

Approximating Node Connectivity Problems via Set Covers¹

Guy Kortsarz² and Zeev Nutov³

Abstract. Given a graph (directed or undirected) with costs on the edges, and an integer k , we consider the problem of finding a *k*-node connected spanning subgraph of minimum cost. For the general instance of the problem (directed or undirected), there is a simple 2*k*-approximation algorithm. Better algorithms are known for various ranges of *n*, *k*. For undirected graphs with metric costs Khuller and Raghavachari gave a $(2 + 2(k - 1)/n)$ -approximation algorithm. We obtain the following results:

- (i) For arbitrary costs, a k -approximation algorithm for undirected graphs and a $(k + 1)$ -approximation algorithm for directed graphs.
- (ii) For metric costs, a $(2 + (k 1)/n)$ -approximation algorithm for undirected graphs and a $(2 + k/n)$ approximation algorithm for directed graphs.

For undirected graphs and $k = 6, 7$, we further improve the approximation ratio from k to $\lceil (k + 1)/2 \rceil$ 4; previously, $\lceil (k + 1)/2 \rceil$ -approximation algorithms were known only for $k \leq 5$. We also give a fast 3approximation algorithm for $k = 4$.

The multiroot problem generalizes the min-cost *k*-connected subgraph problem. In the multiroot problem, requirements k_u for every node u are given, and the aim is to find a minimum-cost subgraph that contains $\max\{k_u, k_v\}$ internally disjoint paths between every pair of nodes *u*, *v*. For the general instance of the problem, the best known algorithm has approximation ratio $2k$, where $k = \max k_u$. For metric costs there is a 3approximation algorithm. We consider the case of metric costs, and, using our techniques, improve for $k \le 7$ the approximation guarantee from 3 to $2 + \lfloor (k-1)/2 \rfloor / k < 2.5$.

Key Words. *k*-Vertex connected spanning subgraph, Approximation algorithms, Metric costs.

1. Introduction. A basic problem in network design is given a graph \mathcal{G} to find its minimum cost subgraph that satisfies given connectivity requirements (see [14] and [8] for surveys). A fundamental problem in this area is the *survivable network design problem*: find a cheapest spanning subgraph such that for every pair of nodes (u, v) , there are at least k_{uv} internally disjoint paths from u to v , where k_{uv} is a nonnegative integer (requirement) associated with the pair (u, v) ; two paths are *internally disjoint* if they do not have any internal node in common. No efficient approximation algorithm for this problem is known. However, for undirected graphs, when the paths are required only to be *edge disjoint*, an approximation algorithm that produces a solution at most twice the value of an optimal was given by Jain [12]. Henceforth, unless stated otherwise, we consider node connectivity only.

¹ This research was done at the Max-Planck-Institute für Informatik, Saarbrücken, Germany, and at the Open University of Israel, Ramat-Aviv, Israel.

² Rutgers University, Camden, NJ 08102, USA. guyk@camden.rutgers.edu.

³ Open University of Israel, Klauzner 16 Street, Ramat-Aviv 61392, Israel. nutov@openu.ac.il.

Received October 12, 2000; revised February 27, 2002, and November 27, 2002. Communicated by H. N. Gabow. Online publication July 10, 2003.

A ρ*-approximation algorithm* for a minimization problem is a polynomial time algorithm that produces a solution of value no more than ρ times the value of an optimal solution; ρ is called the *approximation ratio* of the algorithm. A particularly important case of the survivable network design problem is the problem of finding a cheapest *k*node connected spanning subgraph, that is, the case when $k_{uv} = k$ for every node pair (u, v) . For undirected graphs this problem is NP-hard for $k = 2$ (for $k = 1$ it is the minimum spanning tree problem) and for directed graphs it is NP-hard for $k = 1$. For both directed and undirected graphs, there is a simple 2*k*-approximation algorithm, see, for example, [3].

For undirected graphs, the following results were known. Ravi and Williamson [21] claimed a 2*H*(*k*)-approximation algorithm, where $H(k) = 1 + \frac{1}{2} + \cdots + \frac{1}{k}$, but the proof was found to contain an error, see [22]. $\lceil (k+1)/2 \rceil$ -Approximation algorithms are known for $k \le 5$; see [15] for $k = 2$, [2] for $k = 2$, 3, and [7] for $k = 4$, 5. For metric costs and *k* arbitrary, Khuller and Raghavachari [15] gave a $(2 + 2(k - 1)/n)$ -approximation algorithm (see also a 3-approximation algorithm in [3]).

We extend and generalize some of these algorithms, and unify ideas from [15], [2], [7], [3], and [13] to show further improvements. Among our results are:

- (i) For arbitrary costs, a *k*-approximation algorithm for undirected graphs and a (*k*+1) approximation algorithm for directed graphs.
- (ii) For metric costs, a $(2 + (k 1)/n)$ -approximation algorithm for undirected graphs and a $(2 + k/n)$ -approximation algorithm for directed graphs.

For undirected graphs and $k = 6, 7$, we further improve the approximation ratio from *k* to $(k+1)/2 = 4$, and give a fast 3-approximation algorithm for $k = 4$.

Recently, Cheriyan et al. [4] gave a 6*H*(*k*)-approximation algorithm for undirected graphs with $n \geq 6k^2$, where *n* is the number of vertices of the input graph. In [5] the same authors suggest an iterative rounding $O(n/\sqrt{n-k})$ -approximation algorithm for both directed and undirected graphs. The latter result was improved in [16] where was both directed and undirected graphs. The latter result was improved in [16] where was given a combinatorial algoriothm with approximation ratio $O(\ln k \cdot \min\{\sqrt{k}, \frac{k}{n-k} \ln k\})$.

Another particular case of the survivable network design problem is the (undirected) *multiroot problem*, where pairwise node requirements are defined by single node requirements; that is, requirements k_u for every node u are given, and the aim is to find a minimum-cost subgraph that contains $\max\{k_u, k_v\}$ internally disjoint paths between every pair of nodes *u*, v. A graph (directed or undirected) is said to be *k-outconnected from a node r* if it contains *k* internally disjoint paths from *r* to any other node; such a node *r* is usually referred to as the *root*. It is easy to see that a subgraph is a feasible solution to the multiroot problem if and only if it is k_u -outconnected from every node u . Given an instance of the multiroot problem, we use *q* to denote the number of nodes *u* with $k_u > 0$, and $k = \max_k k_u$ is the maximum requirement. Observe that the (undirected) min-cost *k*-connected subgraph problem is a special case of the multiroot problem when $k_u = k$ for every node *u*.

One root problems were considered long ago. For *directed* graphs, Frank and Tardos [9] showed that the problem of finding a *k*-outconnected spanning subgraph of minimum cost is solvable in polynomial time; a faster algorithm is due to Gabow [11]. As was observed by Khuller and Raghavachari in [15], this implies a 2-approximation algorithm for the (undirected) one root problem, as follows. First, replace every undirected edge *e* of *G* by the two antiparallel directed edges with the same ends and of the same cost as *e*.

Then compute an optimal *k*-outconnected from *r* subdigraph and output its underlying (undirected) simple graph. The algorithm can be implemented in $O(k^2n^2m)$ time using the algorithm of [11].

For the multiroot problem, a 2*q*-approximation algorithm follows by applying the above algorithm for each root and taking the union of the resulting *q* subgraphs. The approximation guarantee 2*q* of this algorithm is tight for $q \leq k$, see [3]. For metric costs and *k* arbitrary, Cheriyan et al. [3] gave a 3-approximation algorithm. For metric costs and $k = 2$, it can be shown that the problem is equivalent to that of finding a 2-connected subgraph. For the latter, there is a $\frac{3}{2}$ -approximation algorithm, see [10]. We consider the case of metric costs, and improve, for $3 \leq k \leq 7$, the approximation ratio from 3 to $2 + \lfloor (k-1)/2 \rfloor / k < 2.5$.

This paper is organized as follows. Section 2 contains preliminary results and definitions. Sections 3 and 4 present algorithms for arbitrary and metric costs, respectively. Section 5 shows a 4-approximation algorithm for $k \in \{6, 7\}$, and Section 6 shows a fast 3-approximation algorithm for $k = 4$. Section 7 considers the metric multiroot problem with $k < 7$.

