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Inserting an Edge into a Planar Graph1

Carsten Gutwenger,2 Petra Mutzel,3 and René Weiskircher3

Abstract. Computing a crossing minimum drawing of a given planar graph G augmented by an additional
edge e where all crossings involve e, has been a long standing open problem in graph drawing. Alternatively,
the problem can be stated as finding a combinatorial embedding of a planar graph G where the given edge
e can be inserted with the minimum number of crossings. Many problems concerned with the optimization
over the set of all combinatorial embeddings of a planar graph turned out to be NP-hard. Surprisingly, we
found a conceptually simple linear time algorithm based on SPQR-trees, that is able to find a solution with the
minimum number of crossings.

Key Words. Crossing minimization, Combinatorial embeddings, Planarization, Graph drawing.

1. Introduction. Crossing minimization is among the most challenging problems in
graph theory and graph drawing. Although there is a vast amount of literature on the prob-
lem, so far no practically efficient exact algorithm for crossing minimization is known.
Currently, the best known approach for crossing minimization is based on planarization.
Here, in a first step, a preferably small number of edges is deleted so that the resulting
graph is planar. Then the edges are iteratively re-inserted into the planar subgraph so
that the number of crossings is minimized. Usually, the second step is done in the fol-
lowing way: Fix an arbitrary combinatorial embedding � of the planar subgraph P and
re-insert the first deleted edge e1. This is done by solving a shortest path problem in the
augmented (geometrical) dual graph of P associated with �, since every crossing of e1

corresponds to using an edge in the dual graph. Then the crossings are substituted by
artificial vertices, yielding a planar subgraph again. Now, the next edge can be inserted,
and so on.

One criticism of the planarization method was that when choosing a “bad” embed-
ding in the edge re-insertion phase, the number of crossings may get much higher than
necessary [HS]. Hence, the question arose if there is a polynomial time algorithm for in-
serting an edge into the planar subgraph P so that the number of crossings is minimized.
Therefore, the task is to optimize over the set of all possible combinatorial embeddings
of P .

A graph is planar if it can be drawn in the plane without any edge crossings. (Combi-
natorial) embeddings are equivalence classes of planar drawings which can be defined
by the sequence of the incident edges around each vertex in a drawing. We consider two
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Fig. 1. The number of crossings required when inserting an edge highly depends on the chosen embedding.

drawings of the same graph equivalent if the circular sequences of the incident edges
around each vertex in clockwise order is the same. In this case they realize the same
combinatorial embedding.

While it is possible to compute an arbitrary combinatorial embedding for a planar
graph in linear time [MM], [CNAO], it is often hard to optimize over the set of all
possible combinatorial embeddings. For example, the problem of bend minimization
can be solved in polynomial time for a fixed combinatorial embedding [T], while it is
NP-hard over the set of all combinatorial embeddings [GT]. When a linear function of
polynomial size is defined on the cycles of a graph, it is NP-hard to find the embedding
that maximizes the value of the cycles that are face cycles in the embedding [MW2],
[MW1]. Note that the number of combinatorial embeddings of a planar graph may be
exponential.

Figure 1 shows a simple case in which the choice of the combinatorial embedding of
the planar subgraph has an impact on the number of crossings produced when inserting
the dashed edge. When choosing the embedding of Figure 1(a) for the planar subgraph
(without the dashed edge), we get two crossings, while the optimal crossing number over
the set of all combinatorial embeddings is one (see Figure 1(b)).

Formally, we define the edge insertion problem as follows: Given a planar graph
G = (V, E) and a pair of vertices (v1, v2) in G, find an embedding � of G such that
we can add the edge e = (v1, v2) to � with the minimum possible number of crossings
among all embeddings of G.

This paper shows that the edge insertion problem can be solved in polynomial time,
thus solving a long standing open problem in graph drawing. We present a conceptually
simple linear time algorithm based on SPQR-trees which is able to solve the edge inser-
tion problem to optimality. Note that an optimal solution of the edge insertion problem
does not necessarily lead to a drawing of the graph G ′ = (V, E ∪{e})with the minimum
number of crossings. This is due to the fact that there may not always be a drawing with
the minimum number of crossings such that G = (V, E) is drawn without crossings.

The rest of the paper is organized as follows. In Section 2 we give a short introduc-
tion to SPQR-trees and introduce the concept of traversing costs. Section 3 contains the
algorithm for solving the edge insertion problem for planar biconnected graphs. We also
prove the correctness and discuss the running time. In Section 4 we present a gener-
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alization of the algorithm for arbitrary planar graphs. Again we prove the correctness
of the algorithm and analyze the running time. Section 5 gives computational results
on a set of benchmark graphs. They show that the new method reduces the number of
crossings in drawings computed using the planarization approach significantly. The last
section addresses the difference between finding a drawing with the minimum number
of crossings and the problem discussed in this paper.

2. Preliminaries

2.1. SPQR-Trees. In this section we give a brief introduction to the SPQR-tree data
structure for biconnected planar graphs. A cut vertex of a graph is a vertex whose removal
increases the number of connected components. A connected graph that has no cut
vertex is called biconnected. A set of two vertices whose removal increases the number
of connected components is called a separation pair. A biconnected graph without a
separation pair is called triconnected.

