
DOI: 10.1007/s00453-003-1027-4

Algorithmica (2003) 37: 75–92 Algorithmica
© 2003 Springer-Verlag New York Inc.

Approximating Node Connectivity
Problems via Set Covers1

Guy Kortsarz2 and Zeev Nutov3

Abstract. Given a graph (directed or undirected) with costs on the edges, and an integer k, we consider
the problem of finding a k-node connected spanning subgraph of minimum cost. For the general instance
of the problem (directed or undirected), there is a simple 2k-approximation algorithm. Better algorithms are
known for various ranges of n, k. For undirected graphs with metric costs Khuller and Raghavachari gave a
(2+ 2(k − 1)/n)-approximation algorithm. We obtain the following results:

(i) For arbitrary costs, a k-approximation algorithm for undirected graphs and a (k + 1)-approximation
algorithm for directed graphs.

(ii) For metric costs, a (2 + (k − 1)/n)-approximation algorithm for undirected graphs and a (2 + k/n)-
approximation algorithm for directed graphs.

For undirected graphs and k = 6, 7, we further improve the approximation ratio from k to �(k + 1)/2� =
4; previously, �(k + 1)/2�-approximation algorithms were known only for k ≤ 5. We also give a fast 3-
approximation algorithm for k = 4.

The multiroot problem generalizes the min-cost k-connected subgraph problem. In the multiroot problem,
requirements ku for every node u are given, and the aim is to find a minimum-cost subgraph that contains
max{ku , kv} internally disjoint paths between every pair of nodes u, v. For the general instance of the problem,
the best known algorithm has approximation ratio 2k, where k = max ku . For metric costs there is a 3-
approximation algorithm. We consider the case of metric costs, and, using our techniques, improve for k ≤ 7
the approximation guarantee from 3 to 2+ 	(k − 1)/2
/k < 2.5.

Key Words. k-Vertex connected spanning subgraph, Approximation algorithms, Metric costs.

1. Introduction. A basic problem in network design is given a graph G to find its
minimum cost subgraph that satisfies given connectivity requirements (see [14] and
[8] for surveys). A fundamental problem in this area is the survivable network design
problem: find a cheapest spanning subgraph such that for every pair of nodes (u, v), there
are at least kuv internally disjoint paths from u to v, where kuv is a nonnegative integer
(requirement) associated with the pair (u, v); two paths are internally disjoint if they do
not have any internal node in common. No efficient approximation algorithm for this
problem is known. However, for undirected graphs, when the paths are required only
to be edge disjoint, an approximation algorithm that produces a solution at most twice
the value of an optimal was given by Jain [12]. Henceforth, unless stated otherwise, we
consider node connectivity only.

1 This research was done at the Max-Planck-Institute für Informatik, Saarbrücken, Germany, and at the Open
University of Israel, Ramat-Aviv, Israel.
2 Rutgers University, Camden, NJ 08102, USA. guyk@camden.rutgers.edu.
3 Open University of Israel, Klauzner 16 Street, Ramat-Aviv 61392, Israel. nutov@openu.ac.il.

Received October 12, 2000; revised February 27, 2002, and November 27, 2002. Communicated by H. N. Gabow.
Online publication July 10, 2003.

76 G. Kortsarz and Z. Nutov

A ρ-approximation algorithm for a minimization problem is a polynomial time al-
gorithm that produces a solution of value no more than ρ times the value of an optimal
solution; ρ is called the approximation ratio of the algorithm. A particularly important
case of the survivable network design problem is the problem of finding a cheapest k-
node connected spanning subgraph, that is, the case when kuv = k for every node pair
(u, v). For undirected graphs this problem is NP-hard for k = 2 (for k = 1 it is the
minimum spanning tree problem) and for directed graphs it is NP-hard for k = 1. For
both directed and undirected graphs, there is a simple 2k-approximation algorithm, see,
for example, [3].

For undirected graphs, the following results were known. Ravi and Williamson [21]
claimed a 2H(k)-approximation algorithm, where H(k) = 1 + 1

2 + · · · + 1/k, but the
proof was found to contain an error, see [22]. �(k+1)/2�-Approximation algorithms are
known for k ≤ 5; see [15] for k = 2, [2] for k = 2, 3, and [7] for k = 4, 5. For metric costs
and k arbitrary, Khuller and Raghavachari [15] gave a (2+ 2(k − 1)/n)-approximation
algorithm (see also a 3-approximation algorithm in [3]).

We extend and generalize some of these algorithms, and unify ideas from [15], [2],
[7], [3], and [13] to show further improvements. Among our results are:

(i) For arbitrary costs, a k-approximation algorithm for undirected graphs and a (k+1)-
approximation algorithm for directed graphs.

(ii) For metric costs, a (2+ (k − 1)/n)-approximation algorithm for undirected graphs
and a (2+ k/n)-approximation algorithm for directed graphs.

For undirected graphs and k = 6, 7, we further improve the approximation ratio from
k to �(k + 1)/2� = 4, and give a fast 3-approximation algorithm for k = 4.

Recently, Cheriyan et al. [4] gave a 6H(k)-approximation algorithm for undirected
graphs with n ≥ 6k2, where n is the number of vertices of the input graph. In [5] the
same authors suggest an iterative rounding O(n/

√
n − k)-approximation algorithm for

both directed and undirected graphs. The latter result was improved in [16] where was
given a combinatorial algoriothm with approximation ratio O(ln k ·min{√k, k

n−k ln k}).
Another particular case of the survivable network design problem is the (undirected)

multiroot problem, where pairwise node requirements are defined by single node re-
quirements; that is, requirements ku for every node u are given, and the aim is to find
a minimum-cost subgraph that contains max{ku, kv} internally disjoint paths between
every pair of nodes u, v. A graph (directed or undirected) is said to be k-outconnected
from a node r if it contains k internally disjoint paths from r to any other node; such a
node r is usually referred to as the root. It is easy to see that a subgraph is a feasible
solution to the multiroot problem if and only if it is ku-outconnected from every node u.
Given an instance of the multiroot problem, we use q to denote the number of nodes u
with ku > 0, and k = max ku is the maximum requirement. Observe that the (undirected)
min-cost k-connected subgraph problem is a special case of the multiroot problem when
ku = k for every node u.

One root problems were considered long ago. For directed graphs, Frank and Tardos
[9] showed that the problem of finding a k-outconnected spanning subgraph of minimum
cost is solvable in polynomial time; a faster algorithm is due to Gabow [11]. As was
observed by Khuller and Raghavachari in [15], this implies a 2-approximation algorithm
for the (undirected) one root problem, as follows. First, replace every undirected edge e
of G by the two antiparallel directed edges with the same ends and of the same cost as e.

Approximating Node Connectivity Problems via Set Covers 77

Then compute an optimal k-outconnected from r subdigraph and output its underlying
(undirected) simple graph. The algorithm can be implemented in O(k2n2m) time using
the algorithm of [11].

