for ε small enough, the optimal solution is T ∗ =
(V , {e0, e1, e3}). It follows that

μ(t ′′, T ′)
μ(t ′′, T ∗)

= 1 + kε

4kε

which is unbounded for ε that goes to 0. Clearly, this is once again a contradiction,
and the theorem follows. �

4.2.3 An Approximate VCG-Mechanism

To design an approximate mechanism for the multiple-edges non-utilitarian SPT
problem, a brute-force solution consists of choosing a VCG-mechanism. Since the
algorithmic output specification has to minimize the sum of the agents’ valuations,
this will clearly return a minimum spanning tree (MST) of Gt . Given a tree T , let
w(T ) = ∑

e∈E(T ) re denote the total weight of T . More formally, let M3 be the
mechanism defined as follows:

1. The algorithmic output specification selects an MST TG = (V ,E′) of G, and root
it at s;

2. Let TG−ai
be an MST of G − ai . Then, the payment function for an agent ai is

defined as

pi(r) = w(TG−ai
) −

(

w(TG) −
∑

e∈E′∩Ei

re

)

.

Theorem 5 The mechanism M3 is a truthful n-approximate mechanism satisfying
the voluntary participation condition for the multiple-edges non-utilitarian SPT prob-
lem, and it can be computed on a pointer machine in O(mP α(m,n)) time, where P

is the number of agents participating in the solution. In the special case in which
each agent controls a subset of edges incident to a node, the mechanism runtime can
be lowered to O(mα(m,n)).

Proof It is easy to see that the mechanism belongs to the VCG-family. Indeed, g(·)
minimizes the sum of the agents’ valuations, and the payments obey Definition 1,
since the term w(TG−ai

) corresponds to hi(r−i ), while the term in parenthesis corre-
sponds to

w(TG) −
∑

e∈E′∩Ei

re =
∑

e∈E′
re −

∑

e∈E′∩Ei

re =
∑

e∈E′\Ei

ve(re, TG) =
∑

aj ∈A−i

vj (rj , g(r)).
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Fig. 3 In (a), the input graph G, where ε > 0 is arbitrary small; in (b) an MST of G rooted at s, which is
an n/2-approximation of the SPT of SG(s) depicted in (c), for ε going to 0

Hence, the mechanism is a pivotal VCG-mechanism. Consequently, TG is an MST
of Gt . Concerning the approximation ratio, let SGt (s) be an optimal solution for the
SPT problem, and let TG(s) denote the tree TG once rooted at s. We now show that
the solution returned by the VCG-mechanism is a factor-n approximation. Indeed,
we have that

μ(t, TG(s)) =
∑

e∈E′
te‖e‖ ≤ n

∑

e∈E′
te = nw(TG) ≤ nw(SGt (s)) ≤ nμ(t, SGt (s)).

Concerning the time complexity, observe that the mechanism essentially requires
the computation on a pointer machine of an MST of G, and of an MST of G− ai , for
each agent participating in the solution. An MST can be computed in O(mα(m,n))

time [3]. Thus, since the number of agents participating in the solution is P , the
time complexity is O(mP α(m,n)). Since P ≤ min{N,n− 1}, in the worst case P =
n− 1, and the mechanism runtime is O(mnα(m,n)). However, whenever each agent
owns a subset of edges incident to a node, we can improve the time complexity by
using the algorithm in [15] to compute all the trees TG−ai

in O(mα(m,n)) time, and
the claim follows. �

Notice that the above approximation ratio is asymptotically tight, since it is easy
to exhibit an example in which an MST is a �(n)-approximation of an SPT (see
Fig. 3). This means that we cannot hope to get a better approximate result by means
of VCG-mechanisms.

4.2.4 An Exact Mechanism with Verification

To overcome the negative results of Sect. 4.2.1 and Sect. 4.2.2, and the limitations
of VCG-mechanisms, we follow the approach of the so-called mechanisms with ver-
ification [16]. In this framework the mechanism is allowed to pay the agents after
the messages have been broadcasted, knowing the actual time (and therefore the cor-
responding edge’s length, once we assume that traveling speed is constant) it was
needed for a message to cross each edge in the solution. In the following, for the sake
of intuitiveness, we therefore assume that the true type of an agent is, for each owned
edge, the corresponding crossing time.

