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Combinatorial Algorithms for the Unsplittable Flow
Problem1

Yossi Azar2 and Oded Regev2

Abstract. We provide combinatorial algorithms for the unsplittable flow problem (UFP) that either match
or improve the previously best results. In the UFP we are given a (possibly directed) capacitated graph with
n vertices and m edges, and a set of terminal pairs each with its own demand and profit. The objective is to
connect a subset of the terminal pairs each by a single flow path subject to the capacity constraints such that the
total profit of the connected pairs is maximized. We consider three variants of the problem. First is the classical
UFP in which the maximum demand is at most the minimum edge capacity. It was previously known to have
an O(

√
m) approximation algorithm; the algorithm is based on the randomized rounding technique and its

analysis makes use of the Chernoff bound and the FKG inequality. We provide a combinatorial algorithm that
achieves the same approximation ratio and whose analysis is considerably simpler. Second is the extended UFP
in which some demands might be higher than edge capacities. Our algorithm for this case improves the best
known approximation ratio. We also give a lower bound that shows that the extended UFP is provably harder
than the classical UFP. Finally, we consider the bounded UFP in which the maximum demand is at most 1/K
times the minimum edge capacity for some K > 1. Here we provide combinatorial algorithms that match the
currently best known algorithms. All of our algorithms are strongly polynomial and some can even be used in
the online setting.
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1. Introduction. We consider the unsplittable flow problem (UFP). We are given a
directed or undirected graph G = (V, E), |V | = n, |E | = m, a capacity function u on
its edges, and a set of l terminal pairs of vertices (sj , tj ) with demand dj and profit rj . A
feasible solution is a subset S of the terminal pairs and a single flow path for each such
pair such that the capacity constraints are fully met. The objective is to maximize the
total profit of the satisfied terminal pairs. The well-known problem of maximum edge
disjoint paths (EDP) is the special case in which all demands, profits, and capacities are
equal to 1.

Previous Results. As already shown in [9], the EDP (and hence the UFP) is NP-
complete. An O(

√
m) approximation algorithm is known for the EDP [10] (for additional

positive results see [17] and [18]). In [19] Srinivasan presented an O(
√

m) approximation
algorithm for the UFP under the assumption that all edge capacities are equal. His
algorithm was based on the randomized rounding technique and its analysis involved
several important probabilistic tools, such as the Chernoff bound and the FKG inequality.
Kolliopoulos and Stein [11] considered a more general case of the UFP; their only
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assumption was that dmax ≤ umin (i.e., the maximal demand is at most the minimal edge
capacity). This assumption is known as the “no-bottleneck” assumption. We refer to UFP
with this assumption as the classical UFP. Their result is an O(

√
m log m) approximation

algorithm; it is based on good rounding techniques for some packing integer programs.
Finally, by extending [19], Baveja and Srinivasan [2] provided an O(

√
m) approximation

algorithm for the classical UFP; this is still the best approximation factor known for the
problem. As before, the analysis of their algorithm involves the Chernoff bound and the
FKG inequality.

In an interesting paper, Guruswami et al. [7] presented an O(
√

m log m log log m)
approximation algorithm for the classical UFP. While weaker than the aforementioned
approximation guarantee given in [2], the significance of their result is that its analysis
is considerably simpler: it is based on basic randomized rounding. In the same paper the
authors also considered combinatorial algorithms. Surprisingly, under certain conditions,
they were able to achieve approximation ratios which are only slightly worse than those
given by randomized rounding. Specifically, under the assumption that dmax/dmin is at
most polynomial, their algorithm is an O(

√
m log m log log m) approximation algorithm.

Here, dmax and dmin denote the maximum and minimum demands, respectively. This
raised the following natural question: Is it possible to match the O(

√
m) given in [2]

with a combinatorial algorithm? In this paper we answer this question in the affirmative.
Another interesting result presented in [7] is an almost matching lower bound of

�(m1/2−ε) for any ε > 0 under the assumption that P �= NP (a weaker bound was
obtained independently by Ma and Wang [15]). The bound is shown for the directed
EDP and hence it also applies to the classical UFP. Showing a similar bound for the
undirected case is still an important open question.

We now consider the general UFP without the no-bottleneck assumption (specifically,
some demands might be higher than some capacities). We refer to this case as the ex-
tended UFP. The results of [7] imply an O(

√
m log m max{log log m, log(dmax/umin)})

approximation algorithm based on randomized rounding where umin denotes the min-
imum edge capacity. Moreover, their combinatorial algorithm can be seen to yield an
O(
√

m log m log(dmax/dmin)) approximation guarantee.
We now consider the special case of UFP in which dmax ≤ umin/K for K > 1. We

refer to this case as the K -bounded UFP. For K = �(log n), a constant approximation is
shown in [16] by using randomized rounding. For constant K , an approximation ratio of
O(n1/(K−1)) was shown in [2] by using randomized rounding; the same approximation
ratio can be obtained from [1] by combinatorial methods (see [3]). An improved ratio of
O(n1/K ) is obtained in [11] by randomized rounding. However, prior to this work, no
matching combinatorial algorithm was known.

Our Results. Our main result is a combinatorial algorithm that achieves the O(
√

m)
approximation ratio of [2]. Our algorithm has the advantage that its analysis is sub-
stantially simpler. This improves the combinatorial algorithm of [7] by eliminating the
log m log log m factor and, more importantly, removing the assumption that dmax/dmin is
at most polynomial. Essentially, our result shows how a purely combinatorial algorithm
can replace a randomized rounding based one.

