
DOI: 10.1007/s00453-003-1064-z

Algorithmica (2004) 38: 363–376 Algorithmica
© 2003 Springer-Verlag New York Inc.

Balanced Scheduling toward Loss-Free Packet
Queuing and Delay Fairness1

Rudolf Fleischer2 and Hisashi Koga3

Abstract. In current networks, packet losses can occur if routers do not provide sufficiently large buffers.
This paper studies how many buffers should be provided in a router to eliminate packet losses. We assume
a network router has m incoming queues, each corresponding to a single traffic stream, and must schedule
at any time on-line from which queue to take the next packet to send out. To exclude packet losses with a
small amount of buffers, the maximum queue length must be kept low over the entire scheduling period. We
call this new on-line problem the balanced scheduling problem (BSP). By competitive analysis, we measure
the power of on-line scheduling algorithms to prevent packet losses. We show that a simple greedy algorithm
is �(log m)-competitive which is asymptotically optimal, while Round-Robin scheduling is not better than
m-competitive, as actually is any deterministic on-line algorithm for BSP. We also give a polynomial time
algorithm for solving off-line BSP optimally.

We also study another on-line balancing problem that tries to balance the delay among the m traffic streams.

Key Words. Packet loss, Delay, Competitive analysis, Load balancing, Routing.

1. Introduction. Network usage of the Internet by the general public has steadily
increased in the past decade. In particular, commercial use of the Internet has risen
dramatically. However, the current Internet is inadequate for commercial use because of
its best-effort nature which admits packet losses when the network links are congested. In
the current situation, a source host has to retransmit the discarded packets when a packet
loss happens to recover the lost data due to buffer size limitations, like TCP (or another
best-effort) protocol. Unfortunately, this retransmission of data has the disadvantage of
making the congestion worse by adding more traffic to the network. For this reason,
networks without packet losses in the first place would be highly desirable.

In general, packet losses occur when buffers in a network router overflow because
of sudden burst traffic. There are two ways to prevent these packet losses: (i) to restrict
the total number of packets flowing into a router and/or (ii) to provide sufficiently large
buffers in the routers.

The former approach is called admission control [13], [17] in the research area of
QoS (quality of service) networks. The latter approach is the main theme of this paper.
Of course, there are no packet losses if the router is given infinite size buffers. We study,
more realistically, the amount of buffers that should be given to a router to eliminate
packet losses when m traffic streams flowing into a router R are sharing the same output

1 The work by R. Fleischer described in this paper was partially supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No. HKUST6010/01E).
2 Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. rudolf@cs.ust.hk.
3 Graduate School of Information Systems, University of Electro-Communications, Tokyo, Japan. koga@
is.uec.ac.jp.

Received February 8, 2002; revised January 22, 2003. Communicated by T. Takaoka.
Online publication November 10, 2003.

364 R. Fleischer and H. Koga

q

Scheduler

ROUTER R

Stream 3

Stream 1

Stream 2

Stream

.

.

.

.

OUTPUT

1

q
2

q
3

q
m

m

Fig. 1. Scheduling in a router.

port and a scheduling algorithm in R must decide the order of transmitting packets
among the m FIFO queues handling the m input streams (see Figure 1). At each time
t (for convenience, we measure time in integer units), Nt packets arrive at R. Here Nt

depends on t , and Nt ≥ 0. Nt > 1 indicates burst traffic. Which traffic stream a packet
belongs to is identified by a label attached to the packet. According to this label, the
packet is stored into the corresponding FIFO queue.

After the new packets have arrived, R chooses exactly one non-empty queue and
outputs its head packet (if all queues are empty nothing happens). We assume a simple
and fair Complete Buffer Partitioning (CBP [16]) scheme that fairly allocates static
buffers of the same size to the m queues, i.e., we do not reassign buffers dynamically
among the queues. The CBP scheme has the advantage that it can easily be implemented.

To prevent buffer overflow, the buffer size should be chosen larger than the maximum
queue length, where the maximum is taken over the entire period during which the
scheduling algorithm in R serves all the packets. Of course, for a given packet arrival
sequence this quantity depends on the scheduling policy. So we can judge the power of
scheduling algorithms to prevent packet losses from the maximum queue length they
incur. The balanced scheduling problem (BSP) is a new problem whose objective is to
minimize the maximum queue length.

In the on-line BSP, the scheduling algorithm A must decide on-line, i.e., without
knowledge of future packet arrivals, which packet to send out next. We evaluate the power
of on-line scheduling algorithms using competitive analysis [8], [11] which compares
the performance of an on-line algorithm with that of an optimal off-line algorithm OPT
that knows the entire packet arrival sequence in advance and can therefore plan ahead
much better when deciding on the next packet to send out. Let L A(σ) be the maximum
queue length over the entire scheduling period, where σ is the packet arrival sequence.
For a constant c ≥ 1, the on-line algorithm A is c-competitive if L A(σ) ≤ c · LOPT(σ),
for any σ .

