
DOI: 10.1007/s00453-006-0177-6

Algorithmica (2007) 47: 399–420 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Convex Drawings of 3-Connected Plane Graphs1

Nicolas Bonichon,2 Stefan Felsner,3 and Mohamed Mosbah2

Abstract. We use Schnyder woods of 3-connected planar graphs to produce convex straight-line drawings
on a grid of size (n − 2−�)× (n − 2−�). The parameter � ≥ 0 depends on the Schnyder wood used
for the drawing. This parameter is in the range 0 ≤ � ≤ n/2 − 2. The algorithm is a refinement of the
face-counting algorithm; thus, in particular, the size of the grid is at most ( f − 2)× ( f − 2).

The above bound on the grid size simultaneously matches or improves all previously known bounds for
convex drawings, in particular Schnyder’s and the recent Zhang and He bound for triangulations and the
Chrobak and Kant bound for 3-connected planar graphs. The algorithm takes linear time.

The drawing algorithm has been implemented and tested. The expected grid size for the drawing of a
random triangulation is close to 7

8 n× 7
8 n. For a random 3-connected plane graph, tests show that the expected

size of the drawing is 3
4 n × 3

4 n.

Key Words. Graph drawing, Schnyder wood, Plane graph, Convex drawing, Compact representation.

1. Introduction. We investigate crossing-free straight-line drawings of planar graphs
with the restriction that the vertices of the graph have to be located at integer grid points.
The aim is to keep the area of an axis-aligned rectangle that covers the drawing as small
as possible. It is known that a square of side length n− 2, i.e., an (n− 2)× (n− 2) grid
is enough to host every planar graph.

A drawing with the property that the boundary of every face (including the outer
face) is a convex polygon is called a convex drawing. Convex drawings exist for every
3-connected planar graph. Again the aim is to keep the area of such a drawing as small
as possible.

It is important to distinguish between convex drawings and strictly convex drawings.
A drawing is strictly convex if every interior angle is less than 180◦ and every outer
angle greater than 180◦. In this paper we deal with convex drawings. The grid size for
strictly convex drawings was recently studied by Rote [18]; he proves that an O(n7/3)×
O(n7/3) grid is enough for strictly convex drawings of planar graphs with n vertices.
The construction is based on a convex drawing obtained via Schnyder woods.

1.1. Previous Work. The question of whether every planar graph has a straight-line
embedding on a grid of polynomial size was raised by Rosenstiehl and Tarjan [17].
Unaware of the problem Schnyder [20] constructed a barycentric representation which
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translates to an embedding on the (2n − 5) × (2n − 5) grid. The first explicit answer
to the question was given by de Fraysseix et al. [5], [6]. They construct straight-line
embeddings on a (2n− 4)× (n− 2) grid and show that the embedding can be computed
in O(n log n). De Fraysseix et al. also observed a lower bound of ( 2

3 n − 1)× ( 2
3 n − 1)

for grid embeddings of the n vertex graph containing a nested sequence of n/3 triangles.
It is conjectured that this is the worst case, i.e., that every planar graph can be embedded
on the ( 2

3 n − 1)× ( 2
3 n − 1) grid. 4-Connected planar graphs with at least four vertices

on the outer face can be drawn even more compactly. Work of He [12] and Miura et al.
[16] shows that these graphs can be embedded on the n

2 × n
2 grid.

In his second paper [21] Schnyder proves the existence of an embedding on the
(n − 2)× (n − 2) grid that can be computed in O(n) time. In general Schnyder’s result
from [21] is still unbeaten. Lately, Zhang and He [26] used the minimum Schnyder wood
of a triangulation to prove a bound of (n − 1−� )× (n − 1−� ), where � is the
number of cyclic faces in the minimum Schnyder wood.

Though it is implicitly contained in Steinitz’s characterization of 3-connected planar
graphs as the skeleton graphs of three-dimensional polytopes, the existence of convex
drawings for these graphs is known as Tutte’s theorem. The idea for Tutte’s proof [24],
[25] is known as spring-embedding. Technically the embedding is obtained as a solution
to a system of linear equations. Kant [13] has extended the approach of de Fraysseix
et al. to construct convex drawings on the (2n − 4) × (n − 2) grid. The grid size was
reduced to (n − 2)× (n − 2) by Chrobak and Kant [4]. Schnyder and Trotter [22] have
worked on ideas for convex grid embeddings which are based on Schnyder woods. The
basic approach was independently worked out by Di Battista et al. [7] and Felsner [8].
This results in convex grid drawings on the ( f − 1) × ( f − 1) grid, where f is the
number of faces of the graph. In this paper this basic algorithm is used but the size
of the required grid is reduced by some new ideas. Loosely speaking, some edges are
eliminated which results in the reduction of f . This can be done until at most n − �
faces remain. The eliminated edges can be reinserted in the resulting drawing on the
(n−1−�)× (n−1−�) grid, with� ≥ 0.� ≥ n− f . The drawing procedure can be
implemented to run in linear time. The algorithm has been implemented and integrated
into the PIGALE library.4

1.2. Organization of the Paper. In the next section we introduce Schnyder woods. It
is shown how to use Schnyder woods to obtain convex drawings of 3-connected planar
maps. The lattice of Schnyder woods is discussed and a new operation called merge is
introduced as a tool for transforming Schnyder woods and their underlying graphs.

Section 3 contains the generic drawing algorithm. It is shown that this algorithm
produces convex drawings and the size of the grid required for the drawing is analyzed.
The main ingredient of this analysis is a bound on the number of merges applicable to
a Schnyder wood. In particular it is shown that starting with the Schnyder wood of a
triangulation a sequence of n − 4+� −� merge operations is admissible.

