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Multicriteria Global Minimum Cuts1

Amitai Armon2 and Uri Zwick2

Abstract. We consider two multicriteria versions of the global minimum cut problem in undirected graphs.
In the k-criteria setting, each edge of the input graph has k non-negative costs associated with it. These costs
are measured in separate, non-interchangeable, units. In the AND-version of the problem, purchasing an edge
requires the payment of all the k costs associated with it. In the OR-version, an edge can be purchased by
paying any one of the k costs associated with it. Given k bounds b1, b2, . . . , bk , the basic multicriteria decision
problem is whether there exists a cut C of the graph that can be purchased using a budget of bi units of the i th
criterion, for 1 ≤ i ≤ k.

We show that the AND-version of the multicriteria global minimum cut problem is polynomial for any
fixed number k of criteria. The OR-version of the problem, on the other hand, is NP-hard even for k = 2,
but can be solved in pseudo-polynomial time for any fixed number k of criteria. It also admits an FPTAS.
Further extensions, some applications, and multicriteria versions of two other optimization problems are also
discussed.
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1. Introduction. We consider two multicriteria versions of the global minimum cut
problem in undirected graphs. Let G = (V, E) be an undirected graph, and let
w1, . . . , wk : E → R

+ be k non-negative cost (or weight) functions defined on its
edges. A cut C of G is a subset C ⊆ V such that C �= ∅ and C �= V . The edges cut by
this cut are E(C) = {(u, v) ∈ E | u ∈ C, v �∈ C}. (As the graph is undirected, C and
V−C define the same cut.) In the AND-version of the k-criteria problem, the i th weight
(or cost) of the cut is

i th cost in the AND-version: wi (C) =
∑

e∈E(C)

wi (e), 1 ≤ i ≤ k.

In the OR-version of the problem we pay only one of the costs associated with each edge
e ∈ E(C) of the cut. More specifically, we choose a function α: E(C)→ {1, 2, . . . , k}
which specifies which cost is paid for each edge of the cut. The i th cost of the cut C ,
with respect to the choice function α, is then

i th cost in the OR-version: wi (C, α) =
∑

e∈E(C)∧α(e)=i

wi (e), 1 ≤ i ≤ k.

For the AND-version, the basic multicriteria global minimum cut decision problem asks,
given k cost bounds b1, b2, . . . , bk , is there a cut C such thatwi (C) ≤ bi , for 1 ≤ i ≤ k?
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In the optimization problem we are given k − 1 bounds b1, b2, . . . , bk−1 and asked to
find a cut C for which wk(C) is minimized, subject to the constraints wi (C) ≤ bi ,
for 1 ≤ i ≤ k − 1. The min-max version of this problem asks for a cut C for which
maxk

i=1wi (C) is minimized, i.e., a cut whose largest cost is as small as possible. The
Pareto set P(G, w1, . . . , wk) ⊆ Rk of an instance 〈G, w1, . . . , wk〉 is the set of cost
vectors of cuts that are not dominated by the cost vector of any other cut. It follows,
therefore, that if (c′1, c′2, . . . , c′k) is the cost vector of a cut C ′ of the graph, then there
exists a vector (c1, c2, . . . , ck) ∈ P(G, w1, . . . , wk) such that ci ≤ c′i for 1 ≤ i ≤ k.
Corresponding definitions can be made for the OR-version of the problem, where α
should then also be chosen.

Multicriteria optimization is an active field of research (see, e.g., the books of Cli-
macao [3] and Ehrgott [4]). (Most research is focused, in our terminology, on AND-
versions of various optimization problems. All results cited below refer to the AND-
versions of the problems, unless stated otherwise.) Papadimitriou and Yannakakis [18]
investigated the complexity of several multicriteria optimization problems. In particular,
they considered the multicriteria s-t minimum cut problem, in which the cut must separate
two specified vertices, s and t . They proved that this problem is strongly NP-complete,
even for just two criteria.