For the multiroot problem, a 2q-approximation algorithm follows by applying the
above algorithm for each root and taking the union of the resulting q subgraphs. The
approximation guarantee 2q of this algorithm is tight for q ≤ k, see [3]. For metric costs
and k arbitrary, Cheriyan et al. [3] gave a 3-approximation algorithm. For metric costs
and k = 2, it can be shown that the problem is equivalent to that of finding a 2-connected
subgraph. For the latter, there is a 3

2 -approximation algorithm, see [10]. We consider the
case of metric costs, and improve, for 3 ≤ k ≤ 7, the approximation ratio from 3 to
2+ 	(k − 1)/2
/k < 2.5.

This paper is organized as follows. Section 2 contains preliminary results and defi-
nitions. Sections 3 and 4 present algorithms for arbitrary and metric costs, respectively.
Section 5 shows a 4-approximation algorithm for k ∈ {6, 7}, and Section 6 shows a fast
3-approximation algorithm for k = 4. Section 7 considers the metric multiroot problem
with k ≤ 7.

2. Definitions and Preliminary Results. All the graphs (directed or undirected) in
the paper are assumed to be simple (i.e., without loops and parallel edges). An edge from
u to v is denoted by uv. For an arbitrary graph H , V (H) denotes the node set of H , and
E(H) denotes the edge set of H . Let G = (V, E) be a graph. For any set of edges and
nodes U = E ′ ∪ V ′ we denote by G −U (resp., G +U) the graph obtained from G by
deleting U (resp., adding U), where deletion of a node implies also deletion of all the
edges incident to it. For a nonnegative cost function c on the edges of G and a subgraph
G ′ = (V ′, E ′) of G we use the notation c(G ′) = c(E ′) =∑{c(e) : e ∈ E ′}.

For S, T ⊆ V let δ(S, T) = δG(S, T) denote the set of edges in G going from S to T .
For X ⊆ V we denote by �(X) = �G(X) the set {v ∈ V \X : uv ∈ E for some u ∈ X}
of neighbors of X . Let X∗ = X∗G = V \(X ∪�(X)) denote the “node complement” of X
in G. It is well known that the function |�(·)| is submodular, that is, for any X, Y ⊆ V ,

|�(X)| + |�(Y)| ≥ |�(X ∩ Y)| + |�(X ∪ Y)|.(1)

Two sets X, Y ⊂ V cross (or X crosses Y) if X ∩ Y �= ∅ and neither X ⊆ Y nor
Y ⊆ X . We say that U ⊆ V covers a collection C of subsets of V if X ∩U �= ∅ for every
X ∈ C.

We say that X ⊂ V is l-tight if |�(X)| = l and X∗ �= ∅ (i.e., if |�(X)| = l and
|X | ≤ |V | − l − 1); such an X is an l-core if it does not contain any other l-tight set. A
graph G is k-(node)-connected if for any pair of its nodes there are k internally disjoint
paths from one node to the other. By Menger’s theorem, G is k-connected if and only if
|V (G)| ≥ k + 1 and there are no l-tight sets with l ≤ k − 1 in G.

For an undirected graph G, we say that U ⊆ V is an l-cover if U covers all the l ′-cores
with l ′ ≤ l. Note that if U is an l-cover, then for any l ′-tight set X with l ′ ≤ l it holds
that X ∩U �= ∅ and X∗ ∩U �= ∅. Thus if |V (G)| ≥ l + 2, then by adding to G the edge
set E ′ = {uv : u �= v ∈ U } of a complete graph on U we obtain an (l + 1)-connected
graph.

An edge e of a graph G is said to be critical with respect to property P if G satisfies
property P , but G − e does not. The following theorem is due to Mader.

78 G. Kortsarz and Z. Nutov

THEOREM 2.1 [17]. In a k-connected undirected graph, any cycle in which every edge
is critical with respect to k-connectivity contains a node of degree k.

Theorem 2.1 implies that if |�(v)| ≥ k − 1 for every v ∈ V (G), and if F is an
inclusion minimal edge set such that G + F is k-connected, then F is a forest (if not,
then F contains a cycle C of critical edges, but every node of this cycle is incident to
two edges of C and to at least k − 1 edges of G, contradicting Mader’s theorem). This
implies:

COROLLARY 2.2. Let U be a (k − 1)-cover in an undirected graph G, and let E ′ =
{uv : u �= v ∈ U }. Then G + E ′ is k-connected. Moreover, if |�(v)| ≥ k − 1 for every
v ∈ V , and if F ⊆ E ′ is an inclusion minimal edge set such that G + F is k-connected,
then |F | ≤ |U | − 1.

The following property of k-outconnected undirected graphs is from [2].

LEMMA 2.3 [2]. Let G be an undirected graph which is k-outconnected from r , and let
S be an l-tight set in G. Then |S∩�(r)| ≥ k− l+1, and if l ≤ k−1, then |S∩�(r)| ≥ 2
and r ∈ �(S). Thus G is (k − 	|�(r)|/2
 + 1)-connected.

COROLLARY 2.4. Let G be an undirected graph which is k-outconnected from r . Then
�(r)− v is a (k − 1)-cover in G for any v ∈ �(r).

Throughout the paper, for an instance of a problem, we denote by G the input graph,
and by opt the value of an optimal solution; n denotes the number of nodes in G, and m
the number of edges in G. We assume that G contains a feasible solution; otherwise our
algorithms can be easily modified to output an error.

For the min-cost k-connected subgraph problem, we can assume that G is a complete
graph, and that c(e) ≤ opt for every edge e of G. Indeed, let G = (V, E) be a k-
connected spanning subgraph of G and let st ∈ E . Let Fst be the edge set of cheapest k
internally disjoint paths from s to t in G. Then (G− st)+ Fst is k-connected and, clearly,
c(Fst) ≤ opt. Note that Fst as above can be found in O(n log n(m + n log n)) time by a
min-cost k-flow algorithm of [20] (the node version), and flow decomposition.

The main idea of most of our algorithms is to find a certain subgraph of G of low cost
and with a small cardinality (k−1)-cover or augmenting edge set. For undirected graphs,
such a subgraph is found by using the following two modifications of the 2-approximation
algorithm for the one root problem. Each one of these modifications outputs a subgraph
of G of cost ≤ 2opt (here opt is the optimal cost of a k-connected spanning subgraph of
G) and a (k − 1)-cover U of the subgraph.

The first modification is from [15], and we use it for the case of metric costs. Let Gr be
a graph constructed from G by adding an external node r and connecting it by edges of
cost 0 to an arbitrary set R of at least k nodes in G. We compute a k-outconnected from r
subgraph Gr of Gr using the 2-approximation algorithm above, and output G = Gr − r .
As was shown in [15], c(G) ≤ 2opt. By Lemma 2.3 R is a (k − 1)-cover of G. We refer
to this modification as the External Outconnected Subgraph Algorithm (EOCSA). It can
be implemented in O(k2n2m) time using the algorithm of [11].

Approximating Node Connectivity Problems via Set Covers 79

The second modification is from [2] and [7]. It finds a subgraph G and a node r such
that G is k-outconnected from r , |�G(r)| = k, and c(G) ≤ 2opt. The time complexity
of the algorithm is O(k2n3m) for the deterministic version, and O(k2n2m log n) for the
randomized one. We refer to the deterministic version as the Outconnected Subgraph
Algorithm (OCSA), and for the randomized version as the Randomized Outconnected
Subgraph Algorithm (ROCSA).

