
Algorithmica (2009) 53: 35–49
DOI 10.1007/s00453-007-9006-9

Algorithms for Maximum Independent Set in Convex
Bipartite Graphs

José Soares · Marco A. Stefanes

Received: 27 June 2007 / Accepted: 29 June 2007 / Published online: 22 September 2007
© Springer Science+Business Media, LLC 2007

Abstract A bipartite graph G = (V ,W,E) is convex if there exists an ordering of the
vertices of W such that, for each v ∈ V , the neighbors of v are consecutive in W . We
describe both a sequential and a BSP/CGM algorithm to find a maximum independent
set in a convex bipartite graph. The sequential algorithm improves over the running
time of the previously known algorithm and the BSP/CGM algorithm is a parallel
version of the sequential one. The complexity of the algorithms does not depend
on |W |.
Keywords Convex bipartite graphs · Independent sets · BSP/CGM algorithms ·
Parallel algorithm

1 Introduction

Bipartite convex graphs were introduced by Glover [9], motivated by some industrial
applications. Since then several algorithms have been developed for problems in this
kind of graph [2, 3, 8, 12, 13].

Let G = (V ,W,E) be a bipartite graph, where V and W define the bipartition of
the vertices, and E is the edge set in the form (v,w), where v ∈ V and w ∈ W . The
graph G is convex if the vertices in W can be ordered in such a way that, for each

This work was supported by FAPESP (Proc. 98/06327-0). The first author was also supported by
FAPESP (Proc. 96/04505–2), and CNPq/MCT/FINEP (PRONEX project 107/97).

J. Soares (�)
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010,
05508-900 São Paulo, SP, Brazil
e-mail: jose@ime.usp.br

M.A. Stefanes
Departamento de Computação e Estatística, Universidade Federal de Mato Grosso do Sul,
Campo Grande, Brazil
e-mail: marco@dct.ufms.br

mailto:jose@ime.usp.br
mailto:marco@dct.ufms.br

36 Algorithmica (2009) 53: 35–49

v ∈ V , the neighbors of v are consecutive in W . For convenience, we consider that
V = {1, . . . , |V |}, W = {1, . . . , |W |}, and that the vertices in W are given according
to the ordering mentioned above. This ordering can be obtained in a preprocessing
step by a linear time sequential algorithm [1], or by a BSP/CGM algorithm with linear
time per round and O(log2 p) communication rounds [3].

As an application of the use of bipartite convex graphs, we mention the following
problem, which is a simplification of a situation reported by Glover [9]. The problem
is to assembly left halves from a set V with right halves from a set W for manufactur-
ing a certain product. Each half h in V ∪W has a size s(h). Assume that v ∈ V can be
assembled with w ∈ W only if L ≤ s(v) − s(w) ≤ U , where U and L are given con-
stants. Then, the maximum number of halves that can be matched is equal to the size
of a maximum matching (see below) in the convex bipartite graph G = (V ,W,E)

where E = {(v,w) | L ≤ s(v) − s(w) ≤ U}. Other applications are mentioned by
Lipski and Preparata [12] and by Dekel and Sahni [8].

We say that a vertex w′ ∈ W is smaller (larger) than a vertex w′′ ∈ W if the in-
teger representing w′ is smaller (larger) than the integer representing w′′. A con-
vex bipartite graph has a compact representation by a set of |V | triples of the form
(i,begin(i), end(i)), where i is a vertex in V , begin(i) and end(i) are the smallest
and largest vertices, respectively, in the interval of vertices of W connected to i.

A matching M in a graph G is a subset of the edges such that no two edges in M

has a common endpoint vertex. A matching is maximum if its cardinality is as large
as possible. A vertex x is matched by M if there is an edge in M incident to x. If a
vertex x is not matched by M , we say that x is free with respect to M . A matching
M in a bipartite convex graph is greedy if it has the following properties:

1. if (i, j) ∈ M , then, for each j ′ ∈ W , with begin(i) ≤ j ′ ≤ j −1, there exists i′ ∈ V

such that (i′, j ′) ∈ M and end(i′) ≤ end(i);
2. if j ∈ W is adjacent to a free vertex i′ ∈ V , then there exists i ∈ V , with end(i) ≤

end(i′), such that (i, j) ∈ M .

Figure 1 shows a convex bipartite graph in its compact representation and a greedy
matching.

A greedy matching can be obtained by visiting the elements of W in ascending
order: for each free j ∈ W , find a vertex i with the smallest end(i) among the free
vertices of V adjacent to j , and add the edge (i, j) to M . This algorithm runs in

Fig. 1 Compact representation and a greedy maximum matching (bold edges)

Algorithmica (2009) 53: 35–49 37

O(|E|) time and is known as Glover’s algorithm [9]. The matching obtained in this
fashion is indeed maximum.

