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Abstract We analyze approximation algorithms for several variants of the trav-
eling salesman problem with multiple objective functions. First, we consider the
symmetric TSP (STSP) with γ -triangle inequality. For this problem, we present
a deterministic polynomial-time algorithm that achieves an approximation ratio of

min{1 + γ,
2γ 2

2γ 2−2γ+1
} + ε and a randomized approximation algorithm that achieves

a ratio of 2γ 3+2γ 2

3γ 2−2γ+1
+ ε. In particular, we obtain a 2 + ε approximation for multi-

criteria metric STSP.
Then we show that multi-criteria cycle cover problems admit fully polynomial-

time randomized approximation schemes. Based on these schemes, we present
randomized approximation algorithms for STSP with γ -triangle inequality (ratio

1+γ

1+3γ−4γ 2 + ε), asymmetric TSP (ATSP) with γ -triangle inequality (ratio 1
2 +

γ 3

1−3γ 2 + ε), STSP with weights one and two (ratio 4/3) and ATSP with weights
one and two (ratio 3/2).
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1 Introduction

In many practical optimization problems, there is not only one single objective func-
tion to measure the quality of a solution, but there are several such functions. Consider
for instance buying a car: We (probably) want to buy a cheap car that is fast and has
a good gas mileage. How do we decide which car is the best one for us? Of course,
with respect to any single criterion, making the decision is easy. But with multiple
criteria involved, there is no natural notion of a best choice. The aim of multi-criteria
optimization (also called multi-objective optimization or Pareto optimization) is to
cope with this problem. To transfer the concept of a best choice to multi-criteria opti-
mization, the notion of Pareto curves was introduced (cf. Sect. 1.1 and Ehrgott [12]).
A Pareto curve is a set of solutions that can be considered optimal.

However, for most optimization problems, Pareto curves cannot be computed ef-
ficiently. Thus, we have to be content with approximations to them.

The traveling salesman problem (TSP) is one of the best-known combinatorial
optimization problems [16, 18]. An instance of the TSP is a complete graph with edge
weights, and the aim is to find a Hamiltonian cycle (also called a tour) of minimum
weight. Since the TSP is NP-hard [14], we cannot hope to always find an optimal
tour efficiently. For practical purposes, however, it is often sufficient to obtain a tour
that is close to optimal. In such cases, we require approximation algorithms, i.e.,
polynomial-time algorithms that compute such near-optimal tours.

While the approximability of several variants of the single-criterion TSP has been
studied extensively in the past decades, not much is known about the approximability
of multi-criteria TSP. The classical TSP is about a traveling salesman who has to visit
a certain number of cities and return back home in a shortest tour. “Real” saleswomen
and salesmen do not face such a simple situation. Instead, while arranging their tours,
they have to bear in mind several objectives that are to be optimized. For instance, the
distance traveled and the travel time should be minimized while the journey should
be as cheap as possible. This gives rise to multi-criteria TSP, for which we design
approximation algorithms in this paper.

1.1 Preliminaries

Graphs and Optimization Problems Let G = (V ,E) be a graph (directed or undi-
rected) with edge weights w : E → N. We define the weight of a subgraph G′ =
(V ′,E′) of G or a subset E′ of the edges of G as the sum of the weights of its edges:
w(G′) = w(E′) = ∑

e∈E′ w(e). For k ∈ N, we define [k] = {1,2, . . . , k}.
TSP in general is the following optimization problem: Given a graph with edge

weights, find a Hamiltonian cycle, i.e., a cycle that visits every vertex of the graph
exactly once, of minimum weight. In case of undirected graphs, we speak of the
symmetric TSP (STSP), while in case of directed graphs, we refer to the problem as
the asymmetric TSP (ATSP).
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An instance of �-STSP is an undirected complete graph G = (V ,E) with edge
weights w : E → N that fulfill triangle inequality, i.e., w({u,v}) ≤ w({u,x}) +
w({x, v}) for all distinct vertices u,v, x ∈ V .

For γ ∈ [ 1
2 ,1], �(γ )-STSP is the restriction of �-STSP to instances that satisfy

γ -strengthened triangle inequality, i.e., w({u,v}) ≤ γ · (w({u,x}) + w({x, v})) for
all distinct vertices u,v, x.

STSP(1,2) is the special case of �-STSP where only one and two are allowed as
edge weights, i.e., w : E → {1,2}.

�-ATSP, �(γ )-ATSP, and ATSP(1,2) are defined like their undirected counter-
parts �-STSP, �(γ )-STSP, and STSP(1,2), respectively, except that the graphs are
directed.

Note that for γ = 1, �(γ )-STSP and �(γ )-ATSP become �-STSP and �-ATSP,
respectively. As γ gets smaller, the edge weights become more and more structured.
For γ = 1/2, all edge weights are equal. The γ -strengthened triangle inequality can
also be considered as a data-dependent bound [7]: Given an instance of metric TSP,
we compute the minimum γ such that the instance fulfills γ -strengthened triangle in-
equality. If γ < 1, then we obtain a better performance guarantee for our approximate
solution than with triangle inequality alone.

A cycle cover of a graph G = (V ,E) is a subgraph (V ,C) that consists solely of
cycles such that every vertex v ∈ V is part of exactly one cycle. In most cases, we
refer to a cycle cover as the set C of its edges. Hamiltonian cycles are cycle covers
that consist of only a single cycle.

The problem of computing cycle covers of minimum weight in undirected graphs
is called SCC. The directed version of the problem is called ACC.

Multi-Criteria Optimization A k-criteria optimization problem consists of a set I

of instances, a set sol(x) of feasible solutions for every instance x ∈ I , k objective
functions w1, . . . ,wk , each mapping pairs of x ∈ I and y ∈ sol(x) to N, and k types
indicating whether wi should be minimized or maximized. We refer to Ehrgott and
Gandibleux [12, 13] for surveys on multi-criteria optimization problems. Throughout
this paper, we restrict ourselves to problems where all objective functions should
be minimized. Furthermore, we assume that the number k of criteria is fixed. The
running-times of our algorithms are exponential in k. But since k is typically a small
number, this does not cause any harm.