For the extended UFP, we improve [7] and obtain a combinatorial O(
√

m log
(dmax/umin)) approximation algorithm. Notice that both the log m factor and the de-
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pendence on dmin are gone. In addition, under the assumption that P �= NP, we prove
a lower bound for the extended UFP over directed graphs. Specifically, we show that
unless P = NP, it is impossible to approximate the extended UFP better than O(m1−ε)
for any ε > 0. This proves that the extended UFP is strictly harder than the classical
UFP.

For the K -bounded UFP, we obtain an O(K n1/K ) combinatorial approximation al-
gorithm. This matches the previously best approximation guarantee. We note that we
can replace n with D where D is an upper bound on the length of the longest path ever
used in an optimal solution (which is obviously at most n).

All of our algorithms are shown to be strongly polynomial. Although the same applies
to some algorithms based on randomized rounding, in our case the strong polynomiality
is easy to obtain. This can be seen as one advantage of the combinatorial algorithms.
Another advantage is that the algorithms are versatile and can be used in other settings.
Here, we consider the online setting in which the network is known in advance but
requests arrive one by one and a decision has to be made without knowing which requests
follow. We present online algorithms whose competitive ratio is only slightly worse than
that of the offline algorithms. We also show that one of our algorithms is optimal in the
online setting by improving a lower bound of [1].

We conclude with a summary of the main results in this paper:

• Classical UFP (dmax ≤ umin)—combinatorial strongly polynomial O(
√

m) approxi-
mation algorithm.
• Extended UFP (arbitrary dmax, umin)—combinatorial strongly polynomial O(

√
m

log(2 + dmax/umin)) approximation algorithm; a lower bound of �(m1−ε) and of
�(m1/2−ε√log(2+ dmax/umin)) for directed graphs.
• Bounded UFP (dmax ≤ umin/K )—combinatorial strongly polynomial O(K n1/K )

approximation algorithm.

Recent Results. Finally, we mention some recent results that appeared after the publica-
tion of the preliminary version of the current paper. Chekuri and Khanna [5] considered
approximation ratios in terms of the number of nodes n (and not the number of edges m
as before). They were able to provide n1−ε approximation algorithms for EDP for some
value of ε. Kolman [12] generalized their result to the UFP under the no-bottleneck
assumption and the assumption that profits equal demands. Moreover, improvements
of their result were recently obtained by Varadarajan and Venkataraman [20] and by
Hajiaghayi and Leighton [8]. Another extensive line of work concerns algorithms for
the UFP whose performance depends on the expansion of the underlying undirected
graph. Among the recent results is the work of Kolman and Scheideler [13], [14] who
showed an O(�α−1(umax/umin) log n) approximation algorithm where � is the maxi-
mum degree and α is the expansion of the graph. Later, Chakrabarti et al. [4] provided a
capacity-independent bound of O(�α−1 log2 n); this improves [14] for the case where
umax/umin is large.

2. Notation. Let G = (V, E), |V | = n, |E | = m, be a (possibly directed) graph and
a capacity function u: E → R

+. An input request is a quadruple (sj , tj , dj , rj ) where
(sj , tj ) is the source–sink terminal pair, dj is the demand, and rj is the profit. The input
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is a set of the above quadruples for j ∈ T = {1, . . . , l}. Let D be a bound on the length
of any routing path; note that D is at most n.

We denote by umin (umax) the minimum (maximum) edge capacity in the graph. Sim-
ilarly, we define dmin, dmax, rmin, and rmax to be the minimum/maximum demand/profit
among all input requests. We define two functions on sets of requests, S ⊆ T :

r(S) =
∑
j∈S

rj , d(S) =
∑
j∈S

dj .

A feasible solution is a subset P ⊆ T and a route Pj from sj to tj for each j ∈ P subject
to the capacity constraints, i.e., the total demand routed through an edge is bounded by
its capacity. Some of our algorithms order the requests so we usually denote by L j (e)
the relative load of edge e after routing request j , that is, the sum of demands routed
through e divided by u(e). Without loss of generality, we assume that any single request
can be routed. That is possible since we can just ignore unroutable requests. Note that
this is not the dmax ≤ umin assumption made in the classical UFP.

Before describing the various algorithms, we begin with a simple useful lemma:

LEMMA 2.1. Given a sequence {a1, . . . , an}, a non-increasing non-negative sequence
{b1, . . . , bn} and two sets X, Y ⊆ {1, . . . , n}, let Xi = X ∩ {1, . . . , i} and Y i = Y ∩
{1, . . . , i}. If for some α and for every 1 ≤ i ≤ n,∑

j∈Xi

aj > α
∑
j∈Y i

aj ,

then ∑
j∈X

aj bj > α
∑
j∈Y

aj bj .

PROOF. Denote bn+1 = 0. Since bj − bj+1 is non-negative,

∑
j∈X

aj bj =
n∑

i=1

(bi − bi+1)
∑
j∈Xi

aj

> α

n∑
i=1

(bi − bi+1)
∑
j∈Y i

aj = α
∑
j∈Y

aj bj .