SPQR-trees were introduced by Di Battista and Tamassia [BT] and since then have
been used in various graph drawing applications like, e.g., minimizing the number of
bends in an orthogonal drawing [BBD], [MW1] or finding planar embeddings with
minimum depth and maximum external face [GM3]. Recently, SPQR-trees have also
been applied in the area of circuit design [FOO].

SPQR-trees represent the decomposition of a planar biconnected graph according to
its split pairs. Let G be a planar biconnected graph. A split pair of G is either a separation
pair or a pair of adjacent vertices. A split component of a split pair {u, v} is either an edge
(u, v) or a maximal subgraph C of G such that {u, v} is not a split pair of C . Let {s, t}
be a split pair of G. A maximal split pair {u, v} of G with respect to {s, t} is such that,
for any other split pair {u′, v′}, vertices u, v, s, and t are in the same split component.

Let e = (s, t) be an edge of G, called the reference edge. The SPQR-tree T of G
with respect to e is a rooted ordered tree whose nodes are of four types: S, P, Q, and R.
Each node µ of T has an associated biconnected multi-graph, called the skeleton of µ.
Tree T is recursively defined as follows:

Trivial Case. If G consists of exactly two parallel edges between s and t , then T
consists of a single Q-node whose skeleton is G itself.

Parallel Case. If the split pair {s, t} has k split components G1, . . . ,Gk with k ≥ 3, the
root of T is a P-nodeµ, whose skeleton consists of k parallel edges e = e1, . . . , ek

between s and t .
Series Case. Otherwise, the split pair {s, t} has exactly two split components, one of

them is e, and the other one is denoted with G ′. If G ′ has cut-vertices c1, . . . , ck−1

(k ≥ 2) that partition G into its blocks G1, . . . ,Gk , in this order from s to t , the
root of T is an S-node µ, whose skeleton is a cycle e0, e1, . . . , ek , where e0 = e,
c0 = s, ck = t , and ei = (ci−1, ci ) (i = 1, . . . , k).

Rigid Case. If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the maximal
split pairs of G with respect to {s, t} (k ≥ 1), and, for i = 1, . . . , k, let Gi be the
union of all the split components of {si , ti } but the one containing e. The root of
T is an R-node, whose skeleton is obtained from G by replacing each subgraph
Gi with the edge ei = (si , ti ).
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Fig. 2. A biconnected planar graph and its SPQR-tree.

Except for the trivial case, µ has children µ1, . . . , µk , such that µi is the root of the
SPQR-tree of Gi ∪ ei with respect to ei (i = 1, . . . , k). The endpoints of the edge ei

are called the poles of node µi . Edge ei is said to be the virtual edge of node µi in the
skeleton of µ and of node µ in the skeleton of µi . We call node µ the pertinent node of
ei in the skeleton of µi , and µi the pertinent node of ei in the skeleton of µ. The virtual
edge of µ in the skeleton of µi is called the reference edge of µi .

Let µr be the root of T in the decomposition given above. We add a Q-node repre-
senting the reference edge e and make it the parent of µr so that it becomes the new root.
Figure 2 shows an example of a graph and its SPQR-tree.

Let e be an edge in skeleton(µ) and let ν be the pertinent node of e. Deleting edge
{µ, ν} in T splits T into two connected components. Let Tν be the connected component
containing ν. The expansion graph of e (denoted with expansion(e)) is the graph induced
by the edges of G contained in the skeletons of the Q-nodes in Tν . We further introduce
the notation expansion+(e) for the graph expansion(e) ∪ e. Figure 3 gives an example
for the expansion graph of an edge. The pertinent graph of a tree node µ is obtained
from the skeleton of µ by replacing each skeleton edge except for the reference edge
of µ with its expansion graph. Examples for the pertinent and skeleton graphs of the
different node types are shown in Figure 4. If v is a vertex in G, a node in T whose
skeleton contains v is called an allocation node of v.

SPQR-trees can be constructed in linear time and their size including the skeleton
graphs is linear in the size of the original graph [BT, GM1]. Choosing a different reference
edge e′ is equivalent to rooting the tree T at the Q-node whose skeleton contains e′. In
particular, the unrooted version of the SPQR-tree of a planar biconnected graph (including
the skeleton graphs) is unique.
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Fig. 3. Example for the expansion graph of a skeleton edge: (a) a biconnected planar graph G, (b) the skeleton
µ of a P-node in the SPQR-tree of G, and (c) the graph expansion+(e) for the gray edge e in skeleton(µ).

As described in [BT], SPQR-trees can be used to represent all combinatorial embed-
dings of a biconnected planar graph. This is done by choosing combinatorial embeddings
for the skeletons of the nodes in the tree. The skeletons of S- and Q-nodes are simple cy-
cles, so they have only one embedding. The skeletons of R-nodes are always triconnected
graphs. According to the definition of combinatorial embeddings, a triconnected graph
has two embeddings which are mirror-images of each other, i.e., the order of the edges
around each vertex is reversed in the mirror embedding. The number of embeddings of
a P-node skeleton with k edges is (k − 1)!.

