
DOI: 10.1007/s00453-006-0193-6

Algorithmica (2007) 47: 253–268 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Minimizing Total Flow Time and Total Completion
Time with Immediate Dispatching1

Nir Avrahami2 and Yossi Azar2

Abstract. We consider the problem of scheduling jobs arriving over time in a multiprocessor setting, with
immediate dispatching, disallowing job migration. The goal is to minimize both the total flow time (total time
in the system) and the total completion time.

Previous studies have shown that while preemption (interrupt a job and later continue its execution) is
inherent to make a scheduling algorithm efficient, migration (continue the execution on a different machine)
is not. Still, the current non-migratory online algorithms suffer from a need for a central queue of unassigned
jobs which is a “no option” in large computing systems, such as the Web.

We introduce a simple online non-migratory algorithm IMD, which employs immediate dispatching, i.e.,
it immediately assigns released jobs to one of the machines. We show that the performance of this algorithm is
within a logarithmic factor of the optimal migratory offline algorithm, with respect to the total flow time, and
within a small constant factor of the optimal migratory offline algorithm, with respect to the total completion
time. This solves an open problem suggested by Awerbuch et al. (STOC 99).

Key Words. Online, Competitive, Flow time, Completion time, Dispatching, Migration, Scheduling.

1. Introduction. Almost all classical work on scheduling of jobs released over time
in a multiprocessor setting assumes that unassigned jobs are held in a central queue.
The decision on assignment of a job is not done upon its arrival but postponed until
the dispatcher acquires enough information. In many cases, such as in large computing
systems (e.g., the WEB), this is impossible since the number of unassigned jobs (with
their associated data) may be large, requiring a huge amount of resources (e.g., memory).
Moreover, the delay in transferring the job to the appropriate machine may be large
resulting in dramatic deterioration of the performance. Hence, the architecture of many
systems requires the dispatcher to assign a job immediately upon its arrival to one of
the machines without maintaining a central queue. Each job is kept in the queue of the
machine it was assigned to.

In the classical multiprocessor scheduling problem, preemptive and non-preemptive
schedules are often considered, in the context of minimizing the two most basic perfor-
mance measures, the total flow time (overall time the jobs are spending in the system)
and total completion time. These measures capture both the overall quality of service
of the system and fairness of service. Since preemption was shown to be inherent to
the problem of minimizing the total flow time (as noted below), while it is problematic

1 A preliminary version of this paper appears in the Proceedings of the 15th ACM Symposium on Parallelism
in Algorithms (SPAA), 2003, pp. 11–18. Yossi Azar’s research was supported in part by the Israel Science
Foundation and by the German–Israeli Foundation.
2 Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. azar@post.tau.ac.il.

Received September 7, 2003; revised October 30, 2005, and December 9, 2005. Communicated by
A. Panconesi. Online publication February 28, 2007.

254 N. Avrahami and Y. Azar

in real multiprocessors systems, an intermediate model which disallows migration was
considered. Current non-migratory online algorithms, which were devised to work in
this model, tend to delay the assignment of jobs, in order to avoid early commitment
to machines, hence they are required to maintain a pool of unassigned jobs. As already
mentioned this may be “no option” in many architectures. Hence, the obvious question is
whether one can devise an efficient algorithm that dispatches each job to a machine upon
its release time. Note that this results in splitting the multiprocessor scheduling problem
into two axis: the assignment problem and the single machine scheduling problem. Our
somewhat surprising result shows that we can actually achieve almost the same perfor-
mance for total flow time and for total completion time in the immediate dispatching
model as in the model that maintains a central queue.

Our results: multiple processors with immediate dispatching. We introduce a sim-
ple non-migratory online algorithm IMD, which employs immediate dispatching, i.e., it
immediately assigns released jobs to one of the machines. We show that:

• The total flow time of algorithm IMD is within the O(min{log P, log n}) factor of the
total flow time of the optimal migratory offline algorithm for n jobs where P denotes
the ratio between the processing time of the longest to the shortest job. This solves an
open problem suggested by Awerbuch et al. [2].
• The total completion time of algorithm IMD is at most seven times the total completion

time of the optimal migratory offline algorithm.
• For the measure of total completion time, preemption can be eliminated from algorithm

IMD, resulting in algorithm IMD′ which is at most 14 times the total completion time
of the optimal migratory offline algorithm.

Existing work: total flow time. Surveys on approximation algorithms for scheduling
can be found in [8] and [12]. In the non-preemptive case it is impossible to achieve a
“reasonable” approximation for the total flow time. Specifically, even for one machine
one cannot achieve an approximation factor of O(n1/2−ε) unless NP = P where n is
the number of jobs [11]. For more than one machine it is impossible to achieve an
O(n1/3−ε) approximation factor unless NP = P [13]. Thus, preemption really seems to
be essential. Minimizing the total flow time on one machine with preemption can be done
optimally in polynomial time using the natural algorithm shortest remaining processing
time (SRPT) [3]. For more than one machine the preemptive problem becomes NP-hard
[7]. Leonardi and Raz [13] showed that SRPT achieves logarithmic approximation for
the multiprocessor case, showing a tight bound of O(log(min{n/m, P})) on m > 1
machines with n jobs, where P denotes the ratio between the processing time of the
longest and the shortest jobs. In the offline setting it is not known if better approximation
factors can be reached. In fact, in the online setting SRPT is optimal, i.e., no algorithm can
achieve a better bound up to a constant factor [13]. Note that SRPT requires migration.
In addition it decides to assign a job from a central pool only when a machine becomes
empty.

