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A Slightly Improved Sub-Cubic Algorithm
for the All Pairs Shortest Paths Problem

with Real Edge Lengths1

Uri Zwick2

Abstract. We present an O(n3
√

log log n/log n)-time algorithm for the All Pairs Shortest Paths (APSP)
problem for directed graphs with real edge lengths. This slightly improves previous algorithms for the problem
obtained by Fredman, Dobosiewicz, Han, and Takaoka.
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parallelism.

1. Introduction. The input to the All Pairs Shortest Paths (APSP) problem is a directed
graph G = (V, E) with a length function �: E → R defined on its edges. The goal is
to find, for every pair of vertices u, v ∈ V , the distance from u to v in the graph, and
possibly also a shortest path from u to v in the graph. (If there is a path from u to v in the
graph that passes through a cycle of negative length, the distance from u to v is defined
to be −∞. If there is no path from u to v, the distance is defined to be +∞.)

The APSP problem for directed graphs with real edge weights can be solved in
O(mn + n2 log n) time by running Dijkstra’s [6] Single Source Shortest Path (SSSP)
algorithm from each vertex, where n = |V | and m = |E | are the number of vertices and
edges, respectively, in the graph. The quoted running time assumes the use of Fibonacci
heaps [10], or an equivalent data structure. If some of the edge lengths are negative,
then a preprocessing step described by Johnson [16] is necessary. A slightly improved
running time of O(mn + n2 log log n) was recently obtained by Pettie [19], based on an
approach initiated by Thorup [27], Hagerup [14], and Pettie and Ramachandran [20].

On dense graphs with m = �(n2), the worst-case running times of the algorithms
mentioned above is �(n3). A running time of O(n3) is also obtained by the simple
Floyd–Warshall algorithm (see [8] and [28]). Can the APSP problem be solved in sub-
cubic, i.e., o(n3) time? An affirmative answer was provided by Fredman [9] who showed
that the problem can be solved in O(n3(log log n/log n)1/3). This time bound was
subsequently improved to O(n3√log log n/log n) by Takaoka [25], to O(n3/

√
log n)

by Dobosiewicz [7], to O(n3(log log n/log n)5/7) by Han [15], and very recently to
O(n3(log log n)2/log n), again by Takaoka [26]. We present here a further improved
algorithm with a running time of O(n3√log log n/log n).

1 A preliminary version of this paper appeared in the Proceedings of the 15th International Symposium on
Algorithms and Computation (ISAAC ’04), Hong Kong, 2004, pp. 921–932.
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The complexity of the APSP problem is known to be the same as the complexity of
the min-plus matrix multiplication problem (see Theorem 5.7 on page 204 of [1]). If
A = (ai j ) and B = (bi j ) are two n×n matrices, we let A ∗ B be the n×n matrix whose
(i, j)th element is (A∗B)i j = mink{aik+bkj }. We refer to A∗B as the min-plus product
of A and B. (It is trivial to see that the APSP problem can be solved by computing log n
min-plus products. A more intricate argument, given in [1], shows that this extra log n
can be avoided.)

The min-plus product can be naively computed using O(n3) additions and compar-
isons. Fredman [9] made the intriguing observation (see also Section 3) that the min-plus
product of two n×n matrices can be inferred after performing only O(n2.5) comparisons
of sums of two matrix elements! The catch is that Fredman does not specify explicitly
which comparisons should be made, nor how to infer the result from the outcome of
these comparisons. In more exact terms, Fredman [9] shows that there is a decision tree
for computing the min-plus product of two n × n real matrices whose depth is O(n2.5).
However, he does not construct such a decision tree explicitly.

Fredman [9] was able, however, to use his observation to obtain an explicit sub-cubic
algorithm for the min-plus product, and hence for the APSP problem. This is done by
explicitly constructing a decision tree of depth O(m2.5) for the min-plus product of two
m×m matrices, where m = o(log n). The size of this decision tree, which is exponential
in m, is o(n). As the product of two n× n matrices can be solved by computing (n/m)3

products of m×m matrices, an o(n3) algorithm is obtained for the problem of multiplying
two n × n matrices.