3. Min-Cost k-Connected Subgraphs

3.1. Undirected Graphs with Arbitrary Costs. This section deals with undirected
graphs only. It is not hard to get a k-approximation algorithm for the min-cost k-connected
subgraph problem as follows. We execute OCSA (or ROCSA) to compute a correspond-
ing root r and a subgraph G of G. Let v ∈ �G(r) be arbitrary, and let R = �G(r)\v.
Recall that, by Corollary 2.4, R is a (k − 1)-cover in G. We then find an edge set F as
in Corollary 2.2, so G + F is k-connected and F is a forest on R. Finally, we replace
every edge st ∈ F by a cheapest set Fst of k internally disjoint paths between s and t
in G. By [2], c(G) ≤ 2opt. Since |R| = k − 1, then |F | ≤ k − 2. Thus the cost of the
output subgraph is at most 2opt + (k − 2)opt = kopt.

We can get a slightly better approximation ratio by executing OCSA and then itera-
tively increasing the connectivity by 1 until it reaches k.

Let G be an l-connected graph, |V (G)| ≥ l + 2. We say that an l-tight set X is small
if |X | ≤ 	(n − l)/2
. Clearly, if X is l-tight, then at least one of X, X∗ is small. Thus G
is (l + 1)-connected if and only if it has no small l-tight sets. The following lemma is
well known, e.g., see Lemma 1.2 of [13].

LEMMA 3.1. Let X, Y be two intersecting small l-tight sets in an l-connected graph G.
Then

(i) X ∩ Y is a small l-tight set;
(ii) X ∪ Y , (X ∪ Y)∗ are both l-tight, and at least one of them is small.

COROLLARY 3.2. In an l-connected graph G, no small l-tight set crosses a small l-core.
Thus any two distinct small l-cores are disjoint.

Let ν̂l(G) denote the number of small l-cores in G. Note that G is (l + 1)-connected
if and only if ν̂l(G) = 0. We call an edge e reducing for G if ν̂l(G + e) ≤ ν̂l(G)− 1.

LEMMA 3.3. Let R be a cover of all small l-cores in an l-connected graph G. If R is
not an l-cover, then there is a reducing edge for G.

PROOF. Let R be a cover of all small l-cores in G. If R is not an l-cover, then there is an
l-core T such that T ∩ R = ∅. Note that T cannot be small, thus T ∗ is small. Let S ⊆ T ∗

be an arbitrary l-core. Consider the collectionD of all (inclusion) maximal small l-tight
sets containing S. Note that T ∗ ∈ D. By Lemma 3.1(ii) and the maximality of the sets

80 G. Kortsarz and Z. Nutov

in D, exactly one of the following holds: (i) |D| = 1 (so D = {T ∗}) or (ii) |D| ≥ 2, and
the union of any two sets from D is an l-tight set which is not small.

If case (i) holds, then any edge e = st where s ∈ S and t ∈ T is reducing for G, since
in G+ st there cannot be a small l-tight set containing S. Assume therefore that case (ii)
holds. Let L be a set inD crossing with T ∗. Then, by Lemma 3.1(i), L∗ ∩ T is tight and
small, implying L∗ ∩ T ∩ R �= ∅. This contradicts our assumption that T ∩ R = ∅.

COROLLARY 3.4. Any l-connected graph can be made (l + 1)-connected by adding
ν̂l(G) edges.

PROOF. If G has no reducing edge, we find an l-cover R of size ν̂l(G) by picking a
node from every small l-core. By Lemma 3.3, R is an l-cover, and, by Corollary 2.2, we
can find a forest F on R such that G + F is (l + 1)-connected. Else, we find and add a
reducing edge, and recursively apply the same process on the resulting graph.

THEOREM 3.5. For the problem of making a (k − 1)-connected graph G k-connected
by adding a min-cost edge set, there exists a (2+ 	k/2
)-approximation algorithm with
time complexity O(k2n3m) deterministic (using OCSA) and O(k2n2m log n) randomized
(using ROCSA).

PROOF. At the first phase we reset the edge cost of edges of G to zero, and execute
OCSA: let H be the output graph, let r be the corresponding root, and let R = �H (r).
Now, consider the graph J = H +G, and let l = k − 1. Note that ν̂l(J) ≤ 	k/2
, since
every l-tight set in H , and thus in J , contains at least two nodes from R, and |R| = k. At
the second phase we make J k-connected by adding an edge set F as in Lemma 3.3, with
l = k − 1. Now, c(J)+ c(F) ≤ 2opt + 	k/2
opt. The analysis of the time complexity
is straightforward.

One can get an approximation ratio slightly better than k by sequentially applying
augmentation steps as above. That is, we execute OCSA, and from l = �k/2�+1 to k−1
increase the connectivity by 1. At every iteration, ν̂l(G) ≤ 	k/(k − l + 1)
, where G
denotes the current graph. By Corollary 3.4, G can be made (l+1)-connected by adding
ν̂l(G) edges. The following lemma implies that increasing the number of internally
disjoint paths between s and t from l to l + 1 costs at most opt/(k − l).

LEMMA 3.6. Let G be a subgraph of a graph G containing l internally disjoint paths
from s to t , s, t ∈ V (G). For an integer p let F p ⊆ I = E(G) − E(G) be an optimal
edge set such that G + F p contains l + p internally disjoint paths from s to t . Then
c(F1) ≤ (1/p)c(F p).

PROOF. One can view G as a min-cost flow network with source s and sink t where
all edges and nodes have unit capacity (the costs are determined by the costs of the
edges in I , while the edges in E have cost zero). Apply the following standard two stage
reduction. First, replace every undirected edge e by two opposite directed edges with
the same ends and the same capacity and cost as e, to get a directed network. Second,

Approximating Node Connectivity Problems via Set Covers 81

apply a standard conversion of node capacities to edge capacities: replace every node
v ∈ V − {s, t} by the two nodes v+, v− connected by the edge v+v− having the same
capacity as v and cost zero, and redirect the heads of the edges entering v to v+ and the
tails of the edges leaving v to v−.

In the new network, let �F p be a min-cost (l + p)-flow. Using flow decomposition, it
is not hard to see that c(�F p) = c(F p). In particular, c(�F0) = c(F0) = 0. Now consider
the (fractional) (l + 1)-flow (1/p) �F p + (1 − (1/p)) �F0 which has cost (1/p)c(�F p) =
(1/p)c(F p). Since the capacities are integral, there must be an integral (l + 1)-flow �F1

of at most the same cost, which proves the lemma.

Lemma 3.6 implies that the approximation ratio of our algorithm is

I (k) = 2+
k−1∑

l=�k/2�+1

⌊
k

k − l + 1

⌋
1

k − l
= 2+

	k/2
−1∑
j=1

1

j

⌊
k

j + 1

⌋
.

It is easy to check that I (k) < k for k ≥ 7, but limk→∞(I (k)/k) = 1.

THEOREM 3.7. For the problem of making a k0-connected graph k-connected, there ex-
ists an I (k−k0)-approximation algorithm with time complexity O(k2n3m) deterministic
(using OCSA) and O(k2n2m log n) randomized (using ROCSA).