We show here that (the AND-version of) the multicriteria global minimum cut decision
problem can be solved in polynomial time for any fixed number of criteria, making it
strictly easier than its s-t variant. The running time of our algorithm is O(mn2k), where
m = |E | is the number of edges in the graph, n = |V | is the number of vertices, and k is
the number of criteria. This easily implies tractability of the optimization problem and
also yields a pseudo-polynomial algorithm for constructing the Pareto set. The problem,
however, becomes strongly NP-hard when the number of criteria is not fixed. We also
show that the directed version of the problem is strongly NP-hard even for just two
criteria.

The single-criterion minimum cut problem has been studied for more than four
decades as a fundamental graph optimization problem (see, e.g., [6], [16], [14], [20],
[12], and [13]). Minimum cuts are used in solving a large variety of problems, in-
cluding VLSI design, network design and reliability, clustering, and more (see [13]
and references therein). The best known deterministic algorithms for this problem run
in O(mn + n2 log n) time [16], [20]. The best known randomized algorithm runs in
O(m log3 n) time [13]. (As can be seen, there is a huge gap between the complexities
of the deterministic and randomized algorithms!) These algorithms are faster than the
best known algorithms for the s-t minimum cut problem which are based on network
flow.

The polynomial time algorithm for the multicriteria problem relies on the fact that the
standard single criterion global minimum cut problem has only a polynomial number of
almost optimal solutions. More specifically, Karger and Stein [14] showed that for every
α ≥ 1, not necessarily integral, the number of α-approximate solutions is only O(n2α).
Karger [13] improved this bound to O(n�2α�). Nagamochi et al. [17] gave a deterministic
O(m2n + mn2α) time algorithm for finding all the α-approximate cuts. Our algorithms
for the multicriteria problem use their algorithm.

Apart from the theoretical interest in minimum cuts in the multicriteria setting, there
are some applications in which this problem is of interest. (The multicriteria global
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minimum cut problem is of interest in almost any application of the single criterion
global minimum cut problem.) A multicriteria minimum balanced-partition is required,
for example, in the situations described in [19].

A special case of the bicriteria global minimum cut problem, called the≤ r-cardinality
min-cut, was considered by Bruglieri et al. [1], [2]. The input to this problem is an
undirected graph G = (V, E) with a single weight function w: E → R

+ defined on
its edges. The goal is to find a cut of minimum cost that contains at most r edges.
This is exactly the optimization version of the bicriteria minimum cut problem, where
w1(e) = 1, w2(e) = w(e), for every e ∈ E , and w1(C) must not exceed r . Bruglieri
et al. [1], [2] ask whether this problem can be solved in polynomial time. We answer
their question in the affirmative. We also obtain a polynomial time algorithm for finding
a minimum cut which contains at most r vertices on the smallest side of the cut.

As mentioned, most research on multicriteria optimization focused, in our terminol-
ogy, on AND-versions of various multicriteria optimization problems. We consider here
also the OR-versions of the global minimum cut problem, the shortest path problem, and
the minimum spanning tree problem.

OR-versions of multicriteria optimization problems may be seen as generalizations
of the scheduling problem on unrelated machines (see [10], [15], and [11]). The input
to such a scheduling problem is a set of n jobs that should be scheduled on m machines.
The i th job has a cost vector (ci1, . . . , cim) associated with it, where ci j is the processing
time of the i th job on the j th machine. The goal is to allocate the jobs to the machines
so as to minimize the makespan, i.e., the completion time of the last job. (Jobs allocated
to the same machine are processed sequentially.) This is precisely the OR-version of the
min-max m-criteria minimum cut problem on a graph with two vertices and n parallel
edges.

As another example where the OR-version of the multicriteria minimum-cut problem
is of interest, consider a cyber-attacker wishing to disconnect a computer network, where
there is more than one option for damaging each link. For example, assume that each link
can either be disconnected by an electronic attack, which requires a certain amount of
work hours (that may differ for different links), or by physically disconnecting it, e.g., by
creating a strong electromagnetic field near the underground cable (the required power
may again differ from link to link). Assuming an upper bound on the available power
for electromagneric fields, what is the minimum electronic-attacks time which enables
disconnecting the network?