We now comment on some previous algorithms for convex bipartite graphs. Let
n := |V |, m := |W |, N := |V | + |W |, and p be the number of processors used by the
parallel algorithm.

Steiner and Yeomans [13] designed an O(n) sequential algorithm to compute
a maximum matching in a convex bipartite graph. Dekel and Sahni [8] developed
an EREW PRAM algorithm for this problem which runs in time O(log2 n) and re-
quires O(n) processors. Bose et al. described [2] a CGM algorithm that requires
O(logp) communication rounds and O(Ts(n/p,m/p) + (n/p) logp) local com-
putation time, where Ts(x, y) is the sequential complexity for the same problem
with |V | = x, |W | = y. Bose et al. also described a BSP algorithm that requires
O(logp) supersteps with O(Ts(n/p,m/p) + (n/p) logp) local computation time,
and O(gN + (gn/p) logp) communication cost. All the matchings obtained by these
algorithms are greedy.

An independent set in a graph is a set of vertices such that no edge connects
two vertices in the set. A maximum independent set (MIS) is an independent set
which has maximum cardinality. Lipski and Preparata [12] presented a sequential
O(N) algorithm that receives a compact representation of a convex bipartite graph
G, and a greedy matching M of G and returns a MIS. Czumaj et al. [6] described
a CRCW PRAM algorithm that runs in O(logN) time with O(N/ logN) proces-
sors.

In this work, we present both a sequential and a BSP/CGM parallel algorithm to
compute a MIS in a convex bipartite graph. The input to our algorithms is a convex
bipartite graph G and a greedy matching of G. The sequential algorithm is linear
in n provided that m = O(nc), for some constant c. This algorithm improves on the
worst case complexity for the problem. Using p processors, the BSP/CGM algorithm
requires a constant number of communication rounds in which each processor sends
and receives messages of size O(n/p), and O(n/p) local computation time, assum-
ing that n ≥ p2. This implies a BSP algorithm with constant number of supersteps,
O(n/p) computation time and O(gn/p) communication cost.

We first, in Sect. 2, give a review of the parallel computation models. Next, in
Sect. 3, we present the sequential algorithm to compute a MIS in a convex bipartite
graph and its analysis. In Sect. 4, we describe the BSP/CGM parallel algorithm, which
is based on the sequential one, and we address its time complexity. Finally, in Sect. 5,
some concluding remarks are given.

2 The Models BSP and CGM

The model BSP [14] (Bulk Synchronous Parallel) was one of the first models
of parallel computation that takes into account the communication costs. This
simple model has showed success in predicting the practical behavior of algo-
rithms.

A BSP algorithm consists in a sequence of supersteps with a synchronization
barrier at the end of each superstep. In one superstep the processors operate inde-
pendently performing local computations and global communications. We say that a

38 Algorithmica (2009) 53: 35–49

h-relation is performed in a superstep when each processor sends or receives at most
h messages. We consider that each message has a fixed size, depending only on the
parallel machine. A message sent will be available in its destination for processing
by the next superstep.

In the BSP model the processors communicate through some arbitrary intercon-
nection network provided with a facility for synchronization. The model has three
parameters: the number p of processors; the minimum time L of a superstep; and the
quotient g between the number of local operations per second performed by all the
processors and the total number of messages that can delivered per second. The time
of a superstep in which a h-relation is performed is max{gh + w,L}, where w is the
time spent in local computations during the superstep. The running time of a BSP
algorithm is the sum of the time of its supersteps.

The model CGM [7] (Coarse Grained Multicomputer) is a version of the model
BSP consisting of p processors, where each one has O(n/p) local memory. It is usual
to assume that n/p ≥ pε , for some fixed ε > 0. As in the BSP model, processors can
communicate through some arbitrary interconnection network. A CGM algorithm
consists of local computation alternated with global communication. In a communi-
cation round, each processor can send or receive O(n/p) values. The running time
of a CGM algorithm is the sum of the time of each round of computation and com-
munication.

3 Sequential Algorithm

Let G = (V ,W,E) be a convex bipartite graph and M be a matching in G. We call
a path in G alternating with respect to M if the path starts at a free vertex of V (with
respect to M) and whose edges are, alternatively, in M and in E \ M . Thus, if e and
e′ are consecutive edges in an alternating path, then e ∈ E and e′ ∈ E \ M , or vice-
versa. A vertex v is reachable if there exists an alternating path ending at v. Note
that, by this definition, an alternating path always has its beginning in a free vertex
of V .

It is well-known that a maximum independent set in a bipartite graph can be de-
rived from a maximum matching using standard alternating path techniques [11]. If
M is a maximum matching in G and letting VR ⊆ V and WR ⊆ W be the set of
reachable vertices, then I = VR ∪ (W \ WR) is a maximum independent set. So, the
entire problem reduces to find the reachable vertices.