2. Definitions and Preliminary Results. All the graphs (directed or undirected) in the paper are assumed to be simple (i.e., without loops and parallel edges). An edge from *u* to v is denoted by *u*v. For an arbitrary graph *H*, *V*(*H*) denotes the node set of *H*, and $E(H)$ denotes the edge set of *H*. Let $G = (V, E)$ be a graph. For any set of edges and nodes $U = E' ∪ V'$ we denote by $G – U$ (resp., $G + U$) the graph obtained from *G* by deleting *U* (resp., adding *U*), where deletion of a node implies also deletion of all the edges incident to it. For a nonnegative cost function *c* on the edges of *G* and a subgraph *G*' = (*V'*, *E'*) of *G* we use the notation $c(G') = c(E') = \sum \{c(e) : e \in E'\}.$

For *S*, $T \subseteq V$ let $\delta(S, T) = \delta_G(S, T)$ denote the set of edges in *G* going from *S* to *T*. For $X \subseteq V$ we denote by $\Gamma(X) = \Gamma_G(X)$ the set $\{v \in V \setminus X : uv \in E$ for some $u \in X\}$ of *neighbors* of *X*. Let $X^* = X_G^* = V \setminus (X \cup \Gamma(X))$ denote the "node complement" of *X* in *G*. It is well known that the function $|\Gamma(\cdot)|$ is submodular, that is, for any *X*, $Y \subseteq V$,

$$
|\Gamma(X)| + |\Gamma(Y)| \ge |\Gamma(X \cap Y)| + |\Gamma(X \cup Y)|.
$$

Two sets *X*, *Y* ⊂ *V* cross (or *X* crosses *Y*) if $X \cap Y \neq \emptyset$ and neither $X \subseteq Y$ nor *Y* ⊆ *X*. We say that $U \subseteq V$ covers a collection C of subsets of V if $X \cap U \neq \emptyset$ for every $X \in \mathcal{C}$.

We say that $X \subset V$ is *l*-tight if $|\Gamma(X)| = l$ and $X^* \neq \emptyset$ (i.e., if $|\Gamma(X)| = l$ and $|X| \leq |V| - l - 1$; such an *X* is an *l-core* if it does not contain any other *l*-tight set. A graph *G* is *k*-(*node*)-*connected* if for any pair of its nodes there are *k* internally disjoint paths from one node to the other. By Menger's theorem, *G* is *k*-connected if and only if $|V(G)|$ ≥ $k + 1$ and there are no *l*-tight sets with $l \leq k - 1$ in *G*.

For an undirected graph *G*, we say that $U \subseteq V$ is an *l*-cover if *U* covers all the *l*'-cores with $l' \leq l$. Note that if U is an *l*-cover, then for any *l'*-tight set X with $l' \leq l$ it holds that *X* ∩ *U* \neq Ø and *X*[∗] ∩ *U* \neq Ø. Thus if $|V(G)| \geq$ *l* + 2, then by adding to *G* the edge set $E' = \{uv : u \neq v \in U\}$ of a complete graph on *U* we obtain an $(l + 1)$ -connected graph.

An edge *e* of a graph *G* is said to be *critical with respect to property P* if *G* satisfies property *P*, but $G - e$ does not. The following theorem is due to Mader.

THEOREM 2.1 [17]. *In a k-connected undirected graph*, *any cycle in which every edge is critical with respect to k-connectivity contains a node of degree k*.

Theorem 2.1 implies that if $|\Gamma(v)| \geq k - 1$ for every $v \in V(G)$, and if *F* is an inclusion minimal edge set such that $G + F$ is *k*-connected, then *F* is a forest (if not, then *F* contains a cycle *C* of critical edges, but every node of this cycle is incident to two edges of *C* and to at least *k* − 1 edges of *G*, contradicting Mader's theorem). This implies:

COROLLARY 2.2. Let U be a $(k-1)$ -cover in an undirected graph G, and let $E' =$ ${uv : u ≠ v ∈ U}.$ *Then* $G + E'$ *is k-connected. Moreover, if* $|\Gamma(v)| ≥ k - 1$ *for every* $v \in V$, and if $F \subseteq E'$ is an inclusion minimal edge set such that $G + F$ is k-connected, *then* $|F| < |U| - 1$.

The following property of *k*-outconnected undirected graphs is from [2].

LEMMA 2.3 [2]. *Let G be an undirected graph which is k-outconnected from r*, *and let S be an l-tight set in G. Then* $|S \cap \Gamma(r)| \geq k - l + 1$, *and if* $l \leq k - 1$, *then* $|S \cap \Gamma(r)| \geq 2$ *and* r ∈ $\Gamma(S)$ *. Thus G is* $(k - \lfloor |\Gamma(r)|/2 \rfloor + 1)$ *-connected.*

COROLLARY 2.4. *Let G be an undirected graph which is k-outconnected from r*. *Then* $\Gamma(r) - v$ *is a* $(k - 1)$ *-cover in G for any* $v \in \Gamma(r)$.

Throughout the paper, for an instance of a problem, we denote by $\mathcal G$ the input graph, and by *opt* the value of an optimal solution; *n* denotes the number of nodes in G , and *m* the number of edges in $\mathcal G$. We assume that $\mathcal G$ contains a feasible solution; otherwise our algorithms can be easily modified to output an error.

For the min-cost *k*-connected subgraph problem, we can assume that G is a complete graph, and that $c(e) \leq opt$ for every edge *e* of G. Indeed, let $G = (V, E)$ be a kconnected spanning subgraph of G and let $st \in E$. Let F_{st} be the edge set of cheapest k internally disjoint paths from *s* to *t* in G . Then $(G - st) + F_{st}$ is *k*-connected and, clearly, $c(F_{st}) \leq opt$. Note that F_{st} as above can be found in $O(n \log n(m + n \log n))$ time by a min-cost *k*-flow algorithm of [20] (the node version), and flow decomposition.

The main idea of most of our algorithms is to find a certain subgraph of $\mathcal G$ of low cost and with a small cardinality (*k*−1)-cover or augmenting edge set. For undirected graphs, such a subgraph is found by using the following two modifications of the 2-approximation algorithm for the one root problem. Each one of these modifications outputs a subgraph of G of cost $\leq 2opt$ (here *opt* is the optimal cost of a *k*-connected spanning subgraph of \mathcal{G}) and a ($k - 1$)-cover *U* of the subgraph.

The first modification is from [15], and we use it for the case of metric costs. Let \mathcal{G}_r be a graph constructed from G by adding an external node *r* and connecting it by edges of cost 0 to an arbitrary set R of at least k nodes in G . We compute a k -outconnected from r subgraph G_r of \mathcal{G}_r using the 2-approximation algorithm above, and output $G = G_r - r$. As was shown in [15], $c(G) \leq 2opt$. By Lemma 2.3 *R* is a $(k - 1)$ -cover of *G*. We refer to this modification as the *External Outconnected Subgraph Algorithm* (EOCSA). It can be implemented in $O(k^2n^2m)$ time using the algorithm of [11].

The second modification is from [2] and [7]. It finds a subgraph *G* and a node *r* such that *G* is *k*-outconnected from *r*, $|\Gamma_G(r)| = k$, and $c(G) \leq 2opt$. The time complexity of the algorithm is $O(k^2n^3m)$ for the deterministic version, and $O(k^2n^2m \log n)$ for the randomized one. We refer to the deterministic version as the *Outconnected Subgraph Algorithm* (OCSA), and for the randomized version as the *Randomized Outconnected Subgraph Algorithm* (ROCSA).