In Section 2 we define the BSP more formally, and we show that any on-line algorithm
is m-competitive for BSP. In Section 3 we describe an optimal off-line algorithm for
BSP which runs in time polynomial in the total number of packets. In Section 4 we
give lower bounds on the competitiveness of on-line algorithms for BSP. We show
that no deterministic or randomized on-line algorithm can be better than �(log m)-
competitive. We also show that the popular Round-Robin scheduling algorithm is

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 365

only m-competitive, as is any algorithm. In Section 5 we study the greedy algorithm
LQF (Longest Queue First) that at any time always selects the longest queue. We
show that LQF achieves (3 + �log2 m�)-competitiveness and becomes asymptotically
optimal. Thus, LQF is far superior to Round-Robin. Because we have the optimal
off-line solution at hand, it is possible to obtain the actual buffer size sufficient for the
on-line algorithms to run without packet losses from their competitive ratios, given any
input sequence.

We note that the main idea of BSP to balance some objective function among traffic
streams is getting more and more attention in QoS network design, though many previous
on-line scheduling problems tried to suppress only the total completion time or the total
waiting time of all the tasks [12], [15].

While BSP aims at balancing the queue length, balancing other objective functions
(like delay, for example), is also important for certain practical applications. For ex-
ample, a promising QoS model named Proportional Delay Differentiation Service [10]
requires that the weighted delay per packet should be balanced among traffic streams
so that each traffic stream may receive a different level of service proportional to its
importance. Motivated by this work, in Section 6 we consider an on-line problem with
the objective of decreasing the maximum sum-of-delays incurred in a single queue. This
problem is called the delay balanced scheduling problem (DBSP). It turns out that no
deterministic on-line scheduling algorithm can be better than �(log m)-competitive for
DBSP.

Note that we do not want to argue that Round-Robin is useless in practice. For
example, Round-Robin achieves throughput fairness among the streams which LQF
does not. For practical purposes, a good strategy might be to use Round-Robin until
the length of some queue reaches a certain threshold, and then switch to LQF.

1.1. Related Work. Bar-Noy et al. [5] investigated the same on-line problem as BSP
independently of our work. They first analyzed the continuous model which we do
not deal with, and then studied the discrete model which coincides with our model.
Regarding the discrete model, they gave the same lower bound with the same proof as
we do in Section 4. They also gave a polynomial optimal off-line algorithm which has
some similarity with the algorithm we present in Section 3. Then they showed that the
cost of a generic discrete algorithm simulating the continuous LQF algorithm is bounded
from above by Hm ·LOPT(σ)+m−1. Here Hm =

∑m
i=1 1/ i is the mth harmonic number.

LQF is a special instance of the generic algorithm. Since we show that the cost of LQF
is within (3 + �log2 m�) · LOPT(σ), our analysis is tighter if LOPT(σ) is smaller than
2.5 · (m/ ln m) (approximately). They also showed that another special instance of the
generic algorithm has cost within Hm · LOPT(σ) + 1 + log2 m which is superior to our
bound for LQF.

Chrobak et al. [9] studied a more general problem than BSP in the context of multi-
processor scheduling with conflicts. In their problem, multiple processors compete for
resources on an undirected graph G (called a conflict graph) where the vertices corre-
spond to the processors and the edges represent conflicts so that only processors forming
an independent set of G can process their loads simultaneously. BSP corresponds to
the case when G is the complete graph Km . However, their paper only considers the
continuous model.

366 R. Fleischer and H. Koga

BSP is also related to the on-line load balancing problem initiated by Graham [14]. In
the load balancing problem, given m servers, we must assign each incoming task to one
of the m servers in such a way that the maximum total load on the servers is minimized.
Tasks arrive one by one, and each task comes with its own positive load vector of length m
whose coordinates indicate the increase in load when it runs on the corresponding server.
Many variants of on-line load balancing problems have been studied [1]–[4], [6], [7], [14].
In the identical machines model [14], all the coordinates of a load vector are the same.
This is also the case in the restricted assignment model [4], but there is the additional
constraint that each task can only be handled by a subset of the servers. The natural greedy
algorithm that always chooses the least loaded server is (2 − 1/m)-competitive in the
identical machines model [14] and �(log m)-competitive in the restricted assignment
model [4]. In the temporal tasks model [2], [3], tasks have a limited duration (which is
unknown to the on-line algorithm until departure) and disappear after they are finished.
In this model the greedy algorithm is only �(m2/3)-competitive [2].

BSP differs from the traditional on-line load balancing problem in that the packets
“appear” in the queues and the algorithm must balance the load (or queue length) by se-
lecting departing packets. We obtain the upper bound for BSP by extending the technique
for the restricted assignment model of the on-line load balancing problem [4], unlike
Bar-Noy et al. [5] who reduce the discrete problem to a simulation of the continuous
problem.