We denote by [i, j] the set of integers {i, i + 1, . . . , j}. Thus, V = [1, n] and
W = [1,m]. Abusing notation, we let V also denote an array representing G in a
compact representation, along with a greedy matching M . Each element of the array
V [1. .n] has the fields begin, end, and M . The triple (i,begin(i), end(i)) of the com-
pact representation of G is represented here by (i,V [i].begin,V [i].end). The field
M represents a matching in G. For each i ∈ V , V [i].M = j > 0 if (i, j) ∈ M , and
V [i].M = 0 if i is a free vertex.

The input to the algorithm is a convex bipartite graph G and a greedy matching
of G. We may assume that the graph has no isolated vertices since isolated vertices
are always in a MIS. The algorithm described below begins by adding a new field,

Algorithmica (2009) 53: 35–49 39

Fig. 2 Convex bipartite graph, greedy matching (bold edges), and labels of V

label, to the array V . Each vertex i ∈ V has label V [i].M if i is a matched vertex,
or label V [i].end if i is a free vertex. Thus, if two vertices have the same label,
at least one of them is free. The algorithm sorts V according to these labels. Ties
are broken in such a way that matched vertices come first. Figure 2 shows a convex
bipartite graph, a greedy maximum matching and the corresponding labels of the
vertices of V .

The fact below was observed by Czumaj, Diks, and Przytycka [6].

Fact 3.1 If i ∈ V is a free vertex with respect to a greedy matching M , then the
vertices of W reachable by alternating paths beginning at i forms an interval in
[1,V [i].end].

A similar key fact is exploited by our algorithms: the ordering by labels of V

guarantees that vertices of V reachable by alternating paths beginning at a free ver-
tex of V form an interval in [1, n]. The criterion used to break ties in the order-
ing by labels of V is needed to ensure that the intervals of V are computed cor-
rectly.

In the algorithm, the arrays VR and WR represent the set of vertices reachable
by alternating paths. For each i, the intervals [VR[i].begin,VR[i].end] ⊆ [1, n] and
[WR[i].begin,WR[i].end] ⊆ [1,m] correspond to reachable vertices in V and in W .
Again, abusing notation, we will also consider VR and WR as the union set of the
intervals represented by the arrays VR and WR .

After the sorting, the Procedure MIS is called with the array V [a. .b] as input,
where a = 1 and b = n. The array V is inspected beginning in position b. The al-
gorithm searches for a free vertex i. When such a vertex is reached, the values of
begin_V and begin_W are initialized with i and V [i].begin, respectively. Vertices in
V are inspected in decreasing order of labels, until the largest i′, a ≤ i′ ≤ i is reached,
such that: (1) V [i′].label = begin_W ; (2) i′ − 1 < a or V [i′ − 1].label < begin_W ;
(3) for each i′′, begin_V ≤ i′′ ≤ end_V , V [i′′].begin ≥ begin_W . To satisfy these
conditions, the algorithm alters the values of begin_V and begin_W when neces-
sary.

Once the arrays VR and WR are obtained, the Procedure Union builds a repre-
sentation of the corresponding maximum independent set I = VR ∪ (W \ WR). The

40 Algorithmica (2009) 53: 35–49

output of the Procedure Union consists of arrays IV and IW . The array IV repre-
sents the same intervals of vertices represented by VR , while the array IW represents
the intervals of vertices in W \ WR . By construction, the intervals represented in VR

are such that VR[i + 1].end < VR[i].begin, for 1 ≤ i < j , where j is the number of
intervals. The same holds for the intervals represented in WR . So, arrays IV and IW

built by the Procedure Union are such that

IV =
1⋃

i=j

[VR[i].begin,VR[i].end],

and

IW = [1,WR[j].begin − 1] ∪
1⋃

i=j−1

[WR[i + 1].end + 1,WR[i].begin − 1]

∪ [WR[1].end + 1,m].

While the number of intervals in IV is j , the number of intervals in IW is j + 1.
Observe that the representation of I by intervals is necessary to keep the complex-
ity of our algorithm independent of m, since a maximum independent set may have
size Ω(m).

Sequential Algorithm
Input: A convex bipartite graph G = (V ,W,E) without isolated vertices and a

greedy matching of G, given in the array V [1. .n].
Output: Arrays IV and IW representing intervals of vertices of a maximum inde-

pendent set.

1: Create a new field in the array V , the field label.
2: for i := 1 to n do
3: if V [i].M > 0 then V [i].label := V [i].M
4: else V [i].label := V [i].end
5: Sort the array V in nondecreasing order of labels. Ties are broken in such a way that

matched vertices come first.
6: Call Procedure MIS with input V [1. .n] to obtain arrays VR , WR , and integer j

7: Call Procedure Union with input VR , WR , j , 1, and m to obtain independent sets IV
and IW .