3.2. Directed Graphs with Arbitrary Costs. We say that a directed graph is k-
inconnected to r if it contains k internally disjoint paths from any its nodes to r . Our
algorithm is as follows:

1. Choose an arbitrary set R = {r1, . . . , rk} ⊆ V of k nodes, and for i =
1, . . . , k, compute a min-cost k-outconnected from ri subgraph Gi =
(V, Fi) of G.

2. Construct a graph Gr by adding to G an external node r , and edges rir of
cost zero, i = 1, . . . , k.
Compute a minimum cost k-inconnected to r spanning subgraph Gr of
Gr .

3. Output H = (Gr + F)− r , where F =⋃k
i=1 Fi .

THEOREM 3.8. There exists a (k + 1)-approximation algorithm with time complexity
O(k3n2m) for the directed min-cost k-connected subgraph problem.

PROOF. We need to show that the output graph H is k-connected and that c(H) ≤
(k + 1)opt.

If H is not k-connected, then H has an l-tight set S with l < k. Since H is k-
outconnected from any node that belongs to R, we must have S∩ R = ∅. Thus, S is also
l-tight in Gr ∪ F . We obtain a contradiction since then Gr cannot contain k internally
disjoint paths from any node s ∈ S to r .

We now prove the approximation ratio. Clearly, c(Fi) ≤ opt, i = 1, . . . , k; thus
c(F) ≤ kopt. It remains to show that c(Gr) ≤ opt. Let G∗ be an optimal k-connected
spanning subgraph of G. Extend G∗ to a spanning subgraph G∗r of Gr by adding to G∗

82 G. Kortsarz and Z. Nutov

the node r and the edges rir of cost zero, i = 1, . . . , k. It is easy to see that G∗r is
k-inconnected to r . Therefore, c(Gr) ≤ c(G∗r) = c(G∗) = opt.

4. Metric k-Connected Subgraph Problem

4.1. Undirected Graphs with Metric Costs. In this section we consider the metric min-
cost k-connected subgraph problem. We present a modification of the (2+2(k − 1)/n)-
approximation algorithm of Khuller and Raghavachari [15] to achieve a slightly better
approximation guarantee of (2+ (k − 1)/n).

Here is a short description of the algorithm of [15]. An l-star is a tree with l nodes
and l−1 leaves; a node s is a center of the star if all the other nodes in the star are leaves.
Note that a min-cost subgraph of G which is l-star with center v can be computed in
O(ln) time, and the overall cheapest l-star in O(ln2) time. The algorithm of [15] finds
the node set R of a cheapest k-star, executes EOCSA, and adds to the graph G the edge
set E ′ as calculated in Corollary 2.2 (that is, all the edges with both endnodes in R that
are not in G). In [15] it is shown that c(E ′) ≤ 2(k − 1)/n.

In our algorithm, we make a slightly different choice of R, and add an extra phase of
removing from E ′ the noncritical edges (that is, we add an edge set F as in Corollary 2.2).
We show that for our choice of R, c(F) ≤ (k − 1)/n. We use the following lemma:

LEMMA 4.1. Let J be a complete graph on a node set R with node weights w(v) ≥ 0,
v ∈ R, and edge weights w(uv) = w(u)+ w(v), u, v ∈ R. If F is a forest on R, then

w(F) ≤ (|R| − 2)max{w(v) : v ∈ R} +
∑
{w(v) : v ∈ R}.

PROOF. Let s ∈ R be a node satisfying w(s) = max{w(v) : v ∈ R}. Among all forests
F on R for which w(F) is maximal, let F∗ be one with the maximum number of edges
incident to s. We claim that F∗ is a star centered at s and thus for any forest F on R,

w(F) ≤ w(F∗) =
∑
{w(s)+w(v) : v ∈ R−s} = (|R|−2)w(s)+

∑
{w(v) : v ∈ R}

holds. If not, then there is a node v �= s, such that v is either an isolated node of F∗, or
v is a leaf of F∗ with uv ∈ F∗ and u �= s. In both cases, (F∗ − uv) + sv is a forest of
the weight at least c(F∗), but with more edges incident to s than F∗; this contradicts our
choice of F∗.

In our algorithm, we start by choosing the cheapest (k + 1)-star Jk+1. Let v0 be its
center, and let its leaves be v1, . . . , vk . Denote w0 = w(v0) = 0 and wi = w(vi) =
c(v0vi), i = 1, . . . , k. Without loss of generality, assume that w1 ≤ w2 ≤ · · · ≤ wk .
Since the costs are metric, c(vivj) ≤ w(vivj) = wi + wj , 0 ≤ i �= j ≤ k. Let us delete
vk from the star. This results in a k-star Jk , and let R be its node set. For such an R, let G
be the subgraph of G calculated by EOCSA. Recall that R is a (k − 1)-cover in G. Let
F be an edge set as in Corollary 2.2, so G + F is k-connected, and F is a forest. The
algorithm will output G + F . All this can be implemented in O(k2n2m) time.

Let us analyze the approximation ratio. By [15], c(H) ≤ 2opt . We claim that c(F) ≤
((k − 1/n)opt. Indeed, similarly to [15], using the metric cost assumption it is not hard

Approximating Node Connectivity Problems via Set Covers 83

to show that c(Jk+1) =
∑{w(v) : v ∈ R} +wk ≤ (2/n)opt. Thus, by our choice of Jk ,

wk−1 = max{w(v) : v ∈ R} ≤ (1/n)opt. Using this, the metric costs assumption, and
Lemma 4.1 we get

c(F) =
∑
{c(vivj) : vivj ∈ F} ≤

∑
{wi + wj : vivj ∈ F}

≤ (k − 2)wk−1 +
∑
{w(v) : v ∈ R} ≤ (k − 2)wk−1 +

(
2

n
opt − wk

)

≤ (k − 3)wk−1 + 2

n
opt ≤ k − 3

n
opt + 2

n
opt = k − 1

n
opt.

THEOREM 4.2. There exists a (2+(k − 1)/n)-approximation algorithm with time com-
plexity O(k2n2m) for the undirected metric min-cost k-connected subgraph problem.

4.2. Directed Graphs with Metric Costs. In this section we consider directed graphs
only. We say that a pair (R−, R+) is an l-cover in a directed graph G if R− covers all
the l ′-tight sets in G and R+ covers all the l ′-tight sets in the graph obtained from G by
reversal of its arcs, for any l ′ ≤ l. It is easy to see that if (R−, R+) is a (k − 1)-cover in
G, and E ′ = {uv : u ∈ R−, v ∈ R+}, then G + E ′ is k-connected.

A v→ l-star is a directed tree rooted at v, with l nodes and l−1 leaves; a v← l-star
is a graph where reversal of its edges results in a v → l-star. Let v be the node of G.
Among all subdigraphs of G which are v→ l-stars (resp., v← l-stars), let X−l (v) (resp.,
X+l (v)) be the cheapest one. Our algorithm for directed graphs is as follows:

1. Find a node v0 for which c(X−k+1(v)) + c(X+k+1(v)) is minimal, and set
u0 = v0.
Let R− = {v1, . . . , vk} be the leaves of J−k+1 = X−k+1(v0), and R+ =
{u1, . . . , uk} be the leaves of J+k+1 = X+k+1(u0), where c(v0vi) ≤
c(v0vi+1) and c(ui u0) ≤ c(ui+1u0), i = 1, . . . , k − 1.
Set J−k = X−k+1(v0)− vk , J+k = X+k+1(v0)− uk .

