
DOI: 10.1007/s00453-004-1116-z

Algorithmica (2004) 40: 319–329 Algorithmica
© 2004 Springer Science+Business Media, Inc.

On-Line Dial-a-Ride Problems Under a
Restricted Information Model

Maarten Lipmann,1 Xiwen Lu,1,2 Willem E. de Paepe,3 Rene A. Sitters,1

and Leen Stougie1,4

Abstract. In on-line dial-a-ride problems servers are traveling in some metric space to serve requests for
rides which are presented over time. Each ride is characterized by two points in the metric space, a source, the
starting point of the ride, and a destination, the endpoint of the ride. Usually it is assumed that at the release of a
request, complete information about the ride is known. We diverge from this by assuming that at the release of
a ride, only information about the source is given. At visiting the source, the information about the destination
will be made available to the servers. For many practical problems, our model is closer to reality. However, we
feel that the lack of information is often a choice, rather than inherent to the problem: additional information
can be obtained, but this requires investments in information systems. In this paper we give mathematical
evidence that for the problem under study it pays to invest.

Key Words. On-line optimization, Competitive analysis, Dial-a-ride.

1. Prelude. In dial-a-ride problems servers are traveling in some metric space to serve
requests for rides. Each ride is characterized by two points in the metric space, a source,
the starting point of the ride, and a destination, the endpoint of the ride. The problem is
to design routes for the servers through the metric space, such that all requested rides
are made and some optimality criterion is met.

Dial-a-ride problems have been studied extensively in the literature of operations re-
search, management science, and combinatorial optimization. Traditionally, such com-
binatorial optimization problems are studied under the assumption that the input of the
problem is known completely to the optimizer.

In a natural setting of dial-a-ride problems requests for rides are presented over time
while the servers are enroute serving other rides, making the problem an on-line opti-
mization problem. Examples in practice are taxi and minibus services, courier services,
and elevators. In their on-line setting dial-a-ride problems have been studied in [1] and
[4], where single-server versions of the problem are studied, as we will do here. These
papers study the problem in which rides are specified completely upon presentation, i.e.,
both source and destination of the ride become known at the same time. We diverge from
this setting here.

1 Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600
MB Eindhoven, The Netherlands. {m.lipmann,x.lu,r.a.sitters,l.stougie}@tue.nl.
2 East China University of Science and Technology, Shanghai 200237, China. xwlu@ecust.edu.cn.
3 Department of Technology Management, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eind-
hoven, The Netherlands. w.e.d.paepe@tm.tue.nl.
4 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. stougie@cwi.nl.

Received March 2003; revised December 2003. Communicated by S. Leonardi.
Online publication August 31, 2004.

320 M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie

In many practical situations a complete specification of rides is not realistic. Think
for example of the problem to schedule an elevator. Here a ride is the transportation of a
person from one floor (the source) to another (the destination), and the release time of the
ride is the moment the button on the wall outside the elevator is pressed. The destination
of the ride is revealed only when the person enters the elevator and presses the button
inside the elevator.

In this paper we study the on-line single-server dial-a-ride problem in which only the
source of a ride is presented at the release time of the ride. The destination of a ride is
revealed at visiting its source. We call this model the incomplete ride information model
and refer to the model used in [1] and [4] as the complete ride information model. As
the objective we minimize the time by which the server has executed all the rides and
returned to the origin.

In an M.Sc. thesis Seleson introduced the idea of rides with unknown destinations
within a multi-threaded on-line optimization setting [6]. The idea dates back to the
mid-nineties and was proposed by her supervisor E. Feuerstein.

We distinguish two versions of the on-line dial-a-ride problem under the incomplete
ride information model. In the first version, the preemptive version, the server is allowed
to preempt any ride at any point, and proceed the ride later. In particular, the server
is allowed to visit the source of a ride and learn its destination without executing the
ride immediately. In the second version, the non-preemptive version, a ride has to be
executed as soon as the ride has been picked up in the source. We do allow the server to
pass a source without starting the ride, in which case he does not learn the destination
of the ride at passing the source. We study each version of the problem under various
capacities of the server. The capacity of a server is the number of rides the server can
execute simultaneously. Problems are defined formally in Section 2.