3. Algorithms for the UFP

3.1. Algorithm for the Classical UFP. In this section we present the combinatorial
algorithm for the classical UFP (i.e., the case in which dmax ≤ umin). The algorithm’s
approximation ratio is the same as that of the currently best known algorithm. Later, we
will see that this algorithm can be easily made strongly polynomial and that it can even
be used in the extended case.
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We partition the set of requests T into two disjoint sets. The first, T1, consists of
requests for which dj ≤ umin/2. The rest of the requests are in T2. For each request j
and a given path P from sj to tj define

F( j, P) = rj

dj
∑

e∈P(1/u(e))
,

a measure of the profit gained relative to the added network load.
Given a set of requests, we use simple bounds on the values of F . The lower bound,

denoted αlb, is defined as rmin/n and is indeed a lower bound on F( j, P) since P cannot
be longer than n edges and the capacity of its edges must be at least dj . The upper bound,
denoted αub, is defined as rmaxumax/dmin and is clearly an upper bound on F( j, P).

PROUTE

run Routine2(T1) and Routine2(T2) and choose the better solution

Routine2(S)
for each k from �logαlb� to �logαub�

run Routine1(2k, S) and choose the best solution

Routine1(α, S)
sort the requests in S according to a non-increasing order of rj/dj

for each j ∈ S in the above order
if ∃ path P from sj to tj s.t. F( j, P)>α and ∀e∈ P, L j−1(e)+ dj/u(e)≤1
then route the request on P and for e ∈ P set L j (e) = L j−1(e)+ dj/u(e)
else reject the request

THEOREM 3.1. Algorithm PROUTE is an O(
√

m) approximation algorithm for the
classical UFP.

PROOF. First, we look at the running time of the algorithm. The number of iterations
done in Routine2 is

log
αub

αlb
= log

(
n

rmax

rmin

umax

dmin

)
,

which is polynomial. Routine1 looks for a non-overflowing path P with F( j, P) > α.
The latter condition is equivalent to

∑
e∈P(1/u(e)) < rj/djα and thus a shortest path

algorithm can be used.
Consider an optimal solution routing requests in Q ⊆ T . For each j ∈ Q let Qj be

the route chosen for j in the optimal solution. The total profit of eitherQ∩ T1 orQ∩ T2

is at least r(Q)/2. Denote that set byQ′ and its index by i ′ ∈ {1, 2}, that is,Q′ = Q∩Ti ′ .
Now consider the values given to α in Routine2 and let α′ = 2k ′ be the highest such that
r({ j ∈ Q′ | F( j, Qj ) > α′}) ≥ r(Q)/4. It is clear that such an α′ exists. From now
on we limit ourselves to Routine1(α

′, i ′) and show that a good routing is obtained by it.
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Denote by P the set of requests routed by Routine1(α
′, i ′) and for j ∈ P denote by Pj

the path chosen for it.
Let Q′high = { j ∈ Q′ | F( j, Qj ) > α′} and Q′low = { j ∈ Q′ | F( j, Qj ) ≤ 2α′} be

sets of higher and lower “quality” routes inQ′. Note that the sets are not disjoint and that
the total profit in each of them is at least r(Q)/4 by the choice of α′. From the definition
of F ,

r(Q′low) =
∑

j∈Q′low

F( j, Qj )
∑
e∈Qj

dj

u(e)
≤ 2α′

∑
j∈Q′ low

∑
e∈Qj

dj

u(e)

≤ 2α′
∑
j∈Q

∑
e∈Qj

dj

u(e)

= 2α′
∑

e

∑
j∈Q|e∈Qj

dj

u(e)

≤ 2α′
∑

e

1 = 2mα′,

where the last inequality is true since an optimal solution cannot overflow an edge.
Therefore,

r(Q) ≤ 8mα′.

Now let Eheavy = {e ∈ E | Ll(e) ≥ 1
4 } be a set of the heavy edges after the completion

of Routine1(α
′, i ′). We consider two cases. The first is when |Eheavy| ≥

√
m. According

to the description of the algorithm, F( j, Pj ) > α′ for every j ∈ P . Therefore,

r(P) =
∑
j∈P

F( j, Pj )
∑
e∈Pj

dj

u(e)

≥ α′
∑
j∈P

∑
e∈Pj

dj

u(e)

= α′
∑

e

∑
j |e∈Pj

dj

u(e)

= α′
∑

e

Ll(e) ≥ 1
4

√
mα′,

where the last inequality follows from the assumption that more than
√

m edges are
loaded more than a fourth of their capacity. By combining the two inequalities we get

r(Q)
r(P) ≤ 32

√
m = O(

√
m),

which completes the first case.
From now on we consider the second case where |Eheavy| <

√
m. Denote R =

Q′high\P . We compare the profit given by our algorithm with that found in R by using
Lemma 2.1. Since rj/dj is a non-increasing sequence, it is enough to bound the total
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demand routed in the prefixes of the two sets. For that we use the notation Rk =
R ∩ {1, . . . , k} and Pk = P ∩ {1, . . . , k} for k = 1, . . . , l. For each request j ∈ Rk

the algorithm cannot find any appropriate path. In particular, the path Qj is not chosen.
Since j ∈ Q′high, F( j, Qj ) > α′ and therefore the reason the path is not chosen is that it
overflows one of the edges. Denote that edge by ej and by Ek = {ej | j ∈ Rk}.

LEMMA 3.2. Ek ⊆ Eheavy.