Section 4 adds some ideas for further reduction of the grid size. The first of these
allows a decrease of the side length of the grid by one. This small reduction, however,

4 PIGALE is an open-source library in which numerous planar graphs algorithms are implemented. It is
developed and maintained by H. de Fraysseix and P. Ossona de Mendez. http://pigale.sourceforge.net.
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is crucial to match Schnyder’s (n − 2) × (n − 2) bound for planar triangulations. We
present a second idea for further reducing the grid size. Basically, the improvement comes
from disregarding some faces. Although the technique is appealing it has so far resisted
our attempts of proving that it guarantees some non-zero gain. We adapt the method
to produce compact convex drawings in the slightly more general case of internally
3-connected planar graphs.

Finally, we report some experimental results. Tests with the implementation allow
guessing the average reduction in size obtained from the parameter � or from disre-
garding some faces.

2. Schnyder Woods. Schnyder defined special colorings and orientations of the in-
ternal edges of a triangulation. In [20] and [21] he applied these Schnyder woods to
characterize planar graphs via order dimension and to draw planar graphs on small grid
sizes. Here we describe a generalization of Schnyder woods for 3-connected planar
graphs. Such a generalization has been presented in [7] and [8]; in our exposition we
follow [9].

A planar map M is a simple planar graph G together with a fixed planar embedding
of G in the plane. A suspension Mσ of M is obtained as follows: Three different vertices
from the outer face of M are specified and named a1, a2, a3 in clockwise order. (For ease
of visualization we identify the indices 1, 2, 3. Moreover, we assume a cyclic structure
on the indices such that i + 1 and i − 1 are always defined.) At each of the three special
vertices ai , called suspension vertices, a half-edge reaching into the outer face is attached.

Let Mσ be a suspension of a planar map. A Schnyder wood is an orientation and
coloring of the edges of Mσ with the colors 1, 2, 3 satisfying the following rules:

(W1) Every edge e is oriented by one or two opposite directions. The directions of edges
are colored such that if e is bi-directed the two directions have distinct colors.

(W2) The half-edge at ai is directed outward and colored i .
(W3) Every vertex v has outdegree one in each color. The edges e1, e2, e3 leaving v in

colors 1,2,3 occur in clockwise order. Each edge entering v in color i enters v in
the clockwise sector from ei+1 to ei−1. See Figure 1.

(W4) There is no interior face whose boundary is a directed cycle in one color.
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3

3

2
1 1 1

Fig. 1. Edge colorings5 and orientations at a vertex.

3 To see the colors visit the electronic versions at the authors’ homepages.
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A suspension is internally 3-connected if adding a new vertex v∞ as the second
endpoint for the three half-edges the graph obtained is planar and 3-connected.

FACT 1. There is a Schnyder wood for Mσ , if and only if Mσ is the suspension Mσ

internally 3-connected.

The proof that only internally 3-connected suspensions admit a Schnyder wood is
given by Theorem 5.1 of [15].

Given a Schnyder wood, let Ti be the set of edges colored i with the direction they
have in this color. Since every internal vertex has outdegree one in Ti every v is the
starting vertex of a unique i-path Pi (v) in Ti .

FACT 2. The digraph Ti is acyclic; even more, Ti is a tree with root ai .

2.1. Convex Drawings via Face-Counting. Schnyder and Trotter [22] had some ideas
of using Schnyder woods for convex grid embeddings. The approach has been worked
out in [7] and [8]. We describe the technique, omitting some details.

From the vertex condition (W3) it can be deduced that for i 
= j the paths Pi (v) and
Pj (v) have v as the only common vertex. Therefore, P1(v), P2(v), P3(v) divide M into
three regions R1(v), R2(v) and R3(v), where Ri (v) denotes the region bounded by and
including the two paths Pi−1(v) and Pi+1(v); see Figure 2.

FACT 3.

(a) Ri (u) ⊆ Ri (v) iff u ∈ Ri (v).
(b) Ri (u) = Ri (v) iff there is a path of bicolored edges in colors i − 1 and i + 1

connecting u and v.
(c) For all u, v there are i and j with Ri (u) ⊂ Ri (v) and Rj (v) ⊂ Rj (u).
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R2(v)

Fig. 2. A Schnyder wood and the regions of vertex v.
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The face-count of a vertex v is the vector (v1, v2, v3), where vi is defined as

vi = the number of faces of M contained in region Ri (v).

FACT 4. For every edge {u, w} and vertex v 
= u, w there is a color i with {u, w} ∈
Ri (v); hence, ui ≤ vi and wi ≤ vi .

Inclusion properties of the three regions of adjacent vertices imply:

FACT 5.

(a) If edge (u, v) is uni-directed in color i , then ui < vi , ui−1 > vi−1 and ui+1 > vi+1.
(b) If (u, v) is directed in color i −1 and (v, u) in color i +1, then ui = vi , ui−1 > vi−1

and ui+1 < vi+1.

Clearly, each vertex v has v1+v2+v3 = f −1, where f is the number of faces of M .
Hence, we have a mapping of the vertices of the graph to the plane Tf = {(x1, x2, x3): x1+
x2+ x3 = f −1} inR3. Connecting the points corresponding to adjacent vertices by the
line segment between them yields a drawing µ(M) of M in the plane Tf .

The color and orientation of edges are nicely encoded in this drawing: Let v be a
vertex with µ(v) = (v1, v2, v3). The three lines x1 = v1, x2 = v2 and x3 = v3 partition
the plane Tf into six wedges with apexµ(v). By Fact 5, the color and orientation of edges
incident to v is determined by the wedge containing them; see Figure 3. In particular the
bicolored edges are the edges supported by the lines defining the wedges.