2. Problem Statement

2.1. The Balanced Scheduling Problem. The BSP is formally defined as follows. We
are given m FIFO queues q1, q2, . . . , qm in a router R and a sequence of packet arrivals
σ at R. Initially at time 0, the m queues are empty. At each time t > 0, Nt packets,
denoted by (N 1

t , N 2
t , . . . , N m

t), arrive at R, where each N i
t is a non-negative integer and

Nt =
∑m

i=1 N i
t . The packets that have just arrived are stored in the m queues such that

N i
t packets go into qi , for 1 ≤ i ≤ m. Let li

A(t) denote the length of qi at time t , after
the Nt packets have arrived but before the scheduling algorithm A operating in R selects
exactly one non-empty queue and outputs its head packet (if all the queues are empty
nothing happens). We denote the length of qi after this has happened by li

A(t
a). Note

that if Nt > 1, then the total number of packets in R after time t is larger than after time
t − 1, and if Nt = 0, then the total number of packets after time t is smaller than after
time t − 1. We assume that at least one queue is not empty until the end of the entire
scheduling period. This assumption does not lose generality, because, if there is a time
when all the queues are empty, then we can partition σ into multiple subsequences and
solve BSP separately and independently on each subsequence.

Since the maximum instantaneous queue length must be considered to avoid packet
losses, we normally pay attention to the length of the queues before A outputs a packet,
i.e., we deal with li

A(t), not with li
A(t

a). We only speak about ta in the analysis of the
algorithms. The maximal queue length at time t incurred by A is defined as

lA(t) = max
1≤i≤m

{li
A(t)}.

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 367

Let σ be a sequence of packet arrivals and let |σ | be the time of the last arrival. Then
the maximal queue length over the whole scheduling period for σ by A is defined as

L A(σ) = max
0≤t≤|σ |

lA(t).(1)

Our aim in BSP is to find a scheduling algorithm A that minimizes L A(σ).
We denote the total number of packets stored in the m queues at time t as C(t).

Note that C(t) does not depend on the scheduling algorithm, because the number of
packets that have left R before t is independent of the scheduling algorithm. For any
on-line scheduling algorithm A, we clearly have lA(t) ≤ C(t). For the optimal off-line
algorithm OPT, we have lOPT(t) ≥ C(t)/m because C(t) packets are distributed among
the m queues. Thus, lA(t) ≤ m · lOPT(t) at any time t . This proves the following theorem.

THEOREM 1. Any on-line algorithm for BSP is m-competitive (or better).

2.2. The Delay Balanced Scheduling Problem. We must first define what we mean by
“delay”. Suppose that a packet p arrives at R at time t1 and leaves R at time t2. Then the
delay dp of p is t2 − t1. Let Pi be the set of all the packets assigned to qi over the entire
scheduling period. Then the total delay Di

A of qi incurred by A is defined as
∑

p∈Pi
dp.

In DBSP we want to find a scheduling algorithm A that minimizes max1≤i≤m Di
A.

When analyzing algorithms for DBSP, we assume without loss of generality that a
packet p incurs a delay of 1 for each time unit while it is waiting in the queue, rather
than it incurs a delay of dp all at once at the end when it is released. Then the total delay
of qi up to time t by A, Di

A(t), is defined as follows:

Di
A(1) = 0.

Di
A(t + 1) =

Di
A(t)+ li

A(t)− 1, if qi is selected by A at time t ;

Di
A(t)+ li

A(t), if qi is not selected by A at time t .

Let DA(t) = max1≤i≤m Di
A(t). Obviously, Di

A(t) = Di
A and DA(t) = max1≤i≤m Di

A
at the end of the scheduling period. We discuss DBSP in Section 6.

3. A Polynomial Time Optimal Off-Line Algorithm. In this section we describe a
polynomial time optimal off-line algorithm for BSP. For a constant M ≥ 1, we call
a schedule M-feasible if it selects output packets such that no queue ever has length
more than M . We first describe an efficient algorithm named JUDGE M that can find an
M-feasible schedule for a given packet arrival sequence, or decides that no M-feasible
schedule exists. Using this algorithm as a subroutine we can easily find the smallest
possible value of M by binary search, thus solving the off-line BSP. If we start the search
with M equal to N , the total number of all packets in the sequence, we can find the
optimal value of M in O(log N) steps. Thus, the running time is polynomial in the size
of the input.

At any time, JUDGE M selects the non-empty queue that would be earliest in the future
overflow (i.e., fill up with more than M packets) if we immediately stopped outputting
any packets.

368 R. Fleischer and H. Koga

We call a queue qi active at time t if li
JM(t) > 0. For an active queue qi and time

t ′ ≥ t , let l̄ i
JM(t

′) = li
JM(t)+

∑t ′
j=t+1 N i

j denote the length of qi at time t ′ assuming that
no packets are outputted between time t and t ′. The selection rule at time t is as follows.
If no queue is active, then no action is performed. Otherwise, let t ′ ≥ t be the earliest
time such that l̄ i

JM(t
′) > M for some active queue qi , if such t ′ exists. Then JUDGE M

selects qi , breaking ties arbitrarily. If t ′ does not exist, then JUDGE M selects an arbitrary
active queue.

THEOREM 2. For any packet arrival sequence σ , JUDGE M computes an M-feasible
schedule if such a schedule exists for σ .