3. Min-Cost *k***-Connected Subgraphs**

3.1. *Undirected Graphs with Arbitrary Costs*. This section deals with undirected graphs only. It is not hard to get a *k*-approximation algorithm for the min-cost *k*-connected subgraph problem as follows. We execute OCSA (or ROCSA) to compute a corresponding root *r* and a subgraph *G* of *G*. Let $v \in \Gamma$ _{*G*}(*r*) be arbitrary, and let $R = \Gamma$ _{*G*}(*r*)*v*. Recall that, by Corollary 2.4, *R* is a $(k - 1)$ -cover in *G*. We then find an edge set *F* as in Corollary 2.2, so $G + F$ is *k*-connected and *F* is a forest on *R*. Finally, we replace every edge $st \in F$ by a cheapest set F_{st} of k internally disjoint paths between s and t in \mathcal{G} . By [2], $c(G)$ ≤ 2*opt*. Since $|R| = k - 1$, then $|F|$ ≤ $k - 2$. Thus the cost of the output subgraph is at most $2opt + (k - 2)opt = kopt$.

We can get a slightly better approximation ratio by executing OCSA and then iteratively increasing the connectivity by 1 until it reaches *k*.

Let *G* be an *l*-connected graph, $|V(G)| \ge l + 2$. We say that an *l*-tight set *X* is *small* if $|X|$ ≤ $|(n - l)/2|$. Clearly, if *X* is *l*-tight, then at least one of *X*, *X*[∗] is small. Thus *G* is $(l + 1)$ -connected if and only if it has no small *l*-tight sets. The following lemma is well known, e.g., see Lemma 1.2 of [13].

LEMMA 3.1. *Let X*, *Y be two intersecting small l-tight sets in an l-connected graph G*. *Then*

(i) $X \cap Y$ is a small *l*-tight set;

(ii) $X \cup Y$, $(X \cup Y)^*$ *are both l-tight, and at least one of them is small.*

COROLLARY 3.2. *In an l-connected graph G*, *no small l-tight set crosses a small l-core*. *Thus any two distinct small l-cores are disjoint*.

Let $\hat{v}_l(G)$ denote the number of small *l*-cores in *G*. Note that *G* is $(l + 1)$ -connected if and only if $\hat{v}_l(G) = 0$. We call an edge *e reducing for* G if $\hat{v}_l(G + e) \leq \hat{v}_l(G) - 1$.

LEMMA 3.3. *Let R be a cover of all small l-cores in an l-connected graph G*. *If R is not an l-cover*, *then there is a reducing edge for G*.

PROOF. Let *R* be a cover of all small *l*-cores in *G*. If *R* is not an *l*-cover, then there is an *l*-core *T* such that $T \cap R = \emptyset$. Note that *T* cannot be small, thus T^* is small. Let $S \subseteq T^*$ be an arbitrary *l*-core. Consider the collection D of all (inclusion) maximal small *l*-tight sets containing *S*. Note that $T^* \in \mathcal{D}$. By Lemma 3.1(ii) and the maximality of the sets

in D, exactly one of the following holds: (i) $|\mathcal{D}| = 1$ (so $\mathcal{D} = \{T^*\}\)$ or (ii) $|\mathcal{D}| \geq 2$, and the union of any two sets from D is an *l*-tight set which is not small.

If case (i) holds, then any edge $e = st$ where $s \in S$ and $t \in T$ is reducing for *G*, since in $G + st$ there cannot be a small *l*-tight set containing *S*. Assume therefore that case (ii) holds. Let *L* be a set in D crossing with T^* . Then, by Lemma 3.1(i), $L^* \cap T$ is tight and small, implying $L^* \cap T \cap R \neq \emptyset$. This contradicts our assumption that $T \cap R = \emptyset$. \Box

COROLLARY 3.4. *Any l-connected graph can be made* (*l* + 1)*-connected by adding* $\hat{\nu}_l(G)$ *edges.*

PROOF. If G has no reducing edge, we find an *l*-cover R of size $\hat{v}_l(G)$ by picking a node from every small *l*-core. By Lemma 3.3, *R* is an *l*-cover, and, by Corollary 2.2, we can find a forest *F* on *R* such that $G + F$ is $(l + 1)$ -connected. Else, we find and add a reducing edge, and recursively apply the same process on the resulting graph. \Box

THEOREM 3.5. *For the problem of making a* (*k* − 1)*-connected graph G k-connected* by adding a min-cost edge set, there exists a $(2 + \lfloor k/2 \rfloor)$ -approximation algorithm with *time complexity* $O(k^2n^3m)$ *deterministic (using OCSA) and* $O(k^2n^2m \log n)$ *randomized* (*using ROCSA*).

PROOF. At the first phase we reset the edge cost of edges of *G* to zero, and execute OCSA: let *H* be the output graph, let *r* be the corresponding root, and let $R = \Gamma_H(r)$. Now, consider the graph $J = H + G$, and let $l = k - 1$. Note that $\hat{v}_l(J) \leq \lfloor k/2 \rfloor$, since every *l*-tight set in *H*, and thus in *J*, contains at least two nodes from *R*, and $|R| = k$. At the second phase we make *J k*-connected by adding an edge set *F* as in Lemma 3.3, with $l = k - 1$. Now, $c(J) + c(F) \leq 2opt + \lfloor k/2 \rfloor opt$. The analysis of the time complexity is straightforward. \Box

One can get an approximation ratio slightly better than *k* by sequentially applying augmentation steps as above. That is, we execute OCSA, and from $l = \lceil k/2 \rceil + 1$ to $k-1$ increase the connectivity by 1. At every iteration, $\hat{v}_l(G) \leq \lfloor k/(k - l + 1) \rfloor$, where *G* denotes the current graph. By Corollary 3.4, *G* can be made $(l + 1)$ -connected by adding $\hat{v}_l(G)$ edges. The following lemma implies that increasing the number of internally disjoint paths between *s* and *t* from *l* to $l + 1$ costs at most $opt/(k - l)$.

LEMMA 3.6. *Let G be a subgraph of a graph* G *containing l internally disjoint paths from s to t*, *s*, *t* $\in V(G)$. *For an integer p let* $F^p \subseteq I = E(G) - E(G)$ *be an optimal edge set such that* $G + F^p$ *contains* $l + p$ *internally disjoint paths from s to t. Then* $c(F^1) \leq (1/p)c(F^p).$

PROOF. One can view G as a min-cost flow network with source s and sink t where all edges and nodes have unit capacity (the costs are determined by the costs of the edges in *I*, while the edges in *E* have cost zero). Apply the following standard two stage reduction. First, replace every undirected edge *e* by two opposite directed edges with the same ends and the same capacity and cost as *e*, to get a directed network. Second,

apply a standard conversion of node capacities to edge capacities: replace every node $v \in V - \{s, t\}$ by the two nodes v^+, v^- connected by the edge v^+v^- having the same capacity as v and cost zero, and redirect the heads of the edges entering v to v^+ and the tails of the edges leaving v to v^- .

In the new network, let \vec{F}^p be a min-cost $(l + p)$ -flow. Using flow decomposition, it is not hard to see that $c(\vec{F}^p) = c(F^p)$. In particular, $c(\vec{F}^0) = c(F^0) = 0$. Now consider the (fractional) $(l + 1)$ -flow $(1/p)\vec{F}^p + (1 - (1/p))\vec{F}^0$ which has cost $(1/p)c(\vec{F}^p) =$ $(1/p)c(F^p)$. Since the capacities are integral, there must be an integral $(l + 1)$ -flow \vec{F}^1 of at most the same cost, which proves the lemma. \Box

Lemma 3.6 implies that the approximation ratio of our algorithm is

$$
I(k) = 2 + \sum_{l = \lceil k/2 \rceil + 1}^{k-1} \left\lfloor \frac{k}{k-l+1} \right\rfloor \frac{1}{k-l} = 2 + \sum_{j=1}^{\lfloor k/2 \rfloor - 1} \frac{1}{j} \left\lfloor \frac{k}{j+1} \right\rfloor.
$$

It is easy to check that $I(k) < k$ for $k \ge 7$, but $\lim_{k \to \infty} (I(k)/k) = 1$.

THEOREM 3.7. *For the problem of making a k*0*-connected graph k-connected*, *there exists an I*($k - k_0$)*-approximation algorithm with time complexity O*($k^2 n^3 m$) *deterministic* (*using OCSA*) and $O(k^2n^2m \log n)$ *randomized* (*using ROCSA*).