PROOF. Let ej ∈ Ek be an edge with j ∈ Rk , a request corresponding to it. We claim
that when the algorithm fails to find a path for j , L j (ej ) ≥ 1

4 . For the case i ′ = 1, the
claim is obvious since the demand dj ≤ umin/2 and, in particular, dj ≤ u(ej )/2. Thus,
the load of ej must be higher than u(ej )/2 for the path Qj to overflow it. For the case
i ′ = 2, we know that umin/2 < dj ≤ umin. In case u(ej ) > 2umin, the only way to
overflow it with demands of size at most dmax ≤ umin is when the edge is loaded at least
u(ej )− umin ≥ u(ej )/2. Otherwise, u(ej ) ≤ 2umin and since dj ≤ umin ≤ u(e) we know
that the edge cannot be empty. Since we only route requests from T2 the edge’s load
must be at least umin/2 ≥ u(ej )/4.

Since each request in Rk is routed through an edge of Ek in the optimal solution,
d(Rk) ≤ ∑e∈Ek u(e). The highest capacity edge f ∈ Ek is loaded more than a fourth
of its capacity since it is in Eheavy and therefore d(Pk) ≥ u( f )/4. By Lemma 3.2,
|Ek | ≤ |Eheavy| <

√
m and hence

d(Rk) <
√

m · u( f ) ≤ 4
√

m · d(Pk).

We use Lemma 2.1 by combining the inequality above on the ratio of demands and
the non-increasing sequence rj/dj . This yields∑

j∈R

rj

dj
dj ≤ 4

√
m
∑
j∈P

rj

dj
dj

or

r(R) ≤ 4
√

m · r(P).
Since Q′high ⊆ R ∪ P ,

r(Q′high) ≤ r(R)+ r(P) ≤ (1+ 4
√

m)r(P).

Recall that r(Q′high) ≥ r(Q)/4 and therefore

r(Q)
r(P) ≤ 4+ 16

√
m = O(

√
m).

3.2. Strongly Polynomial Algorithm. Routine1 is strongly polynomial. Routine2, how-
ever, calls it log(αub/αlb) times. Therefore, it is polynomial but still not strongly poly-
nomial. We add a preprocessing step whose purpose is to bound the ratio αub/αlb. Recall
that l denotes the number of requests.
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SPROUTE(T )
run Routine3(T1) and Routine3(T2) and choose the better solution

Routine3(S)
For each edge such that u(e) > l · dmax set u(e) to be l · dmax.
Throw away requests whose profit is below rmax/ l.
Take the better out of the following two solutions:

Route all requests in Stiny = { j ∈ S | dj ≤ umin/ l} on any simple path.
Run Routine2(S\Stiny).

THEOREM 3.3. Algorithm SPROUTE is a strongly polynomial O(
√

m) approximation
algorithm for the classical UFP.

PROOF. Consider an optimal solution routing requests in Q ⊆ S. Since the demand of
a single request is at most dmax, the total demand routed through a given edge is at most
l · dmax. Therefore,Q is still routable after the first preprocessing phase. The total profit
of requests whose profit is lower than rmax/ l is rmax. In case r(Q) > 2rmax, removing
these requests still leaves the setQ′ whose total profit is at least r(Q)− rmax ≥ r(Q)/2.
Otherwise, we take Q′ to be the set containing the request of highest profit. Then r(Q′)
is rmax ≥ r(Q)/2. All in all, after the two preprocessing phases we are left with a UFP
instance for which there is a solution Q′ whose profit is at least r(Q)/2.

Assume that the total profit inQ′ ∩ Stiny is at least r(Q)/4. Since the requests in Stiny

have a demand of at most umin/ l and there are at most l of them, they can all be routed on
simple paths and the profit obtained is at least r(Q)/4. Otherwise, the profit in Q′\Stiny

is at least r(Q)/4 and since algorithm PROUTE is an O(
√

m) approximation algorithm,
the profit we obtain is also within O(

√
m) of r(Q).

The preprocessing phases by themselves are obviously strongly polynomial. Recall
that the number of iterations performed by Routine2 is log(n(rmax/rmin)(umax/dmin)). The
ratio of profits is at most l by the second preprocessing phase. The first preprocessing
phase limits umax to l · dmax. So, the number of iterations is at most log(nl2(dmax/dmin)).
In case S = T1, dmax ≤ umin/2 and dmin ≥ umin/ l since tiny requests are removed.
For S = T2, dmax ≤ umin and dmin ≥ umin/2. We end up with at most O(log n + log l)
iterations, which is strongly polynomial.

3.3. Algorithm for the Extended UFP. In this section we show that the algorithm can
be used for the extended case in which demands can be higher than the lowest edge
capacity.

Instead of using just two sets in SPROUTE, we define a partition of the set of requests T
into 2+max{�log dmax/umin�, 0} disjoint sets. The first, T1, consists of requests for which
dj < umin/2. The set Ti for i > 1 is of requests for which 2i−3umin < dj ≤ 2i−2umin.
The algorithm is as follows:
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ESPROUTE(T):

let Z be {i | Ti �= ∅}
for each i ∈ Z

run Routine3(Ti ) on the resulting graph
choose the best solution obtained

THEOREM 3.4. Algorithm ESPROUTE is a strongly polynomial O(
√

m
log(2+ dmax/umin)) approximation algorithm for the extended UFP.

PROOF. We choose i ′ as the index that maximizes the profit in Q ∩ Ti ′ and the proof
essentially follows the proofs of Theorems 3.1 and 3.3. The only part which has to be
modified is Lemma 3.2. The following lemma replaces it:

LEMMA 3.5. Ek ⊆ Eheavy.