The main technique used by Fredman [9] to implement his algorithm is table look-up.
Han [15] and Takaoka [25], [26] present more efficient algorithms based on similar ideas.
Dobosiewicz [7] uses a somewhat different approach. The speed-up of his algorithm is
obtained by using bit-level parallelism, i.e., the ability to operate simultaneously on
log n bits contained in a single machine word. The exact computational model used by
all these algorithms is discussed in the next section. We stress here that the same model is
used in all cases, so our improved algorithm is not obtained by using a stronger machine
model. Our algorithm uses both table look-ups and bit-level parallelism. It uses ideas
appearing in the Boolean matrix multiplication algorithm of Arlazarov et al. [3]. It is
also inspired by recent dynamic algorithms for the transitive closure in directed graphs
(see, e.g., [17], [5], and [21]).

Much faster, and truly sub-cubic, algorithms are known for the standard matrix multi-
plication problem. Strassen [24] obtained an O(n2.81)-time algorithm. The best available
bound is currently O(n2.38), obtained by Coppersmith and Winograd [4]. It remains a
major open problem whether these techniques could be used to obtain faster algorithms
for the min-plus product of matrices with arbitrary real edge weights.

Fast algebraic matrix multiplication algorithms were used to obtain faster algorithms
for the APSP problem with small integer edge lengths. Zwick [31], improving a result
of Alon et al. [2], obtained an O(n2.58) algorithm for the APSP problem for unweighted
directed graphs. Even better algorithms are known for undirected graphs with small
integer edge weights (see [22], [13], [12], and [23]). For more results on the APSP
problem and its various variants, see [30].

The rest of this paper is organized as follows. In the next section we discuss the model
of computation used. In Section 3 we review the ideas of Fredman [9]. In Section 4
we describe the algorithm of Dobosiewicz [7] on which our algorithm is based. In
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Section 5 we present the Boolean matrix multiplication algorithm of Arlazarov et al.
[3]. Finally, in Section 6 we present our algorithm which uses a combination of ideas
from all previous sections. We end in Section 7 with some concluding remarks and open
problems.

2. Model of Computation. We use the standard RAM model of computation (see,
e.g., [1]). Each memory cell can either hold a real number or a w-bit integer. Usually,
we assume thatw = �(log n), which is the standard realistic assumption, where n is the
input size. All the bounds in the Abstract and Introduction make this assumption.

Reals numbers are treated in our model as an abstract data type. The only operations
allowed on real numbers are additions and comparisons. (As explained below, subtrac-
tions can be simulated in our model.) No conversions between real numbers and integers
are allowed. This model is sometimes referred to as the addition-comparison model (see,
e.g., [30], [20], and [19]).

Although we are mainly interested in the case w = �(log n), we explicitly describe
the dependence of the running times of our algorithm on the word size w. This shows
more clearly which logarithmic factors are the result of the word size, i.e., the effect of
bit-level parallelism, and which are obtained using other techniques, e.g., table look-up.
We always assume that w ≥ log n.

The operations allowed on integers are the standard arithmetical and logical opera-
tions. We can thus add two integers and compute their bitwise or. We also assume that
we have an instruction that returns the index of one of the 1’s in a non-zero word. We
do not give an explicit list of the integer instructions assumed. The reason is that when
w = �(log n), which is the case we are most interested in, any conceivable instruction
can be emulated, in constant time, using table look-up. In particular, even if there is no
instruction for returning the index of, say, the leftmost 1 in a non-zero word, we can still
find this index, in O(1) time, using table look-up. The time needed for initializing the
table will be negligible compared with the other operations performed by our algorithms.

As stated above, our model only allows additions and comparisons of real numbers.
It is not difficult to see, however, that allowing subtractions does not change the strength
of the model. We simply represent each intermediate result as the difference of two real
numbers. When two difference x1 − y1 and x2 − y2 need to be compared, we do that by
comparing x1 + y2 and x2 + y1. It is interesting to note that this simple observation also
lies at the heart of Fredman’s [9] technique.