THEOREM 1. The drawing µ(M) is a convex drawing of M in Tf . Dropping the third
coordinate yields a convex drawing of M on the ( f − 1)× ( f − 1) grid.

PROOF (sketch).

• For every edge {u, w} and vertex v 
= u, w the point µ(v) is not contained in the
segment [µ(u), µ(v)] representing the edge.
• There are no crossing edges in µ(M), i.e., the embedding is planar. (This can be con-

cluded from the observation that face-counting yields a weak barycentric embedding
as defined by Schnyder [21].)

2
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x3 = v3

x1 = v1

x2 = v2

v

Fig. 3. Wedges and edges at a vertex v in the plane Tf .
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b1

a3 a2

b3

a1

b2

Fig. 4. The suspension dual of the example from Figure 2.

• The outgoing edges at a vertex (see Figure 3) guarantee that all interior angles of
µ(M) are ≤ π , i.e., the embedding is convex.
• Planarity and convexity are preserved by the projection of the drawing from Tf to the

plane x3 = 0.

2.2. The Lattice of Schnyder Woods. In general the suspension Mσ of an internally
3-connected planar map will admit many Schnyder woods. Felsner [10] has shown that
the set of all Schnyder woods of a given Mσ has the structure of a distributive lattice.
As we will make use of some elements of this theory we recall some definitions and the
main results.

Think of the three half-edges of Mσ as noncrossing infinite rays. These rays partition
the outer face of M into three parts. The suspension dual Mσ

∗
of Mσ is the dual of

this map. Thus Mσ
∗

has a triangle b1, b2, b3 corresponding to the unbounded face of M .
Half-edges reaching into the unbounded face of Mσ

∗
are attached to the three suspension

vertices bi . Figure 4 shows an example.
The completion M̃σof a plane suspension Mσ and its dual Mσ

∗
is obtained as follows:

Superimpose Mσ and Mσ
∗

so that exactly the primal dual pairs of edges cross (the half-
edge at ai has a crossing with the dual edge {bj , bk}, for {i, j, k} = {1, 2, 3}). At each
crossing place a new vertex such that this new edge vertex subdivides the two crossing
edges.

The completion M̃σ is planar, every edge-vertex has degree four and there are six
half-edges reaching into the unbounded face.

A 3-orientation of the completion M̃σ of Mσ is an orientation of the edges of M̃σ

such that:

(O1) outdeg(v) = 3 for all primal- and dual-vertices v.
(O2) indeg(ve) = 3 for all edge-vertices ve (hence, outdeg(ve) = 1).
(O3) All half-edges are out-edges of their vertex.

THEOREM 2. Let Mσ be a suspension of an internally 3-connected plane graph M . The
following structures are in bijection:

(1) Schnyder woods of Mσ .
(2) Schnyder woods of the suspension dual Mσ

∗
.

(3) 3-Orientations of the completion M̃σ .
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Fig. 5. The bijections for Theorem 2.

The bijections are illustrated in Figure 5. The proof of this theorem is given in [10].
The proof of Lemma 2 contains a piece of detail about the bijections.

The lattice structure of Schnyder woods is best understood by looking at 3-orientations:
Let X be a 3-orientation and let C be a directed cycle of X . Reverting the orientation of
all edges of C yields another 3-orientation XC . If C is a simple directed cycle it has a
connected interior and we can speak of the clockwise and the counterclockwise order of
C . Define X � XC if C is a clockwise-directed cycle in X . The transitive closure �∗ of
this relation is an order relation on the set of 3-orientations.

THEOREM 3. The relation �∗ is the order relation of a distributive lattice on the set of
3-orientations of the completion M̃σ of a suspension Mσ of an internally 3-connected
planar map. The unique minimum 3-orientation contains no clockwise directed cycles.

In view of Theorem 2 a suspension Mσ has unique minimum Schnyder wood SMin.
Figure 6 shows two sub-structures that are impossible in SMin.

• A uni-directed edge incoming at v in color i + 1 such that the counterclockwise next
edge is bi-directed, outgoing at v in color i − 1 and incoming in color i .
• A clockwise triangle of uni-directed edges, having colors i , i+1, i+2 in this clockwise

order.

An algorithm to compute SMin has been described and analyzed by Fusy et al. [11]. The
result is the following:

THEOREM 4. Let Mσ be a suspended 3-connected planar map. The minimal Schnyder
wood SMin of Mσ can be computed in linear time.

2

1

3

1
3

2

Fig. 6. Two types of clockwise cycles in 3-orientations and the corresponding sub-structures of Schnyder
woods.
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cw-split ccw-split

cw-merge ccw-merge

Fig. 7. Clockwise and counterclockwise merge and split.

2.3. Merging and Splitting. The operations merge and split introduced in this section
operate on Schnyder woods and the underlying graph. Merge and split can be seen as
inverse operations, corresponding to the deletion and insertion of an edge.

Given a Schnyder wood, a knee at vertex v is an ordered pair of uni-directed edges
adjacent at an angle of v such that the first of the edges is incoming and the second
outgoing at v. Knees come in two kinds: if the in-edge of the knee is the clockwise
neighbor of the out-edge at v we speak of a cw-knee; otherwise, if the in-edge of the
knee is the counterclockwise neighbor of the out-edge it is a ccw-knee.

Let (u, v), (v,w) be a knee at v. Suppose that the color of (v,w) is i ; by the vertex
condition the color of (u, v) is i − 1 if it is a cw-knee and i + 1 if it is a ccw-knee. The
merge of the knee consists of the deletion of the out-edge (v,w)while making (u, v) a bi-
directed edge outgoing atv in color i and incoming in the same color as before. Depending
on the type of the knee we distinguish between clockwise and counterclockwise merge
operations. Figure 7 illustrates the definition.

