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Admission Control in Networks with Advance
Reservations

Liane Lewin-Eytan,1 Joseph (Seffi) Naor,2 and Ariel Orda1

Abstract. The provisioning of quality-of-service for real-time network applications may require the network
to reserve resources. A natural way to do this is to allow advance reservations of network resources prior to the
time they are needed. We consider several two-dimensional admission control problems in simple topologies
such as a line and a tree. The input is a set of connection requests, each specifying its spatial characteristics,
that is, its source and destination; its temporal characteristics, that is, its start time and duration time; and,
potentially, also a bandwidth requirement. In addition, each request is associated with a profit gained by
accommodating it. We address the related admission control problem, where the goal is to maximize the
total profit gained by the accommodated requests. We provide approximation algorithms for several problem
variations. Our results imply a 4c-approximation algorithm for finding a maximum weight independent set of
axis-parallel rectangles in the plane, where c is the size of a maximum set of overlapping rectangles.

Key Words. Line network, Approximation algorithms, Independent set, Local ratio, Axis parallel rectangles,
Advance reservations.

1. Introduction

1.1. Problem Statement and Motivation. As network capabilities increase, their us-
age is also expanding. At the same time, the wide range of requirements of the many
applications using them calls for new mechanisms to control the allocation of network
resources. However, while much attention has been devoted to resource reservation and
allocation, the same does not apply to the timing of such requests. In particular, the
prevailing assumption has been that requests are “immediate”, i.e., made at the same
time the network resources are needed. This is a useful base model, but it ignores the
possibility, present in many other resource allocation situations, that resources might be
requested in advance of when they are needed. This can be a useful service, not only
for applications, which can then be sure that the resources they need will be available,
but also for the network, as it enables better planning and more flexible management of
resources. Accordingly, advance reservation of network resources has been the subject
of several recent studies and proposals, e.g., [14], [17], [18], and [21]. It has also been
recognized that some of the related algorithmic problems are hard [14].

We investigate some fundamental admission control problems in networks with ad-
vance reservations. We concentrate on networks having special topologies such as lines
and trees. Yet, even for these topologies, the problems we consider remain NP-hard.
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These problems are in essence two-dimensional: we are presented with commodities
(connection requests), each having a spatial dimension determined by its route in the
specific topology, and a temporal dimension determined by its future duration. Each
request specifies its source and destination, start time and duration time, and potentially
also a bandwidth requirement. In addition, each request is associated with a profit gained
by accommodating it. In the line and tree topologies, each request from a source s to
a destination d has only one possible path, thus, the routing issue is non-existent. The
admission control problem that we address is which of the requests should be accom-
modated. The goal is to maximize the total profit gained by the accommodated requests.
The optimal solution consists of a feasible set of requests with maximum total profit.
We consider several variants of the problems described above, all of which are NP-hard,
and provide approximation algorithms for all of them.

1.2. Previous Work and Our Contribution. Some of the earliest work on advance reser-
vation in communication networks was done in the context of video-conferencing and
satellite systems. Early video-conferencing systems involved high bandwidth signals be-
tween (fixed) video-conferencing sites (studios), and advance reservations were needed
to ensure that adequate bandwidth was available. Similarly, early satellite systems of-
fered the option to rent the use of transponders for specific amounts of time, which
also required support for advance reservation. In those early systems the bulk of the
work (e.g., [16] and [20]) focused on traffic modeling and related call admission pro-
cedures, to size such facilities properly. Some more recent studies (e.g., [17] and [21])
have extended these early works from the circuit-switched environment they assumed
to that of modern integrated packet switching networks. Most other studies dealing with
advance reservation in networks have focused on extensions to signalling protocols, or
formulated frameworks (including signalling and resource management capabilities) to
support advance reservations, e.g., [15] and [18]. The routing perspective of networks
with advance reservations has been investigated in [14]. That study considered possible
extensions to path selection algorithms in order to make them advance-reservation aware;
as connections were assumed to be handled one at a time, the admission control problem
was trivial. Competitive analysis of on-line admission control in general networks was
studied in [4].

In this study we focus on advance reservations of multiple connections in specific
network topologies, namely, lines and trees. The case of advance reservations in a line
topology can be modeled as a set of axis-parallel rectangles in the plane: the x-axis
represents the links of the network, and the y-axis represents the time line which is
assumed to be slotted. Each rectangle corresponds to a request: its projection on the
x-axis represents its path from the source to the destination, and its projection on the
y-axis represents its time interval.