Our realistic model of computation should be contrasted with the unrealistic, but
nevertheless interesting, model used by Yuval [29]. He shows that the distance product
of two matrices with integer elements can be computed by first converting the elements
of the matrix into very high precision real numbers, performing a standard algebraic
product, and then converting the elements back into integers. The conversion steps use
the computation of exact exponentials and logarithms. More careful implementations of
Yuval’s algorithm, in realistic models of computation, combined with other techniques,
form the basis of the algorithms of [13], [12], [23], and [31].

3. The Algorithm of Fredman. Let A = (ai j ) be an n×m matrix, and let B = (bi j )

be an m × n matrix. The distance product C = A ∗ B can be naively computed using
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O(mn2) operations. Fredman [9] observed that the product can also be deduced after
performing only O(m2n) operations.

THEOREM 3.1 [9]. Let A = (ai j ) be an n × m matrix, and let B = (bi j ) be an m × n
matrix with real elements. Then the distance product C = A ∗ B can be deduced from
the information gathered by performing at most O(m2n) comparisons of differences of
elements of the matrices A and B.

PROOF. Let ai
rs = air − ais and b j

rs = bsj − bsi , for i, j ∈ [n] and s, r ∈ [m].
These differences can be formed in O(m2n) time, and sorted using O(m2n log(mn))
comparisons. Fredman [9] actually shows that the differences can be sorted using only
O(m2n) comparisons. (For a proof, see [9].)

Let āi
rs be the index of ai

rs in the sorted sequence, and let b̄ j
rs be the index of b j

rs in the
sequence, for i, j ∈ [n] and s, r ∈ [m]. While sorting the sequence, we assume that ties
are resolved in favor of the ai

rs elements, i.e., if ai
rs = b j

r ′s ′ , then ai
rs appears before b j

r ′s ′

in the sorted sequence and thus āi
rs < b̄ j

r ′s ′ . With this convention we have ai
rs ≤ b j

r ′s ′ if
and only if āi

rs ≤ b̄ j
r ′s ′ .

For every i, j ∈ [n], we can now find an index r = ri j ∈ [m] for which ci j = air+br j

just by looking at the indices āi
rs and b̄i

rs , without looking again at the elements of
the matrices A and B. For every i, j ∈ [n], we want to find an index r for which
air + br j ≤ ais + bsj , for every s ∈ [m]. Note, however, that

air + br j ≤ ais + bsj ⇔ air − ais ≤ bsj − bsi ⇔ ai
rs ≤ b j

rs

⇔ āi
rs ≤ b̄ j

rs .

Thus, the outcome of every comparison needed to determine an appropriate index r is
implied by the indices computed.

The above “algorithm” does not explain how to use the indices āi
rs and b̄i

rs to determine
the indices ri j . It just says that these indices contain enough information to determine
the result uniquely.

The fast “algorithm” for rectangular min-plus products of Theorem 3.1 can be used
to obtain a fast “algorithm” for square min-plus products as follows:

THEOREM 3.2 [9]. Let A = (ai j ) and B = (bi j ) be two n × n matrices with real
elements. Then, the distance product C = A ∗ B can be deduced from the information
gathered by performing at most O(n2.5) comparisons of differences of elements of the
matrices A and B.

PROOF. Let 1 ≤ m ≤ n be a parameter to be chosen later. We split the matrix A into
n/m matrices A1, A2, . . . , An/m of size n × m, and the matrix B into n/m matrices
B1, B2, . . . , Bn/m of size m × n. Clearly, A ∗ B = mink

i=1 Ai Bi , where the min here is
applied elementwise. Each distant product Ai Bi can be determined, as described in the
proof of Theorem 3.1, using O(m2n) comparisons. Computing the n/m products and
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computing their elementwise minimum thus requires only

O

(
n

m
· (m2n + n2)

)

comparisons. This expression is minimized for m = √n and the resulting number of
comparisons is then O(n2.5).

We note again that the “algorithm” given in the proof of Theorem 3.2 is not really
an algorithm in the conventional sense of the word, as it does not specify how to infer
the result of the distance product from the comparisons performed. More accurately, the
theorem says that there is a decision tree for the min-plus product of two n× n matrices
whose depth is O(n2.5). Fredman [9] observes, however, that the decision tree whose
existence is proved in Theorem 3.2 can be explicitly constructed for tiny values of n,
and this can be used to lower slightly the cost of computing a min-plus product of two
n × n matrices.