PROOF. Consider a packet arrival sequence that has an M-feasible schedule. Fix such a
schedule. It will produce queues identical to the queues produced by JUDGE M, at least
for a few initial time units before it selects an output packet from a different queue.
Note that the queues will be identical initially and after the first arrival of packets. Let
Opt M denote an M-feasible schedule that maximizes the length of this initial identical
subschedule.

Assume Opt M differs from the schedule produced by JUDGE M, and let t > 0 be the
time when it differs first. Then lh

opt M(t) = lh
JM(t), for h = 1, . . . ,m, and this is not true

at time t + 1. Assume JUDGE M selects queue qi at time t and Opt M selects queue qj ,
where i �= j . Clearly, qi and qj must be active at time t . Let t ′i ≥ t be the first time when
qi would overflow. If such t ′i does not exist, then let t ′i = ∞. Since Opt M is M-feasible
qi did not overflow at time t , so we have t ′i > t .

Let t ′Opt M > t be the first time when Opt M selects qi . Since qi would overflow at
time t ′i , Opt M must output a packet from qi before time t ′i . Thus, t < t ′Opt M < t ′i .
By our choice of qi at time t , no queue which is active at time t can accumulate more
than M packets before time t ′Opt M, independent of the scheduling strategy. Thus, we can
exchange the two packets scheduled at times t and t ′Opt M in Opt M, i.e., at time t select
qi and at time t ′Opt M select qj . In this new schedule no queue will overflow before time
t ′Opt M, and afterwards the queues will again be identical to the queues in Opt M. So this
new schedule is also M-feasible. However, it coincides with JUDGE M’s schedule for
one more time unit, contradicting our assumption that Opt M maximizes the length of
the initial identical subschedule with JUDGE M.

Thus, we can assume that Opt M is identical to JUDGE M, i.e., JUDGE M computes an
M-feasible schedule.

As mentioned at the beginning of this section, we can discover the optimal off-line
schedule by binary search, while invoking JUDGE M as a subroutine.

THEOREM 3. An optimal off-line schedule for BSP can be computed in time polynomial
in the total number of packets.

4. Lower Bounds. This section investigates lower bounds on the competitiveness of
on-line algorithms for BSP.

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 369

4.1. Lower Bounds for General On-Line Algorithms. First, we obtain lower bounds for
general on-line algorithms. We exploit a technique similar to the lower bound proofs for
the restricted assignment model of the on-line load balancing problem [4]. In the proof
an adversary constructs a packet arrival sequence σ that annoys on-line algorithms.

4.1.1. The Deterministic Lower Bound

THEOREM 4. No deterministic on-line algorithm for BSP can be better than (1 +
�log2 m�)-competitive.

PROOF. Let A be a deterministic on-line algorithm for BSP. Let j be the largest integer
satisfying 2 j ≤ m, i.e., j = �log2 m�. Let m ′ = 2 j . The adversary constructs σ in j + 1
phases. At the beginning of phase 1, exactly one packet for each of the first m ′ queues
arrives. Phase 1 lasts for m ′/2 time units, so A can only empty m ′/2 queues. At the
same time, the adversary empties the other m ′/2 queues (since A is deterministic, the
adversary knows in advance how A will react), and has one packet arrive for each of
these queues at the beginning of phase 2. Of course, these queues now have length 2 in
A’s schedule. Phase 2 only lasts for m ′/4 time units, so again A can shorten at most half
of its long queues (of length 2). The adversary will again empty the other half, and so
on. At the beginning of phase j + 1, A has at least one queue of length j , and this queue
will grow to length j + 1 by the single packet arriving for this queue at the beginning of
phase j + 1.

Since the adversary can maintain queues of length at most 1 all the time, A is not
better than (j + 1)-competitive.

4.1.2. The Randomized Lower Bound. We can also derive the randomized lower bound
for BSP by applying the technique for the restricted assignment model of the on-line
load balancing problem [4]. This bound holds against an oblivious adversary that must
fix its request sequence right at the beginning, i.e., it cannot react to the random choices
of the on-line algorithm (see [8]).

THEOREM 5. No randomized on-line algorithm for BSP can be better than Hm-compe-
titive against an oblivious adversary, where Hm =

∑m
i=1 1/ i , i.e., the mth harmonic

number.

PROOF. Let A be a randomized on-line algorithm for BSP. The adversary constructs σ
in m phases, where the duration of phase k is m− k time units for k < m and 1 time unit
for k = m. At the beginning of phase k, the adversary assigns exactly one new packet to
each of the m + 1− k expectedly longest queues (ties are broken arbitrarily). Note that
the adversary can obtain the m + 1− k expectedly longest queues from the description
of A.

For phase k, 1 ≤ k ≤ m − 1, OPT selects the m − k queues to which a packet is
assigned at the beginning of the next phase. Thus, as for OPT, the length of any queue
does not go beyond 1, and we have LOPT(σ) = 1.

