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Improved Approximations for Tour and Tree Covers1

Jochen Könemann,2 Goran Konjevod,3 Ojas Parekh,3 and Amitabh Sinha3

Abstract. A tree (tour) cover of an edge-weighted graph is a set of edges which forms a tree (closed
walk) and covers every other edge in the graph. Arkin et al. [1] give approximation algorithms
with ratios 3.55 (tree cover) and 5.5 (tour cover). We present algorithms with a worst-case ratio
of 3 for both problems.
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1. Introduction

1.1. Problem Statement and Notation. Let G = (V, E) be an undirected graph with
a (nonnegative) weight function c : E → Q+ defined on the edges. A tree cover (tour
cover) of G is a subgraph T = (U, F) such that (1) for every e ∈ E , either e ∈ F or F
contains an edge f adjacent to e: F ∩ N (e) �= ∅, and (2) T is a tree (closed walk). (We
allow the tour cover to be a closed walk in order to avoid restricting the weight function
c to being a metric. Our algorithm for tour cover produces a closed walk in G, but if
the weight function c satisfies the triangle inequality, this walk may be short-cut into a
simple cycle which covers all edges in E without increasing the weight.)

The tree cover (tour cover) problem consists in finding a tree cover (tour cover) of
minimum total weight:

min
∑
e∈F

ce,

over subgraphs H = (U, F) which form a tree cover (tour cover) of G.
For a subset of vertices S ⊆ V , we write δ(S) for the set of edges with exactly one

endpoint inside S. If x ∈ RE is a vector indexed by the edges of a graph G = (V, E)
and F ⊆ E is a subset of edges, we use x(F) to denote the sum of values of x on the
edges in the set F , x(F) =∑e∈F xe.

1.2. Previous Work. The tree and tour cover problems were introduced by Arkin et
al. [1]. The motivation for their study comes from the close relation of the tour cover
problem to vertex cover, watchman route, and traveling purchaser problems. They pro-
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vide fast combinatorial algorithms for the weighted versions of these problems achieving
approximation ratios 5.5 and 3.55, respectively (3.55 is slightly lower than their claim—
the reason being the recent improvements in minimum Steiner tree approximation [9]).
For unweighted versions their best approximation ratios are 3 (tour cover) and 2 (tree
cover), and they also show how to find a 3-approximate tree cover in linear time. Finally,
they give approximation-preserving reductions to vertex cover and traveling salesman
problems, showing that tree and tour cover are MAXSNP-hard problems.

Our methods are similar to those used by Bienstock et al. [2], also referred to by
Arkin et al. as a possible way of improving their results; however, our algorithms were
developed independently and were in fact motivated primarily by the work of Carr et al.
[3] on approximating weighted edge-dominating sets.

1.3. Algorithm Overview. Both our algorithms run in two phases. In the first phase we
identify a subset of vertices, and then in the second phase we find a walk or a tree on
these vertices. Very informally, the algorithms can be described as follows:

(1) Solve the linear programming relaxation of the tour cover (tree cover) problem.
(2) Using the optimal solution to the linear program, find a set U⊆V , such that V \U

induces an independent set.
(3) Find an approximately optimal tour (tree) on U .

Part (3) above reduces to the invocation of a known algorithm for approximating the
minimum traveling salesman tour or the minimum Steiner tree.

2. Tour Cover

2.1. Linear Program. We first describe an integer programming formulation of tour
cover.

Let F denote the set of all subsets S of V such that both S and V \S induce at least
one edge of E ,