Awerbuch et al. [2] presented an online non-migratory algorithm, which performs
almost as well as the best known offline algorithm (SRPT) for the preemptive problem that
uses migration. Specifically, this algorithm performs by at most an O(min{log P, log n})

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 255

factor of the optimal total flow time of any (possibly migratory) schedule. Chekuri et al.
[5] designed a variant of the above algorithm which slightly improves the performance
ratio to O(min{log P, log(n/m)}) and matches the performance bound of SRPT . The
above algorithms overcome the problem of migration. However, many jobs may be
kept in a central pool until it is justified to assign them to machines. Postponing the
assignment jobs by the dispatcher and maintaining them in the central pool is crucial for
their algorithms. As already mentioned, non-immediate dispatching is not an option in
many systems due to the sizes of the jobs and the delay in the network.

Existing work: total completion time. For a single machine with preemption SRPT
is optimal. In the multiprocessor setting SRPT is 2 competitive [14]. Without preemption
the best online deterministic algorithm for a single machine is 2 competitive [14], [10].
Moreover, this is optimal [10]. The best randomized algorithm is e/(e− 1) competitive
[6] and this is optimal [16]. In the multiprocessor setting (without preemption) the best
algorithm is 2 competitive [15], [4], [9]. Only the algorithm of [15] employs immediate
dispatching but this algorithm is randomized. Actually, the algorithm assigns each job to
a random machine. In the offline problem a PTAS for minimizing the total completion
time was given for the preemptive and non-preemptive versions for a single and multiple
machine [1].

Techniques. One may tempt to think that the natural approach for designing an imme-
diate dispatching algorithm should be based on SRPT or the non-migratory algorithm
with a central queue. Specifically, we may try to predict for each job upon its arrival
on which machine those algorithms would have assigned the job and dispatch the job
immediately to that machine. The prediction would be based on the given current in-
formation, i.e., the exact residual size of all current jobs, assuming no additional jobs
will arrive. Unfortunately, it is possible to show that the natural algorithms have poor
performance. Hence a new algorithm had to be developed.

In contrast to previous algorithms (e.g., SRPT) our algorithm IMD prefers to ignore
some of the given information, reducing the communication traffic and simplifying its
implementation. The main idea of IMD is to assign each job immediately on its release
time so as to balance the accumulative volume of all similar jobs from time zero until the
current time. Hence, it ignores the information of which jobs were already completed
and the current residual volume of jobs left to be processed. Moreover, algorithm IMD
ignores the exact release times of the jobs and would produce the same assignment even
for different release times of the jobs as long as their relative arrival order is maintained.
Hence, IMD maintains only a small amount of information about previous assignments.
Moreover, the clock of the dispatcher does not need to be synchronized with the clocks
of the processors. Interestingly, by ignoring information we are able to show that the
residual volume of jobs left to be processed at any other given time will almost be
the same on any machine, implying that the idle times are also balanced between the
machines.

Since on a single machine SRPT is optimal, the best algorithm that uses immediate
assignment will use SRPT on each machine separately, independently of the assignment
strategy. Aside from the assignment strategy, which is the core of the algorithm, we

256 N. Avrahami and Y. Azar

also use a different (less effective) scheduling approach for each machine separately, in
order to simplify the analysis of the flow time performance. The total flow time analysis
basically combines new ideas with ideas used in [2] and [5]. The algorithm of [2] also
uses classification of jobs to classes. However, that classification is done according to
the residual sizes of the jobs at any given time, meaning that the classification of a job
changes along the process. In contrast, it is crucial for our algorithm to use a different
classification, which is similar to the group partition in [5], and is based on a job size on
its arrival. Hence, our classification does not change along the process.

As for the total completion time, one should also notice that our algorithm tackles the
problem using a technique that is substantially different from the standard techniques,
such as: SRPT , time partitioning into intervals (GreedyInterval), or by solving some
migratory schedule and converting it into a non-migratory schedule.

The model. We are given a set J of n jobs and a set of m identical machines. Each job
j is assigned a pair (rj , pj)where rj is the release time of the job and pj is its processing
time (also called job size). In our model the assignment of job j to some machine
should be immediate on its release time rj , but it need not be executed immediately on
assignment. Our model allows preemption but does not allow migration. The scheduling
algorithm decides which of the jobs should be executed at each time. Clearly a machine
can process at most one job in any given time and a job cannot be processed before its
release time. For a given schedule define Cj to be the completion time of job j in this
schedule. The flow time of job j for this schedule is Fj = Cj − rj . The total flow time
F is

∑
j∈J Fj , and the total completion time C is

∑
j∈J Cj . The goal of the scheduling

algorithm is to minimize the total flow time (or completion time) for each given instance
of the problem. In the offline version of the problem all the jobs are known in advance.
In the online version of the problem each job is introduced at its release time and the
algorithm bases its decision only upon the jobs that were already released.