As for A, by induction on k, we prove that the sum of the expected lengths of the
m+1−k longest queues just before phase k begins is at least (m+1−k)(Hm−Hm+1−k)

370 R. Fleischer and H. Koga

for k ≥ 1. For k = 1, the claim is trivial, because all the m queues are empty before
the first packet arrives. Now suppose the claim is also true for some k ≥ 1. Since
m − k packets leave R in phase k, the sum of the expected lengths of the m + 1 − k
longest queues (at the beginning of phase k) just before phase k + 1 begins is at least
(m + 1 − k)(Hm − Hm+1−k) + 1 = (m + 1 − k)(Hm − Hm−k). Thus, the sum of the
expected lengths of the (m+ 1− (k + 1)) longest queues just before phase k + 1 begins
is at least (m + 1− k)(Hm − Hm−k)((m − k)/(m + 1− k)) = (m − k)(Hm − Hm−k) =
(m + 1− (k + 1))(Hm − Hm+1−(k+1)), which completes the proof of the induction step.
Hence just before the final phase m starts, the expected longest queue will grow to at
least Hm − H1. In phase m, one packet is assigned to this expected longest queue. Hence
E[L A(σ)] ≥ Hm .

Thus, no randomized on-line algorithm is better than (ln m)-competitive against an
oblivious adversary, because ln m < Hm ≤ 1+ ln m.

4.2. The Lower Bound for Round-Robin. Next we examine the lower bound of the
popular Round-Robin scheduling algorithm. Unfortunately, Round-Robin cannot
exceed the trivial upper bound of m.

Algorithm Round-Robin: Initially, the algorithm may select any non-
empty queue. If the algorithm selected queue qi at time t , then the queue
selected at time t + 1 is q(r+i) mod m , where r is the smallest positive integer
satisfying the condition that q(r+i) mod m is not empty.

THEOREM 6. Round-Robin is not better than m-competitive.

PROOF. Without loss of generality, we assume that Round-Robin initially selects q1.
Again, an adversary constructs a hard packet arrival sequence σ as follows:

• Step 1: At time 1, m packets arrive at R such that one packet is assigned to each qi ,
for 1 ≤ i ≤ m.
• Step 2: At time k, for 2 ≤ k ≤ m, one new packet is assigned to qm .

The optimal off-line algorithm OPT chooses qm all the time. This assures that the
length of qm does not exceed 1. The lengths of all the other queues have constant length
1 all the time. Thus, lOPT(t) = 1 at any time t , and LOPT(σ) = 1.

On the other hand, Round-Robin selects qk at time k, for k ≤ m. Since the algorithm
initially selects q1, qm is always the longest queue. As qm is never selected before time
m, lm

Round-Robin(m) = 1+ (m − 1) = m. Thus, LRound-Robin(σ) = m = m · LOPT(σ).

5. Upper Bounds. In this section we analyze the performance of a specific greedy
algorithm, LQF. Since simple greedy policies are analyzed in many load-balancing prob-
lems [1], [2], [4], [14], measuring the performance of LQF enables us to estimate the
relative difficulty of BSP to other problems.

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 371

Algorithm LQF: At any time, LQF selects the longest queue.
Ties are broken arbitrarily.

THEOREM 7. LQF is (3+ �log2 m�)-competitive.

Theorem 7 together with Theorem 4 shows that LQF is a nearly optimal on-line algo-
rithm. To prove the theorem, we extend the proof technique for the restricted assignment
model of the on-line load balancing problem [4].

We introduce a function gap that maps the packets in LQF’s queues to some integer
values. Let σ be an arbitrary packet arrival sequence. If p is the r th packet from the top
(i.e., the output port) of queue qi at time t , then the gap of packet p at time t , denoted by
gap(p, t), is defined as r − li

OPT(t). Intuitively, the function gap compares the height of
a packet in a queue with the length of the corresponding queue in OPT.

According to the value of gap, we partition LQF’s queues into layers (see Figure 2(a)).
Let l = LOPT(σ). The kth layer of qi at time t consists of packets p stored in qi at that
time such that (k − 1)l + 1 ≤ gap(p, t) ≤ kl. The number of packets contained in the
kth layer of qi is denoted by W i

k (t).

LEMMA 8. For k ≥ 1, if W i
k+1(t) > 0, then W i

k (t) = l.

PROOF. W i
k+1(t) > 0 implies li

LQF(t) > li
OPT(t)+ kl. Hence, the number of packets in

LQF’s qi whose gaps are greater than or equal to (k − 1)l + 1 but less than or equal to
kl is exactly l.

COROLLARY 9. For k ≥ 1, W i
k (t) ≥ W i

k+1(t). ��

We also use the following notations:

• Ri
k(t) =

∑
j>k W i

j (t);

qi

i

OPT

LAYER 1

LAYER 2

time

qi

LAYER 1

LAYER 2

time
a

LAYER 3
LAYER 3

(a) (b)

l (t)+l

i

OPT
l (t)+2l

i

OPT
l (t)

i

OPT
l (t)+2l-1

i

OPT
l (t)+l -1

i

OPT
l (t)-1

t t

Fig. 2. Partition of a queue into layers.

372 R. Fleischer and H. Koga

• Wk(t) =
∑m

i=1 W i
k (t);

• Rk(t) =
∑

j>k Wj (t).