The optimization problems defined in Sect. 1.1 are generalized to their multi-
criteria counterparts in the obvious way: We have k objective functions w1, . . . ,wk ,
each induced by edge weight functions (to which we also refer as w1, . . . ,wk) as
described. If we have additional restrictions on the edge weights, like the triangle
inequality, every edge weight function is assumed to fulfill them.

In general, the different objective functions are in conflict with each other, i.e., it
is impossible to minimize all of them simultaneously. Therefore, the notion of Pareto
curves has been introduced. For the following definitions, let � be a k-criteria opti-
mization problem as defined above.

A set P (x) ⊆ sol(x) is called a Pareto curve of x if for all solutions z ∈ sol(x),
there exists a solution y ∈ P (x) with wi(x, y) ≤ wi(x, z) for all i ∈ [k].

A Pareto curve contains all solutions that might be considered optimal. If there are
two solutions y and z with wi(x, y) = wi(x, z) for all i ∈ [k], then it suffices to put
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one of them into P (x). For completeness, let us mention that Pareto curves are not
unique in general: In our definition, it is not forbidden to include dominated solutions
in P (x) (a solution y is dominated if there exists a z with wi(x, z) ≤ wi(x, y) for all
i ∈ [k] and wi(x, z) < wi(x, y) for some i ∈ [k], i.e., z is strictly better than y).

For the majority of multi-criteria problems, computing Pareto curves is hard for
two reasons: First, many two-criteria problems allow for a reduction from the knap-
sack problem. Second, Pareto curves are often of exponential size. Therefore, we
have to be content with approximate Pareto curves. Let β ≥ 1, and let x ∈ I and
P apx(x) ⊆ sol(x). The set P apx(x) is called a β-approximate Pareto curve for x if,
for every z ∈ sol(x), there exists a y ∈ P apx(x) with wi(x, y) ≤ β · wi(x, z) for all
i ∈ [k].

A 1-approximate Pareto curve is a Pareto curve. For completeness, let us mention
that if � is a maximization problem (or an objective wi for some i ∈ [k] should be
maximized), then the condition is wi(x, z) ≤ β · wi(x, y).

While Pareto curves itself are often of exponential size, it is known that (1 + ε)-
approximate Pareto curves of size polynomial in the input size and 1/ε exist [22].
(The technical restriction is that the objective functions are restricted to assume values
of at most 2p(|x|) for x ∈ I and some polynomial p.)

The above definition leads immediately to the notion of an approximation algo-
rithm for multi-criteria optimization problems: Let β ≥ 1. A β-approximation algo-
rithm for � is an algorithm that, for every input x ∈ I , computes a β-approximate
Pareto curve for x in time polynomial in the size |x| of x.

A randomized β-approximation algorithm for � is a polynomial-time algorithm
that, for every input x ∈ I , computes a set P apx(x) ⊆ sol(x) such that P apx(x) is a
β-approximate Pareto curve for x with a probability of at least 1/2.

By executing a randomized approximation algorithm � times, we obtain a β-
approximate Pareto curve with a probability of at least 1−2−�, i.e., the failure proba-
bility tends exponentially to zero: We take the union of all sets of solutions computed
in the � iterations and throw away all solutions that are dominated by solutions in the
union.

Given the notion of (randomized) approximation algorithms, we can define ap-
proximation schemes. A fully polynomial-time approximation scheme (FPTAS) for
� is an algorithm that, on input x ∈ I and ε > 0, computes a (1 + ε)-approximate
Pareto curve in time polynomial in the size of x and 1/ε.

A fully polynomial-time randomized approximation scheme (FPRAS) for � is a
randomized approximation algorithm that, on input x ∈ I and ε > 0, computes a
(1 + ε)-approximate Pareto curve in time polynomial in the size of x and 1/ε.

Finally, we define the notion of a randomized exact algorithm: A randomized exact
algorithm for � is an algorithm that, on input x, computes a Pareto curve of x in time
polynomial in the size of x with a probability of at least 1/2.

An optimization problem � is said to be polynomially bounded if there exists a
polynomial p such that the following holds for every objective function wi of �:
For every instance x and every feasible solution y for x, wi(x, y) ≤ p(|x|) for all
i ∈ [k]. Analogously to the fact that a polynomially bounded single-criterion problem
that admits an FPTAS can be solved exactly in polynomial time (cf. Ausiello et al.
[3, Theorem 3.15]), randomized exact algorithms exist for polynomially bounded
multi-criteria optimization problems that admit an FPRAS.
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Table 1 Approximability of single-criterion TSP

Variant Ratio Reference

�-STSP 3/2 Christofides [10]

�(γ )-STSP min
{ 3γ 2

3γ 2−2γ+1
,

2−γ

3 − 3γ

}
Böckenhauer et al. [8]

STSP(1,2) 8/7 Berman and Karpinski [5]

�-ATSP 0.842 · logn Kaplan et al. [17]

�(γ )-ATSP min
{ 1+γ

2 − γ − γ 3 ,
γ

1 − γ

}
Bläser et al. [7]; Chandran and Ram [9]

ATSP(1,2) 5/4 Bläser [6]

1.2 Previous Results

The approximability of single-criterion TSP has been studied intensively in the past.
Table 1 shows the currently best approximation ratios of the variants for which the
multi-criteria counterparts are considered in this paper.

While single-criterion optimization problems and their approximation properties
have been the subject of a considerable amount of research (cf. Ausiello et al. [3] for
a survey), not much is known about the approximability of multi-criteria optimization
problems.