2. Definitions and Notations. We start by giving a few definitions and notations,
which will be useful both for the algorithm definition and analysis. We first note that
whenever we talk about time t we mean the moment after the events at time t happened.

• We first define the class of a job j to be k, if its size on its arrival pj is in [2k, 2k+1).
Note that the classification to classes does not change during the process (similar to
the group partition in [5]). Denote by kmin and kmax the extremes of the jobs classes.
• T is used to denote the time period where all the m machines are busy (non-idle).
• Denote by P the ratio of the longest job to the shortest one.
• Several functions of time are used:

– U (t) denotes the cumulative sum of size of jobs arrived till time t (sum of their size
on their arrival).

– P(t) denotes the total volume of jobs that have already been processed till time t
(i.e., the sum of sizes of parts of jobs that have already been processed).

– R(t) = U (t) − P(t) denotes the total remaining volume of jobs to be processed
at time t (i.e., the sum of sizes of remaining parts of jobs released but not yet
completed by time t).

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 257

– γ (t) denotes the number of non-idle machines at time t .
– n(t) denotes the number of jobs released by time t .
– c(t) denotes the number of completed jobs by time t .
– J (t) denotes the set of jobs that were completed by time t .
– δ(t) = n(t)− c(t) denotes the number of jobs (with ri ≤ t), which are alive at time

t (i.e., released but not finished yet).
We note that if a function is used without the time parameter t then it refers to the
function at the end of the schedule.
• Several function modifiers are used:

– For a generic function f , the notation f S refers to the value of f when the scheduler
is S. We denote our scheduler by IMD, while the optimal migratory offline scheduler
will be denoted by OPT . We may omit this superscript when it refers to IMD.

– For a generic function f , the notations f=k , f<k , etc., refer to the function f
restricted to the set of jobs that belong to the subscript classes.

– For a generic function f , the notation f i refers to the function f restricted to the set
of jobs that were assigned to the i th machine. When the scheduler is OPT , f OPT,i

is defined as the average (1/m) f OPT .
– For a generic function f , we use f i j as a short form of f i − f j .
– For a generic function f (t)we use
 f (t) = f (t)− f OPT(t) denoting the difference

between our scheduler and the optimal offline scheduler.
– For a generic function f (t) we use f (J, t) when the input set of jobs J is not clear

from the context.

3. The Algorithm. Recall from the above definitions that jobs are classified according
to their sizes. A job is of class k if its size is between 2k and 2k+1. Also, by the definitions
above U i

=k(t) denotes the total cumulative sum of the original size of jobs of class k that
arrived till time t and were assigned to the machine i . In U i

=k(J, t) we further restrict
the jobs to some given subset J . Next we define our immediate dispatching algorithm.
We note that if several jobs arrive at the same time we order and assign them in an
arbitrary fixed order. Hence there is a complete order on the arrival and assignment of all
jobs.

Algorithm IMD:

• On arrival time t of a new job of class k, assign it to a machine i with minimum
U i
=k(J, t)where J is the set of jobs arrived and assigned before the new job. Note that

J includes all jobs arriving before time t and some of the jobs arriving at time t (the
ones arriving before the new job according to the given complete order on the jobs
arrival).
• Conduct SRPT on each machine separately.

The algorithm IMD balances the total volume of jobs of a specific class that were
ever assigned to the machines. We note that the assignment decisions are independent
of the exact release times of the previous jobs and only depend on their order. Hence,
the assignment decisions are not based on the current status of the jobs in the queues of
the machines.

258 N. Avrahami and Y. Azar

4. Total Flow Time Analysis. In this section we prove that the total flow time of
algorithm IMD is within an O(min{log P, log n}) factor of the total flow time of the
optimal migratory offline algorithm. We state a different scheduling principle for each
single machine (see [5]), which is clearly less effective than SRPT (see [3]), and analyze
it. This is done to simplify the analysis.

The processing on the i th machine will be conducted according to the following
principle: process the job with the earliest arrival time among the set of jobs of the
smallest class k with unfinished jobs (Ri

=k(t) > 0).
We first observe the simple fact that the total flow time is the integral over time of the

number of jobs that are alive (for example, see [13]):

FACT 4.1. For any scheduler S,

F S =
∫

t
δS(t) dt.

4.1. The O(log P) Bound. We start the analysis focusing on the O(log P) bound. In
this part we are about to distinguish between times where all the machines are working
(t ∈ T), and times where at least one machine is idle (t /∈ T). For each of these cases
we bound the number of alive jobs δIMD(t) and finally we will compute the integral of
Fact 4.1.

At this stage we show that the total remaining processing time (for each class) is
almost the same on the different machines at any given time.

OBSERVATION 4.2. For any time t and any two machines i and j we have |U i j
=k(t)| ≤

2k+1 and hence also |U i j
≤k(t)| ≤ 2k+2.

PROOF. The first inequality holds since all the jobs of class k are of size ≤ 2k+1. The
second inequality follows obviously.