F = {S ⊆ V | E[S] �= ∅, E[V \S] �= ∅}.
Note that if C is a set of edges that forms a tour cover of G, then at least two edges
of C cross S, for every S ∈ F . This observation motivates our integer programming
formulation of tour cover. For every edge e ∈ E , let the integer variable xe indicate the
number of copies of e included in the tour cover. We minimize the total weight of edges
included, under the condition that every cut in F be crossed at least twice. In order to
ensure our solution is a tour we also need to specify that each vertex has even degree;
however, we drop these constraints and consider the following relaxation:

min
∑
e∈E

cexe,

∑
e∈δ(S)

xe ≥ 2 for all S ∈ F,(1)

x ∈ {0, 1, 2}E .
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Note that since the optimum tour may use an edge of G more than once, we cannot
restrict the edge-variables to be zero-one. However, it is not difficult to see that under
a nonnegative weight function the minimal solution will never use an edge more than
twice. This follows since an Eulerian tour T1 on a subset U ⊆ V of vertices may be
transformed into an Eulerian tour T2 on U such that (1) no edge is used in T2 more times
than in T1 and (2) no edge is used in T2 more than twice.

Replacing the integrality constraints by

0 ≤ x ≤ 2,

we obtain the linear programming relaxation. We use ToC(G) to denote the convex hull
of all vectors x satisfying the constraints above (with integrality constraints replaced by
upper and lower bounds on x).

To show that ToC(G) can be solved in polynomial time we appeal to the ellipsoid
method [7] and construct a separation oracle. We interpret a given candidate solution
x as the capacities on the edges of the graph G. For each pair of edges e1, e2 ∈ E we
compute the minimum capacity cut in G that separates them. The claim is that x is a
feasible solution iff for each pair of edges e1, e2 ∈ E the minimum-capacity e1, e2-cut
has value at least 2. Clearly, if x is not a feasible solution, then our procedure will find
a cut of capacity less than 2 having at least one edge on either side. On the other hand,
if our procedure returns a cut of value less than 2, then x cannot be feasible.

Notice that the dual of ToC(G) fits into the packing framework and the above oracle
enables us to use fast combinatorial packing algorithms [4], [5]. That is, we avoid using
the ellipsoid method, reducing the time complexity but at the cost of losing a (1+ε)-factor
in the approximation guarantee.

2.2. The Subtour Polytope. Let G = (V, E) be a graph whose edge-weights satisfy
the triangle inequality: for any u, v, and w ∈ V ,

cuv + cvw ≥ cuw.

The subtour polytope ST(G) is defined as

ST(G) = {x ∈ [0, 1]E | x(δ(S)) ≥ 2, ∀S ⊆ V, ∅ �= S �= V,

x(δ({v})) = 2, ∀v ∈ V }.

In fact, the upper-bound constraints x ≤ 1 are redundant and

ST(G) = {x ≥ 0 | x(δ(S)) ≥ 2, ∀S ⊆ V, ∅ �= S �= V,

x(δ({v})) = 2, ∀v ∈ V }.

2.3. The Parsimonious Property. Let G = (V, E) be a complete graph with edge-
weight function c. For every pair of vertices i , j ∈ V , let a nonnegative integer ri j be
given. The survivable network design problem consists in finding the minimum-weight
subgraph such that for every pair of vertices i , j ∈ V , there are at least ri j edge-disjoint
paths between i and j . A linear programming relaxation of the survivable network design
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problem is given by

min
∑
c∈E

cexe,

∑
e∈δ(S)

xe ≥ max
i j∈δ(S)

ri j for all S ⊆ V, ∅ �= S �= V,(2)

x ≥ 0.

Goemans and Bertsimas [6] prove the following:

THEOREM 1. If the weight function c satisfies the triangle inequality, then for any
D ⊆ V the optimum of the linear program 2 is equal to the optimum of

min
∑
c∈E

cexe,

∑
e∈δ(S)

xe ≥ max
i j∈δ(S)

ri j for all S ⊆ V, ∅ �= S �= V,(3)

∑
e∈δ({v})

xe = max
j∈V \{v}

rv j for all v ∈ D,

x ≥ 0.

2.4. Algorithm. We are now ready to state our algorithm for tour cover.

(1) Let x∗ be the vector minimizing cx over ToC(G).
(2) Let U = {v ∈ V | x∗(δ({v})) ≥ 1}.
(3) For any two vertices u, v ∈ U , if uv �∈ E , let cuv be the weight of the shortest u–v

path in G.
(4) Run Christofides’ heuristic to find an approximate minimum traveling salesman tour

on U .