For a set R of n axis-parallel rectangles in the plane, the associated intersection graph
is the undirected graph with vertex set equal to R and an edge between two vertices if
the corresponding rectangles intersect. Assuming each rectangle (corresponding to some
vertex in the intersection graph) has a profit associated with it, the goal is to find the
maximum weight independent set (MWIS) in the intersection graph. That is, to find a
set of non-overlapping rectangles with maximum total profit. This problem has already
been considered in the context of label placement in digital cartography. The task is to
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place labels on a map, where the labels can be modeled as rectangles. They are assigned
profit values that represent the importance of including them in the map. Often, a label
can be placed in more than one position on the map. The goal is thus to compute an
MWIS of labels.

An approximation algorithm for the MWIS problem on axis-parallel rectangles achiev-
ing a factor of O(log n) was given in [1]. This factor was improved to log n/α for any
constant α in [9]. For the case where all rectangles have the same height (in our model,
the same duration of time), a 2-approximation algorithm that incurs O(n log n) time is
given in [1]. Extending this result, using dynamic programming, a PTAS, i.e., a (1+1/k)-
approximation algorithm whose running time is O(n log n + n2k−1), for any k ≥ 1, is
obtained [1].

For the two-dimensional problem on a tree topology, we get an approximation al-
gorithm by investigating the one-dimensional case, where only the spatial dimension
is considered. Several variants of this problem have been studied in the literature, e.g.,
[10]–[13].

1.2.1. Our Results. For line topologies, i.e., for the MWIS problem in the intersection
graph of axis-parallel rectangles, we obtain a 4c-approximation algorithm, where c
denotes the maximum number of rectangles that can simultaneously cover a point in the
plane. This improves on the approximation factor in [1] and [9] for the case where c
is small (c is o(log n)). Our technique for deriving the 4c-approximate solution implies
the following result. Suppose that two rectangles are defined to be intersecting if and
only if one of them covers a corner of the other. A 4-approximation for the MWIS
problem is obtained in this case by using the local structure of the linear programming
relaxation of the problem. It remains an intriguing open problem whether a constant
approximation factor can be found for the MWIS problem in an intersection graph of
arbitrary axis-parallel rectangles in the plane.

For a tree topology, we consider the case where each request has a bandwidth de-
mand that is defined to be the width of the request. We first present a 5-approximation
algorithm for the MWIS problem in the case of one-dimensional requests in a tree (that
is, their durations are ignored). Then we provide an O(log n)-approximation for the
two-dimensional case. (These factors also hold for the case of a line topology.)

1.3. Model. The time domain over which reservations are made is composed of time
slots {0, 1, 2, . . .} of equal size. The duration of each reservation is an integer number
of slots. In both topologies (lines and trees) the available bandwidth of each link l ∈ E
is fixed over time (before any requests are being accommodated); we normalize it to
unit size for convenience. We are presented with a set R of n connection requests (also
termed commodities), each specifying its source and destination nodes, and a specific
amount of bandwidth B from some time slot t1 up to some time slot t2, t2 > t1. Two
cases are considered: the case where all demands B are equal to 1 (that is, only a single
request can be routed through link l during time slot t), and the case where the demands
are arbitrary numbers bounded by 1. Each request I has a profit p(I ) gained by routing
it. The goal is to select a feasible set of requests with maximum total profit. A set is
feasible if for all time slots t and for all links l, the total bandwidth of requests whose
time interval contains t and whose route contains l does not exceed 1.
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2. Preliminaries: The Local Ratio Technique. We use the local ratio technique [6]
extensively, hence we briefly present some related preliminaries.

Let p ∈ Rn be a profit (or penalty) vector, and let F be a set of feasibility constraints
on vectors x ∈ Rn . A vector x ∈ Rn is a feasible solution to a given problem (F,p) if it
satisfies all of the constraints in F . The value of a feasible solution x is the inner product
p · x. A feasible solution is optimal for a maximization (or minimization) problem if
its value is maximal (or minimal) among all feasible solutions. A feasible solution x
is an r -approximate solution, or simply an r -approximation, if p · x ≥ r · p · x∗ (or
p · x ≤ r · p · x∗ when p is a penalty vector), where x∗ is an optimal solution. An algo-
rithm is said to have a performance guarantee of r if it always computes r -approximate
solutions.