LEMMA 4.3. For any t , the difference between the volume of jobs that have already been
processed, on any two different machines i and j , is bounded as follows: |Pi j

≤k(t)| ≤ 2k+2.

PROOF. Assume that t0 is the first time |Pi j
≤k(t)| gets bigger than 2k+2, hence, |Pi j

≤k(t0)| =
2k+2 and for any small enough ε > 0, |Pi j

≤k(t0+ ε)| > 2k+2. This means that exactly one
of these machines processes jobs of classes not bigger than k (otherwise the difference
value does not change). Assume it is machine i (and hence P j

≤k(t0)+ 2k+2 = Pi
≤k(t0)).

Since the algorithm always processes a job from the smallest class on each machine,
machine j must have already processed all of the jobs of classes≤ k by t0 (i.e., U j

≤k(t0) =
P j
≤k(t0)) while machine i did not finished processing all the jobs of classes ≤ k (i.e.,

Pi
≤k(t0) < U i

≤k(t0)). Hence,

U j
≤k(t0)+ 2k+2 = P j

≤k(t0)+ 2k+2 = Pi
≤k(t0) < U i

≤k(t0),

which yields

2k+2 < |U i j
≤k(t0)|.

This contradicts Observation 4.2.

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 259

LEMMA 4.4. For any t , the difference between the residual volume of jobs that needs to
be processed, on any two different machines i and j , is bounded as follows: |Ri j

≤k(t)| ≤
2k+3.

PROOF. Combining Observation 4.2, Lemma 4.3, and the fact that R(t) = U (t)− P(t)
by definition, we get

|Ri j
≤k(t)| ≤ |U i j

≤k(t)| + |Pi j
≤k(t)| ≤ 2k+3.

We handle the case where at least one of the machines is idle (t /∈ T), implying that
the other machines are not heavily loaded.

LEMMA 4.5. For any t /∈ T , the number of jobs from the range [k1, k2] of classes on
any machine i can be bounded as follows: δi

[k1,k2](t) ≤ 9(k2 − k1 + 1).

PROOF. Since t /∈ T , there exists a machine j , which is idle (i.e., with R j (t) = 0).
Obviously for any k, R j

≤k(t) = 0. By Lemma 4.4 we get that for any (non-idle) machine
i , Ri

≤k(t) ≤ 2k+3, and obviously also Ri
=k(t) ≤ 2k+3 follows. Since the algorithm

processes the job with the earliest arrival time among a set of jobs from the same class
k, we can deduce that on machine i there is at most one job from class k with remaining
processing time < 2k . Hence, we bound the number of jobs of class k at this time by
δi
=k(t) ≤ Ri

=k(t)/2
k + 1 ≤ 8+ 1 = 9. The result follows.

COROLLARY 4.6. For any t /∈ T , the number of jobs in the whole system can be bounded
as follows: δ(t) ≤ 9γ (t)(log P + 2).

PROOF. The result follows immediately from Lemma 4.5 with k2 = kmax and k1 = kmin

and the fact that the number of classes kmax − kmin + 1 is smaller than log P + 2.

Now, assume none of the machines is idle (t ∈ T), and let t̂ < t be the earliest time
such that [t̂, t) ⊂ T . Define tk to be the last time a job from a class bigger than k was
processed in this range (in case only jobs of classes≤ k were processed throughout [t̂, t)
we set tk = t̂).

LEMMA 4.7. For t ∈ T and tk as defined above,
R≤k(t) ≤
R≤k(tk).

PROOF. Clearly
R≤k may change over the time range [tk, t) due to the processing of
jobs and due to the release of new jobs (of classes≤ k). First we consider the processing
of jobs. By definition of tk , it is obvious that the algorithm processes only jobs whose
class is at most k in the range [tk, t) on all machines. Hence the total processed volume
in that range is (t − tk)m. The optimum cannot process more volume at that range and
hence
R≤k(t) can only decrease. Next we consider the release of new jobs. Note that
the release of new jobs of classes ≤ k has the same affect on the optimum and on the
algorithm and hence does not change the value of
R≤k . We conclude that
R≤k may
only decrease in the range [tk, t) as needed.

260 N. Avrahami and Y. Azar

LEMMA 4.8. For tk defined above,
R≤k(tk) ≤ m2k+3.

PROOF. From the definition of tk it follows that there exists a machine i such that for
every small enough ε > 0, Ri

≤k(tk − ε) = 0. This is either the machine that processed
the last job of a class bigger than k in the range [t̂, t) or alternatively the machine that
was last idle (in case tk = t̂). Hence, by Lemma 4.4, any other machine j complies with
R j
≤k(tk − ε) ≤ 2k+3, yielding also
R j

≤k(tk − ε) ≤ 2k+3. Since jobs which arrive exactly
at tk increment R also for the offline algorithm, not affecting
R, we get
R≤k(tk) ≤
m2k+3.

LEMMA 4.9. For t ∈ T ,
R≤k(t) ≤ m2k+3.

PROOF. Combining Lemma 4.7 with Lemma 4.8 yields
R≤k(t) ≤
R≤k(tk) ≤
m2k+3.

LEMMA 4.10. For t ∈ T , for any machine i ,
Ri
≤k(t) ≤ 2k+4.