The algorithm outputs a tour on U . Since U is a vertex cover of G, this tour is in fact
a tour cover of G.

We note that there are some trivial cases which our algorithm will not handle. However,
they can be processed separately, and we briefly mention them here. If the input graph
is a star, the central node is a solution of weight zero. If the input graph is a triangle,
doubling the cheapest edge gives us an optimal solution. All other cases can be handled
by our algorithm.

2.5. Performance Guarantee

THEOREM 2. Let x∗ be the vector minimizing cx over ToC(G) and let U = {v ∈
V | x∗(δ({v})) ≥ 1}. Let F denote the (complete) graph with vertex-set U and edge-
weights c as defined by shortest paths in G. Then

min{cy | y ∈ ST(F)} ≤ 2 min{cx | x ∈ ToC(G)}.



Improved Approximations for Tour and Tree Covers 445

PROOF. Let y = 2x∗. Then y is feasible for

A = {x ≥ 0 | x(δ({v})) ≥ 0, ∀v ∈ V \U,
x(δ({u})) ≥ 2, ∀u ∈ U,

x(δ(S)) ≥ 2, ∀S ⊆ V, S ∩U �= ∅, U \S �= ∅, ∅ �= S �= V,

x(δ(S)) ≥ 0, ∀S ⊆ V \U, S �= ∅}.
Notice that A corresponds to the survivable network polytope 2 with requirement function

ruv =
{

2, u, v ∈ U,
0, otherwise.

Now let

B0 = {x ≥ 0 | x(δ({v})) = 0, ∀v ∈ V \U,
x(δ({u})) = 2, ∀u ∈ U,

x(δ(S)) ≥ 2, ∀S⊆V, S ∩U �= ∅, U \S �= ∅, ∅ �= S �= V,

x(δ(S)) ≥ 0, ∀S ⊆ V \U, S �= ∅}.
By the parsimonious property (Theorem 1),

min{cx | x ∈ A} = min{cx | x ∈ B0}.
We define

B = {x ≥ 0 | x(δ({v})) = 0, ∀v ∈ V \U,
x(δ({u})) = 2, ∀u ∈ U,

x(δ(S)) ≥ 2, ∀S ⊂ U, ∅ �= S �= U },
that is, B is the subtour polytope ST(F). We next show that B = B0, from which it
follows that

min{cx | x ∈ B} = min{cx | x ∈ A}.(4)

CLAIM. B = B0.

PROOF. It is clear that B0 ⊆ B. Let x ∈ B. Clearly, for ∅ �= S ⊂ V \U we have
x(δ(S)) ≥ 0. Now, consider some set S with a requirement of 2. We show that x(δ(S)) =
x(δ(S ∩U )). The claim then follows from x ∈ B.

In the following we use Ū to denote V \U . We also use U : V to denote the set of
edges with exactly one endpoint in each of U and V , that is, U : V = {uv ∈ E | u ∈
U, v ∈ V }. Notice that we can express the difference x(δ(S)) − x(δ(S ∩ U )) in the
following way:

x(S ∩ Ū : S̄ ∩ Ū )+,(5)

x(S ∩ Ū : S̄ ∩U )−,(6)

x(S ∩ Ū : S ∩U ).(7)

Since x ∈ B we know that x(δ(v)) = 0 for all v ∈ Ū . Hence the terms (5)–(7) above
evaluate to zero.
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The right-hand side of (4) is equal to min{cx | x ∈ ST(F)}. Now, putting together
all of the above, we have

min{cx | x ∈ ST(F)} = min{cx | x ∈ B} = min{cx | x ∈ A}
≤ cy = 2cx∗ = 2 min{cx | x ∈ ToC(G)}.

The first equality here follows from the definition of B. The second equality is (4), and
the inequality is true because y is feasible for A. The final two equalities follow from
the definitions of y and x∗.

Wolsey [12] and Shmoys and Williamson [10] prove the following theorem.