2. Add a node r to G and edges vi r, rui of cost zero, i = 0, . . . , k − 1,
obtaining a graph Gr . Compute two spanning subgraphs of Gr : an optimal
k-outconnected from r , say G−r , and an optimal k-inconnected to r , say
G+r .

3. The graph G + E ′ is k-connected, where G = (G−r + G+r) − r and
E ′ = {uv : u ∈ R−, v ∈ R+}.
Output H = G + F , where F ⊆ E ′, and all the edges in F are critical
with respect to k-connectivity in H .

The following directed counterpart of Lemma 2.3 implies that the pair (R−, R+) is a
(k − 1)-cover in G, and thus the algorithm correctly outputs a k-connected graph H .

LEMMA 4.3. Let Gr be k-inconnected to r , let R = {v ∈ V : r ∈ �(v)}, and let S
be an l-tight set in Gr such that r /∈ S. If r ∈ �(S), then |S ∩ R| ≥ k − l + 1, and if
r /∈ �(S), then l ≥ k. Thus R covers all the l-tight sets in Gr − r , l ≤ k − 1.

84 G. Kortsarz and Z. Nutov

PROOF. Let s ∈ S, and consider a set of k internally disjoint paths from s to r . Let
R′ = {v1, . . . , vk} ⊆ R be the nodes of these paths preceding r . If r ∈ �(S), then at most
l − 1 nodes from R′ may not belong to S; this implies |R ∩ S| ≥ |R′ ∩ S| ≥ k − (l − 1).
Clearly, if r /∈ �(S) and l < k there cannot be k internally disjoint paths from s to r , by
Menger’s theorem. The last statement is obvious.

Let us analyze the approximation ratio, using the notation as in the algorithm. Similarly
to the proof of Theorem 3.8, one can show that c(G) ≤ c(G−r)+ c(G+r) ≤ 2opt.

We claim that c(F) ≤ (k/n)opt. Construct a bipartite graph J = (A, B, E(J))
with weights on the nodes as follows. The node parts are A = {u0, . . . , uk−1} and
B = {v0, . . . , vk−1}. The node weights are w(ui) = c(u0ui), w(vj) = c(v0vj), and
w(u0) = w(v0) = 0. To every directed edge e = uivj with ui ∈ R−, vj ∈ R+ there
naturally corresponds an undirected edge e′ = uivj with ui ∈ A, vj ∈ B. Moreover,
since the costs are metric, for any ui ∈ R− and vj ∈ R+ we have c(uivj) ≤ w(vivj) =
w(ui)+ w(vj).

We need some definitions and facts to continue. An even length sequence of edges C =
(v1v2, v3v2, v3v4, . . . , v2q−1v2q , v1v2q) of a directed graph G is called an alternating
cycle; the nodes v1, v3, . . . , v2q−1 are C-out nodes, and v2, v4, . . . , v2q are C-in nodes.

THEOREM 4.4 [19]. In a k-connected directed graph, any cycle C in which every edge
is critical with respect to k-connectivity contains a C-in node of indegree k, or a C-out
node of outdegree k.

Theorem 4.4 implies that if the indegree and the outdegree of every node in V (G) is
at least k− 1, and if F is an inclusion minimal edge set such that G + F is k-connected,
then F contains no alternating cycle. Note that F ⊆ {uv : u ∈ R−, v ∈ R+} has no
alternating cycle if and only if the corresponding edge set F ′ in J is a forest. We also
need the following directed counterpart of Lemma 4.1 (the proof is omitted):

LEMMA 4.5. Let J = (A, B, E(J)) be a complete bipartite directed graph with non-
negative node weights w(v) ≥ 0, v ∈ A ∪ B, and edge weights w(ab) = w(a)+w(b),
a ∈ A, b ∈ B. If F ⊆ E(J) is a forest, then

w(F) ≤ (|B| − 1)max{w(a) : a ∈ A} + (|A| − 1)max{w(b) : b ∈ B}
+
∑
{w(v) : v ∈ A ∪ B}.

We set wi = w(ui) + w(vi), i = 0, . . . , k. Similarly to [15], one can show that
c(J−k+1 + J+k+1) ≤ (2/n)opt. Thus, wk−1 ≤ (1/n)opt, by our choice of J−k , J+k . Now,
similarly to the undirected case we get

c(F) =
∑
{c(vivj) : vivj ∈ F} ≤

∑
{wi + wj : vivj ∈ F}

≤ (k − 1)wk−1 +
k−1∑
i=0

wi ≤ (k − 1)wk−1 +
(

2

n
opt − wk

)

≤ (k − 2)wk−1 + 2

n
opt ≤ k − 2

n
opt + 2

n
opt = k

n
opt.

Approximating Node Connectivity Problems via Set Covers 85

THEOREM 4.6. There exists a (2+k/n)-approximation algorithm with time complexity
O(k2n2m) for the directed metric min-cost k-connected subgraph problem.

5. Min-Cost 6,7-Connected Subgraphs. This section presents our algorithms for the
min-cost 6,7-connected (undirected) subgraph problems. The algorithm itself is simple,
and the main difficulty is to show that for k = 6, 7 we can make the output graph of
OCSA k-connected by adding an edge set F with |F | ≤ 2. A similar approach was used
previously in [7] for k = 4, 5 with |F | ≤ 1:

LEMMA 5.1 [7, Lemma 4.5]. Let G be a graph which is k-outconnected from r , k ∈
{4, 5}. If |�G(r)| = k, then there exists a pair of nodes s, t ∈ �G(r) such that G + st is
k-connected.

In fact, Lemma 5.1 can be deduced from Lemma 2.3 and the following lemma:

LEMMA 5.2 [13, Lemma 3.2]. Let G be an l-connected graph such that the maximum
number of pairwise disjoint l-cores in G is exactly two. Then the family of l-cores of G
consists of two disjoint sets S, T ⊂ V (G), and for any l-tight set Z of G either S ⊆ Z
and T ⊆ Z∗ or T ⊆ Z and S ⊆ Z∗.

Our algorithm for k = 6, 7 is based on the following lemma:

LEMMA 5.3. Let G be k-outconnected from r , k ∈ {6, 7}. If |�G(r)| ∈ {6, 7}, then
there exists two pairs of nodes {s1, t1}, {s2, t2} ⊂ �G(R) such that G + {s1t1, s2t2} is
k-connected.

PROOF. Let G be as in the lemma, and let k ∈ {6, 7}. In the proof, let the default
subscript of the functions � be G. For convenience, we denote R = �(r). Note that, by
Lemma 2.3, G is (k − 2)-connected, and that if S is (k − 2)-tight and X is (k − 1)-tight,
then |S ∩ R| ≥ 3, |X ∩ R| ≥ 2, and r ∈ �(S) ∩ �(X). In particular, since |R| ≤ 7, we
have:

PROPOSITION 5.4. If S and T are two disjoint (k − 2)-tight sets, then any (k − 1)- or
(k − 2)-tight set intersects at least one of S, T .