PROOF. Let ej ∈ Ek be an edge with j ∈ Rk , a request corresponding to it. We claim
that when the algorithm fails to find a path for j , L j (ej ) ≥ 1

4 . For the case i ′ = 1, the
claim is obvious as before. For the case i ′ > 1, we know that 2i ′−3umin < dj ≤ 2i ′−2umin.
In case u(ej ) > 2i ′−1umin, the only way to overflow it with demands of size at most
2i ′−2umin is when the edge is loaded at least u(ej ) − 2i ′−2umin ≥ u(ej )/2. Otherwise,
u(ej ) ≤ 2i ′−1umin and, since j is routed through this edge in the optimal solution,
dj ≤ u(ej ). Therefore, the edge cannot be empty. Since we only route requests from Ti ′

the edge’s load must be at least 2i ′−3umin ≥ u(ej )/4.

We now analyze the running time of the algorithm. Note that |Z | ≤ l and hence
ESPROUTE calls Routine3 at most l times. Moreover, the set Z can be computed directly
from T without having to go through all possible indices i (namely, for each request j
compute the i for which 2i−3umin < dj ≤ 2i−2umin and add this i to Z ). For T1, the number
of iterations of Routine2 is the same as in SPROUTE. For a set Ti , i > 1, the number
of iterations of Routine2 is log(n(rmax/rmin)(umax/dmin)). As before, the preprocessing
of Routine3 reduces this number to log(nl2(dmax/dmin)). Since the ratio dmax/dmin is at
most 2 in each Ti , we conclude that ESPROUTE is strongly polynomial.

4. Algorithms for the K-bounded UFP. In the previous sections we considered the
classical and the extended UFP. In this section we present better algorithms for the K -
bounded UFP in which dmax ≤ umin/K for some K ≥ 2. Our algorithms are based on
the exponential scale technique presented in [1].

4.1. Algorithms for Bounded Demands. In this section we present two algorithms
for the bounded UFP. The first deals with the case in which the demands are in the
range [umin/(K + 1), umin/K ]. As a special case, it provides an O(

√
n) approximation
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algorithm for the half-disjoint paths problem where edge capacities are all the same
and the demands are exactly half the edge capacity. The second is an algorithm for the
K -bounded UFP where demands are only bounded by umin/K from above. Recall that
D is an upper bound on the length of any routing path and, in particular, D ≤ n.

EKROUTE(T )

µ← 2D
sort the requests in T according to a non-increasing order of rj/dj

for each j ∈ T in the above order
if ∃ a path P from sj to tj s.t.∑

e∈P(µ
L j−1(e) − 1) < D

then route the request on P and
for e ∈ P set L j (e) = L j−1(e) +1/�K · u(e)/umin�

else reject the request

BKROUTE(T )

µ← (2D)1+1/(K−1)

sort the requests in T according to a non-increasing order of rj/dj

for each j ∈ Ti in the above order
if ∃ a path P from sj to tj s.t.∑

e∈P(µ
L j−1(e) − 1) < D

then route the request on P and for e ∈ P set L j (e) = L j−1(e)+ dj/u(e)
else reject the request

Note that algorithm EKROUTE uses a slightly different definition of L . This “virtual”
relative load allows it to outperform BKROUTE on instances where the demands are in
the correct range.

THEOREM 4.1. Algorithm EKROUTE is a strongly polynomial O(K ·D1/K ) approxima-
tion algorithm for the UFP with demands in the range [umin/(K+1), umin/K ]. Algorithm
BKROUTE is a strongly polynomial O(K · D1/(K−1)) approximation algorithm for the
K -bounded UFP.

PROOF. The first thing to note is that the algorithms never overflow an edge. For the first
algorithm, the demands are at most umin/K and the only way to exceed an edge capacity
is to route request j through an edge e that holds at least �(K · u(e))/umin� requests. For
such an edge, L j−1(e) ≥ 1 and µL j−1(e) − 1 ≥ µ− 1 ≥ D. For the second algorithm, it
is sufficient to show that in case L j−1(e) > 1− 1/K for some e then µL j−1(e) − 1 ≥ D;
that is true since µL j−1(e) − 1 ≥ ((2D)1+1/(K−1))1−1/K − 1 = 2D − 1 ≥ D. Therefore,
the algorithms never overflow an edge.
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Now we lower bound the total demand accepted by our algorithms. We denote by Q
the set of requests in the optimal solution and by P the requests accepted by either of
our algorithms. For j ∈ Q denote by Qj the path chosen for it in the optimal solution
and for j ∈ P let Pj be the path chosen for it by our algorithm. We consider prefixes
of the input so let Qk = Q ∩ {1, . . . , k} and Pk = P ∩ {1, . . . , k} for k = 1, . . . , l. We
prove that

d(Pk) ≥
∑

e u(e)(µLk (e) − 1)

6K Dµ1/K
.

The proof is by induction on k and the induction base is trivial since the above expression
is zero. Thus, it is sufficient to show that for an accepted request j ,∑

e∈Pj
u(e)(µL j (e) − µL j−1(e))

6K Dµ1/K
≤ dj .