THEOREM 3.3 [9]. Let A = (ai j ) and B = (bi j ) be two n × n matrices with real ele-
ments. Then, the distance product C = A∗B can computed in O(n3(log log n/log n)1/3)
time on a machine with (log n)-bit words.

Takaoka [25] simplified Fredman’s explicit algorithm and reduced its running time
to O(n3(log log n/log n)1/2), again on a machine with (log n)-bit words.

4. The Algorithm of Dobosiewicz. Dobosiewicz [7] discovered a slightly more effi-
cient explicit implementation of Fredman’s “algorithm” for rectangular min-plus prod-
ucts. Instead of using table-lookup, as done by Fredman [9] and Takaoka [25], the
algorithm of Dobosiewicz simply uses bit-level parallelism.

THEOREM 4.1 [7]. A distance product of an n × m matrix by an m × n matrix can be
computed in O(m2n2/w+n2) time on a machine withw-bit words, wherew ≤ n/log n.

PROOF. Dobosiewicz’s algorithm is given in Figure 1. It receives an n × m matrix A,
and an m × n matrix B. It returns two n × n matrices C and R. The matrix C contains
the min-plus product A ∗ B. The matrix R contains the minimal indices for the product,
i.e., ci j = ai,ri j + bri j , j , where ri j ∈ [m], for every i, j ∈ [n].

The algorithm starts by setting Zi ← [n], for i ∈ [n]. The set Zi contains all the
indices j for which ci j and ri j were not determined yet. The algorithm maintains two
other collections of sets, Xi , for i ∈ [n], and Ys , for s ∈ [m]. The cost of performing
operations on these sets will be discussed later. We focus, first, on the correctness of the
algorithm.

The main portion of the algorithm is a loop in which the variable r ranges over the
values from 1 to m. In each iteration of the loop the algorithm identifies all pairs of indices
(i, j), where i, j ∈ [n], for which r is a minimal index, i.e., (A ∗ B)i j = air + br j ,
and for which no other minimal index was found before, and sets the entries ci j and
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Algorithm (Cn×n, Rn×n)← MU LT (An×m, Bm×n)

Let Zi ← {1, 2, . . . , n}, for i ∈ [n].

for r ← 1 to m

Let ai
rs ← air − ais , for i ∈ [n], s ∈ [m], s �= r .

Let b j
rs ← bsj − ar j , for j ∈ [n], s ∈ [m], s �= r .

Form a sorted list L containing these 2(m − 1)n elements.

Let Xi ← Zi , for i ∈ [n].
Let Ys ← ∅, for s ∈ [m].

for k ← 1 to 2(m − 1)n
if Lk is ai

rs , then Xi ← Xi − Ys .
if Lk is b j

rs , then Ys ← Ys ∪ { j}.
end

for i ← 1 to n
for every j ∈ Xi

ri j ← r .
ci j ← air + br j .

end
Zi ← Zi − Xi .

end

end

Fig. 1. The rectangular min-plus multiplication algorithm of Dobosiewicz.

ri j accordingly. (Note that there may be several minimal indices for a pair (i, j). The
algorithm will find the smallest one of them.)

As in the proof of Theorem 3.1, r is a minimal index for (i, j) if and only if air+br j ≤
ais+bsj , or, equivalently, air−ais ≤ bsj−br j , for every s ∈ [m]. The algorithm computes
the differences ai

rs = air−ais and b j
rs = bsj−br j , for every i, j ∈ [n], s ∈ [m], and forms

a sorted list L containing them. (Again, as in the proof of Theorem 3.1, if ai
rs = b j

rs ′ ,
then the element ai

rs is placed before b j
rs ′ in the list.) Then r is a minimal index for (i, j)

if and only if ai
rs appears before b j

rs in the list, for every s ∈ [m].
At the start of each iteration the algorithm sets Xi ← Zi for every i ∈ [n]. It then

scans the elements of list L , one by one, while maintaining the following invariant:
j ∈ Xi if and only if j ∈ Zi and it is “still possible” that r is a minimal index for (i, j).
To be more precise, j ∈ Xi if and only if j ∈ Zi and for every s ∈ [m], either ai