The local ratio technique was introduced in [7] and later extended in [5], [6], and [8].
It relies on the following theorem.

THEOREM 1 (Local Ratio). Let F be a set of constraints, and let p,p1,p2 be profit (or
penalty) vectors where p = p1 + p2. If x is an r-approximate solution with respect to
(F,p1) and with respect to (F,p2), then x is an r-approximate solution with respect to
(F,p).

An algorithm that uses the local ratio technique typically proceeds as follows. Initially,
the solution is empty. The idea is to find a decomposition of p into p1 and p2 such
that p1 is an “easy” weight function in some respect, e.g., any solution that is maximal
with respect to containment would be a good approximation to the optimal solution
of (F,p1). The local ratio algorithm recursively continues on the instance (F,p2). We
inductively assume that the recursively returned solution for the instance (F,p2) is a
good approximation and need to prove that it is also a good approximation for (F,p).
This requires proving that the recursively returned solution for the instance (F,p2) is
also a good approximation for the instance (F,p1). This step is usually the core of the
proofs on approximation factors.

3. Line Topology. The case of advance reservations in a line topology can be modeled
as a set of axis-parallel rectangles in the plane: the x-axis represents the network links,
and the y-axis represents the time line. Each rectangle corresponds to a request: its
projection on the x-axis represents its path from the source to the destination, and its
projection on the y-axis represents its time interval. We consider the case where all
bandwidth requirements are equal to the capacity of the links.

For a set R of n rectangles in the plane, the associated intersection graph G = (R, E)
is the undirected graph with a vertex set equal to R and an edge between two vertices
if and only if the corresponding rectangles intersect. We assume that each rectangle
(corresponding to some vertex in the intersection graph) has a profit (or weight) associated
with it. The goal is to find an MWIS in G, i.e., a set of non-overlapping rectangles with
maximum total profit.

The problem of finding a maximum independent set in the intersection graph of unit
squares is NP-complete [2]. Since unit squares are a special case of rectangles, the
intractability of this problem implies the intractability of the general case.
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Fig. 1. In (a) both rectangles are vertex-intruding into each other, while in (b) and (c) r2 is vertex-intruding
into r1.

A maximal (with respect to containment) clique Q in G corresponds to a point in the
plane a such that the vertices in Q correspond to the rectangles covering a. We assume
that the maximum clique in G is of size c, i.e., no point is covered by more than c
rectangles.

A rectangle r1 is said to be vertex-intruding into another rectangle r2 if r2 contains
at least one of the corners of r1. Two rectangles are vertex-incident if at least one of
them is vertex-intruding into the other. Two identical rectangles are also said to be
vertex-intruding into each other. Figure 1 contains several examples of vertex-incident
rectangles. A set of rectangles is said to be vertex-incident-free if no two of them are
vertex-incident. For a rectangle r , we denote by N i [r ] the set of rectangles that are
vertex-incident to r . (Note that r ∈ N i [r ].)

We present a 4c-approximation algorithm for the MWIS problem. A high-level de-
scription of the algorithm is as follows:

1. Compute a set S of rectangles that are vertex-incident-free, such that the weight of S
is at least one-quarter of the weight of an MWIS in G.

2. Find an independent set I ⊆ S of rectangles, such that its weight is at least 1/c of the
weight of S.

3. The output is the independent set I .

Clearly, the independent set I is a 4c-approximate solution. We now elaborate on the
steps of the algorithm.

Step 1. We formulate the following linear program (L) for the MWIS in G. We define
an indicator variable x(v) for each rectangle v ∈ R. If x(v) = 1, then rectangle v belongs
to the independent set. The linear relaxation of the indicator variables assigns fractions
to the rectangles (requests) under the constraint that for each clique Q, the sum of the
fractions assigned to all rectangles in Q does not exceed 1. Let x denote the vector of
indicator variables.
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(L) Maximize
∑
v∈R

w(v) · x(v)

subject to:

for each clique Q,
∑
v∈Q

x(v) ≤ 1,(1)

for all v ∈ R, x(v) ≥ 0.(2)

Note that the number of cliques in G is O(n2). It is easy to see that an independent
set in G provides a feasible integral solution to the linear program. Thus, the value of an
optimal (fractional) solution to the linear program is an upper bound on the value of an
optimal integral solution.