Papadimitriou and Yannakakis [22], by applying results of Barahona and Pulley-
blank [4], Mulmuley et al. [20], and themselves [21], showed that there exist FPTASs
for multi-criteria minimum-weight spanning trees and the multi-criteria shortest path
problem and an FPRAS (more precisely, a fully polynomial RNC scheme) for the
multi-criteria minimum weight matching problem. The results were established by
showing that a multi-criteria problem admits an FPTAS if the exact version of the
single-criterion problem can be solved in pseudo-polynomial time. Let � be a single-
criterion optimization problem with instance set I and objective function w. The ex-
act version of � is the following decision problem: Given an instance x ∈ I and a
number W ∈ N, does there exist a solution y ∈ sol(x) with w(x,y) = W ?

The exact versions of many single-criterion optimization problems are NP-
complete since knapsack can be reduced to them easily. But this does not rule out
the possibility of pseudo-polynomial-time algorithms for them.

Multi-criteria TSP has been investigated by Ehrgott [11] and Angel et al. [1, 2].
Ehrgott [11] considered a generalization of Christofides’ algorithm for �-STSP. In-
stead of considering Pareto curves, he measured the quality of a solution y for an
instance x as a norm of the vector (w1(x, y), . . . ,wk(x, y)). Thus, he encoded the
different objective functions into a single one, which reduces the problem to a single-
criterion problem. The approximation ratio achieved is between 3/2 and 2, depending
on the norm used to combine the different criteria. However, by encoding all objective
functions into a single one, we lose the special properties of multi-criteria optimiza-
tion problems.

Angel et al. [1] considered two-criteria STSP(1,2). They presented a 3/2-
approximation algorithm for this problem by using a local search heuristic. Finally,
Angel et al. [2] generalized these results to k-criteria STSP(1,2) by presenting a
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2 − 2
k+1 -approximation for k ≥ 3. Although for every fixed k, the approximation ra-

tio is below 2, it converges to 2 as k increases. Thus, the ratio tends to the trivial ratio
of 2, which can be achieved by selecting any Hamiltonian cycle. These two are the
only papers about the approximability of Pareto curves of multi-criteria TSP we are
aware of.

1.3 Our Results

All our results hold for an arbitrary but fixed number of objective functions.
We present a deterministic polynomial-time algorithm that computes (2 + ε)-

approximate Pareto curves for �-STSP (Sect. 2.1). This is the first efficient algo-
rithm for computing approximate Pareto curves for this problem. In fact, we show
the following more general result: If the edge weights satisfy γ -strengthened triangle

inequality for γ ∈ [ 1
2 ,1], then the algorithm computes a (min{1+γ,

2γ 2

2γ 2−2γ+1
}+ ε)-

approximate Pareto curve for arbitrarily small ε > 0 in polynomial time.
We generalize Christofides’ algorithm [10] (cf. Vazirani [25, Sect. 3.2]) to obtain

a randomized approximation algorithm for multi-criteria �(γ )-STSP (Sect. 2.2). For

γ ∈ [ 1
2 ,1], our algorithm achieves an approximation performance of 2γ 3+2γ 2

3γ 2−2γ+1
+ ε.

For γ = 1, this yields a ratio of 2 + ε.
We consider cycle covers in Sect. 3. Cycle covers play an important role in

the design of approximation algorithms for the TSP. We prove that there exists an
FPRAS for computing approximate Pareto curves of multi-criteria cycle covers. Sub-
sequently, we extend this result and show that the multi-criteria variant of the problem
of finding graph factors of minimum weight admits an FPRAS, too.

Finally, we analyze a randomized cycle-cover-based algorithm for multi-criteria
TSP (Sect. 4): We start by computing an approximate Pareto curve of cycle cov-
ers. Then, for every cycle cover in the set computed, we remove one edge of every
cycle and join the paths thus obtained to a Hamiltonian cycle. We analyze the ap-
proximation ratio of this algorithm for �(γ )-STSP (Sect. 4.2, approximation ratio

1+γ

1+3γ−4γ 2 + ε for γ < 1), �(γ )-ATSP (Sect. 4.3, ratio 1
2 + γ 3

1−3γ 2 + ε for γ < 1/
√

3),
STSP(1,2), and ATSP(1,2) (Sect. 4.4, ratios 4/3 and 3/2, respectively).

As far as we know, our algorithms are the first approximation algorithms for
Pareto curves for �-STSP, �(γ )-STSP, �(γ )-ATSP, and ATSP(1,2). Furthermore,
we achieve a better approximation ratio for STSP(1,2) than the approximation algo-
rithms by Angel et al. [1, 2] for all k.

2 Metric TSP

In this section, we present two algorithms for �-STSP and �(γ )-STSP. Another
approximation algorithm that can be used for approximating �(γ )-STSP, which is
based on computing cycle covers, will be presented in Sect. 4.

The analyses of the algorithms in this section exploit the following result due to
Böckenhauer et al. [8].
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Algorithm 1 The tree doubling algorithm for multi-criteria �-STSP

Input: undirected complete graph G = (V,E); k edge weight functions wi : E →N

(i ∈ [k]); ε > 0
Output: an approximate Pareto curve P apx

TSP to the multi-criteria STSP

1: compute a (1 + ε
2 )-approximate Pareto curve P apx

MST for MST on G using the algo-
rithm by Papadimitriou and Yannakakis [22]

2: for all trees T ∈ P apx
MST do

3: duplicate all edges in T to obtain an Eulerian graph T̃

4: obtain a Hamiltonian cycle S from T̃ by taking shortcuts
5: put S into P apx

TSP
6: end for

Lemma 2.1 (Böckenhauer et al. [8]) Let G = (V ,E) be an undirected complete
graph with an edge weight function w satisfying γ -strengthened triangle inequality
for some γ ∈ [ 1

2 ,1).
Let wmax = maxe∈E(w(e)) and wmin = mine∈E(w(e)) be the weights of a heaviest

and lightest edge, respectively. Then wmax
wmin

≤ 2γ 2

1−γ
.