We perform competitive analysis of deterministic algorithms for the problems de-
scribed above. Competitive analysis measures the performance quality of an algorithm
for an on-line problem by the competitive ratio, which is the worst-case ratio over all pos-
sible input sequences of the objective value it produces and the optimal off-line solution
value. For a detailed explanation of competitive analysis and many examples refer to [3].
For an overview of results on on-line optimization problems refer to [5]. Typically there
are lower bounds on the competitive ratio achievable by any algorithm (even allowing
exponential computing time). We derive such lower bounds for deterministic algorithms
for the various versions of the on-line dial-a-ride problem under the incomplete ride
information model. We also design and analyze algorithms for their solution.

In [2] a lower bound of 2 on the competitive ratio of any deterministic algorithm is
given for the on-line dial-a-ride problem under the complete ride information model,
independent of the capacity of the server, not allowing preemption of rides. However,
the bound is based on the on-line traveling salesman problem, having rides with zero
length, whence the bound also holds when allowing preemption. In Section 3 we show
that under the incomplete ride information model no deterministic preemptive algorithm
is better than 3-competitive against an adversary that is not allowed to preempt. This is
independent of the capacity of the server. Hence, we have a lower bound of 3 for both
the preemptive and non-preemptive version. For the preemptive version, we design an
algorithm with a competitive ratio matching the lower bound of 3, independent of the
capacity of the server.

On-Line Dial-a-Ride Problems Under a Restricted Information Model 321

Table 1. Overview of lower bounds (LB) and upper bounds (UB) on the competitive
ratio of deterministic algorithms for on-line dial-a-ride problems.

Capacity LB UB

Complete ride information
Preemption 1, c,∞ 2 [2] 2 [1]
No preemption 1, c,∞ 2 [2] 2 [1]

Incomplete ride information
Preemption 1, c,∞ 3 3
No preemption 1 1+ 3

2

√
2 4

c max{1+ 3
2

√
2, c} 2c + 2

∞ 3 3

If preemption is not allowed, we derive a lower bound of max{c, 1 + 3
2

√
2} on the

competitive ratio of any deterministic algorithm, where c is a given fixed capacity of
the server. We present a (2c+ 2)-competitive algorithm for the non-preemptive version.
These results are presented in Section 4.

We notice that there is no difference between the preemptive version and the non-
preemptive version of the problem if the server has infinite capacity, whence we in-
herit the matching lower and upper bound of 3 of the preemptive version for this case.
An overview of the results is given in Table 1. For the exposition we have omitted to
refer to [4] for the first 2-competitive algorithm for the problem with complete ride
information and server capacity ∞. The result in that paper follows from the results
in [1].

Our results combined with those from [1] show the effect of having complete knowl-
edge about rides on worst-case performance for on-line dial-a-ride problems. This is
an important issue, since in practice complete information is often lacking. Investments
in information systems can help to obtain more information. Mathematical support is
essential in justifying such investments. Our results concern minimizing the time by
which the server has done all rides and is back in the origin. It is interesting to see if
similar results can be obtained for other objectives.

We conclude by referring back to the elevator scheduling problem. The typical elevator
with only a request button outside the elevator fits our incomplete ride information model.
In an alternative construction, the destination buttons could be built outside the elevator,
fitting the complete ride information model. We disclaim though that minimizing the
latest completion time is a natural objective for an elevator.

2. Problem Definition. An instance of the on-line single-server dial-a-ride problem
(OLDARP) is specified by a metric space M = (X, d)with a distinguished origin O ∈ X ,
a sequence σ = σ1, . . . , σm of requests for rides, and a capacity for the server. A server
is located at the origin O at time 0 and can move at most at unit speed. We assume
that M has the property that for any pair of points {x, y} ∈ X there is a continuous
path p: [0, 1] → X in X with p(0) = x and p(1) = y of length d(x, y) (see [2] for a
thorough discussion of this model). Explicitly, we add the assumption that d is symmetric

322 M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie

and satisfies the triangle inequality for those readers for whom this is not implicit in the
definition of metric space.