3.2. *Directed Graphs with Arbitrary Costs*. We say that a directed graph is *kinconnected to r* if it contains *k* internally disjoint paths from any its nodes to *r*. Our algorithm is as follows:

- 1. Choose an arbitrary set $R = \{r_1, \ldots, r_k\} \subseteq V$ of *k* nodes, and for $i =$ 1,..., *k*, compute a min-cost *k*-outconnected from r_i subgraph G_i = (V, F_i) of $\mathcal G$.
- 2. Construct a graph \mathcal{G}_r by adding to $\mathcal G$ an external node r , and edges $r_i r$ of \cot zero, $i = 1, \ldots, k$.

Compute a minimum cost k -inconnected to r spanning subgraph G_r of G*r*.

3. Output $H = (G_r + F) - r$, where $F = \bigcup_{i=1}^{k} F_i$.

THEOREM 3.8. *There exists a* $(k + 1)$ -approximation algorithm with time complexity $O(k^3n^2m)$ for the directed min-cost k-connected subgraph problem.

PROOF. We need to show that the output graph *H* is *k*-connected and that $c(H) \leq$ $(k+1)$ *opt*.

If *H* is not *k*-connected, then *H* has an *l*-tight set *S* with $l \le k$. Since *H* is *k*outconnected from any node that belongs to *R*, we must have $S \cap R = \emptyset$. Thus, *S* is also *l*-tight in $G_r \cup F$. We obtain a contradiction since then G_r cannot contain *k* internally disjoint paths from any node $s \in S$ to *r*.

We now prove the approximation ratio. Clearly, $c(F_i) \leq opt$, $i = 1, ..., k$; thus $c(F) \leq kopt$. It remains to show that $c(G_r) \leq opt$. Let G^* be an optimal *k*-connected spanning subgraph of G. Extend G^* to a spanning subgraph G^*_r of \mathcal{G}_r by adding to G^*

the node *r* and the edges $r_i r$ of cost zero, $i = 1, ..., k$. It is easy to see that G_r^* is *k*-inconnected to *r*. Therefore, $c(G_r) \leq c(G_r^*) = c(G^*) = opt$. \Box

4. Metric *k***-Connected Subgraph Problem**

4.1. *Undirected Graphs with Metric Costs*. In this section we consider the metric mincost *k*-connected subgraph problem. We present a modification of the $(2+2(k-1)/n)$ approximation algorithm of Khuller and Raghavachari [15] to achieve a slightly better approximation guarantee of $(2 + (k - 1)/n)$.

Here is a short description of the algorithm of [15]. An *l-star* is a tree with *l* nodes and *l* −1 leaves; a node *s* is a *center* of the star if all the other nodes in the star are leaves. Note that a min-cost subgraph of G which is *l*-star with center v can be computed in $O(ln)$ time, and the overall cheapest *l*-star in $O(ln^2)$ time. The algorithm of [15] finds the node set *R* of a cheapest *k*-star, executes EOCSA, and adds to the graph *G* the edge set E' as calculated in Corollary 2.2 (that is, all the edges with both endnodes in R that are not in *G*). In [15] it is shown that $c(E') \leq 2(k-1)/n$.

In our algorithm, we make a slightly different choice of *R*, and add an extra phase of removing from E' the noncritical edges (that is, we add an edge set F as in Corollary 2.2). We show that for our choice of *R*, $c(F) \leq (k-1)/n$. We use the following lemma:

LEMMA 4.1. Let *J* be a complete graph on a node set *R* with node weights $w(v) \geq 0$, $v \in R$, and edge weights $w(uv) = w(u) + w(v)$, $u, v \in R$. If F is a forest on R, then

$$
w(F) \leq (|R|-2) \max\{w(v) : v \in R\} + \sum \{w(v) : v \in R\}.
$$

PROOF. Let $s \in R$ be a node satisfying $w(s) = \max\{w(v) : v \in R\}$. Among all forests *F* on *R* for which $w(F)$ is maximal, let F^* be one with the maximum number of edges incident to *s*. We claim that F^* is a star centered at *s* and thus for any forest F on R,

$$
w(F) \le w(F^*) = \sum \{w(s) + w(v) : v \in R - s\} = (|R| - 2)w(s) + \sum \{w(v) : v \in R\}
$$

holds. If not, then there is a node $v \neq s$, such that v is either an isolated node of F^* , or v is a leaf of F^* with $uv \in F^*$ and $u \neq s$. In both cases, $(F^* - uv) + sv$ is a forest of the weight at least $c(F^*)$, but with more edges incident to *s* than F^* ; this contradicts our choice of *F*[∗]. \Box

In our algorithm, we start by choosing the cheapest $(k + 1)$ -star J_{k+1} . Let v_0 be its center, and let its leaves be v_1, \ldots, v_k . Denote $w_0 = w(v_0) = 0$ and $w_i = w(v_i) = 0$ $c(v_0v_i)$, $i = 1, \ldots, k$. Without loss of generality, assume that $w_1 \leq w_2 \leq \cdots \leq w_k$. Since the costs are metric, $c(v_i v_j) \leq w(v_i v_j) = w_i + w_j$, $0 \leq i \neq j \leq k$. Let us delete v_k from the star. This results in a *k*-star J_k , and let *R* be its node set. For such an *R*, let *G* be the subgraph of G calculated by EOCSA. Recall that *R* is a $(k - 1)$ -cover in G. Let *F* be an edge set as in Corollary 2.2, so $G + F$ is *k*-connected, and *F* is a forest. The algorithm will output $G + F$. All this can be implemented in $O(k^2n^2m)$ time.

Let us analyze the approximation ratio. By [15], $c(H) \le 2opt$. We claim that $c(F) \le$ $((k-1/n)opt$. Indeed, similarly to [15], using the metric cost assumption it is not hard to show that $c(J_{k+1}) = \sum \{w(v) : v \in R\} + w_k \le (2/n)opt$. Thus, by our choice of J_k , $w_{k-1} = \max\{w(v) : v \in R\} \le (1/n)$ *opt*. Using this, the metric costs assumption, and Lemma 4.1 we get

$$
c(F) = \sum \{c(v_i v_j) : v_i v_j \in F\} \le \sum \{w_i + w_j : v_i v_j \in F\}
$$

\n
$$
\le (k-2)w_{k-1} + \sum \{w(v) : v \in R\} \le (k-2)w_{k-1} + \left(\frac{2}{n}opt - w_k\right)
$$

\n
$$
\le (k-3)w_{k-1} + \frac{2}{n}opt \le \frac{k-3}{n}opt + \frac{2}{n}opt = \frac{k-1}{n}opt.
$$

THEOREM 4.2. *There exists a* $(2 + (k - 1)/n)$ -approximation algorithm with time com*plexity* $O(k^2n^2m)$ *for the undirected metric min-cost k-connected subgraph problem.*

4.2. *Directed Graphs with Metric Costs*. In this section we consider directed graphs only. We say that a pair (R^-, R^+) is an *l*-cover in a directed graph *G* if R^- covers all the l' -tight sets in *G* and R^+ covers all the l' -tight sets in the graph obtained from *G* by reversal of its arcs, for any $l' \le l$. It is easy to see that if (R^-, R^+) is a $(k - 1)$ -cover in *G*, and $E' = \{uv : u \in R^-, v \in R^+\}$, then $G + E'$ is *k*-connected.

A v → *l-star* is a directed tree rooted at v, with *l* nodes and *l* −1 leaves; a v ← *l-star* is a graph where reversal of its edges results in a $v \rightarrow l$ -star. Let v be the node of \mathcal{G} . Among all subdigraphs of G which are $v \to l$ -stars (resp., $v \leftarrow l$ -stars), let $X_l^-(v)$ (resp., $X_l^+(v)$) be the cheapest one. Our algorithm for directed graphs is as follows:

1. Find a node v_0 for which $c(X_{k+1}^-(v)) + c(X_{k+1}^+(v))$ is minimal, and set $u_0 = v_0$.

Let $R^- = \{v_1, \ldots, v_k\}$ be the leaves of $J_{k+1}^- = X_{k+1}^- (v_0)$, and $R^+ =$ $\{u_1, \ldots, u_k\}$ be the leaves of $J_{k+1}^+ = \tilde{X}_{k+1}^+(u_0)$, where $c(v_0v_i) \leq$ $c(v_0v_{i+1})$ and $c(u_iu_0) \leq c(u_{i+1}u_0), i = 1, \ldots, k-1.$ Set $J_k^- = X_{k+1}^- (v_0) - v_k$, $J_k^+ = X_{k+1}^+ (v_0) - u_k$.