Let e and e′ be two edges with a common endpoint. Then w(e)
w(e′) ≤ γ

1−γ
.

Furthermore, we observe the following: Omitting two edges by taking a shortcut
reduces the weight by at least 2 · (1 − γ ) · wmin: The reason is that the two edges
(u, v) and (v, x) are replaced by (u, x) and w(u,x) ≤ γ · (w(u, v) + w(v,x)). Thus,
the weight is reduced by at least w(u,v) + w(v,x) − w(u,x) ≥ (1 − γ ) · (w(u, v) +
w(v,x)) ≥ 2 · (1 − γ ) · wmin.

2.1 The Generalized Tree Doubling Algorithm

Consider the following approximation algorithm for single-criterion �-STSP, which
was first analyzed by Rosenkrantz et al. [23] (cf. Vazirani[25, Sect. 3.2]): First, we
compute a minimum spanning tree. Then we duplicate each edge. The result is an
Eulerian graph. We obtain a Hamiltonian cycle from this graph by walking along an
Eulerian cycle. If we come back to a vertex that we have already visited, we omit it
and take a short-cut to the next vertex in the Eulerian cycle. In this way, we obtain an
approximation ratio of 2 for single-criterion �-STSP. Algorithm 1 is an adaptation of
this algorithm to multi-criteria STSP. In the following, we estimate the approximation
performance of this algorithm.

Theorem 2.2 For all γ ∈[ 1
2 ,1], Algorithm 1 computes a (min{1+γ,

2γ 2

2γ 2−2γ+1
}+ ε)-

approximate Pareto curve for multi-criteria �(γ )-STSP in time polynomial in the
input size and 1/ε.

Proof We present two analyses showing approximation ratios of 1 + γ + ε and
2γ 2

2γ 2−2γ+1
+ ε, respectively. The first analysis holds for γ ∈ [ 1

2 ,1] while the second

one only holds for γ ∈ [ 1
2 ,1). However, 1 + γ = 2γ 2

2γ 2−2γ+1
for γ = 1.
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The key observation of the first analysis is the following: Let T ∈ P apx
MST, and let e

be any edge in T . Then e appears twice in T̃ , but e cannot appear twice in S since S

is a Hamiltonian cycle. (We assume that G contains at least three vertices.) Thus, at
least one copy of e is omitted. This is the moment at which the strengthened triangle
inequality comes into play. Let e1, e2, . . . , e� with ej = {vj−1, vj } be a path along the
Eulerian cycle in T̃ such that this path is replaced by the edge {v0, v�} by taking a
shortcut. Then we have

wi({v0, v�}) ≤ γ · (wi(e1) + wi(e2) + · · · + wi(e�))

by iteratively applying γ -strengthened triangle inequality. (We exploit the fact that
γ c ≤ γ for all c ≥ 1.) Overall, every edge that we omit contributes at most a fraction
of γ of its weight. Since we omit at least one copy of every edge e, the two copies of
e contribute at most (1 + γ ) · wi(e) to S. Thus,

wi(S) ≤ (1 + γ ) · wi(T )

for all i ∈ [k].
To estimate the overall approximation performance, let S′ be an arbitrary Hamil-

tonian cycle. By omitting one edge, we obtain a tree T ′. Since P apx
MST is a (1 + ε/2)-

approximate Pareto curve for multi-criteria minimum-weight spanning trees on G,
there exists a tree T ∈ P apx

MST with

wi(T ) ≤
(

1 + ε

2

)

· wi(T
′) ≤

(

1 + ε

2

)

· wi(S
′)

for all i ∈ [k]. Let S be the Hamiltonian cycle obtained from T , then

wi(S) ≤ (1 + γ ) · wi(T ) ≤ (1 + γ + ε) · wi(S
′)

for all i ∈ [k].
For the second analysis, let again S′ be an arbitrary Hamiltonian cycle. This analy-

sis only holds for γ < 1 since wmax/wmin can be unbounded for γ = 1. All arguments
hold simultaneously for all criteria i ∈ [k]. Without loss of generality, we assume that
mine∈E wi(e) = 1 for all i ∈ [k], i.e., wmin = 1. By removing one edge of S′, we ob-
tain a tree with a weight of at most wi(S

′) − wmin = wi(S
′) − 1. Thus, there exists a

tree T ∈ P apx
MST from which we obtain a Eulerian graph T̃ with

wi(T̃ ) ≤ 2 ·
(

1 + ε

2

)

· (wi(S
′) − 1) = (2 + ε) · (wi(S

′) − 1).

Let n = |V | be the number of vertices of the whole graph. Then T̃ contains 2n − 2
edges. Thus, in order to obtain a Hamiltonian cycle, we have to remove n − 2
edges by taking shortcuts. Every shortcut decreases the weight by at least 2 · (1 − γ ).
Hence,
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wi(S) ≤ wi(T̃ ) − (n − 2) · 2 · (1 − γ )

≤ (2 + ε) · wi(S
′) − (2 + ε) − (n − 2) · 2 · (1 − γ )

≤ (2 + ε) · wi(S
′) − 2n · (1 − γ ) − (4γ − 2)

≤ (2 + ε) · wi(S
′) − 2n · (1 − γ )

since 2γ ≥ 1. We have wi(S
′) = 2nγ 2

(1−γ )·α for some appropriately chosen α ≥ 1, which
implies

wi(S)

wi(S′)
≤ 2 + ε − 2n · (1 − γ )2 · α

2γ 2n
= 2 + ε − (1 − γ )2 · α

γ 2
.