It follows immediately from the simple reduction given above that the OR-version
of the multicriteria global minimum cut problem is NP-hard even for just two criteria.
We show, however, that the problem can be solved in pseudo-polynomial time for any
fixed number of criteria. We also show that the problem can be solved in polynomial
time when k, the number of criteria, is fixed and at least k − 1 of the weight functions
assume only a fixed number of values. We also obtain some results on the complexity of
the OR-versions of the shortest path and minimum spanning tree problems.

The rest of this paper is organized as follows. In the next section we consider the
AND-version of the global minimum cut problem. In Section 3 we then consider the
OR-version of the problem. In Section 4 we consider the OR-version of the multicriteria
shortest path and minimum spanning tree problems. Finally, we conclude in Section 5
with some concluding remarks and open problems.



18 A. Armon and U. Zwick

Algorithm Min-Max(G(V, E, w1, . . . , wk)):

1. Let w′(e) =∑k
i=1 wi (e), for every e ∈ E .

2. Find all the k-approximate minimum cuts in G with respect to w′.
3. Among all the cuts C found in the previous step find the one for which

maxk
i=1 wi (C) is minimized.

Fig. 1. A strongly polynomial time algorithm for the min-max version of the k-criteria global minimum cut
problem.

2. Multicriteria Global Minimum Cut: The AND-Version. We first present a poly-
nomial time algorithm for the min-max version of the multicriteria global minimum cut.
The algorithm for solving the min-max version of the problem is then used to solve the
decision and optimization problems.

2.1. The Min-Max Problem. An optimal min-max cut is a cut C for which maxk
i=1wi (C)

is minimized. We show that the simple algorithm given in Figure 1 solves the min-max
version of the k-criteria global minimum cut problem in polynomial time, for every
fixed k. A k-approximate cut in a graph G with respect to a single weight function w′ is
a cut whose weight is at most k times the weight of the minimum cut.

THEOREM 2.1. Algorithm Min-Max solves the min-max version of the k-criteria global
minimum cut problem. For any fixed k, it can be implemented to run, deterministically,
in O(mn2k) time.

PROOF. We begin by proving the correctness of the algorithm. We show that if C is
an optimal min-max cut, and D is any other cut in the graph, then w′(C) ≤ k · w′(D),
where w′(e) =∑k

i=1wi (e), for every e ∈ E . This follows as

w′(C) =
k∑

i=1

wi (C) ≤ k · k
max
i=1

wi (C) ≤ k · k
max
i=1

wi (D) ≤ k ·
k∑

i=1

wi (D) = k ·w′(D).

The inequality k ·maxk
i=1wi (C) ≤ k ·maxk

i=1wi (D) follows from the assumption that
C is an optimal min-max cut. In particular, if D is an optimal minimum cut with respect
to the single weight function w′, then w′(C) ≤ k · w′(D), and it follows that C is a
k-approximate cut of G with respect to w′. This proves the correctness of the algorithm.

We next consider the complexity of the algorithm. Karger and Stein [14] showed that
every graph has at most O(n2k) k-approximate cuts and gave a randomized algorithm
for finding an implicit representation of them all in Õ(n2k) time. A deterministic algo-
rithm of Nagamochi et al. [17] explicitly finds all the k-approximte cuts in O(mn2k)

time. Choosing the best min-max cut among all the k-approximate cuts also takes only
O(mn2k) time.

It is also easy to see that for any 1 < α ≤ k, we can find an α-approximate solution
to the min-max problem in O(mn2k/α) time, by checking all the k/α-approximate cuts
in G ′.
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The randomized algorithm of Karger and Stein [14] extends to finding all the k-
approximate minimum r-cuts in Õ(n2k(r−1)) time. (An r-cut is a partition of the graph
vertices into r sets, instead of 2). Thus, it is easy to see that the min-max multicriteria
problem can also be solved for r-cuts, in Õ(mn2k(r−1)) time using this randomized
(Monte-Carlo) algorithm.