LEMMA 1. Let S be a Schnyder wood; the coloring and orientation of edges after
merging a knee is again a Schnyder wood.

PROOF. The first three conditions (W1), (W2) and (W3) of Schnyder woods obvi-
ously remain true after the merge. Instead of arguing for (W4) we use the bijection
with 3-orientations (see Theorem 2) from [10] (the idea of the bijection is shown in
Figure 12). The merge of the knee corresponds to the deletion of an edge-vertex and
the merge of two face-vertices as shown in Figure 8. The result of the merge is again a
3-orientation.

A split of a bi-directed edge is the inverse operation of a merge. A split, however,
is not determined by the choice of a bi-directed edge. The bi-directed edge can only
split into one of its adjacent faces; this corresponds to the choice for the split of being

Fig. 8. A cw-merge in a 3-orientation.



Convex Drawings of 3-Connected Plane Graphs 407

the inverse of a cw-merge or a ccw-merge, i.e., a cw-split or a ccw-split. This choice
determines the resulting color of the edge. If this choice is fixed, there can still be several
choices for the second endpoint of the split edge.

At this point we stay with the remark that every bi-directed edge can be split; actually,
it can be split by a cw-split or a ccw-split. To see that this should be true look at Figure 8
from right to left.

In the context of this paper we only need one very specific type of split. The short
cw-split is the inverse of a cw-merge with the additional property that (u, w) is an edge,
i.e., u, v, w form a triangle.

3. The Drawing Algorithm. Let M be a 3-connected planar map with n vertices and
f faces. The steps of the drawing algorithm with input M are the following:

(A1) Choose three vertices from the outer face for the suspension Mσ .
(A2) Compute the minimum Schnyder wood SMin for Mσ and let S0 = SMin.
(A3) Compute a maximal cw-merge sequence S0 → S1 → · · · → Sk of Schnyder

woods, i.e., Si+1 is obtained from Si by a cw-merge and Sk contains no cw-knee.
(A4) Use face-counting to draw Sk on the ( f − k − 1)× ( f − k − 1) grid.
(A5) Reinsert all edges that have been deleted by merge operations into the drawing

from the previous step.

With Figure 9 we illustrate step (A3) of the algorithm.
Note from the example that the Schnyder woods of a merge sequence may correspond

to suspended maps that are only internally 3-connected.
The gray triangle in the left part of Figure 9 contains a ccw-knee which disappears

with a cw-merge (see the right part of the figure). An important fact for the analysis of
our algorithm is that cw-merges never make a cw-knee disappear.

3.1. The Drawing Is Convex

THEOREM 5. Reinserting all the edges that have been deleted by a sequence of cw-
merge operations into the drawing of Sk obtained in step (A4) keeps the drawing planar
and convex.
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Fig. 9. On the left a Schnyder wood S0; cw-knees are indicated by arcs. On the right the final Schnyder wood
of a merge sequence.
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Fig. 10. The example graph with n = f = 9 drawn on the 6× 6 grid.

The drawing steps of the algorithm ((A4) and (A5)) are illustrated in Figure 10.
Essential for the proof of the theorem is the following lemma:

LEMMA 2. Given a Schnyder wood of a suspended map Mσ , let F be an interior face.
The orientation and coloring of edges around F obey the following rule (see Figure 11):

• In clockwise order the types of edges at the boundary of the face can be described as
follows (in case of bi-directed edges the clockwise color is noted first): One edge from
the set {1-cw, 3-ccw, 1-3}, any number (may be 0) of edges 2-3, one edge from the
set {2-cw, 1-ccw, 2-1}, any number of edges 3-1, one edge from the set {3-cw, 2-ccw,
3-2}, any number of edges 1-2.

PROOF. There is a bijection between Schnyder woods of Mσ and the dual Mσ
∗

(Theo-
rem 2). This bijection can be constructed edge by edge; the rule is shown in Figure 12.

Given this rule the statement of the lemma is equivalent to the vertex condition (W3)
at the vertex vF dual to face F .

In Figure 11 the faces are drawn with a surrounding triangle. It is one of the features
of drawing via face counting, as described in Section 2.1, that all the vertices of a face
sit on the boundary of such a triangle. Planarity of the drawing implies that there are no
vertices in the interior of the face. Even more is true: there are no vertices in the (open)
interior of the bounding triangle for the face.
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Fig. 11. The generic structure of a face as described by Lemma 2 and two concrete instances.
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Fig. 12. Rule for orientation and coloring of dual edges.

Since we will make use of the shape of a face in the drawing we include a proof.

LEMMA 3. Given a suspended map Mσ with a Schnyder wood, let µ(M) be the face-
count drawing of M in the plane x1 + x2 + x3 = f − 1 and let F be an interior face of
M . Then the vertices of F are placed on the boundary of a triangle with sides x1 = c1,
x2 = c2 and x3 = c3 as shown in Figure 11.

PROOF. Lemma 2 gives information about colorings and orientation of edges around
F . Fact 5 and Figure 3 state how edges of a given color and orientation are embedded
with respect to their incident vertices. In combination this implies the statement of the
lemma.

PROOF OF THEOREM 5. Consider a merge operation performed during step (A3) of
the algorithm. The bi-directed edge e resulting from the merge is an edge of Sk . For
concreteness let us assume that e = (u, v) was originally colored 3 and the merge was a
cw-merge at v. It follows that the edge e′ = (v,w) that was merged into e was colored
1 (this is the situation shown in the left part of Figure 7).

In the drawing of Sk consider the face F which is to the left of (v, u) and let ∇ be
the bounding triangle for F (Lemma 3). Given the colors of the bicolored edge e, it
follows from Lemma 3 that v and u belong to the boundary line of ∇ with equation
x2 = c2; moreover, u1 > v1. Vertex w also belongs to F . The edge e′ removed in the
merge was entering w between the 2-outgoing and the 3-outgoing edge in clockwise
order. Therefore, F is contained in the region R1(w).