In what follows, note that in any graph G = (V, E) for any two sets X, Y ⊂ V ,

|�(X)| + |�(Y)| ≥ |�(X∗ ∩ Y)| + |�(X ∩ Y ∗)|,(2)

|�(X ∩ Y)| ≤ |�(X)− Y ∗| + |�(Y) ∩ X |(3)

hold.
We now establish several properties of (k − 1)- and (k − 2)-cores for a graph G as in

Lemma 5.3 using inequalities (1)–(3).

86 G. Kortsarz and Z. Nutov

LEMMA 5.5. Let S be a (k−2)-core and let X be an arbitrary (k−1)-tight set crossing
S. Then at least one of the following holds:

• X ∩ S is (k − 1)-tight and X∗ ∩ S∗ is (k − 2)-tight; or
• X ∩ S∗ is (k − 2)-tight and X∗ ∩ S is (k − 1)-tight.

PROOF. If X∗ ∩ S∗ = (X ∪ S)∗ �= ∅, then |�(X ∪ S)| ≥ k − 2. By the minimality of
S, |�(X ∩ S)| ≥ k − 1. Using inequality (1) we obtain

(k − 1)+ (k − 2) = |�(X)| + |�(S)| ≥ |�(X ∩ S)| + |�(X ∪ S)| ≥ (k − 1)+ (k − 2).

If X ∩ S∗, X∗ ∩ S �= ∅, then |�(X ∩ S∗)| ≥ k−2. By the minimality of S, |�(X∗ ∩ S)| ≥
k − 1. Then using (2) we obtain

(k− 1)+ (k− 2) = |�(X)|+ |�(S)| ≥ |�(X ∩ S∗)|+ |�(X∗ ∩ S)| ≥ (k− 2)+ (k− 1).

In both cases, equality holds everywhere, and the claim of the lemma holds.
Assume now that X∗∩S∗ = ∅. Then X∗∩S �= ∅, since otherwise X∗ is a (k−1)-tight

set disjoint to both S, S∗, contradicting Proposition 5.4. Thus we must have X∗ ∩ S �= ∅
and X ∩ S∗ = ∅. Then

|�(X)− S∗| = |�(X)| − |S∗| ≤ |�(X)| − |S∗ ∩ R| ≤ (k − 1)− 3.

Since |�(S)| = k − 2 ≤ 5, then |�(S)∩ X | ≤ 2 or |�(S)∩ X∗| ≤ 2. If |�(S)∩ X | ≤ 2,
then, by (3),

|�(X ∩ S)| ≤ |�(X)− S∗| + |�(S) ∩ X | ≤ (k − 4)+ 2 = k − 2.

This contradicts the minimality of S. The contradiction for the case |X∗ ∩ �(S)| ≤ 2 is
obtained similarly.

Combining the last lemma with Proposition 5.4 we obtain:

COROLLARY 5.6. If G is not (k − 1)-connected, then any (k − 1)-core either contains
exactly one (k − 2)-core, or is contained in such a core.

LEMMA 5.7. Let X, Y be (k − 1)-cores that cross. Then exactly one of the following
holds:

(i) at least one of the sets X ∩ Y , X ∩ Y ∗, X∗ ∩ Y , or X ∪ Y is (k − 2)-tight, or
(ii) G is (k − 1)-connected, X ∩ Y is k-tight, and the only (k − 1)-cores in G are

X, Y, X∗, Y ∗.

PROOF. Assume X∗ ∩Y ∗ = (X ∪ Y)∗ �= ∅ (see Figure 1(a)). Then |�(X ∪Y)| ≥ k−2,
and, by the minimality of X , |�(X ∩ Y)| �= k − 1. Now, by (1),

|�(X ∩ Y)| + |�(X ∪ Y)| ≤ |�(X)| + |�(Y)| = 2k − 2,

which implies that |�(X ∩ Y)| = k − 2 or |�(X ∪ Y)| = k − 2.

Approximating Node Connectivity Problems via Set Covers 87

YΓ() YΓ() Y

X*

Γ()

X

Γ()

Y*

X*

YΓ()

X

Y

Γ()X

Y*

X

X

Y

X

Y*

X*

(a) (b) (c)

rrr

?

?

Fig. 1. Illustration to the proof of Lemma 5.7.

Similar argument applies with (2) for the case when both X∩Y ∗, X∗∩Y are nonempty
and gives for this case that |�(X ∩ Y ∗)| = k − 2 or that |�(X∗ ∩ Y)| = k − 2.

Assume therefore that X∗ ∩ Y ∗ = ∅, and that at least one of X∗ ∩ Y, X ∩ Y ∗ is also
empty. Without loss of generality we consider the case X ∩ Y ∗ = ∅ (see Figure 1(b)).
Then Y ∗ ⊂ �(X). Since |Y ∗ ∩ R| ≥ 2, we must have |�(X)− Y ∗| ≤ k − 3.

Now, assume that X ∩ Y is not (k − 2)-tight. Then, by the minimality of Y , we must
have |�(X ∩ Y)| ≥ k. Applying inequality (3) we get

k ≤ |�(X ∩ Y)| ≤ |�(X − Y ∗)| + |�(Y) ∩ X | ≤ (k − 3)+ |�(Y) ∩ X |,
so |�(Y) ∩ X | ≥ 3. This implies

|�(Y) ∩ X∗| = (k − 1)− |�(Y) ∩ X | − |�(Y) ∩ �(X)| ≤ (k − 1)− 3− 1 ≤ 2.

Now, if X∗ ∩ Y is not (k − 2)-tight, then X∗ ∩ Y = ∅. Otherwise, applying (3) on X∗

and Y we get a contradiction to the minimality of Y :

|�(X∗∩Y)| ≤ |�(X∗)−Y ∗|+|�(Y)∩X∗| ≤ |�(X)−Y ∗|+|�(Y)∩X∗| ≤ (k−3)+2.

From the previous discussion we conclude that if the first case of the lemma does not
hold, then the following holds (see Figure 1(c)): all the three sets X∩Y ∗, X∗∩Y, X∗∩Y ∗

are empty; |X∗| = |Y ∗| = 2, and thus X∗, Y ∗ ⊆ R and X∗, Y ∗ are (k − 1)-cores; and
|�(Y)∩ X | = |�(X)∩Y | = 3 and thus |X | ≥ 4 and |Y | ≥ 4. (Note that then also k = 7
and �(Y) ∩ �(X) = {r}.) From that it is easy to see that �(X∗ ∪ Y ∗) = �(X ∩ Y), so
X∗ ∪ Y ∗ is k-tight. We now prove that then the second case of the lemma must hold.

First, we show that G is (k − 1)-connected. If not, then by Corollary 5.6 there is a
(k − 2)-core S containing X∗. Using Lemma 5.5 and Proposition 5.4, it is not hard to
see that we must have S = X∗ ∪ Y ∗. This is a contradiction, since |�(X∗ ∪ Y ∗)| = k.