Every embedding of the original graph defines a unique embedding for each skeleton
of a node in the SPQR-tree. Conversely, when we define an embedding for each skeleton
of a node in the SPQR-tree, we define a unique embedding for the original graph. Thus,
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Fig. 4. Pertinent and skeleton graphs of the different node types of an SPQR-tree. The shaded regions represent
subgraphs. (a) An S-node, (b) a P-node, and (c) an R-node.
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if the SPQR-tree of G has r R-nodes and P-nodes P1 to Pk where the skeleton of Pi has
pi edges, then the total number of combinatorial embeddings of G is

2r
k∏

i=1

(pi − 1)!.

In [BBD] SPQR-trees are used to enumerate all combinatorial embeddings of a bi-
connected planar graph within a branch-and-bound algorithm for finding a combinatorial
embedding and an external face for a graph such that the drawing computed by Tamas-
sia’s algorithm [T] has the minimum number of bends among all possible orthogonal
drawings of the graph.

2.2. Traversing Costs. Traversing costs of skeleton edges are a fundamental concept
used in the edge insertion algorithm. First, we give formal definitions of the two terms
dual graph and edge insertion path.

DEFINITION 1 (Dual Graph). Let G be a connected planar graph and let � be a com-
binatorial embedding of G. Then the dual graph �∗ = (F, E∗) of G with respect to �
is defined as follows:

1. For each face f ∈ � there is one vertex f ∗ in F .
2. For each edge e ∈ E , there is one edge e∗ in E∗. If e is on the boundary of two different

faces f1, f2 ∈ �, then e∗ = ( f ∗1 , f ∗2 ); otherwise e is on the boundary of only one face
f ∈ � and e∗ = ( f ∗, f ∗).

Throughout the paper we use the notations �∗ for the dual graph of G with respect to
�, e∗ for the dual edge of e, and f ∗ for the dual vertex of face f .

An edge insertion path is basically associated with a path in the dual graph and
determines the edges that are crossed when inserting an edge into a given embedding.

DEFINITION 2 (Edge Insertion Path). Let G = (V, E) be a connected planar graph, and
let � be an embedding of G. Let v1 and v2 be two non-adjacent vertices in G. Then
e1, . . . , ek is an edge insertion path for v1 and v2 in G with respect to � if either k = 0
and v1 and v2 are contained in a common face in � or the following conditions are
satisfied:

1. e1, . . . , ek ∈ E .
2. There is a face in � with e1 and v1 on its boundary.
3. There is a face in � with ek and v2 on its boundary.
4. e∗1, . . . , e∗k is a path in �∗.

If p = e1, . . . , ek is an edge insertion path for v1 and v2 with respect to �, then it
is possible to insert the edge (v1, v2) into � with k crossings, where the i th crossing
involves edge (v1, v2) and edge ei for 1 ≤ i ≤ k. The length of p, denoted by |p|, is k.
We call p an optimal edge insertion path for v1 and v2 in G, if there is no shorter edge
insertion path for v1 and v2 in G with respect to any embedding of G.
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Fig. 5. Three different edge insertion paths for v1 and v2.

Figure 5 shows three different edge insertion paths for v1 and v2 with respect to
the embedding realized by the drawing. The three paths are the empty path, the path
e1, e2, e3, and the path e4, e5, e6. In this case the empty path is the optimal edge insertion
path for v1 and v2.

The traversing costs c(e) of a skeleton edge e are defined as follows. Consider an
arbitrary embedding� of the graph expansion+(e) and its dual graph�∗. Let f1 and f2

be the two faces in � that are separated by e, and let f ∗1 and f ∗2 be the corresponding
vertices in the dual graph. We denote with P(�∗, e) the shortest path in�∗ that connects
f ∗1 and f ∗2 and does not use edge e∗. Lemma 1 below shows that the length of this
path is independent of the embedding � chosen for expansion+(e). Thus we define the
traversing costs c(e) simply as

c(e) = length of the path P(�∗, e) for any embedding � of expansion+(e).

LEMMA 1. Let µ be a node in T and let e be an edge in skeleton(µ). Then the length
of the path P(�∗, e) is independent of the embedding � of expansion+(e).

PROOF. The expansion graph of e is defined using a subtree of the SPQR-tree T . Let
ν be the pertinent node of e. We denote with Te the subtree of T which is the connected
component containing ν of the graph T \{(µ, ν)}. The root of Te is the node ν which is
not necessarily a Q-node. We prove the lemma by induction over the height of Te.

If the height of Te is 1, then ν is a Q-node and expansion+(e) is a circle of two edges.
Thus, expansion+(e) has only a single embedding� and the length of the path P(�∗, e)
is simply 1.

Assume now that the height of Te is k > 1 and that the lemma holds for all skeleton
edges ẽ for which the height of Tẽ is less than k. Since k > 1, the root ν of Te is either an
S-, P-, or R-node. We denote with e′ the virtual edge of µ in skeleton(ν). An embedding
� of expansion+(e) induces an embedding �ν of skeleton(ν) and an embedding �ē

of expansion+(ē) for each edge ē �= e′ in skeleton(ν). Since the height of Tē is less
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than k, cē = P(�∗ē , ē) is independent of �ē. We consider the three possible types of
node ν:

S-node. The skeleton of ν is a circle e′, e1, . . . , e� with � ≥ 2. The length of the path
P(�∗, e) is min�i=1 P(�∗ei

, ei ) = min�i=1 cei which is independent of �.
P-node. The skeleton of ν consists of � + 1 parallel edges e′, e1, . . . , e� with � ≥ 2

and the length of the path P(�∗, e) is
∑�

i=1 P(�∗ei
, ei ) =

∑�
i=1 cei which is also

independent of �.
R-node. The skeleton of ν is a triconnected planar graph S = (VS, ES). The length of

the path P(�∗, e) is the length of a shortest path in �∗ν connecting the two faces
separated by e′ without using the dual edge of e′ where each edge ē ∈ ES\{e′}
has cost cē. Since a triconnected planar graph has only two embeddings which
are mirror-images of each other, the length of this path is independent of the
embedding �ν and thus independent of �.