2.2. The Decision Problem. We next show that the algorithm for the min-max version
of the k-criteria problem can be used to solve the decision version of the problem: Given
k bounds b1, b2, . . . , bk , is there a cut C such that wi (C) ≤ bi , for 1 ≤ i ≤ k?

THEOREM 2.2. For any fixed k, the decision version of the k-criteria global minimum
cut problem can be solved, deterministically, in O(mn2k) time.

PROOF. The decision problem can be easily reduced to the min-max problem. Given
k weight functions w1, . . . , wk : E → R+ and k bounds b1, b2, . . . , bk , we simply
produce scaled versions w′i (e) = wi (e)/bi , for every e ∈ E and 1 ≤ i ≤ k, of the
weight functions. Clearly the answer to the decision problem is ‘yes’ if and only if there
is a cut C for which maxk

i=1w
′
i (C) ≤ 1.

2.3. The Optimization Problem. We next tackle the optimization problem: Given k−1
bounds b1, b2, . . . , bk−1, find a cut C for which wk(C) is minimized, subject to the
constraints wi (C) ≤ bi , for 1 ≤ i ≤ k − 1.

THEOREM 2.3. For any fixed k, the optimization version of the k-criteria global mini-
mum cut problem for graphs with integer edge weights can be solved, deterministically,
in O(mn2k log M) time, where M =∑

e∈E wk(e).

PROOF. If the kth weight function assumes only integral values, we can easily use binary
search to solve the optimization problem. Given the k − 1 bounds b1, b2, . . . , bk−1, we
conduct a binary search for the minimal value bk for which there is a cut C such that
wi (C) ≤ bi , for 1 ≤ i ≤ k. As the minimal bk is an integer in the range [0,M], this
requires the solution of only O(log M) decision problems.

The algorithm given above is not completely satisfactory as it is not strongly polyno-
mial and does not work with non-integral weights. These problems can be fixed, however,
as we show below.

THEOREM 2.4. For any fixed k, the optimization version of the k-criteria global mini-
mum cut problem for graphs with arbitrary real edge weights can be solved, determin-
istically, in O(mn2k log n) time.

PROOF. We first isolate a small interval that contains the minimal value of bk . Let
S = {wk(e) | e ∈ E} be the set of values assumed by the kth weight function. The
minimum bk of the optimization problem lies in an interval [s,ms], for some s ∈ S. (If
C is the cut that attains the optimum, let s be the weight of the heaviest edge, with respect
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towk , in the cut.) Using a binary search on the values in S, we can find such an interval that
contains the minimum. This requires the solution of only O(log m) = O(log n) decision
problems. Next, we conduct a binary search in the interval [s,ms] until we narrow it
down to an interval of the form [s ′, (1 + 1/n)s ′] which is guaranteed to contain the
right answer. This again requires the solution of only O(log(mn)) = O(log n) decision
problems.

Next, we run a modified version of the Min-Max algorithm given in Figure 1 on the
following scaled versions of the weights: w′i (e) = wi (e)/bi , for 1 ≤ i ≤ k − 1, and
w′k(e) = wk(e)/s ′. It is easy to see that if C is an optimal solution of the optimization
problem, then C is also a (1+1/n)-approximate solution of the min-max problem. This
in turn implies, as in the proof of Theorem 2.1, that C is also a k(1+ 1/n)-approximate
minimum cut with respect to the weight function w′(e) =∑k

i=1wi (e), for every e ∈ E .
Instead of finding all the k-approximate minimum cuts with respect to w′, as done by
algorithm Min-Max, we find all the k(1+ 1/n)-approximate minimum cuts. Among all
these cuts we find a cut C for which w′i (C) ≤ 1, i.e., wi (C) ≤ bi , for 1 ≤ i ≤ k − 1,
and for which wk(C) is minimized. This cut is the optimal solution to the optimization
problem.

We next analyze the complexity of the algorithm. The O(log n) decision problems
can be solved in O(mn2k log n) time. All the k(1+ 1/n)-approximate cuts can then be
found in O(mn2k(1+1/n)) = O(mn2k) time using the algorithm of Nagamochi et al. [17].
(Note that n1/n = O(1).) Checking all these cuts also takes only O(mn2k) time. This
completes the proof of the theorem.