Since wi(S) ≤ n
2γ 2

1−γ
, we also have wi(S)

wi(S
′) ≤ α. Thus, the approximation ratio

achieved is

max
α≥1

(

min

(

α,2 + ε − (1 − γ )2 · α
γ 2

))

≤ max
α≥1

(

min

(

α,2 − (1 − γ )2 · α
γ 2

))

+ ε

= 2γ 2

2γ 2 − 2γ + 1
+ ε,

which completes the proof of the theorem. �

For small values of γ , the bound of 2γ 2

2γ 2−2γ+1
+ ε is the stronger one, while 1 +

γ + ε yields a better bound in case of γ > 1/
√

2.

Corollary 2.3 Algorithm 1 computes (2 + ε)-approximate Pareto curves for multi-
criteria �-STSP in time polynomial in the input size and 1/ε.

2.2 A Generalization of Christofides’ Algorithm

In this section, we generalize Christofides’ algorithm to multi-criteria �-STSP, which
is the best approximation algorithm for single-criterion �-STSP known so far. This
algorithm computes approximate Pareto curves of matchings. In case of single-
criterion �-STSP, we can always find a matching with a weight of at most half of the
weight of the optimal Hamiltonian cycle. This is in contrast to multi-criteria �-STSP,
where the weights of the matchings can be arbitrarily close to the weight of the opti-
mal Hamiltonian cycle. The reason is that we cannot choose the lighter of two differ-
ent matchings since multiple objective functions are involved; the term “ ‘lighter” ’
is not well defined. Therefore, we only get an approximation ratio of roughly two
in this case. But for �(γ )-STSP, we can show a better upper bound.
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Algorithm 2 A generalization of Christofides’ algorithm for multi-criteria �-STSP

Input: undirected complete graph G = (V ,E); k edge weight functions wi : E → N

(i ∈ [k]); ε > 0
Output: an approximate Pareto curve P apx

TSP to the multi-criteria STSP (with a proba-
bility of at least 1/2)

1: compute a (1+ ε
2 )-approximate Pareto curve P apx

MST for MST on G using the algo-
rithm by Papadimitriou and Yannakakis [22]

2: let p be the number of trees in P apx
MST

3: for all trees T ∈ P apx
MST do

4: let Vodd ⊆ V be the set of vertices of odd degree in T

5: compute P apx
Match(T ) such that P apx

Match(T ) is a (1+ ε
2 )-approximate Pareto curve

for the minimum-weight matching problem on the complete graph induced
by Vodd with a probability of at least 1 − 1

2p
using the algorithm by

Papadimitriou and Yannakakis [22]
6: for all matchings M ∈ P apx

Match(T ) do
7: let S be a Hamiltonian cycle obtained from T ∪ M by taking shortcuts
8: put S into P apx

TSP
9: end for

10: end for

Theorem 2.4 For γ ∈ [ 1
2 ,1], Algorithm 2 is a randomized (

2γ 3+2γ 2

3γ 2−2γ+1
+ ε)-

approximation algorithm for multi-criteria �(γ )-STSP. Its running time is poly-
nomial in the input size and 1/ε.

Proof The proof consists of two parts. First, we estimate the approximation per-
formance, given that all Pareto curves computed are (1 + ε/2)-approximate Pareto
curves. Second, we estimate the success probability, i.e., the probability that such a
Pareto curve is computed.

We assume that all Pareto curves that have to be computed during the execution
of the algorithm were computed successfully, i.e., with an appropriate approximation
ratio. Let S′ be an arbitrary Hamiltonian cycle of G. Without loss of generality, we
assume again that wmin = 1. All the arguments in the following hold for all i.

There exists a tree T ∈ P apx
MST with

wi(T ) ≤
(

1 + ε

2

)

· (wi(S
′) − 1).

Let Vodd be the set of vertices of odd degree in T , and let nodd be its cardinality.
Note that nodd is even, thus perfect matchings exist on the complete graph induced
by Vodd. Let n = |V | be the number of vertices of the whole graph. Let Sodd be the
Hamiltonian cycle obtained from S′ by taking shortcuts. We get two matchings M1
and M2 on Vodd from Sodd by putting the edges of Sodd alternately into M1 and M2.
By γ -triangle inequality, we have

wi(M1) + wi(M2) = wi(Sodd) ≤ wi(S
′) − (n − nodd) · 2 · (1 − γ )
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since every shortcut reduces the weight by at least (1 − γ ) · 2wmin. Now, wi(M1) ·
1−γ
γ

≤ wi(M2) according to Lemma 2.1. (Note that we do not make any assumptions

whether M1 or M2 is the lighter matching.) There exists a matching M ∈ P apx
Match(T )

with

wi(M) ≤
(

1 + ε

2

)

· wi(M1).

Hence,

wi(M)

γ
= wi(M) ·

(

1 + 1 − γ

γ

)

≤
(

1 + ε

2

)

· (wi(M1) + wi(M2))

≤
(

1 + ε

2

)

· (wi(S
′) − 2 · (n − nodd) · (1 − γ )).

Let D be Eulerian graph obtained by taking the union of the tree T and the matching
M . By the arguments above, we can bound its weight as follows:

wi(D) = wi(T ) + wi(M)

≤
(

1 + ε

2

)

· (wi(S
′) − 1 + γ · (wi(S

′) − 2 · (n − nodd) · (1 − γ )))

=
(

1 + ε

2

)

· ((1 + γ ) · wi(S
′) − (1 + 2γ · (n − nodd) · (1 − γ ))).

The Eulerian graph D consists of n − 1 + nodd/2 edges, the tour S constructed from
D consists only of n edges. Thus, nodd/2 − 1 edges are removed and, by γ -triangle
inequality, we have

wi(S) ≤ wi(D) − 2 · (nodd/2 − 1) · (1 − γ ) = wi(D) − (1 − γ ) · (nodd − 2).