rs

appears before b j
rs in L , or b j

rs was not scanned yet. To help maintain this invariant, the
algorithm also maintains, for every s ∈ [m], a set Ys that contains all the indices j for
which b j

rs was already encountered.
We see what actions should be taken to maintain the invariants when scanning the next

element of L . If the scanned element is ai
rs , then all the elements of Ys should be removed

from Xi . (Indeed, if j ∈ Ys then b j
rs appears before ai

rs in the list.) The algorithm thus
appropriately performs Xi ← Xi − Ys . If the scanned element is b j

rs , we simply need to
add j to Ys , and the algorithm appropriately performs Ys ← Ys ∪ { j}.
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It is easy to see that when all the elements of L are scanned, j ∈ Xi if and only if
j ∈ Zi and r is a minimal index for (i, j). For each j ∈ Xi , the algorithm thus sets
ri j ← r and ci j ← air + br j . The set Xi is then removed from Zi , for i ∈ [n]. This
completes the description and correctness proof of the algorithm.

We now discuss the complexity of the algorithm. Consider the cost of a single iteration
of the algorithm with a given value of r . Computing the differences ai

rs and b j
rs takes

O(mn) time. Sorting them to form the list L takes O(mn log(mn)) time. For each element
of L we then perform two set operations on subsets of [n]. Each one of the sets Xi , Zi ,
and Ys can be represented as an n-bit vector which can be packed into n/w machine
words. Each set operation can then be implemented in O(n/w) time. The total cost of an
iteration, excluding the cost of the last for loop, is thus O(mn log(mn)+mn2/w), which
is O(mn2/w) since we assume that w ≤ n/log n. Multiplying this by m, the number of
iterations, we get a time bound of O(m2n2/w).

To finish the proof it remains to bound the time spent in the double loop in which i
ranges from 1 to n and j ranges over all the elements of Xi . To do so, note that for every
i ∈ [n], the m versions of the set Xi obtained in the m iterations are disjoint. This is so
because Xi is initialized to Zi at the beginning of each iteration, and the resulting set
Xi is subtracted from Zi at the end of each iteration. Thus, the total number of elements
j extracted from the sets Xi in all iterations is exactly n2. Extracting all the elements
of a set Xi can be easily done in O(|Xi | + n/w) time using a machine instruction that
returns the index of one of the 1’s in a non-zero machine word. (See Section 2.) The total
time spent in the double loop is therefore O(n2 +mn/w). The total running time of the
algorithm is therefore O(m2n2/w + n2), as required.

THEOREM 4.2 [7]. A distance product of two n × n matrices can be computed in
O(n3/

√
w) time on a machine with w-bit words, w ≤ n/log n.

PROOF. As in the proof of Theorem 3.2, we break the product of two n × n matrices
into n/m products of n×m by m× n matrices. The total time needed is then O((n/m) ·
(m2n2/w + n2)), which is minimized when we set m = √w.

COROLLARY 4.3 [7]. A distance product of two n × n matrices can be computed in
O(n3/

√
log n) time on a machine with (log n)-bit words.

5. The Algorithm of Arlazarov et al. Arlazarov et al. [3] considered the different,
though related, problem of computing the Boolean, i.e., the or-and product, of two
Boolean matrices.

THEOREM 5.1 [3]. The Boolean product of an n × log n matrix by a log n × n matrix
can be computed in O(n2/w) time on a machine with w-bit words.

PROOF. Let A = (ai j ) be an n × log n matrix, and let B = (bi j ) be a log n × n matrix.
Let C = AB be their n × n Boolean product. We let Ai , Bi , and Ci denote the i th row
of A, B, or C , respectively. As we assume that w ≥ log n, each row Ai of A fits into a



188 U. Zwick

Algorithm Cn×n ← BMULT(An×log n, Blog n×n)

BT [0]← 0
for i ← 0 to log n − 1

for j ← 0 to 2i − 1
BT [2i + j]← Bi ∨ BT [ j]

end
end

for i ← 1 to n
Ci ← BT [Ai ]

end

Fig. 2. The Boolean matrix multiplication algorithm of Arlazarov et al.

single machine word. Each row of B and C , on the other hand, requires n/w machine
words.