- 2. Add a node *r* to G and edges $v_i r, r u_i$ of cost zero, $i = 0, \ldots, k 1$, obtaining a graph \mathcal{G}_r . Compute two spanning subgraphs of \mathcal{G}_r : an optimal *k*-outconnected from *r*, say G_r^- , and an optimal *k*-inconnected to *r*, say G_r^+ .
- 3. The graph $G + E'$ is *k*-connected, where $G = (G_r^- + G_r^+) r$ and $E' = \{uv : u \in R^{-}, v \in R^{+}\}.$ Output $H = G + F$, where $F \subseteq E'$, and all the edges in *F* are critical with respect to *k*-connectivity in *H*.

The following directed counterpart of Lemma 2.3 implies that the pair $(R⁻, R⁺)$ is a $(k - 1)$ -cover in *G*, and thus the algorithm correctly outputs a *k*-connected graph *H*.

LEMMA 4.3. Let G_r be k-inconnected to r, let $R = \{v \in V : r \in \Gamma(v)\}\)$, and let S *be an l-tight set in* G_r *such that* $r \notin S$. If $r \in \Gamma(S)$, *then* $|S \cap R| \geq k - l + 1$, *and if r* ∉ $\Gamma(S)$, *then* $l \geq k$. *Thus R covers all the l-tight sets in* $G_r - r$, $l \leq k - 1$.

PROOF. Let $s \in S$, and consider a set of k internally disjoint paths from s to r. Let $R' = \{v_1, \ldots, v_k\} \subseteq R$ be the nodes of these paths preceding *r*. If $r \in \Gamma(S)$, then at most *l* − 1 nodes from *R'* may not belong to *S*; this implies $|R \cap S| \geq |R' \cap S| \geq k - (l - 1)$. Clearly, if $r \notin \Gamma(S)$ and $l \lt k$ there cannot be *k* internally disjoint paths from *s* to *r*, by Menger's theorem. The last statement is obvious. П

Let us analyze the approximation ratio, using the notation as in the algorithm. Similarly to the proof of Theorem 3.8, one can show that $c(G) \leq c(G_r^-) + c(G_r^+) \leq 2opt$.

We claim that $c(F) \leq (k/n)opt$. Construct a bipartite graph $J = (A, B, E(J))$ with weights on the nodes as follows. The node parts are $A = \{u_0, \ldots, u_{k-1}\}\$ and $B = \{v_0, \ldots, v_{k-1}\}.$ The node weights are $w(u_i) = c(u_0u_i), w(v_i) = c(v_0v_i)$, and $w(u_0) = w(v_0) = 0$. To every directed edge $e = u_i v_j$ with $u_i \in R^-$, $v_j \in R^+$ there naturally corresponds an undirected edge $e' = u_i v_j$ with $u_i \in A$, $v_j \in B$. Moreover, since the costs are metric, for any $u_i \in R^-$ and $v_i \in R^+$ we have $c(u_i v_i) \leq w(v_i v_i)$ $w(u_i) + w(v_i)$.

We need some definitions and facts to continue. An even length sequence of edges $C =$ $(v_1v_2, v_3v_2, v_3v_4, \ldots, v_{2q-1}v_{2q}, v_1v_{2q})$ of a directed graph *G* is called an *alternating cycle*; the nodes $v_1, v_3, \ldots, v_{2q-1}$ are *C-out nodes*, and v_2, v_4, \ldots, v_{2q} are *C-in nodes*.

THEOREM 4.4 [19]. *In a k-connected directed graph*, *any cycle C in which every edge is critical with respect to k-connectivity contains a C-in node of indegree k*, *or a C-out node of outdegree k*.

Theorem 4.4 implies that if the indegree and the outdegree of every node in $V(G)$ is at least $k - 1$, and if *F* is an inclusion minimal edge set such that $G + F$ is *k*-connected, then *F* contains no alternating cycle. Note that $F \subseteq \{uv : u \in R^{-}, v \in R^{+}\}\)$ has no alternating cycle if and only if the corresponding edge set F' in J is a forest. We also need the following directed counterpart of Lemma 4.1 (the proof is omitted):

LEMMA 4.5. Let $J = (A, B, E(J))$ be a complete bipartite directed graph with non*negative node weights* $w(v) \geq 0$, $v \in A \cup B$, *and edge weights* $w(ab) = w(a) + w(b)$, $a \in A, b \in B$. If $F \subseteq E(J)$ *is a forest, then*

$$
w(F) \le (|B| - 1) \max\{w(a) : a \in A\} + (|A| - 1) \max\{w(b) : b \in B\}
$$

+
$$
\sum \{w(v) : v \in A \cup B\}.
$$

We set $w_i = w(u_i) + w(v_i)$, $i = 0, \ldots, k$. Similarly to [15], one can show that *c*(*J*_{$k+1$} + *J*_{$k+1$}) ≤ (2/*n*)*opt*. Thus, w_{k-1} ≤ (1/*n*)*opt*, by our choice of *J*_{k}⁻, *J*_{k}⁺. Now, similarly to the undirected case we get

$$
c(F) = \sum \{c(v_i v_j) : v_i v_j \in F\} \le \sum \{w_i + w_j : v_i v_j \in F\}
$$

\n
$$
\le (k-1)w_{k-1} + \sum_{i=0}^{k-1} w_i \le (k-1)w_{k-1} + \left(\frac{2}{n}opt - w_k\right)
$$

\n
$$
\le (k-2)w_{k-1} + \frac{2}{n}opt \le \frac{k-2}{n}opt + \frac{2}{n}opt = \frac{k}{n}opt.
$$

THEOREM 4.6. *There exists a* $(2 + k/n)$ -approximation algorithm with time complexity $O(k^2n^2m)$ for the directed metric min-cost k-connected subgraph problem.

5. Min-Cost 6,7-Connected Subgraphs. This section presents our algorithms for the min-cost 6,7-connected (undirected) subgraph problems. The algorithm itself is simple, and the main difficulty is to show that for $k = 6, 7$ we can make the output graph of OCSA *k*-connected by adding an edge set *F* with $|F| \le 2$. A similar approach was used previously in [7] for $k = 4, 5$ with $|F| \leq 1$:

LEMMA 5.1 [7, Lemma 4.5]. *Let G be a graph which is k-outconnected from r, k* \in ${4, 5}$. *If* $|\Gamma_G(r)| = k$, then there exists a pair of nodes s, $t \in \Gamma_G(r)$ such that $G + st$ is *k-connected*.

In fact, Lemma 5.1 can be deduced from Lemma 2.3 and the following lemma:

LEMMA 5.2 [13, Lemma 3.2]. *Let G be an l-connected graph such that the maximum number of pairwise disjoint l-cores in G is exactly two*. *Then the family of l-cores of G consists of two disjoint sets* $S, T \subset V(G)$ *, and for any l-tight set* Z *of* G *either* $S \subseteq Z$ *and* $T \subseteq Z^*$ *or* $T \subseteq Z$ *and* $S \subseteq Z^*$.

Our algorithm for $k = 6, 7$ is based on the following lemma:

LEMMA 5.3. Let G be k-outconnected from $r, k \in \{6, 7\}$. If $|\Gamma_G(r)| \in \{6, 7\}$, then *there exists two pairs of nodes* $\{s_1, t_1\}, \{s_2, t_2\} \subset \Gamma_G(R)$ *such that* $G + \{s_1t_1, s_2t_2\}$ *is k-connected*.