We compute an optimal solution to (L). We now show how to round the solution
obtained to get the set S. The core of our rounding algorithm is the following lemma.

LEMMA 2. Let x be a feasible solution to (L). Then there exists a rectangle v ∈ R
satisfying ∑

u∈N i [v]

x(u) ≤ 4.

PROOF. For two vertex-incident rectangles u and v, define y(u, v) = x(v) · x(u). Also,
define y(u, u) = x(u)2. For a point a in the plane, let C(a) denote the set of rectangles
that contain a. For a rectangle r , let S(r) denote the set of four corners of r . We prove
the lemma using a weighted average argument, where the weights are the values y(u, v)
for all pairs of vertex-incident rectangles, u and v. Specifically, we claim that∑

v∈R

∑
u∈N i [v]

y(u, v) ≤
∑
v∈R

∑
a∈S(v)

∑
u∈C(a)

y(u, v).(3)

We establish (3) by considering the different cases of vertex-incidence between two
rectangles u and v (see Figure 1). If u and v are vertex-incident, then they contribute
together 2y(u, v) to the left-hand side of (3). The contribution to the right-hand side of
(3) is as follows:

1. Rectangle u is vertex-intruding into v and vice versa (see Figure 1(a)). In this case, u
and v contribute 2y(u, v) to the right-hand side of (3), since u (v) contains a corner
of v (u).

2. Rectangle v is vertex-intruding into u, but u is not vertex-intruding into v (see Fig-
ure 1(b)). In this case, v contributes 2y(u, v) to the right-hand side of (3), since v has
two corners intruding into u.

3. Rectangle v is either contained inside rectangle u, or v = u (see Figure 1(c)). In this
case, v contributes 4y(u, v) to the right-hand side of (3), since u contains all four
corners of v.

Hence, there exists a rectangle v satisfying∑
u∈N i [v]

y(u, v) ≤
∑

a∈S(v)

∑
u∈C(a)

y(u, v).
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If we factor out x(v) from both sides, we obtain
∑

u∈N i [v]

x(u) ≤
∑

a∈S(v)

∑
u∈C(a)

x(u).

From constraint (1) in (L), it follows that, for each rectangle v and all a ∈ S(v),∑
u∈C(a) x(u) ≤ 1. Therefore, ∑

u∈N i [v]

x(u) ≤ 4,

thus completing the proof.

We now use a fractional version of the local ratio technique developed in [8]. The
proof of the next lemma is immediate.

LEMMA 3 (Fractional Local Ratio). Let x be a feasible solution to (L). Let w1 and w2

be a decomposition of the weight vector w such that w = w1 + w2. Suppose that z is a
feasible integral solution vector to (L) satisfying w1 ·z ≥ r(w1 ·x) and w2 ·z ≥ r(w2 ·x).
Then

w · z ≥ r(w · x).

The rounding algorithm will apply a local ratio decomposition of the weight vector
w with respect to an optimal solution x to the linear program (L). The algorithm for
computing S proceeds as follows:

1. Delete all rectangles with non-positive weight. If no rectangles remain, return the
empty set.

2. Let v′ ∈ R be a rectangle satisfying
∑

u∈N i [v′] x(u) ≤ 4. Decompose w by w =
w1 + w2 as follows:

w1(u) =
{
w(v′) if u ∈ N i [v′],
0 otherwise.

(In the decomposition the component w2 may be non-positive.)
3. Solve the problem recursively using w2 as the weight vector. Let S′ be the returned

independent set.
4. If v′ is not vertex-incident to any rectangle in S′, return S = S′ ∪ {v′}; otherwise,

return S = S′.

Clearly, the set S is vertex-incident-free. We now analyze the quality of the solution
produced by the algorithm.

THEOREM 4. Let x be an optimal solution to the linear program (L). Then it holds for
the set S computed by the algorithm that w(S) ≥ 1

4 · w · x.

PROOF. The proof is by induction on the number of recursive calls. At the basis of
the recursion, the returned set satisfies the theorem, since no rectangles remain. Clearly,



300 L. Lewin-Eytan, J. Naor, and A. Orda

the first step in which rectangles of non-positive weight are deleted cannot decrease the
above right-hand side. We now prove the inductive step. Let z and z′ be the indicator
vectors of the sets S and S′, respectively. Assume that w2 · z′ ≥ 1/4 · w2 · x. Since
w2(v

′) = 0, it also holds that w2 ·z ≥ 1/4 ·w2 ·x. From step 4 of the algorithm it follows
that at least one vertex from N i [v′] belongs to S. Hence, w1 · z ≥ 1/4 ·w1 · x. Thus, by
Lemma 3, it follows that w · z ≥ 1/4 · w · x, i.e., w(S) ≥ 1

4 · w · x.