Each row Ai specifies a subset of the rows of B, of size at most log n, that needs to
be or’ed. Doing this naively would require O((n log n)/w) time for each row, and thus
a total time of O((n2 log n)/w).

We can save a log n factor as follows. For brevity, let k = log n. For every k-bit word
x = x1 · · · xk , we let BT [x] = ∨k

i=1xi Bi , i.e., the or of the rows of B corresponding to
the 1’s in the word x . We can compute BT [x], for every k-bit word x , in O(2kn/w) =
O(n2/w) time. Now Ci = BT [Ai ], for every i ∈ [n]. Thus, the rows Ci , for i ∈ [n],
can be looked up in the table BT , again in O(n2/w) time, as required. A complete
description of the algorithm is given in Figure 2.

THEOREM 5.2 [3]. The Boolean product of two n × n matrices can be computed in
O(n3/(w log n)) time on a machine with w-bit words.

PROOF. As usual, we break the Boolean product of two n × n matrices into n/log n
products of an n× log n matrix by a log n×n matrix. The total cost is then O((n/ log n) ·
(n2/w)) = O(n3/(w log n)).

The Boolean product of two n×n matrices can be computed in O(nω) time, whereω <
2.376 [4] is the algebraic matrix multiplication exponent (see, e.g., [11] and [18]). We do
not know, however, how to utilize these fast algebraic or Boolean matrix multiplication
algorithms to obtain faster algorithms for the min-plus product of matrices with real
elements.

6. The New Algorithm. Using the idea used by Arlazarov et al. [3], we can obtain a
slightly more efficient implementation of the algorithm of Dobosiewicz [7].

THEOREM 6.1. A distance product of an n × m matrix by an m × n matrix can be
computed in O(m2n2 log(w log n)/(w log n)) time on a machine with w-bit words.
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PROOF. The improved algorithm is obtained by providing a slightly more efficient
implementation of the set operations used by the algorithm of Dobosiewicz [7].

Let t be a parameter to be chosen later. For simplicity, we assume that n/t is an
integer. Each dynamic set Ys , where s ∈ [m], is maintained as follows. As long as Ys

contains at most t elements, we maintain a simple list Ys containing the elements of Ys .
When the size of the list Ys reaches t , we prepare a compressed representation Y 1

s of
Ys using n/w words, and reset Ys to the empty list. Elements added to the set Ys are
again added to the list Ys until its length becomes t again. We then prepare a compressed
representation of the set Y 2

s = Ys ∪ Y 1
s and again empty Ys . Continuing in this way, we

get n/t − 1 snapshots Y 1
s , . . . , Y n/t−1

s of the set Ys , and the list Ys is always of size at
most t . For every s ∈ [m], we let vs be the index of the last snapshot of Ys created so far.

A set operation Xi ← Xi − Ys is now implemented as follows. We remove the
elements in the list Ys , one by one, from Xi . This takes only O(t) time. We also set
vis ← vs to signify that the elements of Y vs

s should be removed from Xi , but we do not
remove these elements as yet. These removals will be carried out at the final stage of the
algorithm. Doing all these removals together will allow us to use a trick similar to the
one used by Arlazarov et al. [3].

At the end of the sequence of update operations, we need to perform

Xi ← Xi −
m⋃

s=1

Y vis
s , for every i ∈ [n].

Note that for each i ∈ [n] and s ∈ [m] we have 0 ≤ vis ≤ n/t − 1. For brevity, let
b = n/t . It would have been nice to be able to look up the value of

⋃m
s=1 Y vis

s in a table.
Unfortunately, such a table will be too large as it would have to contain bm = (n/t)m

entries, which may be much larger than n. Let k = log n/log(n/t). As bk = (n/t)k = n,
we can afford to keep a table with (n/t)k entries. Thus, we can construct m/k tables,
each of size n, such that the gth table will hold all the sets of the form

⋃(g+1)k
s=gk+1 Y vis

s .
Combining these m/k tables we get a two-dimensional table Y T such that

Y T

[
g,

(g+1)k∑
s=gk+1

vsbs−(gk+1)

]
=

(g+1)k⋃
s=gk+1

Y vs
s , 0 ≤ g <

m

k
, 0 ≤ vs < b.