By combining these inequalities, we obtain

wi(S) ≤
(

1 + ε

2

)

· ((1 + γ ) · wi(S
′)

− (1 + 2γ · (n − nodd) · (1 − γ ) + (1 − γ ) · (nodd − 2)))

=
(

1 + ε

2

)

· ((1 + γ ) · wi(S
′)

− (1 − 2 + 2γ
︸ ︷︷ ︸

≥0

+(1 − γ ) · ( 2γ
︸︷︷︸
≥1

·(n − nodd) + nodd)))

≤
(

1 + ε

2

)

· ((1 + γ ) · wi(S
′) − n · (1 − γ )).



80 Algorithmica (2009) 53: 69–88

Now we have wmax ≤ 2γ 2

1−γ
since wmin = 1. Thus, wi(S

′) ≤ 2γ 2

1−γ
·n. We choose α ≥ 1

such that wi(S
′) = 2nγ 2

(1−γ )·α , which implies

wi(S)

wi(S′)
≤

(

1 + ε

2

)

·
(

(1 + γ ) − n · (1 − γ )

wi(S′)

)

≤
(

1 + ε

2

)

·
(

(1 + γ ) − αn · (1 − γ )

2γ 2

1−γ
· n

)

=
(

1 + ε

2

)

·
(

(1 + γ ) − α(1 − γ )2

2γ 2

)

≤ (1 + γ ) − α(1 − γ )2

2γ 2
+ ε.

The last inequality holds since (1 + γ ) − α(1−γ )2

2γ 2 ≤ 1 + γ ≤ 2.

Since wi(S) ≤ n
2γ 2

1−γ
, we also have wi(S)

wi(S
′) ≤ α. Thus, the approximation ratio

achieved is

max
α≥1

(

min

(

α, (1 + γ ) − α(1 − γ )2

2γ 2
+ ε

))

≤ 2γ 3 + 2γ 2

3γ 2 − 2γ + 1
+ ε · 2γ 2

3γ 2 − 2γ + 1
≤ 2γ 3 + 2γ 2

3γ 2 − 2γ + 1
+ ε.

We obtain the first inequality by observing that (1 + γ ) − α(1−γ )2

2γ 2 + ε is monotoni-
cally decreasing in α: The maximum of the minimum is therefore assumed for α =
(1+γ )− α(1−γ )2

2γ 2 +ε. The second inequality follows from the fact that 2γ 2

3γ 2−2γ+1
≤ 1

for γ ∈ [ 1
2 ,1].

The analysis so far holds only for γ < 1 since for γ = 1, division by zero occurs

at some points in the analysis. For γ = 1, we obtain a ratio of 2 + ε = 2γ 3+2γ 2

3γ 2−2γ+1
+ ε:

We have w(M) ≤ (1 + ε
2 ) · w(S′) and w(T ) ≤ (1 + ε

2 ) · w(S′), which implies the
bound.

What remains to be proved is that the algorithm succeeds with a probability of
at least 1/2. First, we observe that if we iterate the randomized computation of an
approximate Pareto curve, then we do not have to decide which set is indeed such an
approximate Pareto curve. Instead, we can take the union of all solutions computed
and remove all dominated solutions of the set thus obtained. The only randomiza-
tion in Algorithm 2 is in the computation of the approximate Pareto curves for the
matching problems. The number of curves to be computed is p, which is bounded
by a polynomial of the input size and 1/ε. We can achieve a failure probability of
at most 1

2p
by performing log(2p) iterations of the FPRAS for the matching prob-

lem. The probability that one of the Pareto curve computations fails is thus at most
p · 1

2p
= 1/2, which completes the proof of the theorem. �

We compare the ratios obtained by the two algorithms of this sections and the
cycle cover algorithm of Sect. 4 in Sect. 5.1.
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3 Matchings and Cycle Covers

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Many approximation algorithms for
the single-criterion TSP are based on cycle covers. These approximation algorithms
usually start by computing an initial cycle cover and then join the cycles to obtain
a Hamiltonian cycle. This technique is called subtour patching [15]. We show that
there exist FPRASs for multi-criteria cycle cover problems.

ACC, the cycle cover problem in directed graphs, is equivalent to finding match-
ings of minimum weight in bipartite graphs (assignment problem). An FPRAS for
the multi-criteria matching problem is also an FPRAS for the multi-criteria matching
problem in bipartite graphs. Hence, multi-criteria ACC also admits an FPRAS.

Theorem 3.1 There exists an FPRAS for multi-criteria ACC.

To show that multi-criteria SCC admits an FPRAS, we show that arbitrary graph
factor problems admit FPRASs. Let G = (V ,E) be a graph and f : V → N be func-
tion. A subset F ⊆ E is called an f -factor of G if all vertices v ∈ V have a degree of
exactly f (v) in the graph (V ,F ).

Cycle covers of undirected graphs are also known as two-factors since every vertex
is incident to exactly two edges. Thus, they are a special case of graph factors.

The graph factor problem GFP is the following minimization problem: An in-
stance is an undirected graph G = (V ,E) with a function f : V → N and an edge
weight function w : E → N. The aim is to find an f -factor of minimum weight.

To show that multi-criteria GFP, and thus multi-criteria SCC as well, admits an
FPRAS, we exploit Tutte’s reduction [24], which reduces arbitrary graph factor prob-
lems to matchings (matchings are also known as one-factors since every vertex is
incident to exactly one edge of the matching). We omit a description of the reduction,
but refer to Lovász and Plummer [19] or Tutte [24] for the details. Overall, we obtain
the following result.

Theorem 3.2 Multi-criteria GFP and multi-criteria SCC admit an FPRAS.

4 Approximations based on Cycle Covers

4.1 The Algorithm

The generic outline of a cycle-cover-based algorithm is the following: Start by com-
puting a cycle cover. Then remove one edge of every cycle. Finally, join the paths
thus obtained to form a Hamiltonian cycle.

Algorithm 3 is our generalization of this algorithm to multi-criteria TSP. It
achieves a constant approximation ratio if the quotient of the weight of the heavi-
est edge and the weight of the lightest edge is bounded.