Step 2. The input to this step is a set of rectangles S that are vertex-incident-free. We
show that the intersection graph of such a family of rectangles is a perfect graph, i.e., a
graph whose chromatic number, as well as those of all of its subgraphs, are equal to the
size of the maximum clique.

Let the maximum clique size in S be c′. Clearly, c′ ≤ c.

THEOREM 5. There exists a legal coloring of the rectangles in S that uses c′ colors
precisely.

PROOF. The proof is based on ideas from [3]. Rectangles that are not vertex-incident
can only intersect in the pattern described in Figure 2. Let us look at the cliques of size
c′ in S and choose, in each clique, the tallest and narrowest rectangle. We observe that
these rectangles are disjoint, otherwise one of them is vertex-intruding into the other.
We color the rectangles chosen by the same color. Since the maximum clique among the
remaining rectangles in S is of size c′ − 1, we can continue this process recursively, and
get a c′-coloring of S.

The proof of the above theorem is constructive, namely, we color the rectangles of S
by c′ colors and choose I to be the color class of maximum weight, thus,

w(I ) ≥ w(S)
c′
≥ w(S)

c
.

Fig. 2. Intersection of rectangles that are not vertex-incident.
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4. Tree Topology. In the previous section we have assumed that each connection
requested the full link capacity. We now consider the case where each request ri has
a bandwidth demand 0 < wi ≤ 1, which is defined to be the width of the request.
We present a (5 log n)-approximation algorithm. First, we present a 5-approximation
algorithm for the MWIS problem in the case of one-dimensional requests in a tree (that
is, their durations are ignored). Then we provide a (5 log n)-approximation for the two-
dimensional case by extending the algorithm presented in [1], which is a simple divide-
and-conquer algorithm for computing a maximum independent (non-overlapping) set of
n axis-parallel rectangles in the plane. The one-dimensional case in tree topologies has
received much attention, e.g., [10]–[13]. However, to the best of our knowledge, there
are no known approximation factors prior to our work for the one-dimensional problem
we consider here, i.e., where requests have widths.

We proceed to present a 5-approximation algorithm for the one-dimensional MWIS
problem in a tree. We divide our instances (requests) into two sets: a set consisting of
all narrow instances, i.e., that have width of at most 1

2 , and a set consisting of all wide
instances, i.e., that have width greater than 1

2 . We solve our problem separately for the
two sets, and return the solution with greater profit.

The problem where all instances are wide reduces to the problem of finding an MWIS
of paths in a tree, since no pair of intersecting paths can be in the solution simultaneously.
This problem can be solved optimally (see [19]).

We proceed to describe a 4-approximation algorithm for the case where all instances
are narrow, as follows. Define the least common ancestor of a path to be the vertex (in
the path) that is closest to the root, where the distance between two vertices is defined
to be the number of edges in the path connecting them.

1. Delete all instances with non-positive profit.
2. If no instances remain, return the empty set. Otherwise, proceed to the next step.
3. Let Ĩ be a path whose least common ancestor has maximum distance from the root.
4. Decompose the profit vector p by p = p1 + p2.
5. Solve the problem recursively using p2 as the profit function. Let S′ be the returned

set.
6. If S′ ∪ { Ĩ } is a feasible set, return S = S′ ∪ { Ĩ }. Otherwise, return S = S′.

Define I(I ) to be the set of instances intersecting I (I(I ) includes I ). The profit
decomposition is the following:

p1(I ) = p( Ĩ ) ·



1, I = Ĩ ,
α · w(I ), I ∈ I( Ĩ ),
0, otherwise.

(4)

THEOREM 6. The algorithm presented above, with α = 1/(1− w( Ĩ )), yields a 4-
approximate solution.