Each ride is a triple σi = (ti , si , di), where ti ∈ R+0 is the time at which ride σi is
released, si ∈ X is the source of the ride, and di ∈ X is the destination of the ride. Every
ride σi ∈ σ has to be executed (served); that is, the server has to visit the source, pick up
the ride, and end it at the destination. The capacity of the server is an upper bound on
the number of rides the server can execute simultaneously. We consider unit capacity,
constant capacity c ≥ 2, and infinite capacity for the server. The objective in the OLDARP

is to minimize the completion time of the server, which is the time when the server has
served all rides and returned to the origin.

We consider the preemptive and non-preemptive versions of the OLDARP, under the
incomplete ride information model for different capacities of the server.

DEFINITION 2.1. Under the incomplete ride information model only the source si of
ride σi is revealed at time ti . The destination di of the ride becomes known only at
picking up the ride in the source.

We assume that the sequence σ = σ1, . . . , σm of rides is given in order of non-
decreasing release times, and that the on-line server has neither information about
the time when the last ride is released, nor about the total number of rides. An on-
line algorithm for the OLDARP must determine the behavior of the server at any mo-
ment t based on the information obtained before t , whereas the off-line algorithm
knows the whole input sequence σ at time 0. A feasible on-line/off-line solution is
a route for the server that starts and ends in the origin O and serves all requested
rides regarding that each ride is picked up at the source not earlier than the time it is
released.

Let ALG(σ) denote the completion time of the server moved by algorithm ALG on the
sequence σ of rides and let OPT(σ) denote the optimal off-line algorithm’s completion
time. The competitive ratio of algorithm ALG is

max
σ∈�

ALG(σ)

OPT(σ)
,

with � the class of all possible request sequences.

3. The Preemptive Version. We describe our algorithm SNIFFER, which preempts
rides only immediately at the source, just to learn the destinations of the rides: it “sniffs”
the rides. Upon visiting the source of a ride for the second time, the ride is completed
right away. The algorithm is an adaption of the 2-competitive algorithm for the on-line
traveling salesman problem (OLTSP) described in [2]. Any time the server is in the origin
O it starts an optimal TSP tour over all unvisited sources, just to learn the destinations.
If the server is back in O and there are no unvisited sources, then it starts an optimal
dial-a-ride (DAR) tour over all rides that still have to be executed. The server ignores
all new requests while it is making a TSP or DAR tour. We add the restriction that the
server does not start a tour at a time t if the length of this tour is strictly larger than t .

On-Line Dial-a-Ride Problems Under a Restricted Information Model 323

Algorithm SNIFFER

(1) Wait in O until the set S of unvisited sources is non-empty.
(2) Compute an optimal TSP tour TTSP(S) over the set S of unvisited sources.

If the current time is at least |TTSP(S)| go to (3). Otherwise, wait either
until time |TTSP(S)| and then go to (3) or until a new request is released,
then update S and start (2) anew.

(3) Execute TTSP(S) without interruption. Sources visited are deleted from S
and the corresponding rides are added to R, whereas sources of requested
rides released during the tour are added to S. At the end of the tour, being
back in O , go to (4) if S = ∅, else go to (2).

(4) Compute an optimal DAR tour TDAR(R) over the set R of rides that still
have to executed. If the current time is at least |TDAR(R)| go to (5). Oth-
erwise, wait either until time |TDAR(R)| and then go to (5) or until a new
request is released, then update S and go to (2).

(5) Execute TDAR(R) without interruption, setting R = ∅. Sources of re-
quested rides released during the tour are added to S. At the end of the
tour, being back in O , go to (1) if S = ∅, else go to (2).

THEOREM 1. SNIFFER is 3-competitive for the preemptive OLDARP under the incom-
plete ride information model, independent of the capacity of the server.

PROOF. Let S be the set of sources visited in the last TSP tour and let R be the set of
rides executed in the last DAR tour. We distinguish three cases.

First, assume that SNIFFER is waiting in O just before it starts the last DAR tour.
Then it starts this tour exactly at time |TDAR(R)|, whence the overall completion time is
2|TDAR(R)| ≤ 2|TDAR(σ)|.