PROOF. From Lemma 4.9 we have that minj
R j
≤k(t) ≤ 2k+3. Note that by definition

ROPT,i j
≤k (t) = ROPT,i

≤k (t)− ROPT, j
≤k (t) = 1

m
ROPT
≤k (t)− 1

m
ROPT
≤k (t) = 0

and hence,
Ri j
≤k(t) = Ri j

≤k(t)− ROPT,i j
≤k (t) = Ri j

≤k(t). From Lemma 4.4 we also derive

|
Ri j
≤k(t)| = |Ri j

≤k(t)| ≤ 2k+3.

Combining the above yields

Ri
≤k(t) ≤ min

j

R j
≤k(t)+ |
Ri j

≤k(t)| ≤ 2k+4

as needed.

LEMMA 4.11. For any t ∈ T , the number of jobs from the range [k1, k2] of classes on
any machine i can be bounded as follows: δi

[k1,k2](t) ≤ 9(k2 − k1 + 2)+ 2δOPT,i
≤k2

(t).

PROOF. We count the number of jobs on machine i by class, and bound it as follows:

δi
[k1,k2](t) =

k2∑
j=k1

δi
= j (t)

≤
k2∑

j=k1

{

Ri
= j (t)+ ROPT,i

= j (t)

2 j
+ 1

}

=
k2∑

j=k1

Ri
≤ j (t)−
Ri

≤ j−1(t)

2 j
+ (k2 − k1 + 1)+

k2∑
j=k1

ROPT,i
= j (t)

2 j

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 261

≤
Ri
≤k2
(t)

2k2
+

k2−1∑
j=k1

Ri
≤ j (t)

2 j+1
−
Ri

≤k1−1(t)

2k1
+ (k2 − k1 + 1)+ 2δOPT,i

[k1,k2](t)

≤ 16+
k2−1∑
j=k1

8+ δOPT,i
≤k1−1(t)+ (k2 − k1 + 1)+ 2δOPT,i

[k1,k2](t)

≤ 9(k2 − k1 + 2)+ 2δOPT,i
≤k2

(t),

where the second line is due to the fact that there is at most one job on machine i of
each class k with a residual volume less than 2k . The fourth line is derived from the fact
that the residual of each job of class k is smaller than 2k+1 by definition. The fifth line is
derived by applying Lemma 4.10.

COROLLARY 4.12. For any t ∈ T , the number of jobs in the whole system can be
bounded as follows: δ(t) ≤ 9m(log P + 3)+ 2δOPT(t).

PROOF. First note that kmax − kmin + 2 ≤ log P + 3. Now we apply Lemma 4.11 with
k2 = kmax and k1 = kmin and sum over all the machines, which yields the result.

We prove the O(log P) approximation ratio.

THEOREM 4.13. FIMD = O(log P) · FOPT , i.e., algorithm IMD has a logarithmic
approximation factor, with respect to the maximum ratio between job sizes, even when
compared with the best (possibly migratory) offline algorithm.

PROOF.

FIMD =
∫

t
δ(t) dt

=
∫

t /∈T
δ(t) dt +

∫
t∈T

δ(t) dt

≤
∫

t /∈T
9(2+ log P)γ (t) dt +

∫
t∈T
(9m(log P + 3)+ 2δOPT(t)) dt

= 9(2+ log P)
∫

t /∈T
γ (t) dt + 9(log P + 3)

∫
t∈T

γ (t) dt + 2
∫

t∈T
δOPT(t) dt

≤ 9(log P + 3)
∫

t
γ (t) dt + 2

∫
t
δOPT(t) dt

≤ (29+ 9 log P) · FOPT ,

where the first equality is from the definition of FIMD. The second equality is obtained
by looking at times in which none of the machines is idle and at times in which at least
one machine is idle, separately. The third line uses Corollaries 4.6 and 4.12. The fourth
line is true by definition of T . Finally,

∫
t γ

IMD(t) dt is the total time spent processing
jobs by the machines which is exactly the sum of all jobs. This sum is upper bounded
by the total flow time of OPT since each job’s flow time must be at least its processing
time.

262 N. Avrahami and Y. Azar

4.2. The O(log n) Bound. We now turn to prove the O(log n) bound. We start this part
focusing on a single machine i . We define k̄i to be the maximal class of a job assigned
to i throughout the process. Define τ i

k to be the set of time units, in which machine i
processed a job of class k.

LEMMA 4.14. The flow time of all jobs assigned to machine i can be bounded as follows:

FIMD,i ≤ 18
k̄i∑

j=kmin

(k̄i − j)ni
= j 2

j + 18U i
[kmin,k̄i]

+ 2FOPT,i .

PROOF. We compute the integral of Fact 4.1 according to the time partition to τ i
k .