In this section, we present a general analysis of the approximation ratio of this al-
gorithm. We will refine the analysis for multi-criteria �(γ )-STSP (Sect. 4.2) to get an
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Algorithm 3 An approximation algorithm for multi-criteria TSP based on cycle
covers

Input: complete graph G = (V ,E); k edge weight functions wi (i ∈ [k]); ε′ > 0
Output: an approximate Pareto curve P apx

TSP to multi-criteria TSP (with a probability
of at least 1/2)

1: compute a (1+ε′)-approximate Pareto curve PCC to the multi-criteria cycle cover
problem on G using the algorithm by Papadimitriou and Yannakakis [22]

2: for all cycle covers C ∈ PCC do
3: for all cycles c of C do
4: remove one edge of c

5: end for
6: join the paths to form a Hamiltonian cycle S

7: add S to P apx
TSP

8: end for

improved approximation ratio. Furthermore, we apply the analysis to get approxima-
tion results for multi-criteria �(γ )-ATSP (Sect. 4.3) and STSP(1,2) and ATSP(1,2)

(Sect. 4.4). We analyze Algorithm 3 in terms of the number αn of edges that have to
be removed and the quotient β = wmax/wmin.

Lemma 4.1 Assume that at most αn edges have to be removed from each cycle cover
and that maxe∈E wi(e)

mine∈E wi(e)
≤ β for all i ∈ [k].

Then Algorithm 3 is a randomized (1 + α(β − 1) + ε) approximation algorithm
for every ε > 0. Its running-time is polynomial in the input size and 1/ε.

Proof Without loss of generality, let mine∈E wi(e) = 1 for all i ∈ [k]. We run the
algorithm with some ε′ that depends on α, β , and ε and that we will specify later on.
Let S′ be an arbitrary Hamiltonian cycle. Then there exists a cycle cover C in PCC

with w(C) ≤ (1 + ε′) · w(S′). We obtain a Hamiltonian cycle S from C such that

wi(S) ≤ wi(C) + αn(β − 1)

for all i ∈ [k]. The reason for this is that every edge removed has a weight of at least
1 and every edge added has a weight of at most β . Now we have for all i ∈ [k]

wi(S)

wi(S′)
≤ (1 + ε′) · wi(S)

wi(C)
≤ (1 + ε′) · wi(C) + αn(β − 1)

wi(C)

≤ (1 + ε′) · n + αn(β − 1)

n
= (1 + ε′) · (1 + α(β − 1))

≤ 1 + α(β − 1) + ε

for ε′ ≤ ε
1+α(β−1)

, which proves the lemma. �
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Fig. 1 Two cycles c and c′ before and after joining the cycles to a Hamiltonian cycle. The edges eR , eK ,
and eA belong to c while e′

R
, e′

K
, and e′

A
belong to c′

4.2 Refined Analysis for �(γ )-STSP

From the general analysis (Lemma 4.1), we obtain an approximation ratio of 2
3 + 2

3 ·
γ 2

1−γ
+ ε for �(γ )-STSP. In this section, we present a refined analysis that yields a

better approximation ratio.
Consider any cycle c of a cycle cover of PCC. Then there will be an edge eR of

c that will be removed and an edge eA adjacent to eR that will be added during the
joining process. Finally, there exists an edge eK of c that is adjacent to both eR and
eA (Fig. 1 shows an example). Note that while eR is uniquely determined, once the
edges have been removed and the new edges have been added, the edge eA is not
since there are two edges that connect c to other cycles of the cycle cover. However,
once we have fixed eA for one cycle c, the corresponding eK is uniquely determined,
and the e′

A and e′
K of all other cycles c′ are also determined.

By Lemma 2.1, we have wi(eR) ≥ 1−γ
γ

· wi(eA) and wi(eK) ≥ 1−γ
γ

· wi(eA). All
arguments in the following hold for all weight functions simultaneously. Thus, we
restrict ourselves to considering one fixed weight function wi for some i ∈ [k] to
simplify the arguments.

Let wR be the total weight of edges removed, wA be the total weight of edges
added, and wK be the total weight of edges of C and S that are adjacent to edges
added. Then we have w(C) = w + wK + wR for some suitably chosen w ≥ 0, which
is the total weight of all edges not taken into account so far. Thus,

wi(S)

wi(C)
= w + wK + wA

w + wK + wR

= 1 + wA − wR

w + wK + wR

= R.

Since R is monotonically decreasing with respect to wR , we obtain

R ≤ 1 + wA − 1−γ
γ

· wA

w + wK + 1−γ
γ

· wA

= R′.
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Exploiting further that R′ is monotonically decreasing in wK , we get

R′ ≤ 1 + wA − 1−γ
γ

· wA

w + 1−γ
γ

· 2wA

= 1 + wA(2γ − 1)

γw + (1 − γ )2wA

= R′′.

The inequalities wA ≤ 2γ 2n
3(1−γ )

and w ≥ n/3 hold since every cycle has a length of at
least three. We exploit the fact that R′′ is monotonically increasing with respect to
wA and monotonically decreasing with respect to w:

R′′ ≤ 1 +
2γ 2n

3(1−γ )
· (2γ − 1)

γ n
3 + (1 − γ ) · 2 · 2γ 2n

3(1−γ )

= 1 +
2γ 2

1−γ
· (2γ − 1)

γ + 4γ 2
= 1 + γ

1 + 3γ − 4γ 2
.

We run the algorithm with some ε′ > 0 that depends on γ . We will specify ε′ in
a moment. Let S′ be an arbitrary Hamiltonian cycle and C ∈ PCC be a cycle cover
with wi(C) ≤ (1 + ε′) ·w(S′) for all i ∈ [k]. Let S be the Hamiltonian cycle obtained
from C. Then

wi(S) ≤ (1 + ε′) · 1 + γ

1 + 3γ − 4γ 2
· wi(S

′).