PROOF. Let *G* be as in the lemma, and let $k \in \{6, 7\}$. In the proof, let the default subscript of the functions Γ be *G*. For convenience, we denote $R = \Gamma(r)$. Note that, by Lemma 2.3, *G* is $(k-2)$ -connected, and that if *S* is $(k-2)$ -tight and *X* is $(k-1)$ -tight, then $|S \cap R| > 3$, $|X \cap R| > 2$, and $r \in \Gamma(S) \cap \Gamma(X)$. In particular, since $|R| < 7$, we have:

PROPOSITION 5.4. *If S and T are two disjoint* $(k-2)$ -tight sets, then any $(k-1)$ - or $(k-2)$ -tight set intersects at least one of S, T.

In what follows, note that in any graph $G = (V, E)$ for any two sets $X, Y \subset V$,

 $|\Gamma(X)|+|\Gamma(Y)| > |\Gamma(X^* \cap Y)|+|\Gamma(X \cap Y^*)|,$

$$
|\Gamma(X \cap Y)| \leq |\Gamma(X) - Y^*| + |\Gamma(Y) \cap X|
$$

hold.

We now establish several properties of $(k - 1)$ - and $(k - 2)$ -cores for a graph *G* as in Lemma 5.3 using inequalities (1) – (3) .

LEMMA 5.5. *Let S be a* (*k* −2)*-core and let X be an arbitrary* (*k* −1)*-tight set crossing S*. *Then at least one of the following holds*:

- *X* ∩ *S is* (*k* − 1)*-tight and X*[∗] ∩ *S*[∗] *is* (*k* − 2)*-tight*; *or*
- *X* ∩ *S*[∗] *is* (*k* − 2)*-tight and X*[∗] ∩ *S is* (*k* − 1)*-tight*.

PROOF. If $X^* \cap S^* = (X \cup S)^* \neq \emptyset$, then $|\Gamma(X \cup S)| \geq k - 2$. By the minimality of *S*, $|Γ(X ∩ S)| ≥ k − 1$. Using inequality (1) we obtain

$$
(k-1) + (k-2) = |\Gamma(X)| + |\Gamma(S)| \ge |\Gamma(X \cap S)| + |\Gamma(X \cup S)| \ge (k-1) + (k-2).
$$

If $X \cap S^*$, $X^* \cap S \neq \emptyset$, then $|\Gamma(X \cap S^*)| > k - 2$. By the minimality of S , $|\Gamma(X^* \cap S)| >$ $k - 1$. Then using (2) we obtain

$$
(k-1) + (k-2) = |\Gamma(X)| + |\Gamma(S)| \ge |\Gamma(X \cap S^*)| + |\Gamma(X^* \cap S)| \ge (k-2) + (k-1).
$$

In both cases, equality holds everywhere, and the claim of the lemma holds.

Assume now that $X^* \cap S^* = \emptyset$. Then $X^* \cap S \neq \emptyset$, since otherwise X^* is a $(k-1)$ -tight set disjoint to both *S*, *S*[∗], contradicting Proposition 5.4. Thus we must have $X^* \cap S \neq \emptyset$ and $X \cap S^* = \emptyset$. Then

$$
|\Gamma(X) - S^*| = |\Gamma(X)| - |S^*| \le |\Gamma(X)| - |S^* \cap R| \le (k - 1) - 3.
$$

Since $|\Gamma(S)| = k - 2 \le 5$, then $|\Gamma(S) \cap X| \le 2$ or $|\Gamma(S) \cap X^*| \le 2$. If $|\Gamma(S) \cap X| \le 2$, then, by (3) ,

$$
|\Gamma(X \cap S)| \le |\Gamma(X) - S^*| + |\Gamma(S) \cap X| \le (k - 4) + 2 = k - 2.
$$

This contradicts the minimality of *S*. The contradiction for the case $|X^* \cap \Gamma(S)| \le 2$ is obtained similarly. \Box

Combining the last lemma with Proposition 5.4 we obtain:

COROLLARY 5.6. *If G is not* $(k-1)$ *-connected, then any* $(k-1)$ *-core either contains exactly one* (*k* − 2)*-core*, *or is contained in such a core*.

LEMMA 5.7. *Let X*, *Y be* (*k* − 1)*-cores that cross*. *Then exactly one of the following holds*:

- (i) *at least one of the sets* $X \cap Y$, $X \cap Y^*$, $X^* \cap Y$, *or* $X \cup Y$ *is* $(k-2)$ *-tight*, *or*
- (ii) *G is* (*k* − 1)*-connected*, *X* ∩ *Y is k-tight*, *and the only* (*k* − 1)*-cores in G are X*, *Y*, *X*[∗], *Y* [∗].

PROOF. Assume $X^* \cap Y^* = (X \cup Y)^* \neq \emptyset$ (see Figure 1(a)). Then $|\Gamma(X \cup Y)| \geq k - 2$, and, by the minimality of *X*, $|\Gamma(X \cap Y)| \neq k - 1$. Now, by (1),

$$
|\Gamma(X \cap Y)| + |\Gamma(X \cup Y)| \le |\Gamma(X)| + |\Gamma(Y)| = 2k - 2,
$$

which implies that $|\Gamma(X \cap Y)| = k - 2$ or $|\Gamma(X \cup Y)| = k - 2$.

Approximating Node Connectivity Problems via Set Covers 87

Fig. 1. Illustration to the proof of Lemma 5.7.

Similar argument applies with (2) for the case when both $X \cap Y^*$, $X^* \cap Y$ are nonempty and gives for this case that $|\Gamma(X \cap Y^*)| = k - 2$ or that $|\Gamma(X^* \cap Y)| = k - 2$.

Assume therefore that $X^* \cap Y^* = \emptyset$, and that at least one of $X^* \cap Y$, $X \cap Y^*$ is also empty. Without loss of generality we consider the case $X \cap Y^* = \emptyset$ (see Figure 1(b)). Then $Y^* \subset \Gamma(X)$. Since $|Y^* \cap R| \geq 2$, we must have $|\Gamma(X) - Y^*| \leq k - 3$.

Now, assume that *X* ∩ *Y* is not ($k - 2$)-tight. Then, by the minimality of *Y*, we must have $|\Gamma(X \cap Y)| \geq k$. Applying inequality (3) we get

$$
k \leq |\Gamma(X \cap Y)| \leq |\Gamma(X - Y^*)| + |\Gamma(Y) \cap X| \leq (k - 3) + |\Gamma(Y) \cap X|,
$$

so $|Γ(Y) ∩ X| ≥ 3$. This implies

$$
|\Gamma(Y) \cap X^*| = (k-1) - |\Gamma(Y) \cap X| - |\Gamma(Y) \cap \Gamma(X)| \le (k-1) - 3 - 1 \le 2.
$$

Now, if $X^* \cap Y$ is not $(k-2)$ -tight, then $X^* \cap Y = \emptyset$. Otherwise, applying (3) on X^* and *Y* we get a contradiction to the minimality of *Y* :

$$
|\Gamma(X^* \cap Y)| \le |\Gamma(X^*) - Y^*| + |\Gamma(Y) \cap X^*| \le |\Gamma(X) - Y^*| + |\Gamma(Y) \cap X^*| \le (k - 3) + 2.
$$

From the previous discussion we conclude that if the first case of the lemma does not hold, then the following holds (see Figure 1(c)): all the three sets $X \cap Y^*$, $X^* \cap Y$, $X^* \cap Y^*$ are empty; $|X^*| = |Y^*| = 2$, and thus $X^*, Y^* \subseteq R$ and X^*, Y^* are $(k-1)$ -cores; and $|\Gamma(Y) \cap X| = |\Gamma(X) \cap Y| = 3$ and thus $|X| \ge 4$ and $|Y| \ge 4$. (Note that then also $k = 7$ and $\Gamma(Y) \cap \Gamma(X) = \{r\}$.) From that it is easy to see that $\Gamma(X^* \cup Y^*) = \Gamma(X \cap Y)$, so *X*[∗] ∪ *Y*[∗] is *k*-tight. We now prove that then the second case of the lemma must hold.

First, we show that *G* is $(k - 1)$ -connected. If not, then by Corollary 5.6 there is a (*k* − 2)-core *S* containing *X*[∗]. Using Lemma 5.5 and Proposition 5.4, it is not hard to see that we must have $S = X^* \cup Y^*$. This is a contradiction, since $|\Gamma(X^* \cup Y^*)| = k$.