According to Lemma 1, the traversal costs of a skeleton edge e can be computed by
finding a shortest path in the dual graph of an arbitrary embedding of expansion+(e).
This can be done in time O(|expansion+(e)|) using a breadth first search approach.

3. Inserting an Edge into a Biconnected Graph. In this section we present an al-
gorithm for inserting an edge into a biconnected planar graph. First, we define the
augmented dual graph, which is used for finding a shortest edge insertion path in case
of a fixed embedding.

DEFINITION 3 (Augmented Dual Graph). Let G be a planar graph and let � be an
embedding of G. Let v1 and v2 be two vertices in G. For i = 1, 2, let Fi be the set
{ f ∗ | f is a face with vi on its boundary}. The augmented dual graph of �, v1, v2

denotes the graph obtained from the dual graph�∗ by adding the vertices v1 and v2 and
inserting the edges (v1, f1) for all f1 ∈ F1 and (v2, f2) for all f2 ∈ F2.

We further say a skeleton edge e represents a vertex v of G if v is contained in
expansion(e) and v is not an endpoint of e, and we introduce the following notation for
list concatenation. If L1 = a1, . . . , ak and L2 = b1, . . . , b� are two lists, we denote with
L1 + L2 the list a1, . . . , ak, b1, . . . , b�. The algorithm for computing an optimal edge
insertion path for a biconnected planar graph G and two non-adjacent vertices v1 and v2

of G is shown in Algorithm 1. We remark that it is not necessary actually to construct
graph Gi if µi is not an R-node. It is part of the algorithm, since we refer to Gi in the
correctness proof.

In order to prove the correctness of Algorithm 1, we first show that the path computed
by the algorithm is indeed an edge insertion path with respect to some embedding.

LEMMA 2. Let p1 + · · · + pk be the path computed by Algorithm 1. Then there exists
an embedding� of G such that p1 + · · · + pk is an edge insertion path for v1 and v2 in
G with respect to �.
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Algorithm 1. Computes an optimal edge insertion path for a pair of non-
adjacent vertices v1, v2 in a biconnected planar graph G.

OptimalBlockInserter (graph G, vertex v1, vertex v2)
Compute the SPQR-tree T of G;
Find the shortest path µ1, . . . , µk in T between an allocation node µ1

of v1 and µk of v2;

for i = 1, . . . , k do
Si := skeleton(µi );
if v1 is in Si then

x1
i := v1;

else
Split the edge representing v1 in Si by inserting a new vertex y1

i ;
Mark the two edges produced by the split;
x1

i := y1
i ;

end
if v2 is in Si then

x2
i := v2;

else
Split the edge representing v2 in Si by inserting a new vertex y2

i ;
Mark the two edges produced by the split;
x2

i := y2
i ;

end
let Gi be the graph obtained from Si by replacing each unmarked
edge with its expansion graph;

if µi is not an R-node then
set pi to the empty path;

else
Compute an arbitrary embedding �i of Gi ;
let Ai be the augmented dual graph of �i , x1

i , x2
i ;

Compute the shortest path e∗0, . . . , e∗�+1 in Ai between x1
i and

x2
i ;

pi := e1, . . . , e� , where ej is the primal edge of e∗j ;

end
end

return p1 + · · · + pk ;

end
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Fig. 6. Path � consists of a single node µ1. (a) µ1 is an S-node and (b) µ1 is a P-node.

PROOF. Consider the path� = µ1, . . . , µk computed by the algorithm. By construction
of �, the skeleton of µ1 contains v1, the skeleton of µk contains v2 (note that k = 1 is
possible), and, for each j = 2, . . . , k − 1, the skeleton of µj contains neither v1 nor v2.
Moreover, � does not contain a Q-node.

First, we prove the lemma for the case that � consists of a single node µ1. In this
case the skeleton of µ1 contains both v1 and v2. There are three possible cases for the
type of µ1:

1. µ1 is an S-node. Then v1 and v2 form a separation pair of G, see Figure 6(a). Let�1

be any embedding of G. Since (v1, v2) is a separation pair, v1 and v2 lie in a common
face of �1. Thus, the empty path returned by the algorithm is an edge insertion path
for v1 and v2 in G with respect to �1.

2. µ1 is a P-node. Again, v1 and v2 are a separation pair of G and similar arguing as
for the first case holds, see Figure 6(b).

3. µ1 is an R-node. In this case the graph G1 constructed by the algorithm is the original
graph G, since all skeleton edges are expanded, and �1 computed by the algorithm
is an embedding of G. Thus, the algorithm computes an edge insertion path in G for
v1 and v2 with respect to embedding �1 of G.