THEOREM 3. Let G = (V, E) be a graph with edge-weight function c satisfying the
triangle inequality. Then the weight of the traveling salesman tour on G output by
Christofides’ algorithm is no more than 3

2 min{cx | x ∈ ST (G)}.

From Theorems 2 and 3, and the fact that min{cx | x ∈ ToC(G)} is a lower bound
on the weight of an optimal tour cover, it follows that the approximation ratio of our
algorithm for tour cover can be upper-bounded by 3.

COROLLARY 1. The algorithm above outputs a tour cover of weight no more than three
times the weight of the minimum tour cover.

3. Tree Cover

3.1. Bidirected Formulation. For tree cover, we follow essentially the same procedure
as for tour cover, with one difference. We use a bidirected formulation for the tree cover.
That is, we first transform the original graph into a directed graph by replacing every
undirected edge uv by a pair of directed edges (u → v), (v → u), each having the
same weight as the original undirected edge. We then pick one vertex as the root, and
search for a minimum-weight branching which also covers all the edges of the graph.
We denote this directed graph by

−→
G = (V,−→E ).

We do not know which vertex to pick as the root. However, we can simply repeat the
whole algorithm for every possible choice of the root, and pick the best solution. It is
easy to see that such a branching has a direct correspondence with a tree cover in the
original undirected graph, having the same weight.

3.2. Linear Program. For a fixed root r , defineF to be the set of all subsets S of V\{r}
such that S induces at least one edge of

−→
E ,

F = {S ⊆ V \{r} | −→E [S] �= ∅}.

If C is a set of edges forming a tree cover of G and containing r , then let
−→
C denote

the branching obtained by directing all edges of C towards the root r . Now for every
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S ∈ F ,
−→
C must contain at least one edge leaving S. We use δ+(S) to denote the set of

directed edges leaving the set S. Hence we have the following IP formulation:

min
∑
e∈−→E

cexe,

∑
e∈δ+(S)

xe ≥ 1 for all S ∈ F,(8)

x ∈ {0, 1}−→E .
Replacing the integrality constraints by

x ≥ 0,

we obtain the linear programming relaxation. We use TrC(
−→
G ) to denote the convex hull

of all vectors x satisfying the constraints above.

3.3. Quasi-Bipartite Bidirected Steiner Tree Polytope. A graph G = (V, E) on which
an instance of the Steiner tree problem is given by specifying the set R ⊆ V of terminals
is called quasi-bipartite if S = V \ R induces an independent set. A Steiner tree is
called locally 1-optimal if adding or deleting a single Steiner vertex does not yield
any improvement in the cost of the tree. Rizzi [8] gives a polynomial time algorithm
to compute a locally 1-optimal Steiner tree in quasi-bipartite graphs. Rajagopalan and
Vazirani [11] prove that a locally 1-optimal Steiner tree costs no more than 3

2 times
the optimum of the linear programming relaxation obtained from the bidirected cut
relaxation for quasi-bipartite graphs.

For a specific choice of a root vertex r , the quasi-bipartite bidirected Steiner tree

polytope QBST(
−−→
G[R]) is defined as

QBST(
−−→
G[R]) = {x ∈ [0, 1]

−→
E | x(δ+(S)) ≥ 1, ∀S ⊆ V \{r}, S ∩ R �= ∅}.

3.4. Algorithm. We are now ready to state our algorithm for tree cover.

(1) For every vertex r ∈ V , let x∗r be the vector minimizing cx over TrC(
−→
G ) with r as

the root.
(2) Let U = {v ∈ V | x∗r (δ

+({v})) ≥ 1
2 }.

(3) For any two vertices u, v ∈ U , if uv �∈ E , let cuv be the weight of the shortest u–v
path in G.

(4) Run the Rizzi algorithm to compute a locally 1-optimal Steiner tree on
−→
G , with U

as the set of terminals, and call this Tr .
(5) Pick the cheapest such Tr .