More formally, a mechanism with verification M works as follows. Given the
vector of the agents’ reported values r , M computes a solution (i.e., a tree rooted
at s) g(r). Then, agents (in the solution) are observed to broadcast the messages.
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We denote as t̃ = (t̃e1, t̃e2, . . . , t̃em) the actual times spent by the agents to forward
the messages through their respective edges. An agent can choose the value re in
an unrestricted manner for an owned edge e, while, if e ∈ E(g(r)), it must be
t̃e ≥ te, otherwise t̃e = 0. Moreover, we assume that the valuation of an agent ai

with respect to a solution T is now depending on t̃i (and not on ti ), namely that
vi(t̃i , T ) = ∑

e∈E(T )∩Ei
t̃e, and that the mechanism hands a payment pi(t̃i , r) to each

agent ai which also depends on t̃i . Finally, the utility of each agent ai is defined as the
difference between the payment provided by the mechanism and her valuation with
respect to the computed solution, i.e., ui(t̃i , r) = pi(t̃i , r) − vi(t̃i , g(r)).

With these assumptions, we say that a mechanism with verification is truthful if
for each agent ai it is a dominant strategy:

(C1): to report her true type (i.e., ri = ti );
(C2): for every e ∈ E(g(r))∩Ei , to forward a message in minimal time (i.e., t̃e = te).

Now, given a tree T , we remind that μ((r−i , t̃i ), T ) denotes the measure of T as
weighted with respect to (r−i , t̃i ), i.e., μ((r−i , t̃i ), T ) = ∑

v∈V dT (s, v), where here
distances are defined with respect to the vector (r−i , t̃i ). Notice that μ((r−i , t̃i ), T )

depends on t̃i , but not on the actual execution time of the other agents. We are now
ready to define a truthful mechanism with verification [16] for the non-utilitarian SPT
problem, say M4:

1. The algorithmic output specification selects an SPT SG(s) = (V ,E′) of G;
2. Let S−i = SG−ai

(s). The payment function for ai is defined as

pi(t̃i , r) = μ(r,S−i ) −
(

μ
(
(r−i , t̃i ), SG(s)

) −
∑

e∈E′∩Ei

t̃e

)

.

The following can be proved:

Theorem 6 The mechanism M4 is a truthful mechanism with verification satisfy-
ing the voluntary participation condition for the multiple-edges non-utilitarian SPT
problem, and it can be computed on a pointer machine in O(mP + nP logn) time,
where P is the number of agents participating in the solution.

Proof Observe that, by definition, for each agent ai we have that her utility is
μ(r,S−i ) − μ((r−i , t̃i ), SG(s)) (from which it also follows that the voluntary par-
ticipation condition is guaranteed). From this, condition (C2) immediately follows,
since the function μ(x,SG(s)) is decreasing for any xe in x, and thus ai maximizes
her utility by forwarding the message in minimal time, i.e., by choosing t̃e = te for
each e ∈ E′ ∩ Ei .

Concerning condition (C1), let r ′ = (r−i , ti ) and let S′
G(s) = g(r ′). Since the term

μ(r,S−i ) does not depend on ri , we have to show that, for any (r−i , ri)

−μ
(
(r−i , t̃i ), S

′
G(s)

) ≥ −μ
(
(r−i , t̃i ), SG(s)

)
. (13)

Since condition (C2) is verified, the inequality (13) can be rewritten as

μ
(
(r−i , ti ), S

′
G(s)

) ≤ μ
(
(r−i , ti ), SG(s)

)
,

which holds from the optimality of S′
G(s) with respect to r ′ = (r−i , ti ).
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Concerning the time complexity, once again both the output specification and S−i

can be computed in O(m + n logn) time, while the remaining term in the payment
is computable in linear time. Therefore, since the number of agents for which we
have to compute the payments is P , the time complexity is O(mP +nP logn). Since
P ≤ min{N,n−1}, in the worst case P = n−1, and the mechanism runtime becomes
O(mn + n2 logn). �

5 Future Work

There are several directions to be further investigated. On one hand, a natural open
problem is to improve the time complexity of our mechanisms. Indeed, for the ana-
lyzed non-utilitarian single-edge case, we have provided a truthful mechanism whose
time complexity is not worse than the corresponding centralized problem. Can we
do the same in the utilitarian single-edge case? Moreover, can we beat the trivial
O(mn + n2 logn) time upper bound for the utilitarian multiple-edges case?

On the other hand, an interesting open problem is to better understand the ana-
lyzed non-utilitarian multiple-edges case. For this case, we proved a constant lower
bound to the approximation ratio that can be achieved by any truthful mechanism.
Can we prove a tighter lower bound? Does this problem admit a better than O(n)-
approximate truthful mechanism? At a first stage, these questions could be addressed
in the simplified case in which each agent owns a subset of edges incident to a node.

Finally, another interesting issue could be that of considering more complicated
network topologies, in which the distance from the root is only one of the possible
parameters to be taken into account, along with other fundamental objectives of the
network itself, like its cost. This naturally would imply the extension of the algorith-
mic mechanism design techniques to multiple criteria problems.
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