8: Return IV and IW .

Procedure MIS
Input: An array V [a. .b] with fields V [i].begin, V [i].end , V [i].M and V [i].label.

The array is ordered by the field V [i].label with the ties broken by putting the
vertex that participates in a matching first.

Output: Arrays VR and WR of size j representing vertices reachable by alternating
paths that originate in free vertices of V [a. .b].

Algorithmica (2009) 53: 35–49 41

1: i := b, j := 0
2: while i > a do
3: if V [i].M = 0 then {a free vertex is found}
4: begin_V := i

5: end_V := i

6: begin_W := V [i].begin
7: end_W := V [i].label
8: repeat
9: begin_V := i {Vertex i is inserted in [begin_V, end_V]}
10: begin_W := min{V [i].begin,begin_W }
11: Invariant 1 Each vertex in [begin_V, end_V] ⊆ V is reachable from some free

vertex in V by an alternating path
12: Invariant 2 Each vertex in [begin_W, end_W] ⊆ W is reachable from some free

vertex in V by an alternating path
13: i := i − 1
14: until i < a or V [i].label < begin_W

15: j := j + 1
16: VR[j].begin := begin_V

17: VR[j].end := end_V

18: WR[j].begin := begin_W

19: WR[j].end := end_W

20: Invariant 3 Each vertex in [begin_V, end_V] has its label in [begin_W, end_W]
21: else
22: i := i − 1
23: Return VR , WR , and j

Procedure Union
Input: Arrays VR and WR of size j representing vertices reachable by alternating

paths that originate in free vertices of V , and c and d , two integers representing the
interval [c, d] of W to be considered.

Output: Arrays IV and IW representing intervals of vertices of a maximum inde-
pendent set.

1: IW [1].begin := c

2: for i := 1 to j do
3: IV [i].begin := VR[j − i + 1].begin
4: IV [i].end := VR[j − i + 1].end
5: IW [i].end := WR[j − i + 1].begin − 1
6: IW [i + 1].begin := WR[j − i + 1].end + 1
7: IW [j + 1].end := d

8: Return IV and IW
The following propositions show the correctness of the algorithm.

Lemma 3.2 Invariants 1 and 2 of the Sequential Algorithm are correct.

Proof Let i be a value for which the condition in Line 3 is true. We will show, by
induction on the number of times that the command repeat is executed, that the in-
variants are true.

The first time that the command repeat is executed, we have that [begin_V, end_V]
= [i, i] and [begin_W, end_W] = [V [i].begin,V [i].end]. Since i is free, and

42 Algorithmica (2009) 53: 35–49

therefore reachable by the definition of alternating paths, also the vertices in
[V [i].begin,V [i].end] are reachable.

Consider now an arbitrary iteration of the command repeat, and suppose
that in the last iteration the invariants were true. Consider the values of i and
begin_W in the beginning of this iteration. By induction, we know that the ver-
tices in [i + 1, end_V] are reachable. In order to insert the vertex i in the inter-
val [begin_V, end_V], the value of begin_V is changed. Note that if V [i].label
≥ begin_W , then (i,V [i].label) ∈ M or i is free. In both cases we have that i is also
reachable. Since we are in a new iteration, the condition to leave the loop repeat is
false and it holds that V [i].label ≥ begin_W . Thus, V [i].label ∈ [begin_W, end_W]
(remember that the array V is ordered by labels and that the value of i always de-
creases during the execution of the algorithm).

Since, by induction, each vertex in [begin_W, end_W] is reachable, the vertex i is
also reachable and it follows that each vertex in [i = begin_V, end_V] is reachable.
From i being reachable, it follows that all vertices in [V [i].begin,V [i].end] are also
reachable. Furthermore, since we know that V [i].label ∈ [begin_W, end_W], each
vertex of W in [begin_W = min{V [i].begin,begin_W }, end_W] is reachable. �

Lemma 3.3 The Invariant 3 of the Sequential Algorithm is correct.

Proof When the condition of the command if in Line 3 is true, the command repeat
is executed by the first time with initial value of end_W equal to V [end_V].label.
The value of end_W is not changed during execution of repeat. When the command
repeat finishes, we have that V [begin_V].label ≥ begin_W .

During execution of the command repeat, values of i are considered in decreas-
ing order. Since the array V is sorted by labels, the above observations imply that
begin_W ≤ V [begin_V].label ≤ V [end_V].label = end_W at the end of the repeat,
proving the lemma. �

In what follows, I is the set I = VR ∪ W \ WR .

Lemma 3.4 Let VF ⊆ V and WF ⊆ W be the set of free vertices of G with respect
to M . Then, |I | ≥ |M| + |VF | + |WF |.