Suppose that the area of F is in the region R1(w) with respect to the final Schnyder
wood Sk of the merge sequence. In this case vertexw is placed on the boundary line of∇
with equation x1 = c1. The positions of v and w in the triangle ∇ imply that the straight
edge (v,w) can be added to the drawing.

The alternative is that F does not remain in the region R1(w). This can only happen
if there is a later merge using a knee at w that contains F in its angle. Since this is a
cw-merge it must merge the 2-outgoing edge at w into a 1-incoming. The area of F is
in the region R3(w) after this merge. Further merges cannot change this situation. In
this case vertex w is placed on the boundary line of ∇ with equation x3 = c3. From the
positions of v andw in the triangle∇ we can again conclude that the straight edge (v,w)
can be added to the drawing.

A given face F of the drawing of Sk may be the host for more than one reinsertion
of a merge-edge. We can argue that all these reinsertions can be done without conflict
as follows: The boundary of face F is a cycle C in the planar map M . Edges that have
disappeared while transforming the Schnyder wood S0 corresponding to M to Sk are
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chords of C . In M all these chords are drawn without crossings in the interior of C . In
the drawing of Sk the cycle C is the boundary of the convex face F . Hence, the chords
can be reinserted without crossings.

It remains to verify the convexity of all faces after reinsertion of edges. The reinsertion
partitions a convex face F into pieces using a set of non-crossing straight edges, each
connecting two points on the boundary of F . From the definition of a convex set it follows
that all the pieces, i.e., faces of M , are convex as well.

3.2. The Number of Merges. Essential for the grid-size required for the drawing pro-
duced by the algorithm is the length k of the merge sequence computed in step (A3).
The main result in this section is a lower bound for k in terms of easily recognizable
substructures of the initial Schnyder wood S computed in step (A2) of the algorithm.

As a warm-up we consider the case where M is a triangulation and S is an arbitrary
Schnyder wood of M . Consider the (2n − 4) − 4 triangles of S which are bounded by
three uni-directed edges (only external edges are bi-directed). These triangles can be
partitioned into two classes: Class one are those with at least two clockwise-oriented
edges on the boundary and class two are those with at least two counterclockwise edges
on the boundary. Suppose that the number C1 of triangles of class one is the larger one
or that C1 and C2 are equal, i.e., C1 ≥ n− 4 ≥ C2. In a triangle T of class one there is a
knee of two consecutive clockwise edges of T , this knee is a candidate for a clockwise
merge. Since every edge is clockwise only for one of its neighboring triangles these C1

merges can be performed independently. It follows that starting from S there is a merge
sequence of length k ≥ C1 ≥ n − 4. This estimate yields drawing of triangulations on
grids of size at most ( f − (n − 4)− 1)× ( f − (n − 4)− 1) = (n − 1)× (n − 1).

Let again M be a triangulation with a Schnyder wood S. We aim for a more precise
estimate for the number of merges that can be applied to S. Consider a cw-knee at v, let
i be the color of the incoming edge (u, v) of the knee. The edge (u, v) is a witness that
v is an inner vertex of the tree Ti of i-colored edges in S. Conversely, if v is an inner
vertex of Ti , then the outgoing edge in color i + 1 together with its adjacent incoming
edge in color i form a cw-knee. For fixed S this proves a bijection between inner vertices
of Ti and cw-knees with an incoming edge of color i . The number of cw-knees thus
is
∑

i inner(Ti ). If a uni-directed edge (v1, v2) participates at two different cw-knees,
then both v1 and v2 are vertices of a cw-knee. It follows that the triangle to the right of
(v1, v2) is a clockwise triangle of S. A clockwise triangle contributes three cw-knees
that are pairwise incompatible. If �S is the number of clockwise triangles of S, then
the number of cw-merges that can be performed with initial Schnyder wood S is at least∑

i inner(Ti ) − 2�S . This leads to Proposition 1 which makes use of the following
counts for a Schnyder wood S of a plane triangulation:

• �S is the number of clockwise triangles of S.
• �S be the number of counterclockwise triangles of S.

PROPOSITION 1. Let S be a Schnyder wood with �S clockwise and �S counterclock-
wise triangles. The number of cw-merges applicable in a merge sequence starting with
S is at least n − 4−�S +�S .
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PROOF. We have already proven the lower bound
∑

i inner(Ti )− 2�S for the number
of cw-merges applicable in a merge sequence starting with S. Thus it is enough to prove

∑
i

inner(Ti ) = n − 4+�S +�S .

This formula is due to Bonichon et al. [3]. The following simple double counting proof
was found by Lin et al. [14].

Each tree Ti spans all n vertices of the graph. However, it is easier if we disregard the
three special vertices, such that inner(Ti )+ leaves(Ti ) = n − 3 for each Ti .

If v is a leaf in Ti , then outgoing edges at v in colors i−1 and i+1 are adjacent and the
triangle containing both of them is not cyclic, neither clockwise nor counterclockwise.
Conversely, a triangle that is not cyclic has a unique source vertex v with two outgoing
edges. If these edges have colors i−1 and i+1, then v is a leaf in Ti . This proves a bijection
between leaves of all colors and non-cyclic triangles in S. Hence,

∑
i leaves(Ti ) =

2n − 5 − �S − �S . Combining the formulas we have
∑

i inner(Ti ) = 3(n − 3) −∑
i leaves(Ti ) = n − 4+�S +�S .