Secondly, assume SNIFFER does not wait before the last DAR tour, but it does wait
in O just before the last TSP tour. In this case it starts this tour exactly at time |TTSP(S)|,
whence the overall completion time is |TTSP(S)|+|TTSP(S)|+|TDAR(R)| ≤ 3|TDAR(σ)|.

Finally, assume that SNIFFER waits neither before starting the last TSP tour nor
before starting the last DAR tour. Thus, some tour T has been made before the last TSP
tour, unless the last TSP tour started at time 0. In the latter case both the TSP and the DAR
tour must have length 0. In the former case the tour T might be a TSP or a DAR tour. The
set S of requests served on the last TSP tour (and DAR tour) must have been released
after the time, t say, that SNIFFER started tour T . Let P be the length of the shortest
path through S and O . Then |TDAR(σ)| ≥ t + P . On the other hand, |TTSP(S)| ≤ 2P
implying an overall completion time of

t + |T | + |TTSP(S)| + |TDAR(R)| ≤ 2t + 2P + |TDAR(R)| ≤ 3|TDAR(σ)|.

We show that SNIFFER is a best possible deterministic algorithm for the preemptive
version of the OLDARP, even though SNIFFER uses preemption only at the source of
rides.

THEOREM 2. No deterministic algorithm can have a competitive ratio strictly smaller
than 3 for the OLDARP under the incomplete ride information model, independent of the
capacity of the server.

324 M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie

PROOF. For the proof of this theorem we use a commonly applied setting of a two-person
game, with an adversary providing a sequence of rides, and an on-line algorithm serving
the rides (see [3]). Typically, the outcome of the algorithm is compared with the solution
value the adversary achieves himself on the sequence, which is in our case the optimal
off-line solution value. We consider the OLDARP under the incomplete ride information
model where the on-line server has infinite capacity. Let ALG be a deterministic on-line
algorithm for this problem. We construct an adversarial sequence σ of requests for rides.
We restrict the adversary by giving his server capacity 1. We prove that ALG cannot be
strictly better than 3-competitive for this restricted adversary model.

The metric space M = (X, d) contains the set of points, or vertices, {x1, x2, . . . , xn2}∪
O and the distance function d , where d(O, xi) = 1 and d(xi , xj) = 2 for all xi , xj . To
facilitate the exposition we denote point xi by i .

At time 0 there is one ride in each of the points in 1, 2, . . . , n2. If the on-line server
visits the source i of a ride at time t with t ≤ 2n2 − 1, then the destination turns out to
be i as well, and at time t + 1 a new ride with source i is released.

In this way the situation remains basically the same for the on-line server until time
2n2. We may assume that at some moment t∗, with 2n2− 1 < t∗ ≤ 2n2, there is exactly
one ride σi = (ti , i, di) in each point i . Without loss of generality we assume that the
points are ordered such that t1 ≤ · · · ≤ tn2 .

Thus, at time t∗ the on-line server still has to complete exactly n2 rides. We partition
the set of n2 vertices into n sets: Ik = {(k−1)n+1, . . . , kn}, k = 1, . . . , n. Within each
of these sets we order the vertices by the on-line server’s first visit to them after time t∗.
Let bkj , j ∈ {1, . . . , n}, be the j th vertex in this order in Ik . For all k ∈ {1, . . . , n} we
define dbk1 = bk1 and dbkj = bk, j−1 for all j ∈ {2, . . . , n}. Notice that the destination of
ride σi only depends on the tour followed by the on-line server until he picks up the ride
to look at its destination. For the on-line server this means that n of the n2 rides can be
served immediately since the source equals the destination. For the other n2 − n rides
the server finds out that the destination of the rides he just picked up is another point
that he already visited after time t∗. Therefore, n2 − n points will have to be visited by
the on-line server at least twice after time t∗. Hence, the completion time for the on-line
server is at least t∗ + 4(n2 − n)− 1+ 2n > 6n2 − 2n − 2.