Assume now that k > 1. We define graphs H1, . . . , Hk as follows. Hi is obtained
from skeleton(µi ) by replacing all skeleton edges that do not represent vertex v2 by
their expansion graph, and, if i < k, splitting the skeleton edge that represents vertex v2

introducing a new vertex ri . The skeleton of µk contains vertex v2 itself and we denote
with rk this vertex in skeleton(µk). We show by induction over i that there is an embedding
�i of Hi such that p1+· · ·+ pi is an edge insertion path for v1 and ri in Hi with respect
to �i . The embeddings �1, . . . , �k are iteratively constructed during the proof.

i = 1. Consider the different types for node µ1:
1. µ1 is a P-node. This case does not apply, since µ2 is not an allocation node

of v1.
2. µ1 is an S-node. In this case, v1 and r1 form a separation pair in H1 and v1 and

r1 lie in a common face in any embedding of H1 (see Figure 7(a)). Thus, �1 is
set to an arbitrary embedding of H1 and the empty path p1 computed by the
algorithm is an edge insertion path for v1 and r1 in H1 with respect to �1.
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Fig. 7. The different node types for the case i = 1. µi is (a) an S-node and (b) an R-node.

3. µ1 is an R-node. The graph G1 constructed by the algorithm is the graph H1 if
r1 is identified with vertex y2

1 in the algorithm (see Figure 7(b)). Hence, �1 is
also an embedding of H1 and we define�1 := �1. Since p1 is an edge insertion
path for v1 and y2

1 in G1 with respect to�1 by construction, p1 is also an edge
insertion path for v1 and r1 in H1 with respect to �1.

i > 1. Assume now that �1, . . . , �i−1 are already constructed and p1 + · · · + pi−1 is
an edge insertion path for v1 and ri−1 in Hi−1 with respect to �i−1.

Graph Gi constructed in the algorithm contains a vertex x1
i adjacent to exactly

two vertices, say a and b, and Hi−1 contains vertex ri−1 adjacent to exactly two
vertices, say a′ and b′. By construction, both a and a′, as well as b and b′, represent
the same vertex of G, and the graph Hi is obtained from Gi and Hi−1 by identifying
a and a′, b and b′, and removing the vertices x1

i and ri−1 (including their adjacent
edges).

An embedding of Hi can be determined in the following way. Chose one of the
two faces containing ri−1 as the external face of �i−1. This leads to an embedding
in which either the last edge of p1 + · · · + pi−1 and ri−1 lie in a common face, or
p1+· · ·+ pi−1 is empty and v1 and ri−1 lie in a common face. Then determine an
embedding of Gi , insert �i−1 into the embedding of Gi and remove the vertices
ri−1 and x1

i . It is also possible to mirror the embedding�i−1 before inserting, since
p1 + · · · + pi−1 is still an edge insertion path in Hi−1 with respect to the mirror
embedding of �i−1.

We distinguish the possible cases for the type of node µi :
1. µi is an S-node. There is just one embedding of Gi and inserting Hi−1 into

this embedding as described above leads to an embedding �i of Hi such that
p1 + · · · + pi−1 = p1 + · · · + pi is an edge insertion path in Hi with respect
to �i (see Figure 8(a)).

2. µi is a P-node. Let �i be an embedding of Gi such that x1
i and x2

i lie in a
common face. Obtain �i by inserting �i−1 into �i in such a way that ri−1 and
x2

i lie in a common face (see Figure 8(b)). This can be achieved by mirroring
�i−1 if necessary. Then p1 + · · · + pi−1 = p1 + · · · + pi is an edge insertion
path in Hi with respect to �i .

3. µi is an R-node. Let�i be the embedding computed by the algorithm. The list
pi = e1, . . . , e� is an edge insertion path for x1

i and x2
i in Gi with respect to
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Fig. 8. The different types for node µi . H̃ denotes the graph Hi−1\{ri−1} and ẽ denotes the last edge in
p1 + · · · + pi−1. µ is (a) an S-node, (b) a P-node, and (c) an R-node.

�i . We obtain the embedding �i by inserting �i−1 into �i in such a way that
ri−1 and e1 (or ri−1 and ri if pi is empty) lie in a common face, see Figure 8(c).
This is possible by mirroring �i if necessary, since x1

i and e1 (or x1
i and x2

i if
pi is empty) lie in a common face in �i .

Since rk = v2 and Hk = G, it follows that p1 + · · · + pk is an edge insertion path for v1

and v2 in G with respect to � := �k and the lemma holds.

Algorithm 1 computes only an edge insertion path p = e1, . . . , e� for the vertices
v1 and v2 in G, but not the corresponding embedding of G. However, there is a simple
way for finding an embedding � such that p is an edge insertion path for v1 and v2 in
G with respect to �. Construct a graph G ′ by splitting each edge ei in p introducing
a new vertex wi and insert new edges forming a path v1, w1, . . . , w�, v2. Since p is an
edge insertion path, the graph G ′ is planar and an embedding�′ for G ′ can be computed
in linear time (see, e.g., [HT] and [MM]). Replacing all split edges in �′ by original
edges (thus removing the vertices w1, . . . , w� and their adjacent edges again) results in
an embedding � for G such that p is an edge insertion path for v1 and v2 in G with
respect to �.
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In order to prove the optimality of the edge insertion path p for v1 and v2 computed by
the algorithm, we show that any edge insertion path for v1 and v2 is at least as long as p.
It is sufficient to consider a shortest edge insertion path for an arbitrary, fixed embedding.