Combining Theorem 5 and Proposition 1 we find that a triangulation with Schnyder
wood S can be drawn on a grid of size (n − 1 + �S − �S ) × (n − 1 + �S − �S ).
An interesting special case of this bound (Corollary 1) was first obtained by Zhang and
He [26] with a different method. Let again SMin be the minimum Schnyder wood in the
lattice and recall that �SMin

= 0.

COROLLARY 1. A planar triangulation with n vertices has a straight-line drawing on
a grid of size (n − 1−�SMin

)× (n − 1−�SMin
).

To estimate the number of merges that can be applied to a Schnyder wood S of a
non-triangulated map we introduce two parameters:

• �S is the number of faces, with a counterclockwise edge in each of the three colors.
(These edges are not required to be uni-directed.)
• �S counts the number of clockwise triangles of uni-directed edges plus patterns of

the following type: a uni-directed edge incoming at v in color i + 1 such that the
counterclockwise next edge around v is bi-directed, outgoing at v in color i − 1 and
incoming in color i ; see Figure 13.

3
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21

1

v

u

w

Fig. 13. The two patterns counted by � .
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THEOREM 6. Let S be a Schnyder wood of a 3-connected planar map. The number of
cw-merges that can be applied to S is at least f − n +� −� .

PROOF. The proof for the special case where the outer face is a triangle is somewhat
simpler. We first deal with this situation.

The bound is obtained from the bound of Proposition 1 as follows: Starting from S
we construct a triangulation and a corresponding Schnyder wood S′ such that S can be
obtained from S′ by a sequence of k cw-merges. Proposition 1 gives a bound k ′ for the
number of cw-merges applicable to S′. The difference k ′ − k is a bound for the number
of cw-merges applicable to S.

Consider an internal face F in S. At the boundary of F there are three special edges,
these are the dual edges of the outgoing edges of the dual vertex vF . The special edges
may be separated by bi-directed paths (see Lemma 2). The edges of the bi-directed
boundary path of F in colors i and i + 1 are split such that the edge in color i + 1 points
to the clockwise last vertex of the bi-directed path of F in colors i − 1 and i . This can
be achieved by a sequence of cw-splits. See Figure 14.

Applying the construction to all bounded faces of S yields an inner triangulation and
a corresponding Schnyder wood S′. The following observations are crucial:

• The number of cw-merges applicable to S′ is k ′ ≥ n− 4+�S′ −�S′ (Proposition 1).
• The original Schnyder wood S can be obtained from S′ via a sequence of k cw-merges.
• Each merge reduces the number of faces by one; hence, k = (2n − 4)− f .
• �S′ = �S and �S′ = �S . This invariant is true for a single cw-split of the type

described above; the result follows by induction (Figure 14 shows some examples).

Therefore, the number of cw-merges applicable to S is k ′ − k ≥ f − n +�S −�S .
Now suppose that the outer face contains more than three vertices. Starting from S

we produce a Schnyder wood S∗ with an outer triangle; this is done with some external
splits, as shown in Figure 15. Let the number of external splits required to get from S to
S∗ be t ∈ {0, 1, 2, 3}.
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Fig. 14. Four examples for the triangulation of a face.
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Fig. 15. External merge and split.

We know that S∗ admits k∗ ≥ f ∗ − n +�S∗ −�S∗ cw-merges. The goal is to derive
the inequality k ≥ f − n +�S −�S by comparing the corresponding parts of the two
formulae:

• The face numbers f and f ∗ of S and S∗ are related by f ∗ = f + t .
• By comparing knees it is obvious that k∗ ≥ k. Let t1 = k∗ − k and note that t1 ≤ t

since every knee of S∗ that does not correspond to a knee of S is of the form shown
in Figure 16(a). The orientation of edges at the suspension vertices ai makes knees at
these vertices impossible.
• It is easy to verify �S∗ = �S .
• It remains to compare�S∗ and�S . It is obvious that�S ≥ �S∗ . A face F contributing

to �S but not to �S∗ is of the form shown in Figure 16(b). The crucial fact is that
such a face cannot contribute to the difference in the count of cw-knees. Hence,
�S −�S∗ ≤ t − t1.

Together this shows that S admits at least f − n +�S −�S cw-merges.

Given an arbitrary Schnyder wood the contribution of� −� in the above formula
may well be negative. However, the choice of S = SMin guarantees that � = 0.
(Figure 6 shows that the two configurations counted by � are impossible, since they
imply a clockwise cycle in the completion SMin.) The findings of this section can be
summarized as follows:

THEOREM 7. A 3-connected planar map M with n vertices has a convex drawing on a
grid of size (n − 1 − �SMin

) × (n − 1 − �SMin
), where �SMin

≥ 0 is the number of faces
with a counterclockwise edge in each color in SMin. Such a drawing can be computed in
linear time.

PROOF. From the previous lemmas, it only remains to prove that all the cw-merges can
be done in linear time. The algorithm that makes all these cw-merges is quite simple: for
each inner vertex v in the tree Ti , such that its parent edge in Ti+1 is uni-directed and the

2
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1 1
1 1

3
3

3
3

2

2 2 2 2 2

a3a3

S
� S

(a) (b)

a3a3

F F

S
� S

Fig. 16. (a) A cw-knee of S∗ which is not a cw-knee of S, exemplified at vertex a3. (b) A face F contributing

to �S but not to �S∗ .



414 N. Bonichon, S. Felsner, and M. Mosbah

edge toward its rightmost child in Ti is also uni-directed, cw-merge the outgoing edge
colored i + 1 with the edge toward the rightmost child of v. Since � = 0 the edge
toward the rightmost child is not mergeable. So all the cw-merges are independent in S
and can be performed in one run.