We now describe the tour made by the adversary. Given our definition of t∗ we have
that tn2 ≤ t∗ ≤ 2n2. Since the on-line server needs at least 2 time units to move from a
point i to another point i ′, it follows that ti ≤ 2i , for all i ∈ {1, . . . , n2}. The adversary
waits until time 2n and then starts to serve the rides σ1, . . . , σn , by visiting the sources
in reversed order of b11, . . . , b1n . The rides with equal source and destination are served
immediately at arrival in the point. This takes the adversary 2n time units. At time
4n the adversary starts serving the rides σn+1, . . . , σ2n , and then at time 6n the rides
σ2n+1, . . . , σ3n , etc. Continuing like this the adversary completes at time 2n2 + 2n.

Hence, the competitive ratio is bounded from below by (6n2 − 2n − 2)/(2n2 + 2n),
which can be made arbitrarily close to 3 by choosing n large enough.

4. The Non-Preemptive Version. For the non-preemptive version we design an al-
gorithm, called BOUNCER, because the server “bounces” back to the source once a
ride is completed. The algorithm uses an algorithm for the OLTSP problem to construct,

On-Line Dial-a-Ride Problems Under a Restricted Information Model 325

on-line, a TSP tour on the sources of the requests. The instance of the OLTSP problem
consists only of the sources with their release dates. BOUNCER follows exactly this
tour, but being in the source of a ride, it makes the ride and returns to the source, where it
proceeds on the TSP tour along all the sources. Since the server in BOUNCER is always
behind the OLTSP server this algorithm is well defined. In the analysis we assume that
BOUNCER uses a (best possible) 2-competitive algorithm to construct the TSP tour,
e.g., the algorithm from [2].

Algorithm BOUNCER

Perform the OLTSP algorithm on the sources of the rides, yielding a tour T
along the sources only. Follow T . At each source on T execute the ride, and
return to the source via the shortest path. Back at the source proceed on T .

THEOREM 3. BOUNCER is (2c+2)-competitive for the OLDARP under the incomplete
ride information model, where c is the capacity of the server.

PROOF. Consider any request sequence σ . Since all sources have to be visited and the
OLTSP algorithm is 2-competitive, OPT(σ) ≥ |T |/2. Another lower bound is given by
OPT(σ) ≥ D/c, where D is the sum of the lengths of all rides. The completion time of
BOUNCER is at most T + 2D ≤ 2OPT(σ)+ 2cOPT(σ).

COROLLARY 4.1. BOUNCER is 4-competitive for the OLDARP under the incomplete
ride information model, if the capacity of the server is 1.

THEOREM 4. No non-preemptive deterministic on-line algorithm can have a competi-
tive ratio strictly smaller than c for the OLDARP under the incomplete ride information
model, where c is the capacity of the server.

PROOF. For our lower bound we use the star graph, as we did in the proof of Theorem 2,
with K >> c leaves at distance 1 from the origin O . At time 0, cK rides are released,
all with their source in O , and each of the leaves being destination of c rides, yielding
K sets of c identical rides each. Hence the instance has an optimal solution value 2K .

Denote the leaves by 1, 2, . . . , K . Since the on-line server cannot distinguish between
the rides we may assume that the destinations of the rides picked up by the on-line server
are consecutively 1, 2, . . . , K , 1, 2, Consider any of the subsequences 1, . . . , K .
Before the server picks up the ride with destination K it must have completed at least
K − c of the last K − 1 rides that it picked up. Therefore the completion time of the
on-line server is at least 2c(K − c) and the competitive ratio is bounded from below by
2c(K − c)/2K = c − c2/K , which can be made arbitrarily close to c by choosing K
large enough.

Together with Theorem 1 this theorem shows that for servers with a capacity greater
than 3, the best possible deterministic on-line algorithm for the non-preemptive version
of the problem has a strictly higher competitive ratio than SNIFFER for the preemptive

326 M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie

�
�

� �
�

� �
�

� �
�

�
� �

�

�
�

�
�

�
�

�

Fig. 1. Lower bound instance. Each leaf contains three sources.

problem. The following theorem shows that this phenomenon also occurs for lower
capacities of the server.