Proof Note that VF ⊂ VR , since free vertices are considered and inserted in VR either
in Line 3 or during execution of command repeat.

It is also true that WF ⊂ W \ WR , because, by Invariant 2, every vertex in WR is
reachable by alternating paths, and, therefore, it cannot be free: an alternating path
ending in a free vertex would indicate the existence of a matching with cardinality
larger than the cardinality of the maximum matching M .

We will argue now that each edge in M is incident with at least a vertex in I .
Suppose that (i, j) ∈ M and j 	∈ I . Then, by the definition of I , j ∈ WR and, by con-
sequence, there exists k such that j ∈ [WR[k].begin,WR[k].end]. By Lemma 3.3, the
vertex i, whose label is j , is in the interval [VR[k].begin,VR[k].end], and, therefore,
is in VR ⊆ I .

Thus, the lemma is true since the following three sets are pairwise disjoints: sets
of matched vertices, the set VF , and the set WF . �

Algorithmica (2009) 53: 35–49 43

Lemma 3.5 The set I is independent.

Proof We will show that, for each k, the vertices in W which are neighbors to vertices
in [VR[k].begin,VR[k].end] are all in the interval [WR[k].begin,WR[k].end]. Since
I = VR ∪ W \ WR , the lemma follows.

Suppose that for some k, there exists i ∈ [VR[k].begin,VR[k].end] with some
neighbor not in [WR[k].begin,WR[k].end]. Then, either V [i].begin < WR[k].begin,
or V [i].end > WR[k].end.

The first case cannot happen. When i was inserted in the interval [begin_V, end_V]
(Line 9), it is checked in the command if whether V [i].begin < begin_W and, if it
is the case, the value of begin_W is changed. Since the value of begin_W never in-
creases in the loop repeat, at the end of one of its execution the value of V [i].begin
continues less or equal to begin_W .

Let us inspect the second case, when V [i].end > WR[k].end. If it is true, since i is
reachable, there would exist vertices in W reachable from a free vertex q , with larger
values than V [q].label = WR[k].end. But, by Fact 3.1, this also cannot occur. �

Lemma 3.6 Let G = (V ,W,E) be a bipartite graph, I an independent set in G and
M a matching in G. Then, |I | ≤ |VF | + |WF | + |M|, where VF ⊆ V and WF ⊆ W

are the set of free vertices of G with respect to M .

Proof Note that |V | + |W | = |VF | + |WF | + 2|M|, since each vertex in G is either
free or matched. It follows that if |I | > |VF |+ |WF |+ |M|, then I contains more than
M matched vertices. Therefore, there exists at least one edge in M connecting two
vertices of I , contradicting the definition of independent set. �

Finally, we have the theorem that finishes the correctness of the algorithm.

Theorem 3.7 Let G = (V ,W,E) be a bipartite convex graph without isolated ver-
tices. Then, the set I = VR ∪ W \ WR is a maximum independent set, where VR and
WR are the sets determined by the Sequential Algorithm.

Proof It follows directly from Lemmas 3.5, 3.4, and 3.6 that I is a maximum inde-
pendent set. �

To finish this section, we comment on the time complexity of the Sequential Al-
gorithm. The initialization of the field of V containing the labels can be clearly done
in time O(n). The ordering of array V can be done in time O(n) using Radixsort
[5, Chap. 9], provided that m = O(nc) for some constant c. Otherwise, we can use
a standard O(n logn) sorting algorithm. To verify that the command while of Pro-
cedure MIS can be done in time O(n), it is enough to note that the value of i,
initially n, always decreases of at least one in each iteration of the loop while or in
each iteration of the loop repeat. Procedure Union takes time O(j). Since j ≤ n,
the procedure takes time O(n). Therefore, the Sequential Algorithm runs in time
O(n) + Ts(n,m), where Ts(x, y) is the time to sort x integers belonging to the inter-
val [1, y].

44 Algorithmica (2009) 53: 35–49

Another sequential algorithm, due to Lipski and Preparata [12], is known for this
problem. Their algorithm runs in time Θ(n + m). Note that our algorithm improves
in the worst case complexity for the problem. When m = Θ(nc) for some c > 1, the
Lipski and Preparata algorithm runs in time Θ(nc), while ours is linear in n. Other-
wise, say, m = Ω(nc) for some constant c > 1, the Lipski and Preparata algorithm
runs in time Ω(nc), while ours runs in time O(n logn).

4 BSP/CGM Algorithm

The BSP/CGM algorithm is a parallel version of the sequential algorithm. The in-
put to the algorithm is the array V [1. .n], which is equally distributed among the
available processors. Likewise in the sequential algorithm, the vertices of V are
labeled and sorted by labels. Then, V is redistributed to the processors. As we
shall see, the labeling can be done in linear time without communication. The
sorting can be yielded using Chan and Dehne’s algorithm [4] or Goodrich’s algo-
rithm [10].