For a given ε > 0, we choose ε′ such that ε′ · 1+γ

1+3γ−4γ 2 ≤ ε. The set P apx
TSP is a

(
1+γ

1+3γ−4γ 2 + ε)-approximate Pareto curve with a probability of at least 1/2, which
implies the following theorem.

Theorem 4.2 For γ ∈ [ 1
2 ,1), Algorithm 3 is a randomized (

1+γ

1+3γ−4γ 2 + ε)-

approximation algorithm for all ε > 0. Its running-time is polynomial in the input
size and 1/ε.

In Sect. 5.1, we compare the approximation ratios of the cycle cover algorithm for
�(γ )-STSP to the tree doubling and Christofides’ algorithm.

4.3 The Cycle Cover Algorithm for �(γ )-ATSP

For multi-criteria �(γ )-ATSP, our algorithm yields a constant factor approximation

if γ < 1√
3

since wmax/wmin is bounded from above by 2γ 3

1−3γ 2 for such γ . For larger
values of γ , this ratio can be unbounded.

Lemma 4.3 (Chandran and Ram [9]) Let γ ∈ [1/2,1). Let G = (V ,E) be a directed
complete graph, and let w : E → N be an edge weight function satisfying γ -triangle
inequality. Let wmin = mine∈E w(e) and wmax = maxe∈E w(e).

If γ < 1/
√

3, then wmax
wmin

≤ 2γ 3

1−3γ 2 . If γ ≥ 1/
√

3, then wmax
wmin

can be unbounded.

By combining Lemma 4.1 and Lemma 4.3, we obtain the following result.
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Fig. 2 The approximation ratio
of Algorithm 3 achieved for
�(γ )-ATSP subject to γ

compared to the trivial
approximation ratio of
wmax/wmin

Theorem 4.4 For γ < 1/
√

3, Algorithm 3 is a randomized ( 1
2 + γ 3

1−3γ 2 + ε)-

approximation algorithm for �(γ )-ATSP. Its running-time is polynomial in the input
size and 1/ε.

Figure 2 shows the approximation ratio achieved for multi-criteria �(γ )-ATSP
subject to γ and compared to the trivial ratio of wmax/wmax.

We leave as an open problem to generalize the analysis to larger values of γ . How-
ever, it seems to be hard to find a constant factor approximation for γ = 1, i.e., for
multi-criteria �-ATSP, since this would immediately yield a constant factor approx-
imation for single-criterion �-ATSP.

4.4 TSP with Weights One and Two

Now we analyze the cycle cover algorithm for multi-criteria TSP with weights one
and two. For both STSP(1,2) and ATSP(1,2), we have β = 2, i.e., wmax/wmin = 2.
Furthermore, for STSP(1,2), we have α ≤ 1/3, while we only have α ≤ 1/2 in case
of ATSP(1,2). The approximation ratio follows by exploiting Lemma 4.1.

Note that the edge weights and thus the objective functions are polynomially
bounded for STSP(1,2) and ATSP(1,2). Thus, we can compute a Pareto curve of
cycle covers instead of only a (1 + ε)-approximate Pareto curve. This implies that we
do not have an additional ε in the approximation ratios in the following theorems.

Theorem 4.5 Algorithm 3 is a randomized 4/3-approximation algorithm for multi-
criteria STSP(1,2). Its running-time is polynomial.

Theorem 4.6 Algorithm 3 is a randomized 3/2-approximation algorithm for multi-
criteria ATSP(1,2). Its running-time is polynomial.
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Fig. 3 Approximation ratios
subject to γ achieved by the tree
doubling algorithm
(Algorithm 1), Christofides’
algorithm (Algorithm 2), and the
cycle cover algorithm
(Algorithm 3, Sect. 4), for which
both the ratio obtained from the
general analysis (Sect. 4.1) and
from the refined analysis
(Sect. 4.2) are shown

Fig. 4 Approximation ratios
subject to γ . The deterministic
ratio is achieved by the tree
doubling algorithm. Combining
Christofides’ and the cycle cover
algorithm yields the randomized
ratio. For comparison, the
current ratio for single-criterion
�(γ )-STSP and the trivial ratio
wmax/wmin are also shown

5 Concluding Remarks

5.1 Comparing the Approximation Ratios

Let us compare the approximation ratios for �(γ )-STSP achieved by the tree dou-
bling algorithm (Algorithm 1), Christofides’ algorithm (Algorithm 2), and the cycle
cover algorithm (Algorithm 3).

Figure 3 shows the approximation ratios achieved by these algorithms subject to γ .
Figure 4 shows the approximation ratios achieved deterministically (by the tree dou-
bling algorithm) and randomized (by a combination of Christofides’ and the cycle
cover algorithm). The ratios are compared to the trivial ratio of wmax/wmin and to the
currently best known approximation ratio for single-criterion �(γ )-STSP. Note that
in particular for small values of γ , our algorithms for multi-criteria �(γ )-STSP come
close to achieving the ratio of the best algorithms for single-criterion �(γ )-STSP.

5.2 Open Problems

Our approximation algorithm for multi-criteria �(γ )-ATSP works only for γ <

1/
√

3. Thus, we are interested in finding constant factor approximation algorithms
also for γ ≥ 1/

√
3, which exist for all γ < 1 for single-criterion �(γ )-ATSP [7, 9].
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The cycle-cover-based algorithm for Max-TSP, where Hamiltonian cycles of max-
imum weight are sought, does not seem to perform well for multi-criteria Max-TSP.
The reason for this is that the approximation algorithms for Max-TSP that base on cy-
cle covers usually contain a statement like “remove the lightest edge of every cycle”.
While this works for single-criterion TSP, the term “lightest edge” is not well-defined
for multi-criteria traveling salesman problems. We are particularly curious about the
approximability of multi-criteria Max-TSP.

Acknowledgements We thank Jan Arpe for valuable comments.
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