Second, we prove that if Z is a (k − 1)-core in G, then Z is one of X, Y, X∗, Y ∗.
Otherwise, Z crosses at least one of X, Y, X∗, Y ∗. Since G is (k−1)-connected, case (i)
of the lemma does not hold, and we conclude that |Z∗| = 2. However, then Z∗ crosses
at least one of X, Y, X∗, Y ∗, and, by the previous discussion, we must have |Z∗| ≥ 4,
which is a contradiction.

We are now ready to finish the proof of Lemma 5.3.
Assume first that G is (k − 1)-connected. We will show that then there is a (k − 1)-

cover U ⊂ R with |U | ≤ 3. Then the statement is a straightforward consequence from

88 G. Kortsarz and Z. Nutov

Corollary 2.2. Recall that the maximum number of pairwise disjoint cores in G is at
most three. Thus, if no two (k − 1)-cores cross, then picking one node in R from every
(k−1)-core gives a (k−1)-cover as required. If there exists a pair X, Y of (k−1)-cores
that cross, then we are in case (ii) of Lemma 5.7. In particular, X ∩ Y is k-tight, thus by
Lemma 2.3 X ∩ Y ∩ R �= ∅. Then U = {x, y, z}, where x ∈ X∗ ∩ R, y ∈ Y ∗ ∩ R, and
z ∈ X ∩ Y ∩ R is a (k − 1)-cover as required.

Assume now that G is not (k − 1)-connected. Let S, T be the (k − 2)-cores in G (as
in Lemma 5.2). Let S (resp., T) denote all the (k− 1)-cores contained in S (resp., in T).
Note that there are at most two disjoint sets in S, and that, by Lemma 5.7, for any two
sets in S that cross, their union is S. A similar statement holds for T .

LEMMA 5.8. LetC be a collection of subsets of S containing at most two disjoint subsets,
and let U cover C. If, for any X, Y ∈ C that cross, X ∪Y = S holds, then there is U ′ ⊆ U
with |U ′| ≤ 2 that covers C.

PROOF. It is sufficient to prove the statement under the assumption that any two sets in
C are either disjoint or cross. The proof is by induction on |C|. For |C| ≤ 3 the statement
is clear.

Assume now that |C| ≥ 4. Let X1, X2, X3 ∈ C be arbitrary. Then any two of
X1, X2, X3 cross. Let Z = X1 ∩ X2 ∩ X3, and let X ∈ C\{X1, X2, X3}. By the as-
sumption of the lemma, (Xi ∩ X j)\Z ⊂ X for i �= j = 1, 2, 3, implying S\Z ⊆ X .
Now, if U\Z �= ∅, let u ∈ U\Z . Then u covers all the sets in C except for exactly one
of X1, X2, X3. Let v ∈ U be a node that covers the set not covered by u. Then {u, v} is
a cover as required. If U ⊆ Z , then let C ′ = C\{X1, X2, X3}. Note that C ′ satisfies the
conditions of the lemma. By the induction hypothesis, C ′ has a cover U ′ as in the lemma.
However, then U ′ also covers C, and the proof is complete.

By Lemma 5.8, there is a pair {s1, s2} ∈ R that coversS, and there is a pair {t1, t2} ∈ R
that covers T .

LEMMA 5.9. The graph G + {s1t1, s2t2} is k-connected.

PROOF. It is straightforward to see (via Lemma 5.2) that adding the edges s1t1, s2t2
adds at least two neighbors to any (k−2)-tight set. We will show that adding these edges
also adds at least one neighbor to any (k − 1)-tight set Z . If Z contains one of S, T and
Z∗ contains the other, then the claim is straightforward. Else, by Corollary 5.6, Z or Z∗

is contained in one of S, T , say Z ⊂ S. Then T ⊂ Z∗, and the claim again follows.

The proof of Lemma 5.3 is done.

Two pairs {s1, t1}, {s2, t2} as in Lemma 5.3 can be found in O(m) time, e.g., by
exhaustive search. Combining this and Lemma 5.3 we obtain:

THEOREM 5.10. For k = 6, 7, there exists a 4-approximation algorithm for the min-
cost k-connected subgraph problem. The time complexity of the algorithm is O(n3m)
deterministic (using OCSA) and O(n2m log n) randomized (using ROCSA).

Approximating Node Connectivity Problems via Set Covers 89

6. Fast Algorithm for k = 4. In this section we present a 3-approximation algorithm
for k = 4 with complexity O(n4). This improves the previously best known time com-
plexity O(n5) [7]. We call a subset R of nodes of a graph G k-connected if for every
u, v ∈ R there are k internally disjoint paths between u and v in G. The following
theorem is due to Mader.

THEOREM 6.1 [18]. Any graph on n ≥ 5 nodes with minimal degree at least k, k ≥ 2,
contains a k-connected subset R with |R| = 4.

It is known that the problem of finding a min-cost spanning subgraph with minimal
degree at least k is reduced to the weighted b-matching problem. Using the algorithm
of Anstee [1] for the latter problem, such a subgraph can be found in O(n2m) time. We
use these observations to obtain a 3-approximation algorithm for k = 4 as follows. The
algorithm has two phases. At phase 1, among the subgraphs of G with minimal degree 4,
we find an optimal one, say G. Then we find in G a 4-connected subset R with |R| = 4.
At phase 2, we execute EOCSA on R, and let F be its output. Finally, the algorithm will
output G + F .

THEOREM 6.2. There exists a 3-approximation algorithm for the min-cost 4-connected
subgraph problem, with time complexity O(n2m + nT (n)) = O(n4), where T (n) is the
time required for multiplying two n × n matrices.

PROOF. The correctness follows from Theorem 6.1, Lemma 2.3(i), and Corollary 2.2.
To see the approximation ratio, recall that c(F) ≤ 2opt, and note that c(G) ≤ opt.

We now prove the time complexity. The complexity of each step, except of finding a
4-connected subset in G is O(n2m). Let us show that finding a 4-connected subset can
be done in O(n2m+ n(T (n))) time. Using the Ford–Fulkerson max-flow algorithm, we
construct in O(n2m) time the graph J = (V, E ′), where (s, t) ∈ E ′ if and only if there
are four internally disjoint paths between s and t in G. Now, R is a 4-connected subset
in G if and only if the subgraph induced by R in J is a complete graph. Thus, finding
R as above is reduced to finding a complete subgraph on four nodes in J . This can be
implemented as follows. Observe that R = {s, u, v, w} induces a complete subgraph
in J if and only if {u, v, w} form a triangle in the subgraph induced by �J (s) in J . It
is known that finding a triangle in a graph is reduced to computing the square of the
incidence matrix of the graph. The best known time bound for that is O(n2.376) [6], and
the time complexity follows.

7. Metric Multiroot Problem: Cases k ≤ 7. In this section we consider the metric-
cost multiroot problem. Note that here G is a complete graph, and every edge in G has
cost at most opt/k. This is since any feasible solution contains at least k edge disjoint
paths between any two nodes s and t , and, by the metric cost assumption, each one of
these paths has cost ≥ c(st). For k ≤ 7, we give an algorithm with approximation ratio
2+	(k − 1)/2
/k < 2.5. This improves the previously best known approximation ratio
3 [3]. Our algorithm combines some ideas from [3], [2], and [7], and some results from
the previous section.