In order to show that the parameter � can be up to n/2 − 2, we consider Mσ the
suspension of a 3-connected n-vertex cubic planar map. Let S be the minimal Schnyder
wood of Mσ . The dual of S is a Schnyder wood of a triangulation. Every edge of the
dual is uni-directed except the three external ones. Hence, except the four faces that are
adjacent to an external edge, every face has at least three bi-directed edges respectively
colored 1− 2, 2− 3 and 3− 1. These three edges are the ones corresponding to the
three uni-directed outgoing edges in the dual. Each of these n/2 − 2 faces contributes
to the parameter � and to the parameter � . Moreover we can observe that for any
Schnyder wood S′ obtained from S applying cw-splits, we also have �S′ = n/2− 2.

4. Improvements and Limitations. Our ambition was to design an algorithm for
convex drawings of 3-connected planar graphs which at least matches all known al-
gorithms for this task. Theorem 7 shows that we are very close. Still, there is Schny-
der’s (n − 2) × (n − 2) bound for triangulations which is not completely matched by
(n−1−�SMin

)×(n−1−�SMin
) since there are triangulations with�SMin

= 0. An example
of such a triangulation is shown in Figure 17.

It is indeed the case that with an algorithm that computes the positions of vertices
just by face-counting the graph of Figure 17(a) requires a grid of size (n− 1)× (n− 1).
This can be verified as follows:

• The suspension vertices a1 and a3 both embed on the y-axis.
• Every internal vertex of the triangulation is connected with both a1 and a3. Since there

are no crossing edges, no two internal vertices can have the same x-coordinate.
• The two available grid points on the grid-line x = n − 2 are used by the edges of the

outer triangle. Therefore, this line contains no vertex.
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Fig. 17. (a) A stacked triangulation on the (n−1)× (n−1) grid. (b) The same graph drawn with the improved
method.
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Together this shows that n vertical grid-lines are necessary. In the next subsection we
propose a modified drawing strategy that circumvents this obstruction. The effect of the
modification is that the outer triangle is tilted; see Figure 17(b).

4.1. From n−1 to n−2. In the standard algorithm, the face-count of the vertices a1 is
( f − k−1, 0, 0), a2 is (0, f − k−1, 0) and a3 is (0, 0, f − k−1). In order to reduce the
grid size, we change the coordinates of these vertices as follows: a1 → ( f −k−2, 0, 1),
a2 → (1, f − k − 2, 0) and a3 → (0, 1, f − k − 2). The effect on the drawing is that
a1 is moving down by one unit, a2 is moving one unit to the left and one unit up, while
a3 is moving one unit to the right. Figure 17(b) shows an example.

Below we show that the resulting drawing is convex and planar. This yields:

THEOREM 8. A 3-connected planar map M with n vertices has a convex drawing on a
grid of size (n − 2 − �SMin

) × (n − 2 − �SMin
), where �SMin

≥ 0 is the number of faces
with a counterclockwise edge in each color in SMin.

Figure 23 at the end of the article presents an example of produced drawings.
In the proof of the theorem, we use the following lemma. It may be interesting to

observe that again the validity of this lemma depends on our choice of only using cw-
merges to produce Sk .

LEMMA 4. In the face-count of Sk there is no vertex with the coordinates ( f−k−2, 0, 1),
(1, f − k − 2, 0) or (0, 1, f − k − 2).

PROOF. Assume that there is a vertex v with the face-count (1, f − k − 2, 0). Since
|R1(v)| = 1 there is a unique face F in R1(v). Since |R3(v)| = 0 vertex v is on the
bi-directed path between a1 and a2. It follows that the degree of a2 in Sk is 2. The path
P3(v) from v to a3 uses a part of the boundary of F to get from v to the bi-directed path
between a2 and a3. A cw-split applied to an edge of F would have to split one of the
edges of P3(v). This is impossible since these edges have color 3 in ccw direction. We
conclude that deg(a2) = 2 in the original Schnyder wood S0. This is in contradiction to
the assumption that G is 3-connected. The two other cases are symmetrical.

PROOF OF THEOREM 8. The previous lemma shows that the new coordinates of the
suspension vertices do not coincide with other vertices.

The next step is to show that after the change in the coordinates of the suspension
vertices the drawing of Sk remains convex. Consider a face F containing a2. With the new
coordinates, a2 is interior to the triangle associated with F by Lemma 3; see Figure 18.
From Section 3.1 we know that the (open) interior of the bounding triangle of F contains
no vertices. This shows that the modified drawing is free of crossings. The convexity of
the new drawing of face F can also be read off from Figure 18.

The reinsertion of edges can be performed without introducing crossings or non-
convex faces. This follows from the proof of Theorem 5 which also works for faces of
the types shown in Figure 18.
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Fig. 18. (a) Generic structure of a face containing one external vertex and no external edges. (b) Generic
structure of a face containing one external vertex and one external edge. (c) Generic structure of a face
containing two external vertices.

Note that if ccw-merges are allowed to produce Sk , then the result becomes false.
In Figure 18(c) it could be the case that a2 is on the top edge of the triangle, i.e., the
edge colored 2 pointing to a2 is horizontal. Applying a ccw-split to one of the horizontal
double edges 2-3 would then produce overlapping edges.

We conclude this subsection with an application of Theorem 8 to internally 3-
connected planar maps.

A planar map M is internally 3-connected iff adding a new vertex v+ connected to
all vertices of the outer face yields a 3-connected map M+. Thomassen [23] proves
the following characterization: M has a (strictly) convex drawing if and only if M is
internally 3-connected.

A drawing is called internally convex if all bounded faces are convex; the outer face,
however, may be ragged. Chrobak and Kant [4] adapt their algorithm so that internally
3-connected graphs are drawn internally convex on the (n− 1)× (n− 2) grid. With our
approach we can reduce the grid size.