Note that we are able to solve the linear program in step (1) in essentially the same way
as the tour cover LP, appealing to the ellipsoid method and using a min-cut computation
as a separation oracle. Trivial cases exist for this problem too; they can be handled
similar to the way we handle the tour cover trivial cases. The algorithm initially yields
a branching in the bidirected graph. We map this in the obvious way to a set of edges in
the original undirected graph. Some of the edges in this set may be redundant since we
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were working on the metric completion of the directed graph; we prune the solution to
get a tree without any increase in weight.

The algorithm outputs a tree which spans U (and possibly other vertices). Since U is
a vertex cover of G, this tree is in fact a tree cover of G.

3.5. Performance Guarantee

THEOREM 4. Let x∗ be the vector minimizing cx over TrC(
−→
G ) and let U = {v ∈

V | x∗(δ+({v})) ≥ 1
2 }. Then

min{cy | y ∈ QBST(
−−→
G[U ])} ≤ 2 min{cx | x ∈ TrC(

−→
G )}.

PROOF. Consider an edge −→e = uv ∈ −→E . Since x∗ ∈ TrC(
−→
G ), we have that

x∗(δ+({u, v})) ≥ 1. Hence, either x∗(δ+({u})) ≥ 1
2 or x∗(δ+({v})) ≥ 1

2 , and U is a
vertex cover of G. Note that V \U is an independent set because for all u, v ∈ V \U , we
have x(δ+(u)) < 1

2 and x(δ+(v)) < 1
2 so that uv /∈ E .

Now consider the vector y = 2x∗. Clearly cy = 2cx∗. Also clearly y is in the dominant

of QBST(
−−→
G[U ]), i.e., there exists a y ∈ QBST(

−−→
G[U ]) such that y ≤ y componentwise.

Hence if y∗ is the minimizer of {cy | y ∈ QBST(
−−→
G[U ])}, then cy∗ ≤ cy = 2cx∗.

We now use the Rizzi [8] algorithm to compute a locally 1-optimal Steiner tree in
quasi-bipartite graphs. Rajagopalan and Vazirani [11] prove the following:

THEOREM 5. Let G = (V, E) be a graph with edge-weight function c satisfying the
triangle inequality. Let V = R + S be a partition of the vertex set such that G has no
edges both of whose endpoints are in S. Then any locally 1-optimal Steiner tree is within
3
2 min{cx | x ∈ QBST(

−−→
G[R])}.

From Theorems 4 and 5 it follows that the approximation ratio of our algorithm for
tree cover can be upper-bounded by 3.

COROLLARY 2. The algorithm above outputs a tree cover of weight no more than thee
times the weight of the minimum tree cover.

4. Conclusion

4.1. Gap Examples: Linear Program, Algorithm. We do not have examples where the
worst-case performance of our algorithm is actually achieved. However, we do have
examples where the ratio of our solution to the LP solution is equal to the performance
guarantee.

For the tour cover problem, consider the unit complete graph. It is easy to see that an
optimal LP solution is obtained by setting xe = 1/(n − 2) for each edge in the graph.
This solution has value n(n − 1)/2(n − 2) ≈ n/2. Our algorithm will round this to a
tree, which could yield a star having n−1 edges and all nodes of odd degree. The second
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stage will then yield a tour having roughly 3
2 (n − 1) edges, which is of weight three

times the LP solution.
We are not aware of any graph for which the Rajagopalan–Vazirani algorithm achieves

its worst case bound of 3
2 . Hence for the tree cover, we do not have an example where

the ratio of our solution to even the LP optimum is 3. However, for the complete unit
graph, it is easy to see that the integrality gap is at least 2.

4.2. Further Open Questions. Obtaining approximation algorithms with better approx-
imation guarantees is an obvious open question. We note that we do not have examples
where either algorithm actually achieves its worst-case performance bound, so it may be
possible to improve the performance guarantees of our algorithms with tighter analyses.
The directed version of both problems remains wide open.

We also note that we use a two-stage procedure to solve these problems. A single pro-
cedure which directly puts us in the desired polytopes might yield a better approximation
ratio.
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