Note that for any e ∈ Pj , L j (e) − L j−1(e) ≤ 1/K for both algorithms. In addition, for
both algorithms L j (e) − L j−1(e) ≤ 3dj/u(e) where the factor 3 is only necessary for
EKROUTE where the virtual load is higher than the actual increase in relative load. The
worst case is when K = 2, u(e) = (1.5− ε)umin, and dj = ( 1

3 + ε)umin: the virtual load
increases by 1

2 whereas dj/u(e) is about 2
9 . Looking at the exponent,

µL j (e) − µL j−1(e) = µL j−1(e)(µL j (e)−L j−1(e) − 1)

= µL j−1(e)((µ1/K )K (L j (e)−L j−1(e)) − 1)

≤ µL j−1(e)µ1/K K (L j (e)− L j−1(e))

≤ µL j−1(e)µ1/K 3K
dj

u(e)
,

where the first inequality is due to the simple relation x y −1 ≤ xy for 0 ≤ y ≤ 1, 0 ≤ x
and that for e ∈ Pj , L j (e)− L j−1(e) ≤ 1/K . Therefore,∑

e∈Pj

u(e)(µL j (e) − µL j−1(e)) ≤
∑
e∈Pj

µL j−1(e)µ1/K 3K dj

= 3Kµ1/K dj

∑
e∈Pj

µL j−1(e)

= 3Kµ1/K dj

(∑
e∈Pj

(µL j−1(e) − 1)+ |Pj |
)

≤ 3Kµ1/K (D + D)dj

= 6K Dµ1/K dj ,

where the last inequality holds since the algorithm routes the request through Pj and the
length of Pj is at most D.

The last step in the proof is to upper bound the total demand accepted by an optimal
algorithm. Denote the set of requests rejected by our algorithm and accepted by the
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optimal one by Rk = Qk\Pk . For j ∈ Rk , we know that
∑

e∈Qj
(µL j−1(e) − 1) ≥ D

since the request is rejected by our algorithm. Hence,

D · d(Rk) ≤
∑
j∈Rk

∑
e∈Qj

dj (µ
L j−1(e) − 1)

≤
∑
j∈Rk

∑
e∈Qj

dj (µ
Lk (e) − 1)

=
∑

e

∑
j∈Rk |e∈Qj

dj (µ
Lk (e) − 1)

=
∑

e

(µLk (e) − 1)
∑

j∈Rk |e∈Qj

dj

≤
∑

e

(µLk (e) − 1)u(e),

where the last inequality holds since the optimal algorithm cannot overflow an edge.
By combining the two inequalities shown above,

d(Qk) ≤ d(Pk)+ d(Rk) ≤ d(Pk)+ d(Pk)
6K D

D
µ1/K = (1+ 6Kµ1/K )d(Pk).

The algorithm followed a non-increasing order of rj/dj and by Lemma 2.1 we obtain
the same inequality above for profits. So, the approximation ratio of the algorithm is

1+ 6Kµ1/K = O(K · µ1/K ),

which, by assigning the appropriate values of µ, yields the desired results.

4.2. A Combined Algorithm. In this section we combine the two algorithms presented
in the previous section: the algorithm for demands in the range [umin/(K + 1), umin/K ]
and the algorithm for the K -bounded UFP. The result is an algorithm for the K -bounded
UFP with an approximation ratio of O(K · D1/K ).

We define a partition of the set of requests T into two sets. The first, T1, includes
all the requests whose demand is at most 1/(K + 1). The second, T2, includes all the
requests whose demand is more than 1/(K + 1) and at most 1/K .

CKROUTE(T )

Take the best out of the following two possible solutions:
Route T1 by using BKROUTE and reject all requests in T2

Route T2 by using EKROUTE and reject all requests in T1

THEOREM 4.2. Algorithm CKROUTE is a strongly polynomial O(K · D1/K ) approxi-
mation algorithm for the K -bounded UFP.

PROOF. LetQ denote an optimal solution in T . Since BKROUTE is used with demands
bounded by 1/(K + 1) its approximation ratio is O(K D1/K ). The same approximation
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ratio is given by EKROUTE. Either T1 or T2 have an optimal solution whose profit is at
least r(Q)/2 and therefore we obtain the claimed approximation ratio.

5. Lower Bounds. In this section we show that in cases where the demands are much
larger than the minimum edge capacity, the UFP becomes very hard to approximate,
namely, �(m1−ε) for any ε > 0. We also show how different demand values relate to
the approximability of the problem. The lower bounds are for directed graphs only.

THEOREM 5.1. [6] The following problem is NPC:

2DIRPATH

INPUT: A directed graph G = (V, E) and four nodes x, y, z, w ∈ V
QUESTION: Are there two edge disjoint directed paths,

one from x to y and the other from z to w in G?

THEOREM 5.2. For any ε > 0, the extended UFP cannot be approximated better than
�(m1−ε).

PROOF. For a given instance A of 2DIRPATH with |A| edges and a small constant ε, we
construct an instance of the extended UFP composed of l copies of A, A1, A2, . . . , Al

where l = |A|�1/ε�. The instance Ai is composed of edges of capacity 2l−i . A special
node y0 is added to the graph. Two edges are added for each Ai , (yi−1, xi ) of capacity
2l−i − 1 and (yi−1, zi ) of capacity 2l−i . All l requests share y0 as a source node. The
sink of request 1 ≤ i ≤ l is wi . The demand of request i is 2l−i and its profit is 1. This
is illustrated in Figure 1 for the case l = 4. Each diamond indicates a copy of A with
x, y, z, w being its left, right, top, and bottom corners, respectively. The number inside
each diamond indicates the capacity of A’s edges in this copy.