THEOREM 5. No non-preemptive deterministic algorithm can have a competitive ra-
tio strictly smaller than 1 + 3

2

√
2 ≈ 3.12 for the OLDARP under the incomplete ride

information model, independent of the capacity of the server.

PROOF. First we consider the problem when the on-line server has capacity 1. Then we
sketch how to extend the proof for any capacity c.

The metric space is defined by the edges of a star graph on 2n + 1 vertices. The
leaves, denoted by ai (i = 1, . . . , n) and bi (i = 1, . . . , n), have distance 1 to the center
(origin) O . On each edge (O, ai) (i = 1, . . . , n) we add a point a′i at a distance α from
ai (Figure 1). The constant α is chosen appropriately later.

The adversary provides the following sequence σ of rides. At time 0 there are three
rides in each point ai and bi , i = 1, . . . , n. If the on-line server visits a source, then the
destination turns out to be the same as the source. Rides of this kind are called empty
rides. One time unit after an empty ride has been executed the ride is replaced by a new
ride with the same source. Every source that is visited by the on-line server strictly before
time 4n − 3 meets the same fate. Sources visited after this time are not replaced. We
refer to the three rides that were executed last in a leaf as the decisive rides and specify
them later.

Since it takes at least two time units to travel between two leaves, the on-line server
can visit at most 2n − 2 leaves during the half-open interval [0, 4n − 3). This leaves
two leaves unvisited, which the adversary manipulates to be a1 and b1. The adversary
will execute the rides in these points first. Similarly, during the interval [4, 4n− 3) only
2n− 4 leaves can be visited by the on-line server. This leaves two other leaves unvisited
after time 4, which the adversary manipulates to be a2 and b2. The rides in these points
are executed by the adversary after the rides in a1 and b1. This receipt is iterated: in each
interval [4(i − 1), 4n − 3) there are two leaves that are left unvisited from among those
that could have been visited during [4(i − 2), 4n− 3), which the adversary manipulates
to be ai and bi . Since after time 4(i − 1) no more rides are given with sources in ai and
bi , the adversary executes all rides (including the decisive rides), first the ones related to
the pair a1, b1, then to the pair a2, b2, etc., starting at time 0. The on-line server, however,
does not pick up any decisive ride before time 4n − 3.

On-Line Dial-a-Ride Problems Under a Restricted Information Model 327

We now specify the decisive rides. In each point bi two of the decisive rides are
empty and one has destination ai . In point ai one of the decisive rides is empty, one has
destination a′i , and one is either empty or has destination O , depending on the actions
taken by the on-line server. Without loss of generality we may assume that, from time
4n − 3, the on-line server visits point ai before point bi , since before this time he has
seen only empty rides and therefore is unable to distinguish between a- and b-leaves.
The adversary chooses the rides such that the first ride that the on-line server picks up
in point ai is the ride to a′i . The first ride the server picks up in point bi is the ride to ai .
We distinguish between two cases.

Case 1. The on-line server executes the ride from bi to ai before it picks up the second
ride in ai . In this case the second ride in ai is a ride to the origin. The on-line server
needs at least 10 time units (from O to O) to serve all the decisive rides connected to
the pair ai , bi . The adversary serves empty rides at no extra cost and therefore all rides
in only 4+ 2α time units (from O to O).

Case 2. The on-line server picks up the second ride in ai before moving to bi . In this
case the second ride picked up in ai is empty. The on-line server needs at least 8 + 2α
time units to pick up all rides connected to the pair ai , bi , whereas the adversary needs
only 4.

Starting from O , the on-line server cannot start the decisive rides until time 4n − 4.
Let k be the number of pairs ai , bi that is served as in case 1. The completion time for
the on-line server is at least

4n − 4+ 10k + (8+ 2α)(n − k),

and the optimal off-line completion time is

(4+ 2α)k + 4(n − k).

Standard calculus tells us that, for fixedα, the ratio between these two values is minimized
for k = 0 or for k = n. Hence, the competitive ratio is at least

min

{
4n − 4+ 10n

(4+ 2α)n
,

4n − 4+ (8+ 2α)n

4n

}
,

which tends to

min

{
14

4+ 2α
,

12+ 2α

4

}
, as n→∞.