Assume that there are p available processors P1,P2, . . . ,Pp . Let V [a. .b] be the
input to processor Pk, 1 ≤ k ≤ p after the ordering of the vertices according to their
labels. We say that the vertices in V [a. .b]∪ [V [a].label,V [b].label] are attributed to
processor Pk . Although it is possible that some vertices of W are not attributed to any
processor, it is true that every reachable vertex in W is attributed to some processor.
As output, each Pk will determine intervals of vertices belonging to a maximum
independent set in the graph.

In the sequential algorithm, the vertices in V are visited in descending order.
From the correctness of Procedure MIS, there cannot be the case that alternating
paths beginning in free vertices attributed to Pq , with q < k, reach vertices attributed
to Pk . So, the problem to be solved in the parallel context is how processor Pk de-
tects the existence of alternating paths with origin in vertices attributed to proces-
sors Pk+1,Pk+2, . . . ,Pp , reaching vertices attributed to Pk . And, in the positive case,
how to know which vertices are reachable by these paths. To do that, it is enough to
know the value of min_reach, where min_reach is the least vertex of W reachable
by an alternating path beginning in a free vertex attributed to Pq , with q > k. Once
min_reach is known, processor Pk can proceed its processing as the Sequential
Algorithm. The problem now is how to determine the value of min_reach without
depending on the chained result of processors Pp, . . . ,Pk+2,Pk+1.

Suppose that alternating paths beginning in free vertices attributed to processor
Pk+1 reach vertices attributed to Pk . Let min_rel be the vertex of W with the smallest
number that is reachable by these alternating paths leaving vertices of V attributed
to Pk+1. The computation of min_rel is done locally in parallel and it is commu-
nicated to all processors. Then, processor Pk constructs an array Min_rel[k + 1. .p]
containing the number of these vertices. The minimum of the values in the array is a
candidate to be min_reach.

Algorithmica (2009) 53: 35–49 45

Although this information is necessary, it is not sufficient. It might be the case
that there exist alternating paths beginning in free vertices attributed, for instance, to
Pk+2, that reach vertices attributed to Pk . If such paths do not use vertices attributed to
Pk+1, they can be detected by processor Pk consulting the value of Min_rel[k + 2].
Otherwise, all vertices attributed to Pk+1 are reachable. In this case, the value of
min_reach will be the minimum between Min_rel[k + 2] and the minimum among
all V [i].begin, for all i ∈ V attributed to Pk+1. This last minimum, called min_abs,
can be also computed in parallel and communicated to all processors. Then, proces-
sor Pk constructs an array Min_abs[k + 1. .p] containing the numbers of these ver-
tices.

However, we have yet another problem. It can be the case that all alternating paths
that originate in vertices attributed to processor Pk+2 finish in vertices attributed to
processor Pk+1, not reaching vertices attributed to Pk . To detect this situation, proces-
sor Pk+1 communicates whether there is a vertex attributed to it that is a candidate
to be the endpoint of an interval of reachable vertices. Lemma 3.1 states that vertices
that are reachable by alternating paths that originate in the same vertex form an inter-
val in W . So, we search for such candidate vertices, which are called stoppers in the
algorithm. A vertex w attributed to Pk+1 is a stopper if each vertex in V attributed
to Pk+1 with label larger or equal to stopper has all its neighbors in W larger than
or equal to stopper. In other words, V [i].begin ≥ w, for all i such that V [i].label
≥ stopper. If alternating paths that originate in Pk+2 only reach vertices attributed
to Pk+1 larger or equal to the stopper, then no vertex attributed to Pk is reached by
such paths. For this reason, the values of these stoppers, that can be determined in
parallel, are also communicated to all processors. Each processor constructs an array
Stopper[k + 1. .p] containing the number of these vertices. If there is more than one
candidate to be a stopper in a processor, it is enough to communicate the one which
is the smallest.

Summarizing, each processor Pk , after receiving the array V [a. .b] sorted by la-
bels, determines locally and communicates to all processors:

1. the value of min_rel, the number of the smallest vertex of W reachable by alter-
nating paths that originate in vertices attributed to Pk ;

2. the value of min_abs, the number of the smallest vertex of W with neighbors in
vertices attributed to Pk ;

3. the value of stopper, the number of the smallest vertex of W attributed to Pk that
is candidate to be the endpoint of an interval of reachable vertices.

These values are computed locally by Procedure Preprocess given below.

Procedure Preprocess
Input: An array V [a. .b] sorted by labels, representing a convex bipartite graph G =

(V ,W,E) without isolated vertices.
Output: The values of stopper, min_rel, and min_abs.