PROOF. A feasible set is called I -maximal if it either contains instance I , or otherwise
adding I to it will render it infeasible. Define bopt to be an upper bound on the optimum
p1-profit and define bmax to be a lower bound on the p1-profit of every Ĩ -maximal set,
both are normalized by p( Ĩ ). We consider an optimal solution. By the definition of p1,
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only instances in I( Ĩ ) contribute to its p1-profit. We denote the least common ancestor
vertex of Ĩ by v. Path Ĩ can have at most two edges l1 and l2 that are adjacent to v.
Since Ĩ is a path whose least common ancestor has maximum distance from the root,
it can intersect with at most two disjoint groups of paths: one group contains the paths
intersecting l1, and the other group contains the paths intersecting l2. For each edge
l ∈ {l1, l2}, the total width of instances in I( Ĩ ) that use l in their path is at most 1.
Therefore, in case Ĩ does not belong to the optimal solution, the contribution of the other
instances in I( Ĩ ) is at most 2α · p( Ĩ ). Otherwise, if Ĩ is in the optimal solution, the
contribution of the other instances in I( Ĩ ) is at most 2α(1−w( Ĩ )) · p( Ĩ ). Thus, we get
bopt = max{2α, 1+ 2α(1− w( Ĩ ))}.

Turning to Ĩ -maximal solutions, either such a solution contains Ĩ or else it contains
a set X �= ∅ of instances intersecting Ĩ that prevent Ĩ from being added to the solution.
The total width of instances in X is at least 1 − w( Ĩ ), for otherwise Ĩ can be added to
the solution. We thus have bmax = min{1, α · (1− w( Ĩ ))}.

The approximation factor of the algorithm in the case where all paths are narrow is
at least

min{1, α · (1− w( Ĩ ))}
max{2α, 1+ 2α(1− w( Ĩ ))} .(5)

For α = 1/(1− w( Ĩ )) we get an approximation factor of 1
4 .

COROLLARY 7. By choosing the solution with greater profit out of the two sets (wide
and narrow), we get an approximation factor of 1

5 for the general one-dimensional case.

We now present a (5 log n)-approximation for the two-dimensional case. Let R be the
set of n requests. We sort the requests by their start and end time-coordinates. Let tmed be
the median time-coordinate. That is, the number of requests whose time-coordinates are
below or above tmed is not more than n/2. We partition the requests of R into three groups,
R1, R2, and R12, as follows. R1 and R2 contain the requests whose time-coordinates are
respectively below and above tmed. R12 contains the requests with time interval containing
time slot tmed, and thus defines a one-dimensional problem: as all these requests intersect
in the time line, their time intervals can be ignored. Now, we compute the approximate
MWIS M12 of R12 (as explained before). We recursively compute M1 and M2, the
approximate MWIS in R1 and R2, respectively: if p(M12) ≥ p(M1)+ p(M2), then we
return M12, otherwise we return M1 ∪ M2 (p(M) denotes the sum of the profits of the
requests in M).

THEOREM 8. The algorithm computes a (5 log n)-approximate solution. Generally, for
any network topology, a ρ-approximation algorithm for the one-dimensional problem
implies a (ρ log n)-approximation for the two-dimensional problem.

PROOF. The proof is by induction. For n ≤ 2, we can optimally compute a maximum
weight set, and the claim follows. Suppose it holds for all m < n. Let M∗ be the optimal
solution for R. Similarly, let M∗1 ,M∗2 , and M∗12 be the optimal solutions of R1, R2, and
R12, respectively. As stated in Corollary 7 , there is a 5-approximation algorithm for the
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one-dimensional problem, thus we have p(M12) ≥ p(M∗12)/5 ≥ p(M∗ ∩ R12)/5. By
the inductive hypothesis,

p(M1) ≥ p(M∗1 )
5 log(n/2)

≥ p(M∗ ∩ R1)

5(log n − 1)
, and, similarly, p(M2) ≥ p(M∗ ∩ R2)

5(log n − 1)
.

Thus,

p(M) = max{p(M12), p(M1)+ p(M2)}
≥ max

{
1
5 p(M∗ ∩ R12),

p(M∗ ∩ R1)+ p(M∗ ∩ R2)

5(log n − 1)

}

≥ max

{
1
5 p(M∗ ∩ R12),

p(M∗)− p(M∗ ∩ R12)

5(log n − 1)

}
.

If p(M∗ ∩ R12) ≥ p(M∗)/ log n, the inductive step is established, otherwise

p(M∗)− p(M∗ ∩ R12)

5(log n − 1)
≥ p(M∗)− p(M∗)/ log n

5(log n − 1)
= p(M∗)

5 log n

and the inductive step is established as well.
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