2.4. Two Applications

THEOREM 2.5. Let G = (V, E) be an undirected graph and let w: E → R
+ be a

weight function defined on its edges. Let 1 ≤ r ≤ m. Then there is a deterministic
O(mn4 log n) time algorithm for finding a cut of minimum weight that contains at most
r edges.

PROOF. We simply let w1(e) = 1 and w2(e) = w(e), for every e ∈ E , and solve the
optimization problem with b1 = r .

As mentioned in the Introduction, this solves an open problem raised by Bruglieri
et al. [1], [2]. We also have:

THEOREM 2.6. Let G = (V, E) be an undirected graph and let w: E → R
+ be a

weight function defined on its edges. Let 1 ≤ r ≤ n. Then there is a deterministic
O(n6 log n) time algorithm for finding a cut of minimum weight with at most r vertices
on its smaller side.

PROOF. We set up two weight functions over a complete graph on n = |V | vertices:
w1(u, v) = 1, for every u, v ∈ V , andw2(u, v) = w(u, v), if (u, v) ∈ E , andw(u, v) =
0, otherwise. We then find a cut C that minimizes w2(C) subject to the constraint
w1(C) ≤ r(n − r).
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2.5. The Pareto Set. Suppose all weight functions are integral. Let Mi =
∑

e∈E wi (e),
for 1 ≤ i ≤ k. The Pareto set can be trivially found by invoking the basic decision
algorithm

∏k
i=1 Mi times, or the optimization algorithm

∏k−1
i=1 Mi times. These naive

algorithms are pseudo-polynomial for every fixed k.
Using very similar ideas we can also obtain an FPTAS for finding an approximate

Pareto set, a notion defined by Papadimitriou and Yannakakis [18]. It is defined as a set
of feasible k-tuples, such that for every solution there is a k-tuple in the set within a
factor of (1 − ε) in all coordinates. More formally, the set Pε(G, w1, . . . , wk) is a set
of cost vectors of cuts in the graph such that for every cut C there exists (c1, . . . , ck) ∈
Pε(G, w1, . . . , wk) such that (1 − ε)ci ≤ wi (C) for 1 ≤ i ≤ k. It is easy to see that
we can find this set in polynomial time, by invoking the basic algorithm for the decision
problem only for powers of (1− ε), instead of checking all the possible values.

2.6. Hardness Results

THEOREM 2.7. The multicriteria minimum cut problem with a non-fixed number of
criteria is strongly NP-complete.

PROOF. We use a reduction from the bisection width problem (see problem ND17 of
[5]): Given an unweighted input graph G = (V, E) on n = 2r vertices and a bound b, is
there a bisection of the graph that cuts at most b edges? We transform such an instance
in the following way: Assume that V = {1, 2, . . . , n}. We add two vertices, s and t ,
and add edges connecting them to each of the vertices in V . Let G ′ = (V ′, E ′) be the
resulting graph. Each edge of G ′ is now assigned n + 3 weights. For 1 ≤ i ≤ n, we let
wi (s, i) = wi (t, i) = 1, and wi (e) = 0 for all other edges. We assign wn+1(e) = 1 for
the edges of the form (s, i), i ∈ V , and wn+1(e) = 0, otherwise. Similarly, we assign
wn+2(e) = 1 for the edges of the form (t, i), i ∈ V , andwn+2(e) = 0, otherwise. Finally,
wn+3(e) = 1 for e ∈ E , and wn+3(e) = 0, otherwise. It is now easy to see that G has
a bisection of width at most b if and only if G ′ has a cut C for which wi (C) ≤ 1, for
1 ≤ i ≤ n, wn+1(C), wn+2(C) ≤ r , and wn+3(C) ≤ b.