Ri
k(t) is the total number of packets in qi contained in the layers strictly higher than

the kth layer. Wk(t) is the total number of packets contained in the kth layer over all the
m queues, and Rk(t) is the total number of packets contained in the layers strictly higher
than the kth layer over all the m queues. Thus, for k ≥ 1,

Rk+1(t) = Rk(t)−Wk+1(t).(2)

Note that Wk(ta) = Wk(t + 1) and Rk(ta) = Rk(t + 1) because the number of packets
in each layer of qi is not affected since the same number of packets arrive at qi at the
beginning of time t + 1 both in OPT and in LQF. By contrast Wk(ta) (or Rk(ta)) may be
different from Wk(t) (or Rk(t)), depending on the queues selected by the two algorithms
at time t .

PROOF OF THEOREM 7. Our strategy is to run the two algorithms LQF and OPT simul-
taneously on a given packet arrival sequence σ and to prove that the following inequality
is maintained all the time for k ≥ 1:

Wk(t) ≥ Rk(t).(3)

In this case we conclude from (2) that Rk+1(t) = Rk(t)− Wk+1(t) ≤ Rk(t)− Rk+1(t),
and thus

Rk+1(t) ≤ 1
2 Rk(t) .

Then, by applying this inequality �log2 m� times, we derive the following inequality.
Since LOPT(σ) = l, we have R1(t) ≤ ml, and thus

R�log2 m�+1(t) ≤ (1
2)
�log2 m�R1(t) ≤ (1

2)
log2 m R1(t) = 1

m
R1(t) ≤ ml

m
= l .

So the number of packets in the layers strictly above the (�log2 m�+1)th layer is at most
l. As a result, the length of the longest queue of LQF at time t is bounded from above by

lLQF(t) ≤ lOPT(t)+ (�log2 m� + 1) · l + l ≤ (3+ �log2 m�) · l .(4)

Since (4) holds at any time t , the proof of Theorem 7 is complete.

It remains to show (3) for k ≥ 1 and for any t . Let k ≥ 1 be fixed. The proof is by
induction on the time t . As for the base case, (3) is true at time t = 1 before packets are
outputted because all the m queues have the same number of packets both in OPT and in
LQF.

Now suppose that Wk(t) ≥ Rk(t) at time t ≥ 1 before the two algorithms select the
queue from which to output a packet. It suffices to show that

Wk(t
a) ≥ Rk(t

a)

because Wk(t + 1) = Wk(ta) and Rk(t + 1) = Rk(ta). Assume OPT selects qi and LQF
selects qj at time t . If i = j , then clearly Wk(ta) = Wk(t) ≥ Rk(t) = Rk(ta). So we

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 373

assume that i �= j . Since W h
k (t) = W h

k (t
a) and Rh

k (t) = Rh
k (t

a) for any queue qh except
qi and qj , we can focus on how qi and qj change.

First we consider qi . If li
LQF(t) < li

OPT(t), then li
LQF(t

a) ≤ li
OPT(t

a) and therefore

W i
k (t) = W i

k (t
a) = 0 and Ri

k(t) = Ri
k(t

a) = 0.(5)

If li
LQF(t) ≥ li

OPT(t), then let Y = �(li
LQF(t)− li

OPT(t))/ l� + 1. See Figure 2(b). From
the definitions of W i

k (t) and Ri
k(t) we obtain

W i
k (t

a) =
{

W i
k (t), if k �= Y ,

W i
k (t)+ 1, if k = Y ,

(6)

and

Ri
k(t

a) =
{

Ri
k(t)+ 1, if k < Y ,

Ri
k(t), if k ≥ Y .

(7)

Next we consider qj . If l j
LQF(t) ≤ l j

OPT(t), then l j
LQF(t

a) < l j
OPT(t

a) and therefore

W j
k (t) = W j

k (t
a) = 0 and R j

k (t) = R j
k (t

a) = 0.(8)

If l j
LQF(t) > l j

OPT(t), then let X = �(l j
LQF(t)− l j

OPT(t))/ l�. From the definitions of W j
k (t)

and R j
k (t) we obtain

W j
k (t

a) =
{

W j
k (t), if k �= X ,

W j
k (t)− 1, if k = X ,

(9)

and

R j
k (t

a) =
{

R j
k (t)− 1, if k < X ,

R j
k (t), if k ≥ X .

(10)

Equations (5)–(10) and the assumption that Wk(t) ≥ Rk(t) at time t imply that at
least one of the following two conditions would have to be satisfied to invalidate the
Inequality (3) at time ta :

• Type I: W j
k (t

a) = W j
k (t)− 1.

• Type II: Ri
k(t

a) = Ri
k(t)+ 1.

We will now show that (3) is still true in both cases.