FIMD,i =
∫

t
δi (t) dt

=
k̄i∑

j=kmin

∫
t∈τ i

j

δi
[j,k̄i]

(t) dt

≤
k̄i∑

j=kmin

∫
t∈τ i

j

{9(k̄i − j + 2)+ 2δOPT,i
≤k̄i (t)} dt

≤
k̄i∑

j=kmin

9(k̄i − j + 2)U i
= j + 2FOPT,i

≤ 18
k̄i∑

j=kmin

(k̄i − j)ni
= j 2

j + 18U i
[kmin,k̄i]

+ 2FOPT,i ,

where the second equality is by definition of τ i
k . The third line is derived from Lemmas

4.5 and 4.11. The fourth line is because |τ i
k | = U i

=k . The fifth line is because the jobs of
class k are smaller than 2k+1.

To continue, we use a technical lemma proved in [2] with its proof.

LEMMA 4.15. Given a sequence a1, a2, ...of non-negative numbers such that
∑

i≥1 ai ≤
A and

∑
i≥1 2i ai ≤ B then

∑
i≥1 iai ≤ A log(4B/A).

PROOF. Define a second sequence, bi =
∑

j≥i aj for i ≥ 1. Then it is known that
A ≥ b1 ≥ b2 ≥ · · · ≥ bi . Also, it is known that

∑
i≥1

2i ai =
∑
i≥1

2i (bi − bi+1) = 1

2

∑
i≥1

2i bi + b1.

This implies that
∑

i≥1 2i bi ≤ 2B.
The sum we are trying to upper bound is

∑
i≥1 bi =

∑
i≥1 iai . This can be viewed as

an optimization problem where we try to maximize
∑

i≥1 bi subject to
∑

i≥1 2i bi ≤ 2B

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 263

and bi ≤ A for i ≥ 1. This corresponds to the maximization of a continuous function in
a compact domain and any feasible point where bi < A, bi+1 > 0 is dominated by the
point we get by replacing bi , bi+1 with bi + 2ε, bi+1− ε. Therefore, it is upper bounded
by assigning bi = A for 1 ≤ i ≤ k and bi = 0 for i > k where k is large enough such
that

∑
i≥1 2i bi ≥ 2B. A choice of k = �log(2B/A)� is adequate and the sum is upper

bounded by k A from which the result follows.

LEMMA 4.16. For any machine i ,
∑k̄i

j=kmin
(k̄i − j)ni

= j 2
j ≤ U i log(4ni).

PROOF. We exchange variables by l = k̄i − j and define Il = ni
=k̄i−l

2k̄i−l = ni
= j 2

j .

Note that
∑k̄i−kmin

l=0 Il ≤ U i and also

k̄i−kmin∑
l=0

2l Il =
k̄i−kmin∑

l=0

2lni
k̄i−l

2k̄i−l = ni 2k̄i
.

We apply Lemma 4.15 to our problem using al = Il , l = 0, . . . , k̄i − kmin, A = U i ,
and B = ni 2k̄i

and obtain

k̄i∑
j=kmin

(k̄i − j)ni
= j 2

j =
k̄i−kmin∑

l=0

l Il ≤ U i log

(
4ni 2k̄i

U i

)
≤ U i log(4ni)

due to the fact that 2k̄i ≤ U i by definition of k̄i .

We prove the O(log n) approximation ratio.

THEOREM 4.17. FIMD = O(log n) · FOPT , i.e., algorithm IMD has a logarithmic ap-
proximation factor, with respect to the number of jobs n, even when compared with the
best (possibly migratory) offline algorithm.

PROOF. We sum over the different machines contribution to the total flow:

FIMD =
m∑

i=1

FIMD,i

≤
m∑

i=1

{
18

k̄i∑
j=kmin

(k̄i − j)ni
= j 2

j + 18U i
[kmin,k̄i]

+ 2FOPT,i

}

≤ 18
m∑

i=1

U i log(4ni)+ 18U + 2FOPT

≤ O(log n)
m∑

i=1

U i + 20FOPT = O(log n)FOPT ,

where the second line is due to Lemma 4.14 and the third line is due to Lemma 4.16.

264 N. Avrahami and Y. Azar

5. Total Completion Time Analysis. In this section we prove that the total completion
time of algorithm IMD is at most seven times the total completion time of the optimal
migratory offline algorithm. Later we show how to eliminate the preemption and construct
an algorithm IMD′ which is at most 14 times the total completion time of the optimal
migratory offline algorithm.

We start by defining a fair schedule. We say that a schedule S is fair if, for any two
jobs i and j with pi = pj and ri ≤ rj , i finishes not later than j . We now argue that
there is a fair optimal schedule.

LEMMA 5.1. For any schedule S, there exists another schedule S′, which is fair and
which is not worse than S, with respect to the total completion time.

PROOF. We transform the schedule S into S′ in stages. Our basic step is to choose a
pair of jobs i and j , with pi = pj and ri < rj , which is not scheduled fairly, i.e., job
j finishes before job i . We denote by T1 the time period when only one of these jobs
was processed. Let T1,i be the time period when only job i was processed and let T1, j

be the time period when only job j was processed. We assign the first |T1,i | time units
of T1 to job i and the last |T1, j | units of T1 to job j . First note that this assignment is
feasible, moreover this pair is scheduled fairly, while only improving the completion
time of the first job of the two to be completed (the completion time of the second job
remains unchanged).