LEMMA 3. Let�′ be an arbitrary embedding of G and let p′ be a shortest edge insertion
path for v1 and v2 in G with respect to �′. Then |p′| ≥ |p| holds.

PROOF. If the path� = µ1, . . . , µk computed by the algorithm contains no R-node, p
is empty and |p′| ≥ |p| = 0 obviously holds. Assume now that � contains at least one
R-node.

Let µi be an R-node in �. Denote with Si the modified skeleton of µi constructed
in the algorithm which contains the vertices x1

i and x2
i as representatives of v1 and v2,

respectively. Let Gi = (Vi , Ei ∪ Mi ) be the graph constructed in the algorithm such
that Ei is the set of edges that results from expanding the unmarked edges. Since p′ is a
shortest edge insertion path for the embedding�′, the edges in p′ that are also contained
in Ei form a subsequence p′i = e′1, . . . , e′�i

of p′ and p′i is an edge insertion path for
x1

i and x2
i in Gi with respect to the embedding of Gi induced by �′. We will show that

|p′i | ≥ |pi |, where pi is the subsequence of p computed by the algorithm.
For each unmarked edge e in Si , set the costs of e to the traversing costs c(e) of e

and define the length of an edge insertion path to be the sum of the costs of the edges
in the path. All marked edges are adjacent to either x1

i or x2
i and will not appear in an

edge insertion path we consider. Each edge insertion path for x1
i and x2

i in Gi induces
an edge insertion path for x1

i and x2
i in Si which contains all the skeleton edges whose

expansion graph is crossed in Gi .
Let p̃i be the edge insertion path in Si induced by pi , and let p̃′i be the edge insertion

path in Si induced by p′i . Then

|p′i | ≥ | p̃′i | =
∑

e∈ p̃′i

c(e)

since crossing an expansion graph involves at least c(e) edge crossings (see Lemma 1).
Since pi is a shortest edge insertion path for x1

i and x2
i in Gi with respect to �i , p̃i is

a shortest edge insertion path for x1
i and x2

i in Si , which implies that | p̃′i | ≥ | p̃i | = |pi |
and thus |p′i | ≥ |pi |.

Let I = {i | µi is an R-node}. Since all Ei , i ∈ I , are pairwise disjoint, it follows
that

|p′| ≥
∑

i∈I

|p′i | ≥
∑

i∈I

|pi | = |p|.

Lemmas 2 and 3 show that Algorithm 1 computes an optimal edge insertion path for
v1 and v2 in G = (V, E). It remains to prove that its running time is linear in the size
of G.

The SPQR-tree T of G can be computed in time O(|V | + |E |) (see [GM1]). A
path between two arbitrary allocation nodes of v1 and v2 can be found by inspecting
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each skeleton graph and using depth first search in the tree T . The shortest path � =
µ1, . . . , µk is obtained from this path by removing nodes from the start and the end of
the path until it contains exactly one allocation node of v1 and one allocation node of
v2. Hence, finding path � takes time O(|V | + |E |), since the size of T including all
skeleton graphs is linear in the size of G.

The construction of the modified skeleton Si which results from possibly splitting
at most two edges in skeleton(µi ) takes time linear in the size of skeleton(µi ). Since
the total size of all skeleton graphs in T is linear in the size of G, the total time for
constructing S1, . . . , Sk is O(|V | + |E |).

Finally, consider graph Gi = (Vi , Ei ∪Mi ) for 1 ≤ i ≤ k, where Ei is the set of edges
that results from expanding the unmarked edges in Si and Mi is the set of marked edges in
Si . Since |Mi | ≤ 4 (and |Vi | ≤ |Ei |), an arbitrary embedding of Gi is computed in time
O(|Ei |) (see [MM]), and the size of the augmented dual graph Ai is O(|Ei |). Hence,
a shortest path between x1

i and x2
i in Ai can be found in time O(|Ei |) using breadth

first search. Since all the sets Ei are pairwise disjoint, the total time for constructing
G1, . . . ,Gk and for finding p1, . . . , pk is

∑k
i=1O(|Ei |) = O(|E |). Thus, the following

theorem holds:

THEOREM 1. Let G = (V, E) be a biconnected planar graph and let v1 and v2 be two
non-adjacent vertices in V . Then Algorithm 1 computes an optimal edge insertion path
for v1 and v2 in G in time O(|V | + |E |).

4. Inserting an Edge into a Connected Graph. We first introduce two definitions.
Let G be a connected graph. The block-vertex tree B of G represents the relationships
between the biconnected components (blocks) of G. It contains a B-node for each block
of G and a V-node for each vertex of G. A V-node v and a B-node B are connected by
an edge in B if vertex v is contained in block B. The representative of a vertex v ∈ G in
a block B is either v itself if v ∈ B, or the first cut-vertex c on the unique path from B
to v in B.