Second, we prove that if *Z* is a $(k - 1)$ -core in *G*, then *Z* is one of *X*, *Y*, *X*^{*}, *Y*^{*}. Otherwise, *Z* crosses at least one of *X*, *Y*, *X*^{*}, *Y*^{*}. Since *G* is $(k - 1)$ -connected, case (i) of the lemma does not hold, and we conclude that $|Z^*| = 2$. However, then Z^* crosses at least one of *X*, *Y*, *X*^{*}, *Y*^{*}, and, by the previous discussion, we must have $|Z^*| \geq 4$, \Box which is a contradiction.

We are now ready to finish the proof of Lemma 5.3.

Assume first that *G* is $(k - 1)$ -connected. We will show that then there is a $(k - 1)$ cover $U \subset R$ with $|U| \leq 3$. Then the statement is a straightforward consequence from Corollary 2.2. Recall that the maximum number of pairwise disjoint cores in *G* is at most three. Thus, if no two $(k - 1)$ -cores cross, then picking one node in *R* from every (*k* −1)-core gives a (*k* −1)-cover as required. If there exists a pair *X*, *Y* of (*k* −1)-cores that cross, then we are in case (ii) of Lemma 5.7. In particular, $X \cap Y$ is k -tight, thus by Lemma 2.3 *X* ∩ *Y* ∩ *R* \neq Ø. Then $U = \{x, y, z\}$, where $x \in X^* ∩ R$, $y \in Y^* ∩ R$, and $z \in X \cap Y \cap R$ is a $(k-1)$ -cover as required.

Assume now that *G* is not $(k - 1)$ -connected. Let *S*, *T* be the $(k - 2)$ -cores in *G* (as in Lemma 5.2). Let S (resp., T) denote all the $(k-1)$ -cores contained in S (resp., in T). Note that there are at most two disjoint sets in S , and that, by Lemma 5.7, for any two sets in S that cross, their union is S . A similar statement holds for T .

LEMMA 5.8. *Let* C *be a collection of subsets of S containing at most two disjoint subsets*, *and let U cover* C. If, *for any* $X, Y \in \mathcal{C}$ *that cross,* $X \cup Y = S$ *holds, then there is* $U' \subseteq U$ *with* $|U'| \leq 2$ *that covers* \mathcal{C} *.*

PROOF. It is sufficient to prove the statement under the assumption that any two sets in C are either disjoint or cross. The proof is by induction on $|\mathcal{C}|$. For $|\mathcal{C}| \leq 3$ the statement is clear.

Assume now that $|C| \geq 4$. Let $X_1, X_2, X_3 \in C$ be arbitrary. Then any two of *X*₁, *X*₂, *X*₃ cross. Let *Z* = *X*₁ ∩ *X*₂ ∩ *X*₃, and let *X* ∈ $\mathcal{C}\backslash\{X_1, X_2, X_3\}$. By the assumption of the lemma, $(X_i \cap X_j) \setminus Z \subset X$ for $i \neq j = 1, 2, 3$, implying $S \setminus Z \subseteq X$. Now, if $U\setminus Z \neq \emptyset$, let $u \in U\setminus Z$. Then *u* covers all the sets in C except for exactly one of X_1, X_2, X_3 . Let $v \in U$ be a node that covers the set not covered by *u*. Then $\{u, v\}$ is a cover as required. If $U \subseteq Z$, then let $C' = C \setminus \{X_1, X_2, X_3\}$. Note that C' satisfies the conditions of the lemma. By the induction hypothesis, C' has a cover U' as in the lemma. However, then U' also covers C , and the proof is complete. \Box

By Lemma 5.8, there is a pair { s_1, s_2 } \in *R* that covers *S*, and there is a pair { t_1, t_2 } \in *R* that covers T .

LEMMA 5.9. *The graph* $G + \{s_1t_1, s_2t_2\}$ *is k-connected.*

PROOF. It is straightforward to see (via Lemma 5.2) that adding the edges s_1t_1 , s_2t_2 adds at least two neighbors to any $(k-2)$ -tight set. We will show that adding these edges also adds at least one neighbor to any $(k - 1)$ -tight set *Z*. If *Z* contains one of *S*, *T* and *Z*[∗] contains the other, then the claim is straightforward. Else, by Corollary 5.6, *Z* or *Z*[∗] is contained in one of *S*, *T*, say *Z* ⊂ *S*. Then *T* ⊂ *Z*^{*}, and the claim again follows. \Box

The proof of Lemma 5.3 is done.

 \Box

Two pairs $\{s_1, t_1\}$, $\{s_2, t_2\}$ as in Lemma 5.3 can be found in $O(m)$ time, e.g., by exhaustive search. Combining this and Lemma 5.3 we obtain:

THEOREM 5.10. *For* $k = 6, 7$ *, there exists a 4-approximation algorithm for the mincost k-connected subgraph problem. The time complexity of the algorithm is* $O(n^3m)$ *deterministic* (*using OCSA*) *and O*(*n*²*m* log *n*) *randomized* (*using ROCSA*).

6. Fast Algorithm for $k = 4$ **.** In this section we present a 3-approximation algorithm for $k = 4$ with complexity $O(n^4)$. This improves the previously best known time complexity $O(n^5)$ [7]. We call a subset *R* of nodes of a graph *G k*-connected if for every $u, v \in R$ there are *k* internally disjoint paths between *u* and *v* in *G*. The following theorem is due to Mader.

THEOREM 6.1 [18]. *Any graph on* $n > 5$ *nodes with minimal degree at least k,* $k > 2$ *, contains a k-connected subset R with* $|R| = 4$.

It is known that the problem of finding a min-cost spanning subgraph with minimal degree at least *k* is reduced to the weighted *b*-matching problem. Using the algorithm of Anstee [1] for the latter problem, such a subgraph can be found in $O(n^2m)$ time. We use these observations to obtain a 3-approximation algorithm for $k = 4$ as follows. The algorithm has two phases. At phase 1, among the subgraphs of $\mathcal G$ with minimal degree 4, we find an optimal one, say *G*. Then we find in *G* a 4-connected subset *R* with $|R| = 4$. At phase 2, we execute EOCSA on *R*, and let *F* be its output. Finally, the algorithm will output $G + F$.

THEOREM 6.2. *There exists a* 3*-approximation algorithm for the min-cost* 4*-connected subgraph problem, with time complexity* $O(n^2m + nT(n)) = O(n^4)$ *, where* $T(n)$ *is the time required for multiplying two n* × *n matrices*.

PROOF. The correctness follows from Theorem 6.1, Lemma 2.3(i), and Corollary 2.2. To see the approximation ratio, recall that $c(F) \leq 2opt$, and note that $c(G) \leq opt$.

We now prove the time complexity. The complexity of each step, except of finding a 4-connected subset in *G* is $O(n^2m)$. Let us show that finding a 4-connected subset can be done in $O(n^2m + n(T(n)))$ time. Using the Ford–Fulkerson max-flow algorithm, we construct in $O(n^2m)$ time the graph $J = (V, E')$, where $(s, t) \in E'$ if and only if there are four internally disjoint paths between *s* and *t* in *G*. Now, *R* is a 4-connected subset in *G* if and only if the subgraph induced by *R* in *J* is a complete graph. Thus, finding *R* as above is reduced to finding a complete subgraph on four nodes in *J*. This can be implemented as follows. Observe that $R = \{s, u, v, w\}$ induces a complete subgraph in *J* if and only if $\{u, v, w\}$ form a triangle in the subgraph induced by $\Gamma_J(s)$ in *J*. It is known that finding a triangle in a graph is reduced to computing the square of the incidence matrix of the graph. The best known time bound for that is $O(n^{2.376})$ [6], and the time complexity follows. \Box

7. Metric Multiroot Problem: Cases $k < 7$ **.** In this section we consider the metriccost multiroot problem. Note that here G is a complete graph, and every edge in G has cost at most *opt*/*k*. This is since any feasible solution contains at least *k* edge disjoint paths between any two nodes *s* and *t*, and, by the metric cost assumption, each one of these paths has cost $\geq c(st)$. For $k \leq 7$, we give an algorithm with approximation ratio $2 + \lfloor (k-1)/2 \rfloor / k < 2.5$. This improves the previously best known approximation ratio 3 [3]. Our algorithm combines some ideas from [3], [2], and [7], and some results from the previous section.