Next we have to show in what order to apply iteratively the basic step on pairs of
jobs to achieve a fair schedule. This process will not increase the total completion time.
Consider all jobs with a given processing time. Among these jobs let i be the one that
completes last and let j be the one that was released last (it is possible that i = j). If
i �= j then i and j are not scheduled fairly and we can apply the basic step between
them. Hence j becomes the job that is released last and completes last (if i = j this
was the case to begin with). We omit job j from our consideration and recurse on the
remaining jobs. Clearly in the recursion all other jobs will be completed not later than the
completion time of j and hence the schedule is fair with respect to j versus other jobs.
Since all job will be the latest at some step of the recursion we obtain a fair schedule
on all jobs of a given processing time. Applying this for each set of jobs of a given
processing time yields a fair schedule S′.

COROLLARY 5.2. For any input jobs set J , there is a fair optimal schedule.

PROOF. By Lemma 5.1 there is another schedule S′, which is not worse than OPT with
respect to the total completion time that is also fair. Obviously S′ is also optimal.

By Corollary 5.2, we can choose OPT to denote an optimal offline algorithm, which
yields a schedule that is fair.

Recall that the input set of jobs is J = {(rj , pj)}nj=1. We compare the performance
of IMD and OPT on J by examining the performance of OPT when running on another
input set Ĵ . We define this set by Ĵ = {(2rj , 2kj+1)}nj=1, where kj is the class of the j th
job in J .

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 265

LEMMA 5.3. For any input set of jobs J , COPT(Ĵ) ≤ 2COPT(J).

PROOF. Let J2 = {(2rj , 2pj)}nj=1. It is clear that any schedule on J can be translated
by simple scaling to a schedule on J2 and vice versa, hence COPT(J2) = 2COPT(J). On
the other hand, we have that 2kj+1 ≤ 2pj , therefore any schedule on J2 is also a valid
schedule on Ĵ yielding COPT(Ĵ) ≤ COPT(J2). Combining the above arguments yields

COPT(Ĵ) ≤ COPT(J2) = 2COPT(J).

We now observe that the total completion time can be computed as an integral over
time of the number of jobs that were not completed yet:

OBSERVATION 5.4. For any scheduler S, C S = ∫
t n − cS(J, t) dt.

In view of this observation, we turn to show that for any t , algorithm IMD completes
by time 3.5t at least the amount of jobs completed by OPT by time t when it runs on Ĵ .

Recall that J OPT(Ĵ , t) is the set of jobs that OPT finishes by time t when the input
set of jobs is Ĵ . We denote the corresponding jobs from J by J ∗(t).

LEMMA 5.5. For any time t , cOPT(Ĵ , t) = cIMD(J ∗(t), 3.5t).

PROOF. First note that by definition

cOPT(Ĵ , t) = |J OPT(Ĵ , t)| = |J ∗(t)|,
furthermore, it is clear that for any other time t ′, |J ∗(t)| ≥ cIMD(J ∗(t), t ′), hence
cOPT(Ĵ , t) ≥ cIMD(J ∗(t), 3.5t). It is left to prove that cOPT(Ĵ , t) ≤ cIMD(J ∗(t), 3.5t).

Note that all the jobs in J ∗(t) are released before time t/2. By definition all the
jobs in J ∗(t) are smaller than their corresponding jobs in J OPT(Ĵ , t), consequently
U (J ∗(t), t/2) ≤ U (J OPT(Ĵ , t), t). By the standard averaging argument, we deduce that

min
i

{
U i

(
J ∗(t),

t

2

)}
≤ 1

m
U (J OPT(Ĵ , t), t) ≤ t.

Let klow and khigh be the extreme classes of jobs in J ∗(t). Hence, the biggest job in
J OPT(Ĵ , t) is of size 2khigh+1. Since OPT finishes its corresponding job by time t , we also
have that 2khigh+1 ≤ t .

Applying Observation 4.2, we bound the total volume difference between the ma-
chines as follows:

U i

(
J ∗(t),

t

2

)
= U i

≤khigh

(
J ∗(t),

t

2

)
≤ U j

≤khigh

(
J ∗(t),

t

2

)
+ 2khigh+2

≤ U j

(
J ∗(t),

t

2

)
+ 2khigh+2.

Combining the above arguments yields

max
i

{
U i

(
J ∗(t),

t

2

)}
≤ min

i

{
U i

(
J ∗(t),

t

2

)}
+ 2khigh+2 ≤ t + 2t = 3t.

266 N. Avrahami and Y. Azar

Thus, algorithm IMD finishes processing all the jobs of J ∗(t) before time 3.5t , even
if it starts processing jobs only at time t/2. Therefore, cOPT(Ĵ , t) ≤ cIMD(J ∗(t), 3.5t).
This proves the lemma.

LEMMA 5.6. For any time t , cIMD(J ∗(t), t) ≤ cIMD(J, t).