It is also not difficult to show that the directed multicriteria global minimum cut
problem is strongly NP-complete, even for two criteria. In this problem we are given a
directed graph G = (V, E) with weight functions w1, . . . , wk : E → R+. A solution
consists of a cut C , and of a labelling of the two vertex sets it separates by S and T .
The weights of each cut are the sums of the weights of the cut edges directed from S
to T . Each of the above mentioned variants for the undirected multicriteria minimum
cut problem can be considered here as well: the decision, optimization, min-max, and
Pareto-set problems. In the directed multicriteria s-t min-cut problem, two vertices, s
and t , are specified with the input, and the solution must satisfy s ∈ S and t ∈ T .

THEOREM 2.8. The directed multicriteria global minimum cut problem is strongly NP-
complete, even for just two criteria.

PROOF. We show this by a reduction from undirected multicriteria s-t-min-cut, which
is strongly NP-hard, even for k = 2 [18].
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An instance of the undirected bicriteria s-t-min-cut decision problem can be reduced
to an instance of the directed bicriteria s-t-min-cut problem simply by replacing each
edge by two anti-parallel directed edges with the same weight. Recall that in a directed
s-t-min-cut only edges directed from S to T contribute to the cut weights (s ∈ S and
t ∈ T ), so having edges in the opposite direction does not influence the solution.

This instance can then be reduced to an instance of the directed bicriteria global
min-cut decision problem. We simply connect each vertex to s with edges having weight
m · M + 1 in both criteria (where M is the maximal weight), and do the same from t
to all the other vertices (if some of these edges already exist then we replace them). We
assume that at least one input bound satisfies bi < m · M + 1, otherwise the answer is
trivially “yes”. So a solution to this problem will necessarily have s and t on different
sides, s ∈ S and t ∈ T . Therefore a solution to this problem also solves the original
problem, and it has the same weights. Thus, the directed multicriteria global min-cut
decision problem is strongly NP-hard, even for k = 2.

3. Multicriteria Global Minimum Cut: The OR-Version

3.1. Relation to Scheduling on Unrelated Machines. As mentioned in the Introduction,
there is a trivial reduction from the scheduling on unrelated machines problem to the
OR-version of the min-max multicriteria global minimum cut problem. Known hardness
results for the scheduling problem (see [15]) then imply the following:

THEOREM 3.1. The OR-version of the min-max multicriteria global minimum cut prob-
lem is NP-hard even for just two criteria. The problem with a non-fixed number of criteria
cannot be approximated to within a ratio better than 3/2, unless P = NP.

The scheduling problem on a fixed number of unrelated machines can however be
solved in pseudo-polynomial time. Horowitz and Sahni [10] present a simple branch-
and-bound pseudo-polynomial algorithm for that problem which runs in O(m2(k M)k−1)

time, where m is the number of jobs, k is the number of machines, and M is the optimal
makespan. This immediately implies:

THEOREM 3.2. Let G = (V, E) be an undirected graph with k integral weight functions
w1, . . . , wk : E → N defined on its edges. Let C be a cut in G. Then a choice function
α: E(C) → {1, 2, . . . , k} which minimizes maxk

i=1wi (C, α) can be found in pseudo-
polynomial time.

Jansen and Porkolab [11] obtained an FPTAS for the unrelated machines scheduling
problem, which runs in O(m(k/ε)O(k)) time (for any fixed number k of machines). It can
be used instead of the exact algorithm of [10] when approximate solutions are acceptable.

3.2. The Min-Max Version. We show that the simple algorithm given in Figure 2, which
is a variant of the algorithm given in Figure 1, solves the OR-version of the min-max
problem in pseudo-polynomial time, for any fixed number of criteria.
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Algorithm Min-Max-Or(G(V, E, w1, . . . , wk)):

1. Let w′(e) = mink
i=1 wi (e), for every e ∈ E .

2. Find all the k-approximate minimum cuts in G with respect to w′.
3. For each of the cuts C found in the previous step, find the best choice

function α: E(C)→ {1, 2, . . . , k}.
4. Output the best cut and choice function found.

Fig. 2. A pseudo-polynomial time algorithm for the min-max version of the k-criteria global minimum cut
problem.