The algorithm for computing an optimal edge insertion path for a connected planar
graph G and two non-adjacent vertices v1 and v2 is given in Algorithm 2. The algorithm
constructs the block-vertex tree B of G and considers only the blocks on the path from
v1 to v2 in B. For each block Bi , an optimal edge insertion path pi for the representatives
of v1 and v2 in Bi is computed using Algorithm 1, and these paths are then concatenated.
The following lemma shows that the resulting path p1 + · · · + pk is indeed an optimal
edge insertion path for v1 and v2 in G.

LEMMA 4. Let p1 + · · · + pk be the path computed by Algorithm 2. Then there exists
an embedding � of G such that p1 + · · · + pk is an optimal edge insertion path for v1

and v2 in G with respect to �.

PROOF. Let Hi be the union of the blocks B1 to Bi . We show by induction that there is
an embedding �i of Hi such that �i := p1 + · · · + pi is an optimal edge insertion path
in Hi for v1 and yi .



Inserting an Edge into a Planar Graph 303

Algorithm 2. Computes an optimal edge insertion path for a pair of
non-adjacent vertices v1, v2 in a connected graph G.

OptimalInserter (graph G, vertex v1, vertex v2)
Compute the block-vertex tree B of G;
Find the path v1, B1, c1, . . . , Bk−1, ck−1, Bk, v2 from v1 to v2 inB;
for i = 1, . . . , k do

Let xi and yi be the representatives of v1 and v2 in Bi ;
pi := OptimalBlockInserter(Bi , xi , yi );

end
return p1 + · · · + pk ;

end

i = 1. In this case, H1 equals B1 and, by Theorem 1, there is an embedding �1 such
that �1 = p1 is an optimal edge insertion path for x1 = v1 and y1 in H1 with
respect to �1.

i > 1. Assume now that �1, . . . , �i−1 are already constructed such that �i−1 is an
optimal edge insertion path for v1 and yi−1 in Hi−1 with respect to �i−1.

By Theorem 1, there exists an embedding �i of Bi such that pi as constructed
in the algorithm is an optimal edge insertion path for xi and yi in Bi with respect to
�i . Since yi−1 and xi denote the same vertex in G, the embedding �i of Hi can be
constructed as follows. Since�i−1 is an edge insertion path for v1 and yi−1, there
is face f ∈ �i−1 that contains yi−1 and either v1 if�i−1 is empty, or the last edge
in�i−1. Analogously, there is a face f ′ ∈ �i that contains xi and either yi if pi is
empty, or the first edge in pi . The embedding �i is constructed by choosing f as
the external face of �i−1 and placing this planar embedding of Hi−1 into face f ′ of
�i . This is possible, since B1 ∪ · · · ∪ Bi−1 and Bi have only the vertex yi−1 = xi

in common. Thus, �i = p1 + · · · + pi is an edge insertion path for v1 and yi in
Hi with respect to �i .

It remains to show the optimality of �i . Let p̂ be an arbitrary edge insertion
path for v1 and yi in Hi−1 with respect to some embedding �̂. Obviously, p̂ can
be partitioned into two subpaths p̂A and p̂B such that p̂B contains only the edges
in Bi . Then p̂B is an edge insertion path for xi and yi in Bi with respect to the
embedding of Bi induced by �̂, and p̂A is an edge insertion path for v1 and yi−1

in Hi−1 with respect to the embedding of Hi−1 induced by �̂. Since |pi | ≤ | p̂B |
by Theorem 1 and |�i−1| ≤ | p̂A| by the induction hypothesis, it follows that
|�i | ≤ | p̂|.

Since a block shares only a single vertex with the rest of the graph, it is easy to see that
�k is still an edge insertion path for v1 and yk = v2 in G with respect to an embedding�
that results from inserting the remaining blocks not contained in B1, . . . , Bk arbitrarily
into �k .

The optimality of�k in G can be shown using a similar argument as in the induction
step. Let p̂ be an arbitrary edge insertion path for v1 and v2 in G. The subpath p̂B of p̂
which contains only the edges in Hk is an edge insertion path for v1 and yk in Hk . Thus,
| p̂| ≥ | p̂B | ≥ |�k |.
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The block-vertex tree of G = (V, E) can be computed in time O(|V | + |E |) by
finding the blocks of G (see, e.g., [H]). Since all blocks are pairwise edge-disjoint, the
size of B isO(|V | + |E |) and the path from v1 to v2 in B is found in timeO(|V | + |E |)
using depth first search. Algorithm 1 is called for each block Bi = (Vi , Ei ) which takes
timeO(|Vi |+ |Ei |) according to Theorem 1. Since all blocks are pairwise edge-disjoint,
Algorithm 2 takes time O(|V | + |E |).

The algorithm presented in this section can easily be generalized to arbitrary planar
graphs. If v1 and v2 belong to the same connected component, simply apply Algorithm 2.
Otherwise, the graph G∪{(v1, v2)} is obviously planar and the empty path is the optimal
edge insertion path. Hence, we get the following result.

THEOREM 2. Let G = (V, E) be a planar graph and let v1 and v2 be two non-adjacent
vertices in V . Then there exists an algorithm that computes an optimal edge insertion
path for v1 and v2 in G in time O(|V | + |E |).

5. Computational Experiments. We have implemented the algorithm presented in
this paper within the graph drawing library AGD [AGD]. AGD contains a state-of-the-art
framework of the planarization method as described in the Introduction and a linear time
implementation of SPQR-trees as presented in [GM1].