Let M be internally 3-connected with n vertices. First, extend M to M+ by adding a
new vertex v+ connected it to all vertices of the outer face of M . Let S = SMin be the
minimal Schnyder wood of the suspension of M+ with v+ = a1. Since M+ has n + 1
vertices, Theorem 8 guarantees a drawing of M+ on the (n − 1−�S )× (n − 1−�S )

grid. Since the outer face of M+ is a triangle, a1 is the only vertex on the highest
horizontal and on the leftmost vertical grid-line. Therefore we only have to remove a1

to prove:

COROLLARY 2. An internally 3-connected map M with n vertices can be drawn inter-
nally convex on the (n− 2−�S )× (n− 2−�S ) grid, where S is a minimal Schnyder
wood of M+.

4.2. Ignoring Faces. In this subsection we propose another technique that can be used
to reduce the size of a drawing. The idea is to ignore some of the faces for the count of
faces in regions. More formally, define weights w: Fb → {0, 1} for all bounded faces
F ∈ Fb. This extends linearly to weights for the regions of vertices. Map a vertex v to
the point (w(R2(v)), w(R1(v))) in the plane and add the edges as line segments. If we
are lucky, then this results in a convex drawing on a grid with side-length less than f −1.
Figure 19 shows an example.
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Fig. 19. Ignoring the gray face in the count yields the more compact drawing on the right.

Analyzing the proof of the drawing algorithm it can be concluded that the following
property is just what is needed to guarantee a convex drawing:

• If u and v are vertices and Ri (u) � Ri (v), then w(Ri (u)) < w(Ri (v)).

This condition can be used to identify a face whose weight can be set to zero without
spoiling the convexity of the drawing. The drawback with the condition is that we know
of no really efficient test. Below we give a proposition with a sufficient criterion that is
much easier to verify.

A face F is called pointed in color i if there is a vertex x ∈ F such that the two
boundary edges of F that are incident to x are both directed toward x in color i . Figure 20
illustrates the concept.

PROPOSITION 2. If the weight of non-pointed faces is set to zero, then the drawing is
still convex.

PROOF. We verify the above condition for the weight w: Fb → {0, 1} with w(F) = 0
for all non-pointed faces F . Let u and v be a pair of vertices with Ri (u) � Ri (v). Let
Pi+1(u) (resp., Pi+1(v)), the path of color i + 1 from u (resp., v) to ai+1. There are two
cases to consider:

• Pi+1(v) merge at a face pointed in color i + 1 that is contained in Ri (v) but not in
Ri (u). Since the weight of this face is non-zero we obtain w(Ri (u)) < w(Ri (v)) as
wanted.
• Pi+1(u) is a subpath of Pi+1(v). In this case, however, paths Pi−1(u) and Pi−1(v)

merge at a face pointed in color i − 1 so that the inequality w(Ri (u)) < w(Ri (v))

also holds for this case.

2

3
3

2 3
3
2 3 2 2

11
2

32

(a) (b) (c)

1

3
3

Fig. 20. (a) A face pointed in colors 2 and 3. (b) A face pointed in color 3. (c) A non-pointed face.
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In their recent paper about drawings of triangulations Zhang and He [26] use a similar
idea of ignoring faces when counting faces in regions.

In conjunction with our drawing algorithm the technique of “ignoring faces” can
only be applied with care: A drawing of Sk obtained with a count that ignores non-
pointed faces is convex (Proposition 2) but the faces need not obey the generic structure
(Lemma 2); therefore, the reinsertion of edges may cause an overlap of edges.

4.3. Experimental Results. Theorem 8 gives a bound for the size of a grid that ac-
commodates a given 3-connected planar graph. This bound depends on the parameter
�SMin

which can be equal to zero in “bad” cases. Bonichon et al. [2] have analyzed the

asymptotic average value of �SMin
over triangulations with n vertices. They prove that

E(�SMin
) = n/8+ o(n). Hence, the number of merges that can be applied when starting

with the SMin of a random triangulation is of order 9n/8 and the expected size of the grid
required for the drawing is 7n/8× 7n/8.

For general 3-connected planar graphs there is no theory about the expected size
of �SMin

. Still it is possible to make some experiments. For this purpose, we have first
tested our drawing algorithm on random planar maps generated uniformly over m-edge
3-connected planar maps. The generator used is due to Schaeffer [19]. We generated
some 6000 maps with m edges where m goes from 200 up to 20000. For each map we
have computed the parameter � , the number of faces and the grid size of the drawing
of the graph obtained with the algorithm of Theorem 8 (see Figure 21). We can first
observe that the expected value of �SMin

is m/8. Using Euler’s formula, we also see that
the expected number of vertices is equal to the expected number of faces of a random m-
edge 3-connected planar map: m/2. Consequently, the expected size of the grid required
for the drawing is 3n/4× 3n/4.

Our second experimental result is obtained on 3-connected cubic planar maps. For
the class of maps, the analysis of �SMin

is quite trivial: All the edges except three
(one connected to each suspension vertex) are bicolored, so no merge is possible. In
order to reduce the grid size, we have experimented with ignoring non-pointed faces

Fig. 21. Experimental results for 3-connected planar graphs of different sizes.
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Fig. 22. Number of non-pointed faces of 200 uniform random cubic planar graphs of different sizes.

as described in Section 4.2. Random cubic graphs are easily obtained as duals of ran-
dom triangulations. Once again, we used the uniform random triangulation generator
due to Schaeffer [19]. Figure 22 shows that approximately 3.8% of the faces are non-
pointed. Hence, for these graphs the expected size of the grid required for the drawing
is (0.481n)× (0.481n).

Fig. 23. An example of drawing obtained by our algorithm (Theorem 8). The present graph has 26 vertices,
57 edges, 33 faces. It is drawn on a 21× 21 grid.
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