For α = 3
√

2− 4 this limit is equal to 1+ 3
2

√
2.

If the capacity of the server is c, c > 1, we give c copies of the same sequence σ
simultaneously. An on-line server cannot benefit from this extra capacity in combining
rides from different pairs ai , bi . The on-line server will have to do the rides in a point
in the same order as before. For example, the first c rides that the on-line server picks
up in ai are rides to a′i . Hence, the completion time for the on-line server cannot be
smaller than in the unit capacity case. The off-line server can complete in exactly the
same time.

328 M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie

COROLLARY 4.2. No non-preemptive deterministic algorithm can have a competitive
ratio strictly smaller than max{1+ 3

2

√
2, c} for the OLDARP under the incomplete ride

information model, where c is the capacity of the server.

5. Postlude. In [1] and [4] the competitive ratio measures the cost of having no in-
formation about the release times of future rides. We conclude this paper by discussing
below how we can measure the cost of having no information about the destinations of
the rides through the competitive ratio.

Suppose that at time 0 the release times and the location of the sources of the rides
are given, but the information about the destinations is again revealed only at visiting
the sources. Both SNIFFER and BOUNCER use the on-line algorithm of Ausiello et
al. [2] for a TSP tour along the sources. In case all sources of the rides and the release
times are known, an optimal TSP tour over the sources, that satisfies the release time
constraints, can be computed (disregarding complexity issues). In this way SNIFFER
and BOUNCER gain an additive factor of 1 on their competitive ratio, making SNIFFER
2-competitive and BOUNCER (2c + 1)-competitive.

Notice that the lower bound on the competitive ratio for the non-preemptive problem
in Theorem 4 is obtained through a sequence of rides all with release time 0. Thus, this
lower bound is completely due to the lack of information about the destinations of the
rides.

The rides in the sequence giving the lower bound of 1+ 3
2

√
2 for the non-preemptive

problem in Theorem 5 have release times no larger than 4n − 5. Taking the unserved
rides at time 4n − 5 as an instance given at time 0 shows that the competitive ratio
is at least min{10/(4+ 2α), (8+ 2α)/4}. Optimizing over α yields a lower bound of
1
2 + 1

2

√
11 ≈ 2, 15. Thus, due to the lack of information about destinations only, any

algorithm will not be able to attain a ratio of strictly less than max{ 12 + 1
2

√
11, c}.

In the lower bound construction for the preemptive problem in Theorem 2 the ad-
versary stops giving requests at time 2n2. Take the set of rides unserved by any on-line
algorithm at that time as an instance with release time 0. Following the proof of Theorem
2 any on-line algorithm will need 4n2− 2n, whereas an optimal tour takes 2n2, yielding
a lower bound of 2.

Notice that the above lower bounds are established on sequences where all rides have
release time 0. For the preemptive version of the problem this is sufficient since the
performance of SNIFFER matches the lower bound. However, for the non-preemptive
version higher lower bounds might be obtained using diverse release times of rides.

References

[1] N. Ascheuer, S.O. Krumke, and J. Rambau, Online dial-a-ride problems: minimizing the completion
time, Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science, vol. 1770, Springer-Verlag, Berlin, 2000, pp. 639–650.

[2] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algorithms for the on-line traveling
salesman, Algorithmica 29 (2001), 560–581.

[3] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press,
Cambridge, 1998.

On-Line Dial-a-Ride Problems Under a Restricted Information Model 329

[4] E. Feuerstein and L. Stougie, On-line single server dial-a-ride problems, Theoretical Computer Science
268(1) (2001), 91–105.

[5] A. Fiat and G.J. Woeginger (eds.), Online Algorithms: The State of the Art, Lecture Notes in Computer
Science, vol. 1442, Springer-Verlag, Berlin, 1998.

[6] M. Seleson, On-line multi-threaded dial-a-ride, M.Sc.- thesis, Facultad de Ciencias y Naturales, Univer-
sidad de Buenos Aires, 1997.