90 G. Kortsarz and Z. Nutov

Splitting off two edges ru, rv means deleting ru and rv and adding a new edge uv.

THEOREM 7.1 [3, Theorem 17]. Let G = (V, E) be a graph which is k-outconnected
from a root node r ∈ V , and suppose that |�G(r)| ≥ k + 2 and every edge incident
to r is critical with respect to k-outconnectivity from r . If G is not k-connected, then
there exists a pair of edges incident to r that can be split off preserving k-outconnectivity
from r .

Consider now an instance of a metric cost multiroot problem, and let r be a node with
the maximum requirement k. As was pointed out in [3], Theorem 7.1 implies that we can
produce a spanning subgraph G ofG, such that G is k-outconnected from r , c(G) ≤ 2opt,
and G is k-connected, or |�G(r)| ∈ {k, k + 1}. To handle the cases k = 5, 7, we show
that by adding one edge, we can reduce the case |�(r)| = k + 1 to the already familiar
case |�(r)| = k.

LEMMA 7.2. Let G = (V, E) be k-outconnected from a root node r ∈ V , let R =
�G(r), and let r x be critical with respect to k-outconnectivity from r . If |R| ≥ k + 1,
then there exists a node y ∈ R such that (G − r x)+ xy is k-outconnected from r .

PROOF. Let G = (V, E) be a graph which is k-outconnected from a root node r ∈ V .
Following [3], for X ⊆ V − r let g(X) = |�G−r (X)| + |X ∩ R|. It is easy to see that G
is k-outconnected from r if and only if g(X) ≥ k for every X ⊆ V − r . We say that a set
X ⊆ V − r is critical if g(X) = k. Thus, r x is critical with respect to k-outconnectivity
from r if and only if there is a critical set containing x . In Lemma 6 of [3] it was shown
that:

The intersection and union of two intersecting critical sets are both critical. Thus for
every critical edge r x there is unique maximal critical set containing x .

Now, assume that r x is critical with respect to k-outconnectivity from r , and let X
be the maximal critical set containing x . We claim that if R ∩ X∗ �= ∅, then for any
y ∈ R∩X∗, it holds that (G−r x)+xy is k-outconnected from r . Indeed, if (G−r x)+xy
is not k-outconnected from r , then there is a critical set X ′ with x ∈ X ′, y ∈ �(X ′).
However, then we must have X ′ ⊆ X . As a consequence, we must have y ∈ X + �(X),
contradicting that y ∈ X∗.

Now, suppose |R| ≥ k + 1. We claim that then R ∩ X∗ �= ∅. Else, R ⊆ X ∪ �(X).
However, then we must have g(X) ≥ |R| ≥ k + 1, contradicting that g(X) = k.

LEMMA 7.3. Let G be a graph which is k-outconnected from r , 3 ≤ k ≤ 7, and suppose
that |�G(r)| ∈ {k, k + 1}. Then there is an edge set F ⊆ {uv : u �= v ∈ �G(r)} such
that G + F is k-connected and |F | ≤ 	(k − 1)/2
.

PROOF. For k ≤ 4, this is a straightforward consequence from Lemmas 2.3 and 5.2.
For k = 6, this is a consequence from Lemma 5.3. For k = 5, 7, it can be easily deduced
using Lemma 7.2 and Lemma 5.1 for k = 5 or Lemma 5.3 for k = 7.

Approximating Node Connectivity Problems via Set Covers 91

Using Lemma 7.3 and the fact that for every s, t ∈ V , c(st) ≤ opt/k holds, we
deduce:

THEOREM 7.4. For the metric cost multiroot problem with 3 ≤ k ≤ 7, there exists a
(2+ 	(k − 1)/2
/k)-approximation algorithm with time complexity O(n3m).

Acknowledgment. We thank an anonymous referee for his useful comments.

References

[1] R. P. Anstee, A polynomial time algorithm for b-matchings: an alternative approach, Information Pro-
cessing Letters 24 (1987), 153–157.

[2] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, A 2-approximation algorithm for finding an optimum
3-vertex connected spanning subgraph, Journal of Algorithms 32 (1999), 21–30.

[3] J. Cheriyan, T. Jordán, and Z. Nutov, On rooted node-connectivity problems, Algorithmica 30 (special
issue on APPROX ’98), (2001), 353–375.

[4] J. Cheriyan, S. Vempala, and A. Vetta, An approximation algorithm for the minimum cost k-vertex
connected subgraph, Manuscript, July 2001.

[5] J. Cheriyan, S. Vempala, and A. Vetta, Network design via iterative rounding of setpair relaxations,
Manuscript, October 2001.

[6] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic
Computation 9 (1990), 251–280.

[7] Y. Dinitz and Z. Nutov, A 3-approximation algorithm for finding optimum 4,5-vertex-connected span-
ning subgraphs, Journal of Algorithms 32 (1999), 31–40.

[8] A. Frank, Connectivity augmentation problems in network design, in Mathematical Programming, State
of the Art 1994, J. R. Birge and K. G. Murty, eds., The University of Michigan Press, Ann Arbor, MI,
1994, pp. 34–63.

[9] A. Frank and É. Tardos, An application of submodular flows, Linear Algebra and its Applications
114/115 (1989), 329–348.

[10] G. N. Frederickson and J. Jájá, On the relationship between the biconnectivity augmentation and traveling
salesman problems, Theoretical Computer Science 19(2) (1982), 189–201.

[11] H. N. Gabow, A representation for crossing set families with application to submodular flow problems,
Proceedings of the 4th Annual ACM–SIAM Symposium on Discrete Algorithms, 1993, pp. 202–211.

[12] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica
21(1) (2001), 39–60.

[13] T. Jordán, On the optimal vertex-connectivity augmentation, Journal of Combinatorial Theory, Series
B 63 (1995), 8–20.

[14] S. Khuller, Approximation algorithms for finding highly connected subgraphs, in Approximation Algo-
rithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS, Boston, MA, 1996, pp. 236–265.

[15] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connectivity problems,
Journal of Algorithms 21 (1996), 434–450.

[16] G. Kortsarz and Z. Nutov, Improved approximation algorithm for k-node connected subgraphs via
critical graphs, Manuscript, February 2003.

[17] W. Mader, Ecken vom Grad n in minimalen n-fach zusammenhängenden Graphen, Archive der Math-
ematik 23 (1972), 219–224.

[18] W. Mader, Degree and local connectivity in finite graphs, Recent Advances in Graph Theory (Proceed-
ings of the Second Czechoslovak Symposium, Prague, 1974), Academia, Prague, 1975, pp. 341–344.

[19] W. Mader, Minimal n-fach in minimalen n-fach zusammenhängenden Digraphen, Journal of Combi-
natorial Theory, Series B, 38 (1985), 102–117.

92 G. Kortsarz and Z. Nutov

[20] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Operations Research 41 (1993),
338–350.

[21] R. Ravi and D. P. Williamson, An approximation algorithm for minimum-cost vertex-connectivity
problems, Algorithmica 18 (1997), 21–43.

[22] R. Ravi and D. P. Williamson, Erratum: an approximation algorithm for minimum-cost vertex-
connectivity problems, Manuscript, July 2001.