We claim that for a given YES instance of 2DIRPATH the maximal profit gained from
the extended UFP instance is l. We route request 1 ≤ i ≤ l through [y0, x1, y1, x2, y2,

. . . , yi−1, zi , wi ]. Note that the path from x j to y j and from z j to w j is a path in A j

given by the YES instance.
For a NO instance, we claim that at most one request can be routed. That is because

the path chosen for a request i ends at wi . So, it must arrive from either zi or xi . The
only edge entering xi is of capacity 2l−i − 1 so zi is the only option. The instance Ai is
a NO instance of capacity 2l−i through which a request of demand 2l−i is routed from
zi to wi . No other path can therefore be routed through Ai so requests j > i are not

8
7

8

4
3

4

2
1

2

1
0

1

y0

w1 w2 w3 w4

Fig. 1. The UFP instance for the case l = 4.
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routable. Since i is arbitrary, we conclude that at most one request can be routed through
the extended UFP instance and that its profit is 1.

The gap created is l = |A|1/ε and the number of edges is l · (|A| + 2) = O(l1+ε).
Hence, the gap is �(m1/(1+ε)) = �(m1−ε′) and since ε is arbitrary we complete the
proof.

THEOREM 5.3. For any ε > 0, the extended UFP with any ratio dmax/umin ≥ 2 cannot
be approximated better than �(m1/2−ε√�log(dmax/umin)�).

PROOF. For a given instance A of 2DIRPATH with |A| edges and a small constant ε,
we construct an instance of the extended UFP with the given ratio dmax/umin. We begin
by describing our basic building block from which the UFP instance will be built. Let
k, l be some parameters to be chosen later and let δ < 1/ lk be a small constant. The
i th building block, denoted Bi , is illustrated in Figure 2. It contains k2 + k(k − 1)/2
copies of the graph A with edge capacity 2l−i + kδ. For any two integers 1 ≤ a ≤ k and
1 ≤ b ≤ 2k−a there is a copy of A located at position (a, b) on a two-dimensional grid.
There are 2k input nodes and 2k output nodes. The first k input nodes xi

j , 1 ≤ j ≤ k,
are located at (0, j) whereas the next k input nodes zi

j , 1 ≤ j ≤ k, are at (0, k + j).
The output nodes yi

j , 1 ≤ j ≤ k, are located at (k + 1, j) and wi
j , 1 ≤ j ≤ k, are at

(k− j + 1, 0). The edges are described by their location on the grid and are all of length
1 on that grid. A copy of A located at (a, b) is connected through its z node to an edge
above it (the edge from (a, b + 1) to (a, b)), through its w node to the edge below it,
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0
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Fig. 2. Bi for the case k = 4. Each diamond corresponds to a copy of A with edge capacity 2l−i + kδ. Edge
capacities are 2l−i plus the indicated amount.
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B1 B2 B3 B4

w1
4 w1

3 w1
2 w1

1 w2
4 w2

3 w2
2 w2

1 w3
4 w3

3 w3
2 w3

1 w4
4 w4

3 w4
2 w4

1

y0
1

y0
2

y0
3

y0
4

Fig. 3. The UFP instance for the case l = 4, k = 4. All shown edges have capacity 2l .

through x to the left edge, and through y to the right edge. For each 1 ≤ j ≤ k there
exist k + 1 horizontal edges,

((0, j), (1, j)), ((1, j), (2, j)), . . . , ((k, j), (k + 1, j)).

The capacity of each of these edges is 2l−i . For 1 ≤ j ≤ k we also add k − j + 1
horizontal edges

((0, k + j), (1, k + j)), . . . , ((k − j, k + j), (k − j + 1, k + j))

and k + j vertical edges

((k − j + 1, k + j), (k − j + 1, k + j − 1)), . . . , ((k − j + 1, 1), (k − j + 1, 0)).

The capacity of each of these edges is 2l−i + jδ.
The UFP instance consists of the l blocks B1, B2, . . . , Bl and is illustrated in

Figure 3. There are k additional nodes denoted y0
j , 1 ≤ j ≤ k, which act as input nodes.

For 1 ≤ i ≤ l, 2k connecting edges of capacity 2l are used, (yi−1
j , xi

j ) and (yi−1
j , zi

j ),
1 ≤ j ≤ k. The request set consists of requests denoted r(i, j) for 1 ≤ i ≤ l, 1 ≤ j ≤ k
from y0

j to wi
j with demand 2l−i + jδ. All requests are of profit 1.

We claim that for a given YES instance of 2DIRPATH the maximal profit gained from
the extended UFP instance is l · k, that is, all requests can be routed. We route request
r(i, j) through [y0

j , x1
j , y1

j , x2
j , y2

j , . . . , yi−1
j , zi

j , w
i
j ]. Note that the path from xi

j to yi
j is a

horizontal path in Bi through k copies of A and the path from zi
j to wi

j is a path in Bi

going through the point (k − j + 1, k + j) and passing 2k − 1 copies of A. The load in
Bi on the edges of the path from xi

j to yi
j is 2l−i−1+ jδ+ 2l−i−2+ jδ+ · · · + 1+ jδ ≤

2l−i − 1+ lkδ ≤ 2l−i . The load in Bi on the edges of the path from zi
j towi

j is 2l−i + jδ.
Therefore, no edge is overloaded and the total profit gained is as claimed.