THEOREM 3.3. The OR-version of the min-max k-criteria global minimum cut problem
with integer edge weights can be solved in O(m2n2k(k M)k−1) time, where M is the
optimal min-max value.

PROOF. We begin again with the correctness proof. Let C be an optimal min-max cut
and let α be the corresponding optimal choice function. Let D be any other cut. We show
that w′(C) ≤ k · w′(D), where w′(e) = mink

i=1wi (e), for every e ∈ E . To see that, we
let β: E(D)→ {1, 2, . . . , k} be a choice function for which β(e) = i if wi (e) ≤ wj (e),
for every 1 ≤ j ≤ k. Then

w′(C) ≤ k · k
max
i=1

wi (C, α) ≤ k · k
max
i=1

wi (D, β) ≤ k · w′(D).

The second inequality follows as (C, α) is an optimal solution of the min-max problem.
We next consider the complexity of the algorithm. The k-approximate cuts with

respect to w′ can be found again in O(mn2k) time using the algorithm of Nagamochi
et al. [17]. For each one of the O(n2k) approximate cuts produced, we find an optimal
choice function using the algorithm of Horowitz and Sahni [10]. The total running time
is then O(mn2k + n2k ·m2(k M)k−1) = O(m2n2k(k M)k−1), where M is the value of the
optimal solution.

THEOREM 3.4. The OR-version of the min-max k-criteria global minimum cut problem,
with k fixed, admits an FPTAS.

PROOF. The proof is identical to the proof of Theorem 3.3 with the exact algorithm of
Horowitz and Sahni [10] replaced by the FPTAS of Jansen and Porkolab [11].

As in Section 2, we can use the algorithm for the min-max version of the problem
to solve the decision and optimization versions of the problem. We omit the obvious
details.

3.3. A Case That Can Be Solved in Polynomial Time. We now discuss a restriction of
the min-max problem that can be solved in strongly polynomial time. For simplicity, we
consider the bicriteria problem.
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THEOREM 3.5. Instances of the OR-version of the min-max bicriteria global minimum
cut problem in which one of the weight functions assumes only r different values can be
solved in O(mr+1n4) time.

PROOF. Assume, without loss of generality, thatw2 assumes only r different real values
a1, a2, . . . , ar . Let Ei = w−1

2 (ai ) = {e ∈ E | w2(e) = ai }, for 1 ≤ i ≤ r . Consider
an optimal min-max cut C and an optimal choice function α: E(C)→ {1, 2} for it. It
is easy to see that for every 1 ≤ i ≤ r there is a threshold ti such that if e ∈ Ei , then
α(e) = 1 if and only if w1(e) ≤ ti . (Indeed, if there are two edges e1, e2 ∈ Ei such that
w1(e1) < w1(e2), α(e1) = 2 and α(e2) = 1, then the choice function α′ which reverses
the choices of α on e1 and e2 is a better choice function. We assume here, for simplicity,
that all weights are distinct.) As there are at most m + 1 essentially different thresholds
for each set Ei , the total number of choice functions that should be considered is only
O(mr ). With a given choice function α: E → {1, 2}, the problem reduces to an AND-
version of the problem with the weights w′i (e) = wi (e), if α(e) = i , and w′i (e) = 0,
otherwise, for i = 1, 2. As each such problem can be solved in O(mn4) time, the total
running time of the resulting algorithm is O(mr+1n4).

4. OR-versions of Other Multicriteria Problems. In this section we consider the
OR-versions of the bicriteria shortest path and minimum spanning tree problems. Our
results can probably be extended to any fixed number of criteria.

4.1. Shortest Paths. The input to the problem is a directed graph G = (V, E)with two
weight functions w1, w2: E → R

+ defined on its edges, two vertices s, t ∈ V , and two
bounds b1, b2. The question is whether there is a path P from s to t in the graph and a
choice function α: P → {1, 2} such that w1(α

−1(1)) ≤ b1 and w2(α
−1(2)) ≤ b2. The

graph G = (V, E) may, for example, represent the map of a city. Each edge e ∈ E of
the graph can be traversed either by bus or by subway. The weight w1(e) is the number
of bus tokens needed for traversing the edge e by bus, while the weight w2(e) is the
number of subway tokens needed to traverse e by subway. The question then is whether
it is possible to get from s to t using given amounts of subway tokens and bus tokens.