Type I: Suppose that W j
k (t

a) = W j
k (t) − 1. From (9), l j

LQF(t) > l j
OPT(t) and k must

be equal to X . Hence l j
LQF(t) ≤ l j

OPT(t) + l X . We show the (X + 2)th layers of all the

m queues are empty at ta by contradiction. Since l j
LQF(t) ≤ l j

OPT(t) + l X , l j
LQF(t

a) =
l j
LQF(t)− 1 ≤ l j

OPT(t
a)+ l X and the (X + 2)th layer of qj is empty at ta . Assume there

exists a queue qh (�= qj) whose (X + 2)th layer contains some packets at ta . Since qh is
not selected by LQF at t , we have

lh
LQF(t) = lh

LQF(t
a) ≥ (X + 1)l + 1 (since qh’s (X + 2)th layer is not empty)

> l j
OPT(t)+ l X ≥ l j

LQF(t).

374 R. Fleischer and H. Koga

This contradicts the fact that qj is selected by LQF at time t . Thus the (X + 2)th
layers of all the m queues must be empty at time ta . However, then, by Corollary 9,
WX (ta) ≥ WX+1(ta) = RX (ta), which shows that inequality (3) holds in this case.

Type II: Suppose that Ri
k(t

a) = Ri
k(t) + 1. Since Ri

k(t
a) ≥ 1, we have li

LQF(t) =
li
LQF(t

a) ≥ kl + 1. Since LQF does not select qi but selects qj , we have

l j
LQF(t) ≥ li

LQF(t) ≥ kl + 1 ≥ l j
OPT(t)+ (k − 1)l + 1.

If l j
OPT(t) + (k − 1)l + 1 ≤ l j

LQF(t) ≤ l j
OPT(t) + kl, we can show that the (k + 2)th

layers of all the m queues are empty at time ta exactly in the same way as in the previous
case. Thus, from Corollary 9, Wk(ta) ≥ Wk+1(ta) = Rk(ta).

By contrast, if l j
LQF(t) > l j

OPT(t)+kl, we have R j
k (t) > 0. Hence, R j

k (t
a) = R j

k (t)−1
after LQF outputs a packet at time t from qj . By comparing this with (8) and (10), we
have l j

LQF(t) > l j
OPT(t) and k < X . Thus,

Rk(t
a) = Ri

k(t
a)+ R j

k (t
a)+

∑
h �=i, j

Rh
k (t

a)(11)

= (Ri
k(t)+ 1)+ (R j

k (t)− 1)+
∑
h �=i, j

Rh
k (t) = Rk(t).

Regarding Wk(t), it follows that W i
k (t

a) ≥ W i
k (t) from (6) and that W j

k (t
a) = W j

k (t)
from (9) as k �= X . Hence,

Wk(t
a) ≥ Wk(t).(12)

From (11) and (12), it follows that Wk(ta) ≥ Wk(t) ≥ Rk(t) = Rk(ta). Thus, we
have proved (3) for all possible cases. This finishes the proof of Theorem 7.

6. The Lower Bound for DBSP. Another important performance measure for QoS
networks is the delay of packets. The aim of DBSP is to balance the total delay per queue.
Here the total delay of a queue qi is defined as the sum of the delays of all the packets
assigned to qi . In this section we study a deterministic lower bound on the competitiveness
of algorithms for DBSP. Interestingly, DBSP contains BSP as a subproblem and the lower
bound for BSP in Theorem 4 immediately gives a lower bound for DBSP.

The next lemma compares a deterministic on-line algorithm with an off-line algorithm
Off that is not necessarily optimal.

LEMMA 10. Consider an arbitrary deterministic on-line algorithm A for DBSP. Sup-
pose that there exists a time t such that lA(t) = X and lOff(t) = Y , where Off is a
certain off-line algorithm in whose execution there are at least two non-empty queues at
time t before Off selects a queue. Then A is not better than (X − 1)/Y -competitive.

PROOF. Let qi be the longest of A’s queues and let qj be the longest of Off’s queues at
time t . If there are several possible choices for qj , then we choose qj such that D j

Off(t)
is not smaller than it would be for any other candidate. Since li

A(t) = X , we have

Balanced Scheduling toward Loss-Free Packet Queuing and Delay Fairness 375

li
A(t

a) ≥ X − 1. On the other hand, since l j
Off(t) = Y , we have l j

Off(t
a) = Y provided

that Off does not select qj at time t .
Suppose that exactly one packet is assigned to qi per time unit and that no packet is

assigned to the rest of the queues after time t . Since no scheduling algorithm can output
more than one packet at each time, the length of qi in A is always greater than X−1 after
time t . On the other hand, Off keeps on outputting the packets that have just arrived and
keeps the length of the longest queue qj at Y after time t . Hence for any t ′ > t , we have

DA(t
′) ≥ Di

A(t
′) ≥ Di

A(t)+ (X − 1)(t ′ − t).(13)

As for Off, qj always becomes the longest queue after time t . Moreover, D j
Off(t)

is larger than any other queues that have the same length as qj at time t . Hence, for
sufficiently large values of t ′ > t , it follows that

DOff(t
′) = D j

Off(t)+ Y (t ′ − t).(14)

The lower bound on the competitiveness for DBSP is obtained by dividing DA(t ′)
by DOff(t ′): DA(t ′)/DOff(t ′) ≥ (Di

A(t)+ (X − 1)(t ′ − t))/(D j
Off(t)+ Y (t ′ − t)). This

expression approaches (X − 1)/Y as t ′ approaches∞.