For a NO instance, we claim that at most one request can be routed. Assume request
r(i, j) is routed through the UFP instance. Request r(i, j) is of demand 2l−i + jδ and by
tracing back the request from its sink wi

j it can be seen that the capacities of the edges
are such that the request must be routed through a vertical path from (k − j + 1, k + j)
to the sink. This immediately implies that any request r(î, ĵ) with î > i cannot be routed
since it must exit Bi through one of the y nodes and thus cross the path of request r(i, j)

in one of the A junctions. In addition, a request r(i, ĵ) with ĵ < j cannot be routed since
the sink wi

ĵ
is located to the right of the vertical path and thus must cross it as well. By
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using the two observations above we conclude that at most one request can be routed
through the extended UFP instance and its profit is 1.

The ratio dmax/umin created is at most 2l and hence we choose l = �log(dmax/umin)�.
In addition, we choose k = |A|1/ε. The number of edges used is m = l(3k2 +
4k + (k2 + k(k − 1)/2) · |A|) = O(l · k2 · |A|) = O(l · k2+ε). Therefore, the gap
created is lk = �(m1/(2+ε)√�log(dmax/umin)�) and by choosing a small ε the proof
is completed.

6. Online Applications

6.1. Online Algorithms. Somewhat surprisingly, variants of the algorithms considered
so far can be used in the online setting with slightly worse bounds. For simplicity, we
present here an algorithm for the unweighted K -bounded UFP in which rj = dj for
every j ∈ T .

First note that for the unweighted K -bounded UFP, both EKROUTE and BKROUTE
can be used as online deterministic algorithms since sorting the requests becomes un-
necessary. By splitting T into T1 and T2 as in CKROUTE we can combine the two
algorithms:

ONLINECKROUTE(T)

Choose one of the two routing methods below with equal probabilities:
Route T1 by using BKROUTE and reject all requests in T2

Route T2 by using EKROUTE and reject all requests in T1

THEOREM 6.1. Algorithm ONLINECKROUTE is an O(K · D1/K ) competitive online
algorithm for the unweighted K -bounded UFP.

PROOF. The expected value of the total accepted demand of the algorithm for any
given input is the average between the total accepted demands given by the two routing
methods. Since each method is O(K · D1/K ) competitive on its part of the input, the
theorem follows.

6.2. Online Lower Bound. In this section we show an �(K · n1/K ) lower bound for
deterministic online algorithms in the unweighted K -bounded UFP. This matches the
upper bound of EKROUTE and slightly improves the previously known lower bound of
�(n1/K ) [1]. The lower bound is proved over a line network of length n. For simplicity,
we assume that n = r K for some integer r . Otherwise, we can just use the largest r such
that r K ≤ n and prove the lower bound over a part of the line. All the requests are of
demand 1/K and the edge capacities are all 1.

The lower bound can be represented by a subtree of a tree of height K with an
outdegree of n1/K . Each node in the subtree corresponds to one or more requests over
some interval. The root corresponds to requests over the interval [0, n]. Node j in level
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0 ≤ i ≤ K corresponds to the interval [r K−i · j, r K−i · ( j + 1)]. Note that the segments
corresponding to a node’s children are a partition of its own segment.

The lower bound is constructed together with its corresponding subtree by a DFS
traversal of the tree. The traversal begins at the tree’s root. At each node, the algorithm
is given at most K requests over the interval corresponding to the current node. If the
algorithm does not accept any of the K requests, the node’s children are not traversed
and the next node in the DFS traversal is visited. Otherwise, once the algorithm accepts
a request, we start traversing each of its children recursively.

Note that in case we arrive at a leaf in the tree, the algorithm cannot accept any
requests over its interval. That is because its interval is contained in K other accepted
intervals; one for each of the node’s ancestors. Therefore, the sequence of requests is
well defined.

We need the following simple lemma for trees:

LEMMA 6.2. For a tree in which the out-degree of each node is either zero (a leaf) or
δ > 1, the number of leaves is at least δ − 1 times larger than the number of internal
nodes.

PROOF. We use induction on the tree growing from the root up. A tree with just one
node (leaf) has the required property. Then a tree that grows is a replacement of a leaf in
an internal node and δ leaves. Therefore, the number of leaves has grown by δ− 1 while
the number of internal nodes has grown by 1. The required ratio is maintained.

THEOREM 6.3. The competitive ratio of any deterministic online algorithm for the K -
bounded UFP is at least �(K · n1/K ).

PROOF. The algorithm’s value from the input described above is the number of internal
nodes in the subtree. That is because the algorithm accepts one request from each internal
node but no requests from the leaves. A better solution for the same input is to accept
all the requests represented by the leaves of the subtree. In that case the value is K
times the number of leaves since each leaf corresponds to K intervals. That is an allowed
assignment since the intervals corresponding to the leaves do not intersect. By comparing
the two solutions and using the previous lemma, we obtain the stated lower bound on
the competitive ratio.

7. Conclusion. We presented algorithms based on combinatorial methods for all three
variants of the UFP that either match or improve the previously known results. Due to
their relatively simple description we believe that further analysis should lead to addi-
tional performance guarantees. Also, the algorithms might perform better over specific
networks. An interesting open question is to find more cases where combinatorial algo-
rithms can replace or even improve algorithms based on randomized rounding.
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