It is easy to see, using a simple reduction from the scheduling on unrelated machines
problem, that the OR-version of the bicriteria shortest path problem is NP-hard. We show,
however, that it can be solved in pseudo-polynomial time. An FPTAS for the problem is
easily obtained by scaling.

THEOREM 4.1. The OR-version of the bicriteria shortest path decision problem with in-
teger edge lengths can be solved in O(nmW log(nW )) time, where W = maxe∈E w1(e).

PROOF. The OR-version of the problem can be easily reduced to the AND-version of
the problem by replacing each edge e having a weight vector (w1(e), w2(e)) by two
parallel edges e′ and e′′ having weight vectors (w1(e), 0) and (0, w2(e)). The standard,
AND-version, of the problem can be solved using an algorithm of Hansen [7] within the
claimed time bound.
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4.2. Minimum Spanning Trees. Next we consider the OR-version of the bicriteria min-
imum spanning tree problem. The input is an undirected graph G = (V, E), two weight
functions w1, w2: E → R, and two bounds b1 and b2. The question is whether there
exist a spanning tree T and a choice function α: T → {1, 2} such that w1(α

−1(1)) ≤ b1

and w2(α
−1(2)) ≤ b2.

The OR-version of the bicriteria minimum spanning tree problem is again easily seen
to be NP-hard, again using a simple reduction from the scheduling on unrelated machines
problem. We provide a polynomial time algorithm for a special case of the problem, and
a pseudo-polynomial time algorithm for the general case.

THEOREM 4.2. The OR-version of the minimum spanning tree problem in which one
of the weight functions is constant, i.e., w2(e) = c, for every e ∈ E , can be solved by
solving a single standard minimum spanning tree problem.

PROOF. We simply solve the standard minimum spanning tree problem with respect to
the weight function w1 and obtain a minimum spanning tree T . For the �b2/c� heaviest
edges of T we choose to pay the w2 cost, and for all the others we pay the w1 cost. The
correctness of this procedure follows from the well known fact that if the weights of the
edges of T are a1 ≤ a2 ≤ · · · ≤ an−1, and if T ′ is any other spanning tree of the graph G
with edge weights a′1 ≤ a′2 ≤ · · · ≤ a′n−1, then ai ≤ a′i , for 1 ≤ i ≤ n − 1.

THEOREM 4.3. The OR-version of the bicriteria minimum spanning tree decision prob-
lem with integer edge lengths can be solved in O(n4b1b2 log(b1b2)) time.

PROOF. The OR-version of the problem can be easily reduced to the AND-version of
the problem by replacing each edge e having a weight vector (w1(e), w2(e)) by two
parallel edges e′ and e′′ having weight vectors (w1(e), 0) and (0, w2(e)). The standard,
AND-version, of the problem can be solved using an algorithm of Hong et al. [9] within
the claimed time bound.

We also note that an efficient PTAS for the AND-version of the bicriteria minimum
spanning tree optimization problem was obtained recently by Hassin and Levin [8].

5. Concluding Remarks. We showed that the standard (i.e., the AND-version) mul-
ticriteria global minimum cut problem can be solved in polynomial time for any fixed
number k of criteria. The running time of our algorithm, which is O(mn2k), is fairly
high, even for a small number of criteria. Improving this running time is an interesting
open problem. We also considered the OR-version of the problem and showed that it is
NP-hard even for just two criteria. It can be solved, however, in pseudo-polynomial time,
and it also admits an FPTAS, for any fixed number of criteria. Finally, we considered
the OR-versions of the bicriteria shortest path and minimum spanning tree problems,
and showed that both of them are NP-hard but can be solved in pseudo-polynomial
time. It will also be interesting to study OR-versions of other multicriteria optimization
problems.
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