46 Algorithmica (2009) 53: 35–49

1: {Computation of stopper and min_abs}
2: stopper := V [b].label +1
3: ind := b + 1
4: i := b

5: while i ≥ a do
6: candidate := V [i].begin
7: while i ≥ a and V [i].label ≥ candidate do
8: candidate := min{candidate,V [i].begin}
9: i := i − 1
10: if candidate = V [i + 1].begin and candidate ≥ V [a].label and V [i + 1].M 	= 0 then
11: stopper := candidate
12: ind := i + 1
13: min_abs := mini∈[a,b]{V [i].begin}
14: {Computation of min_rel}
15: i := ind − 1
16: min_rel := +∞
17: while i ≥ a do
18: if V [i].M 	= 0 then {a free vertex is found}
19: candidate := V [i].begin
20: repeat
21: candidate := min{candidate,V [i].begin}
22: i := i − 1
23: until i < a or V [i].label < candidate
24: if candidate < V [a].label or (V [a].M = 0 and candidate = V [a].label) then
25: min_rel := candidate
26: else
27: i := i − 1
28: Return stopper, min_rel and min_abs

In our comments above, we considered alternating paths beginning in vertices
attributed to Pk+1 and Pk+2. However, observe that using the information collected
in the Procedure Preprocess, each processor Pk is able to detected the existence of
alternating paths reaching vertices attributed to Pk that originate in vertices attributed
to some other processor Pq , with q > k. This is done by the BSP/CGM Algorithm.
Processor Pk initially constructs the arrays Min_Rel[k + 1. .p], Min_Abs[k + 1. .p],
and Stopper[k + 1. .p]. The arrays Min_Rel[k + 1. .p] and Stopper[k + 1. .p] are
inspected backwards to identify the existence of a free vertex in V attributed to some
processor Pq , with q > k, which originates alternating paths. Whenever alternating
paths are detected, Pk searches Min_Abs[k + 1. .q] and Stopper[k + 1. .q] backwards
to find out where those paths end, updating the value of min_reach accordingly. If
no alternating path reaches vertices attributed to Pk , min_reach will end up with
some value larger than V [b].label. Otherwise, a dummy vertex (V [b + 1]) is added
to simulate alternating paths that originate in other processors.

To finish the BSP/CGM Algorithm, the sequential procedures Procedure MIS
and Procedure Union are called to determine the arrays I k

V and I k
W representing in-

tervals of independent vertices. At the end of the algorithm, as usual for BSP/CGM
algorithms, the output is distributed among the processors. The maximum indepen-
dent set is given by IV ∪ IW , where IV = ⋃

k(I
k
V) and IW = ⋃

k(I
k
W).

Algorithmica (2009) 53: 35–49 47

BSP/CGM Algorithm
Input: An array V [1. .n] representing a convex bipartite graph G = (V ,W,E) with-

out isolated vertices. The processor Pk , 1 ≤ k ≤ p, receives the array V [a. .b]
and an integer m, where a = (k − 1)�n/p� + 1, b = min{n, k�n/p�}, and
m = |W |.

Output: Each processor Pk determines arrays I k
V and I k

W representing intervals of
vertices of a maximum independent set.

1: for all processor Pk do
2: for i := a to b do
3: if V [i].M 	= 0 then V [i].label := V [i].M
4: else V [i].label := V [i].end
5: In parallel, sort array V according to field V [i].label. Ties are broken in such a way that

matched vertices come first.
6: for all processor Pk do
7: Call Procedure Preprocess to determine stopper, min_rel, and min_abs
8: Communicate stopper, min_rel and min_abs to processor Pk+1, . . . ,Pp .
9: Receive the messages and construct arrays Min_rel[k. .p], Min_abs[k. .p] and

Stopper[k. .p].
10: i := p

11: min_reach := +∞
12: while i > k

13: min_reach := min{Min_rel[i],min_reach}
14: while i > k and min_reach < Stopper[i] do
15: min_reach := min{min_reach,Min_Abs[i]}
16: i := i − 1
17: i := i − 1
18: for i := a to b do
19: V [i].begin = max{V [a].label ,V [i].begin}
20: if min_reach ≤ V [b].label then
21: Create a new vertex V [b + 1] with
22: V [b + 1].begin := max{min_reach,V [a].label },
23: V [b + 1].end := V [b].end,
24: V [b + 1].M = 0, and
25: V [b + 1].label := V [b].label
26: Call Procedure MIS with input V [a. .b + 1] to obtain arrays V k

R
, Wk

R
, and integer j

27: Remove vertex V [b + 1] from V k
R

28: else
29: Call Procedure MIS with input V [a. .b] to obtain arrays V k

R
, Wk

R
, and integer j

30: if k > 1 then
31: c := V [a].label
32: Communicate V [a].label−1 to processor Pk−1
33: else
34: c = 1
35: if k < p then Receive integer d from processor Pk+1
36: else d := m

37: Call Procedure Union with input V k
R

, Wk
R

, j , c, and d to obtain independent sets I k
V

and I k
W

.