Each entry in the table is a subset of [n] represented using n/w machine words. The
time needed for constructing the table Y T is proportional to its size in words, which is
O((m/k) ·n · (n/w)) = O((mn2 log(n/t))/(w log n)) . Each set of the form

⋃m
s=1 Y vis

s
can now be formed in O((m/k) · (n/w)) time by taking the union of m/k sets found
in the table Y T . The time needed for computing the n sets

⋃m
s=1 Y vis

s , for i ∈ [n], is
therefore the same as the time needed for preparing the table Y T . A full description of
the proposed new way of implementing the set operations is given in Figure 3.

We now analyze the cost of executing all the set operations performed by the algorithm
of Dobosiewicz [7] (see Figure 1) using the new implementation. We bound the cost of
the O(mn) set operations performed during one iteration of the algorithm. The total
initialization cost is O(mn/w). The total cost of handling instructions of the form Ys ←
Ys ∪ {i} is O(m · (n + (n/t)(n/w))). The total cost of handling instructions of the form
Xi ← Xi −Ys is O(mn · t). Adding the cost of the finalization stage, as discussed above,
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Initialization:

for s ← 1 to m
vs ← 0.
Ys ← ∅.
Y 0

s ← ∅.
end

Ys ← Ys ∪ {i}:
if |Ys | < t then
Ys ← Ys ∪ {i}

else
vs ← vs + 1
Y vs

s ← Y vs−1
s ∪ Ys

Ys ← {i}
end-if

Xi ← Xi − Ys :

vis ← vs

for every j ∈ Ys

Xi ← Xi − { j}
end

Finalization:

b← n/t
k ← log n/log b

for g← 0 to m/k − 1
Y T [g, 0]← ∅
for s ← 1 to k

for v← 0 to b − 1
for x ← 0 to bs−1 − 1

Y T [g, v · bs + x]← Y v
gk+s ∪ Y T [g, x]

end
end

end
end

for i ← 1 to n
for g← 0 to m/k − 1

ind← 0
for s ← gk + 1 to (g + 1)k

ind← b · ind + vis

end
Xi ← Xi − Y T [ind]

end
end

Fig. 3. Speeding up the set operations used in the algorithm of Dobosiewicz.

we get that the total cost of an iteration is

O

(
mnt + mn2 log(n/t)

w log n

)
,

where we have neglected terms that are dominated by the two terms appearing above. To
minimize the running time, we choose t = n/(w log n). The running time of an iteration
is then O((mn2 log(w log n))/(w log n)). Multiplying this by the number of iterations
we get the time bound claimed.

THEOREM 6.2. A distance product of two n × n matrices can be computed in
O(n3/

√
w log n/log(w log n)) time on a machine with w-bit words.

PROOF. Yet again, we break the Boolean product of two n × n matrices into n/m
products of an n × m matrix by an m × n matrix. We compute each one of these
rectangular products using the algorithm of Theorem 6.1. The total cost is then

O

(
n

m
·
(

m2n2 log(w log n)

w log n
+ n2

))
.

Choosing m = √w log n/log(w log n), we get the time bound claimed.



Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem 191

COROLLARY 6.3. A distance product of two n × n matrices can be computed in
O(n3√log log n/log n) time on a machine with (log n)-bit words.

As an additional corollary, we get the main result of this paper.

COROLLARY 6.4. The APSP problem for directed graphs with real edge weights can
be solved in O(n3√log log n/log n) time on a machine with (log n)-bit words.

7. Concluding Remarks. We have obtained a slightly improved sub-cubic algorithm
for the APSP problem with real edge lengths. Unfortunately, we were not able to answer
the following major open problem: Is there a genuinely sub-cubic algorithm for the APSP
problem with real edge lengths, i.e., an algorithm that runs in O(n3−ε) time, for some
ε > 0?

The algorithm presented here is also the fastest known algorithm for the APSP problem
with integer edge lengths taken, say, from the range {1, 2, . . . , n}. Is there a genuinely
sub-cubic algorithm for this version of the problem?

Note Added in Proof. An improved algorithm for the APSP problem with a running
time of O(n3 log n) was recently obtained by Timothy M. Chan.
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