PROOF. Note that not only does J ∗(t) ⊆ J , but J ∗(t) is a classwise prefix of J , i.e.,
the arrival time of any job of class k in J ∗(t) is at most the arrival time of any job of this
class in J\J ∗(t) (by our choice of a fair OPT schedule). Hence, the assignment of the
jobs in J ∗(t) by IMD remains the same, when it runs on J (note that for jobs with the
same arrival time we fix their assignment order in J ∗(t) to be same assignment order as
in J). Therefore the job set that IMD assigns to each machine when running on J is a
superset of the jobs it assigned when it ran only on J ∗(t). Note that algorithm IMD uses
SRPT on each machine in order to schedule the input jobs, moreover it is well known
that cSRPT(J1, t) ≤ cSRPT(J2, t) for any t and J1 ⊆ J2 (see [14]), hence, for any time t ,
each machine completes at least the same number of jobs it completed on J ∗(t) . The
lemma follows.

COROLLARY 5.7. For any time t , cOPT(Ĵ , t) ≤ cIMD(J, 3.5t).

PROOF. Combining Lemmas 5.5 and 5.6 yields

cOPT(Ĵ , t) = cIMD(J ∗(t), 3.5t) ≤ cIMD(J, 3.5t),

as needed.

LEMMA 5.8. CIMD(J) ≤ 3.5 · COPT(Ĵ).

PROOF. We compute the total completion time:

CIMD(J) =
∫

t
n − cIMD(J, t) dt =

∫
u
[n − cIMD(J, 3.5u)]3.5 du

≤ 3.5
∫

u
n − cOPT(Ĵ , u) du = 3.5 · COPT(Ĵ),

where the first and the last equalities are by Observation 5.4. The second equality is
obtained by the variables change 3.5u = t . The inequality is due to Corollary 5.7.

We turn to prove the main result of this section.

THEOREM 5.9. CIMD(J) ≤ 7 · COPT(J), i.e., algorithm IMD has a small constant
approximation factor even when compared with the best (possibly migratory) offline
algorithm, with respect to the total completion time.

PROOF. Combining Lemmas 5.3 and 5.8 yields

CIMD(J) ≤ 3.5 · COPT(Ĵ) ≤ 7 · COPT(J),

as needed.

Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching 267

Note that the preemptive algorithm IMD can be converted into a non-preemptive
algorithm IMD′ by applying some single machine “preemptive to non-preemptive” con-
version to each of the machines separately. Such a conversion algorithm was introduced
in [14], which basically list-schedules the jobs according to their completion time in the
preemptive schedule. This conversion results in losing only a constant factor of 2 in our
approximation, resulting in a non-preemptive schedule generated using immediate dis-
patching, with a 14 approximation factor of the best possibly migratory offline algorithm
with respect to the total completion time.

6. Conclusions. In this paper we considered the problem of finding a preemptive
schedule that optimizes both the total flow time and the total completion time of a set of
jobs released over time, when the assignment of jobs to machines should be immediate
disallowing job migration. We presented a new online algorithm that is still within a
logarithmic factor of the best (possibly migratory) offline algorithm with respect to the
total flow time. This algorithm also achieves a small constant approximation factor of
the best offline algorithm with respect to the total completion time. It is interesting to
know if the bound of O(min{log P, log n}) for the flow time can be slightly improved to
O(min{log P, log(n/m)}) which is the tight bound of the optimal online migratory and
non-migratory algorithms without immediate dispatching.

References

[1] F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for minimizing average weighted
completion time with release dates. In Proc. IEEE Symposium on Foundations of Computer Science,
pages 32–44, 1999.

[2] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without migration. In
Proc. 31st ACM Symposium on Theory of Computing, pages 198–205, 1999.

[3] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.
[4] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling

algorithms for minsum criteria. In Proc. 23rd International Colloquium on Automata, Languages and
Programming, pages 646–657, 1996.

[5] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time. In Proc. 33rd
ACM Symposium on Theory of Computing, pages 84–93, 2001.

[6] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion
time scheduling. In Proc. 8th ACM–SIAM Symposium on Discrete Algorithms, pages 609–618, 1997.

[7] J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flow time with release time constraint.
Theoretical Computer Science, 75(3):347–355, 1990.

[8] L. A. Hall. Approximation algorithms for scheduling. In D. S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, pages 1–45. PWS, Boston, MA, 1997.

[9] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time: off-line and on-line
algorithms. In Proc. 7th ACM–SIAM Symposium on Discrete Algorithms, pages 142–151, 1996.

[10] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-machine scheduling. In
Proc. 5th Conference on Integer Programming and Combinatorial Optimization, pages 404–414, 1996.

[11] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability results for
minimizing total flow time on a single machine. In Proc. Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, pages 418–426, PA, 1996.

268 N. Avrahami and Y. Azar

[12] E. L. Lawler, J. K Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling:
algorithms and complexity. In Handbooks in Operations Research and Management Science, volume 4,
pages 445–522. North-Holland, Amsterdam, 1993.

[13] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proc. Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pages 110–119, El Paso, TX, 1997.

[14] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the presence of release dates.
In Proc. 4th Workshop on Algorithms and Data Structures, pages 86–97, 1995.

[15] A. Schulz and M. Skutella. Scheduling unrelated machines by randomized rounding. SIAM Journal on
Discrete Mathematics, 15:450–469, 2002.

[16] L. Stougie and A. Vestjens. Randomized on-line scheduling: How low can’t you go, 1997.