38: Return I k
V

and I k
W

.

48 Algorithmica (2009) 53: 35–49

We now analyze the time complexity of the BSP/CGM Algorithm. Recall that to
obtain this result, we assume that n ≥ p2, what is true in practical applications. First
we comment on the complexity of sorting the vertices of V , which is done in Line 5
of the algorithm. Let Tp(n,m,p) be the time of local computation to sort n integers
in the range [1,m] using p processors. Chan and Dehne [4] describe a BSP/CGM
algorithm for the case that m = O(nc) for some positive constant c. The algorithm
runs in time Tp(n,m,p) = O(n/p) of local computation. In the case that there is no
bound on m, the algorithm of Goodrich [10] runs in time Tp(n,m,p) = O(n logn/p)

of local computation. In both algorithms the number of communication rounds is a
constant and the total size of the messages sent and received is O(n/p).

Let us now analyze the rest of the algorithm. The labeling of the vertices can be
done in time O(n/p). The Procedure Preprocess runs in time O(n/p). In a round
of communication, in Line 8, messages of total size O(p) are distributed. The loop
of Line 12 can be done in time O(p). The running time of Procedure Preprocess
called either in Line 26 or in Line 29 is O(n/p). The same holds for Procedure
Union called in Line 37.

Therefore, Algorithm BSP/CGM uses a constant number of communication
rounds and runs in O(n/p) + Tp(n,m,p) time of local computation. In each round,
each processor sends and receives messages of total size O(n/p). This implies a BSP
algorithm that uses a constant number of supersteps with O(gn/p) communication
cost and O(n/p) + Tp(n,m,p) local computation.

5 Concluding Remarks

In this work we have presented a sequential and a BSP/CGM algorithm for finding a
maximum independent set in a convex bipartite graph. The input to our algorithms is
a convex bipartite graph G and a greedy maximum matching of G.

Using p processors, the coarse grained algorithm requires a constant number of
communication rounds in which each processor sends and receives messages of total
size O(n/p), and, when m = O(nc) for some constant c, O(n/p) local computation
time, assuming that n ≥ p2. This implies a BSP algorithm with constant number of
supersteps, O(gn/p) communication cost and O(n/p) local computation.

Acknowledgements The authors would like to thank an anonymous referee for helpful comments and
important suggestions that were very helpful to improve the readability of this paper.

References

1. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

2. Bose, P., Chan, A., Dehne, F., Latzel, M.: Coarse grained parallel maximum matching in convex
bipartite graphs. In: 13th International Parallel Processing Symposium (IPPS’99), pp. 125–129 (1999)

3. Caceres, E., Chan, A., Dehne, F., Prencipe, G.: Coarse grained parallel algorithms for detecting convex
bipartite graphs. In: Proc. 26th Workshop on Graph-Theoretic Concepts in Computer Science (WG
2000), Konstanz, Germany (2000)

4. Chan, A., Dehne, F.: A note on coarse grained parallel integer sorting. Parallel Process. Lett. 9, 533–
538 (1999)

Algorithmica (2009) 53: 35–49 49

5. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw–Hill, New York (1990)
6. Czumaj, A., Diks, K., Przytycka, T.: Parallel maximum independent set in convex bipartite graphs.

Inf. Process. Lett. 59, 289–294 (1996)
7. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel geometric algorithms for coarse grained mul-

ticomputers. In: 9th Annual ACM Symposium on Computational Geometry, pp. 289–307 (1993)
8. Dekel, E., Sahni, S.: A parallel matching for convex bipartite graphs and applications to scheduling.

J. Parallel Distrib. Comput. 1, 185–205 (1984)
9. Glover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14, 313–316 (1967)

10. Goodrich, M.: Communication efficient parallel sorting. In: 28th Annual ACM Symposium on Theory
of Computing (STOC’96), pp. 247–256 (1996)

11. Kuhn, H.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)
12. Lipski, W., Preparata, F.: Efficient algorithms for finding maximum matchings in convex bipartite

graphs and related problems. Acta Inform. 15, 329–346 (1981)
13. Steiner, G., Yeoman, J.: A linear time algorithm for maximum matchings in convex, bipartite graphs.

Comput. Math. Appl. 31(12), 91–96 (1996)
14. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33, 103–111 (1990)

	Algorithms for Maximum Independent Set in Convex Bipartite Graphs
	Abstract
	Introduction
	 The Models BSP and CGM
	 Sequential Algorithm
	BSP/CGM Algorithm
	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