Splitting off two edges *ru*,*r*v means deleting *ru* and *r*v and adding a new edge *u*v.

THEOREM 7.1 [3, Theorem 17]. Let $G = (V, E)$ be a graph which is k-outconnected *from a root node r* \in *V*, *and suppose that* $|\Gamma_G(r)| \geq k + 2$ *and every edge incident to r is critical with respect to k-outconnectivity from r*. *If G is not k-connected*, *then there exists a pair of edges incident to r that can be split off preserving k-outconnectivity from r*.

Consider now an instance of a metric cost multiroot problem, and let*r* be a node with the maximum requirement *k*. As was pointed out in [3], Theorem 7.1 implies that we can produce a spanning subgraph *G* of *G*, such that *G* is *k*-outconnected from *r*, $c(G) < 2opt$, and *G* is *k*-connected, or $|\Gamma_G(r)| \in \{k, k+1\}$. To handle the cases $k = 5, 7$, we show that by adding one edge, we can reduce the case $|\Gamma(r)| = k + 1$ to the already familiar case $|\Gamma(r)| = k$.

LEMMA 7.2. Let $G = (V, E)$ be k-outconnected from a root node $r \in V$, let $R =$ $\Gamma_G(r)$, and let rx be critical with respect to k-outconnectivity from r. If $|R| > k + 1$, *then there exists a node y* \in *R such that* $(G - rx) + xy$ *is k-outconnected from r.*

PROOF. Let $G = (V, E)$ be a graph which is *k*-outconnected from a root node $r \in V$. Following [3], for $X \subseteq V - r$ let $g(X) = |\Gamma_{G-r}(X)| + |X \cap R|$. It is easy to see that G is *k*-outconnected from *r* if and only if $g(X) \geq k$ for every $X \subseteq V - r$. We say that a set *X* ⊆ *V* − *r* is *critical* if $g(X) = k$. Thus, *rx* is critical with respect to *k*-outconnectivity from *r* if and only if there is a critical set containing *x*. In Lemma 6 of [3] it was shown that:

The intersection and union of two intersecting critical sets are both critical. *Thus for every critical edge r x there is unique maximal critical set containing x*.

Now, assume that *r x* is critical with respect to *k*-outconnectivity from *r*, and let *X* be the maximal critical set containing *x*. We claim that if $R \cap X^* \neq \emptyset$, then for any *y* ∈ $R \cap X^*$, it holds that $(G - rx) + xy$ is *k*-outconnected from *r*. Indeed, if $(G - rx) + xy$ is not *k*-outconnected from *r*, then there is a critical set X' with $x \in X'$, $y \in \Gamma(X')$. However, then we must have $X' \subseteq X$. As a consequence, we must have $y \in X + \Gamma(X)$, contradicting that $y \in X^*$.

Now, suppose $|R| \geq k + 1$. We claim that then $R \cap X^* \neq \emptyset$. Else, $R \subseteq X \cup \Gamma(X)$. However, then we must have $g(X) \ge |R| \ge k + 1$, contradicting that $g(X) = k$. \Box

LEMMA 7.3. *Let G be a graph which is k-outconnected from r*, 3 ≤ *k* ≤ 7, *and suppose that* $|\Gamma_G(r)| \in \{k, k+1\}$. *Then there is an edge set* $F \subseteq \{uv : u \neq v \in \Gamma_G(r)\}$ *such that* $G + F$ *is k-connected and* $|F| \leq \lfloor (k-1)/2 \rfloor$.

PROOF. For $k \leq 4$, this is a straightforward consequence from Lemmas 2.3 and 5.2. For $k = 6$, this is a consequence from Lemma 5.3. For $k = 5, 7$, it can be easily deduced using Lemma 7.2 and Lemma 5.1 for $k = 5$ or Lemma 5.3 for $k = 7$. \Box

Using Lemma 7.3 and the fact that for every $s, t \in V$, $c(st) \leq opt/k$ holds, we deduce:

THEOREM 7.4. For the metric cost multiroot problem with $3 \leq k \leq 7$, there exists a $(2 + \lfloor (k-1)/2 \rfloor / k)$ -approximation algorithm with time complexity $O(n^3m)$.

Acknowledgment. We thank an anonymous referee for his useful comments.

References

- [1] R. P. Anstee, A polynomial time algorithm for *b*-matchings: an alternative approach, *Information Processing Letters* **24** (1987), 153–157.
- [2] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, A 2-approximation algorithm for finding an optimum 3-vertex connected spanning subgraph, *Journal of Algorithms* **32** (1999), 21–30.
- [3] J. Cheriyan, T. Jord´an, and Z. Nutov, On rooted node-connectivity problems, *Algorithmica* **30** (special issue on APPROX '98), (2001), 353–375.
- [4] J. Cheriyan, S. Vempala, and A. Vetta, An approximation algorithm for the minimum cost *k*-vertex connected subgraph, Manuscript, July 2001.
- [5] J. Cheriyan, S. Vempala, and A. Vetta, Network design via iterative rounding of setpair relaxations, Manuscript, October 2001.
- [6] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, *Journal of Symbolic Computation* **9** (1990), 251–280.
- [7] Y. Dinitz and Z. Nutov, A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs, *Journal of Algorithms* **32** (1999), 31–40.
- [8] A. Frank, Connectivity augmentation problems in network design, in *Mathematical Programming*, *State of the Art* 1994, J. R. Birge and K. G. Murty, eds., The University of Michigan Press, Ann Arbor, MI, 1994, pp. 34–63.
- [9] A. Frank and E. Tardos, An application of submodular flows, ´ *Linear Algebra and its Applications* **114**/**115** (1989), 329–348.
- [10] G. N. Frederickson and J. Jájá, On the relationship between the biconnectivity augmentation and traveling salesman problems, *Theoretical Computer Science* **19**(2) (1982), 189–201.
- [11] H. N. Gabow, A representation for crossing set families with application to submodular flow problems, *Proceedings of the* 4*th Annual ACM–SIAM Symposium on Discrete Algorithms*, 1993, pp. 202–211.
- [12] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,*Combinatorica* **21**(1) (2001), 39–60.
- [13] T. Jord´an, On the optimal vertex-connectivity augmentation, *Journal of Combinatorial Theory*, *Series B* **63** (1995), 8–20.
- [14] S. Khuller, Approximation algorithms for finding highly connected subgraphs, in *Approximation Algorithms for NP-Hard Problems*, D. S. Hochbaum, ed., PWS, Boston, MA, 1996, pp. 236–265.
- [15] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connectivity problems, *Journal of Algorithms* **21** (1996), 434–450.
- [16] G. Kortsarz and Z. Nutov, Improved approximation algorithm for *k*-node connected subgraphs via critical graphs, Manuscript, February 2003.
- [17] W. Mader, Ecken vom Grad *n* in minimalen *n*-fach zusammenhängenden Graphen, *Archive der Mathematik* **23** (1972), 219–224.
- [18] W. Mader, Degree and local connectivity in finite graphs, *Recent Advances in Graph Theory* (*Proceedings of the Second Czechoslovak Symposium*, *Prague*, 1974), Academia, Prague, 1975, pp. 341–344.
- [19] W. Mader, Minimal *n*-fach in minimalen n-fach zusammenhängenden Digraphen, *Journal of Combinatorial Theory*, *Series B*, **38** (1985), 102–117.
- [20] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, *Operations Research* **41** (1993), 338–350.
- [21] R. Ravi and D. P. Williamson, An approximation algorithm for minimum-cost vertex-connectivity problems, *Algorithmica* **18** (1997), 21–43.
- [22] R. Ravi and D. P. Williamson, Erratum: an approximation algorithm for minimum-cost vertexconnectivity problems, Manuscript, July 2001.