Using the hard request sequence σ for BSP in Section 4 for DBSP, we get the following
lower bound for DBSP.

THEOREM 11. No deterministic on-line algorithm for DBSP can be better than
�log2 m�-competitive.

PROOF. We use the same notations as in the proof of Theorem 4. Let A be an on-line
algorithm for DBSP. Let j = �log2 m� and let σ be the hard request sequence for BSP in
the proof of Theorem 4. Then the same discussion as in that proof yields lOPT(Tj+1) = 1
and lA(Tj+1) = 1 + �log2 m� at the start time Tj+1 of phase (j + 1). Let OPT be the
optimal off-line algorithm for BSP in the proof of Theorem 4. By using OPT as the off-
line algorithm Off in Lemma 10, we can prove that no deterministic on-line algorithm
is better than ((1+ �log2 m�)− 1)/1 = �log2 m�-competitive for DBSP.

7. Conclusions. This paper investigates BSP to evaluate the power of scheduling al-
gorithms in a router in terms of prevention of packet losses. We prove that a simple
greedy algorithm is �(log m)-competitive and nearly optimal, where m is the number
of queues.

There are many open problems with regard to BSP. One interesting open problem is
to design an optimal off-line algorithm that finds the optimal solution directly without
relying on binary search.

The following problems might also be worthwhile studying because they are more
applied:

• Extending BSP to a dynamic buffer allocation policy. In this model a traffic stream with
higher priority can also use the buffer memories provided for the streams with lower

376 R. Fleischer and H. Koga

priority. In this model BSP must be combined with the hierarchical server topology
like in [6].
• Changing the amount of buffers assigned to each queue. In practical QoS networks it

is common that each traffic is given a number of buffers proportional to its rate for
efficient buffer consumption. In this model the value of one single buffer varies for
each queue according to how many buffers are provided for it.
• Discovering a competitive on-line algorithm for DBSP.

Acknowledgment. Helpful comments from Susanne Albers on an early version of this
paper are greatly appreciated.

References

[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to
machine scheduling and virtual circuit routing. Journal of ACM, 44(4):486–504, 1997.

[2] Y. Azar, A.Z. Broder, and A.R. Karlin. On-line load balancing. Theoretical Computer Science,
130(1):73–84, 1994.

[3] Y. Azar, B. Kalyanasundaram, S. Plotkin, K.R. Pruhs, and O. Waarts. On-line load balancing of
temporary tasks. Journal of Algorithms, 22(1):93–110, 1997.

[4] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal of Algorithms,
18(2):221–237, 1995.

[5] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching policies. In Proceedings
of the 13th ACM–SIAM Symposium on Discrete Algorithms, pages 525–534, 2002.

[6] A. Bar-Noy, A. Freund, and J. Naor. On-line load balancing in a hierarchical server topology. In
Proceedings of the 7th Annual European Symposium on Algorithm, pages 77–88. Lecture Notes in
Computer Science 1643. Springer-Verlag, Berlin, 1999.

[7] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. Journal of
Algorithms, 35(1):108–121, 2000.

[8] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, 1998.

[9] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall, and G.J. Woeginger. The buffer minimization problem
for multiprocessor scheduling with conflicts. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming, pages 862–874. Lecture Notes in Computer Science 2076.
Springer-Verlag, Berlin, 2001.

[10] C. Dovrolis, D. Stiladis, and P. Ramanathan. Proportional differentiated services: delay differentiation
and packet scheduling. In Proceedings of ACM SIGCOMM ’99, pages 109–120, 1999.

[11] A. Fiat and G. Woeginger, editors. Online Algorithms—The State of the Art. Lecture Notes in Computer
Science 1442. Springer-Verlag, Berlin, 1998.

[12] A. Fiat and G. Woeginger. On-line scheduling on a single machine: minimizing the total completion
time. Acta Informatica, 36(4):287–293, 1999.

[13] A. Goel, A. Meyerson, and S. Plotkin. Distributed admission control, scheduling, and routing with
stale information. In Proceedings of the 12th ACM–SIAM Symposium on Discrete Algorithms, pages
611–619, 2001.

[14] R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563–
1581, 1966.

[15] H. Hoogeveen and A. Vestjens. Optimal on-line algorithms for single-machine scheduling. In Proceed-
ings of the 5th International IPCO Conference, pages 404–414. Lecture Notes in Computer Science
1084. Springer-Verlag, Berlin, 1996.

[16] A.M. Lin and J.A. Silvester. Priority queuing strategies and buffer allocation protocols for traffic control
at an ATM integrated broadband switching system. IEEE Journal on Selected Areas in Communications,
9:1524–1536, 1991.

[17] S. Jamin, P.B. Danzig, S. Shenker, and L. Zhang. A measurement-based admission control algorithm
for integrated services packet networks. In Proceedings of ACM SIGCOMM ’95, pages 2–13, 1995.