We compare the standard edge insertion technique which uses an arbitrary fixed
embedding with the method presented in this paper. The edge insertion procedure is
applied iteratively for all edges not contained in the planar subgraph and the total number
of crossings is compared.

We use the 8249 non-planar graphs from a benchmark set collected by Di Battista et
al. [BGL+] ranging from 11 to 100 vertices to test the implementations. The planar sub-
graph is computed using the AGD implementation of the heuristics described in [JLM].
Since all edges not contained in the subgraph are inserted successively in the second
step of the planarization method, the impact of the new approach on the total number of
crossings is not obvious.

Figure 9 shows the relative improvement achieved by the new edge insertion technique
compared with the standard method. The relative improvement is defined as follows.
Let cs be the number of crossings produced by the standard method, and let cn be the
number of crossings produced using the new technique. Then the relative improvement
is (cs−cn)/cs. The chart shows the average value for all graphs with the same number of
vertices, ranging from 11 to 100. For graphs up to 40 vertices, the improvement shows
a large variance since there are only few small graphs in the benchmark set. For larger
graphs, the relative improvement is about 15%.

For 68% out of the 8249 tested non-planar graphs, the number of crossings achieved by
the new method was smaller and for only 8% was it larger than in the standard approach.
The average relative improvement was 14.42% in total. The maximum improvement of
85.71% was for a graph with 39 vertices and 56 edges. The standard method produced 7
crossings whereas the new edge insertion technique led to only 1 crossing. The average
number of crossings produced by the standard method grows from 1.29 for graphs with 11
vertices to 57.86 for graphs with 100 vertices, whereas the average number of crossings
produced by the new approach grows from 1.29 to only 49.83.
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Fig. 9. Relative improvement of the new method compared with the standard approach.

A comprehensive experimental study of crossing minimization heuristics applying
the planarization approach is presented in [GM2]. The authors study various techniques
for computing a planar subgraph and edge insertion, including the standard and the
new edge insertion method with postprocessing and randomization strategies. The paper
concludes that the edge insertion method applied has a significant impact on the final
number of crossings even if additional strategies like postprocessing and randomization
are used. Thus, the optimal edge insertion method presented in this paper is a valuable
contribution for solving the crossing minimization problem heuristically.

6. Crossing Number and Edge Insertion. The edge insertion problem can also be
stated as follows: given a planar graph G = (V, E) and a pair of vertices (v1, v2) in V ,
find a drawing of G ′ = (V, E ∪ {(v1, v2)}) that has the minimum number of crossings
among all drawings of G ′ in which every crossing is a crossing between an edge in E and
the edge (v1, v2). We show in this section that such a drawing of G ′ is not necessarily
crossing minimal. In particular, we give a class of graphs Gm such that a solution to
the edge insertion problem for Gm and (v1, v2) results in a drawing with m crossings,
whereas a crossing minimal drawing of G ′m = Gm ∪ {(v1, v2)} has only two crossings.

First, we define a wall graph as follows. A wall with width k consists of the vertices
x, y, z1, . . . , zk , the edges (zi , zi+1) for 1 ≤ i < k, and the edges (x, zi ) and (y, zi ) for
1 ≤ i ≤ k (see Figure 10). The vertices x and y are called the poles of the wall. A wall
with width ≥ 3 is a triconnected planar graph.

For an even number m ≥ 2, the graph Gm is constructed in the following way (see
Figure 11). We start with a ring of walls W1, . . . ,W6 with width m + 1, where the poles
of adjacent walls in the ring are identified. We denote the pole vertices with w1, . . . , w6

such that the poles of W1 are w1 and w2, and so forth. For each wall Wj , the other two
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x

y

z1 z8

Fig. 10. A wall with width 8.

vertices on the boundary are denoted with ui
j and ue

j , where ui
j is inside the ring and ue

j is
on the external face (see Figure 11). Moreover, the edges e1 = (ue

1, w3), e2 = (ue
6, w5),

e3 = (ui
2, ui

3), e4 = (ui
5, ui

4) are added, m/2 vertices are inserted by splitting edge
(ui

3, w4) and m/2 vertices are inserted by splitting edge (w4, ui
4), and every created split

vertex is connected with vertex w1 by an edge hj , 1 ≤ j ≤ m. The two vertices to be
connected are v1 := ui

1 and v2 := ui
6, i.e., G ′m = Gm ∪ {(ui

1, ui
6)}.

By construction, Gm is triconnected and planar. In particular, Gm has only two em-
beddings which are mirror-images of each other. It is easy to see that an optimal edge
insertion path for v1 and v2 has length m (by crossing the edges h1, . . . , hm), since pass-
ing through a wall would require at least m + 1 crossings. On the other hand, there is
a drawing of G ′m with only two crossings as shown in Figure 12. Here, only the two
crossings e1 with e3 and e2 with e4 occur, independent of the choice of m.

Acknowledgements. We thank Graham Farr for finding the example graphs Gm we
used in Section 6.
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Fig. 11. The graph Gm ; each shaded region represents a wall with width m + 1. The dashed edge (ui
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6) is
the edge to be inserted.
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Fig. 12. A drawing of the graph G ′m with only two crossings.
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