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Fast Concurrent Access to Parallel Disks

Peter Sanders,1 Sebastian Egner,2 and Jan Korst2

Abstract. High performance applications involving large data sets require the efficient and flexible use of
multiple disks. In an external memory machine with D parallel, independent disks, only one block can be
accessed on each disk in one I/O step. This restriction leads to a load balancing problem that is perhaps the
main inhibitor for the efficient adaptation of single-disk external memory algorithms to multiple disks. We
solve this problem for arbitrary access patterns by randomly mapping blocks of a logical address space to
the disks.

We show that a shared buffer of O(D) blocks suffices to support efficient writing. The analysis uses
the properties of negative association to handle dependencies between the random variables involved. This
approach might be of independent interest for probabilistic analysis in general.

If two randomly allocated copies of each block exist, N arbitrary blocks can be read within �N/D� + 1
I/O steps with high probability. The redundancy can be further reduced from 2 to 1 + 1/r for any integer r
without a big impact on reading efficiency. From the point of view of external memory models, these results
rehabilitate Aggarwal and Vitter’s “single-disk multi-head” model [1] that allows access to D arbitrary blocks
in each I/O step. This powerful model can be emulated on the physically more realistic independent disk model
[2] with small constant overhead factors. Parallel disk external memory algorithms can therefore be developed
in the multi-head model first. The emulation result can then be applied directly or further refinements can
be added.

Key Words. Randomized algorithm, Scheduling, Load balancing, External memory.

1. Introduction. Despite ever larger internal memories, even larger data sets arise
in important applications like video-on-demand, data mining, electronic libraries, ge-
ographic information systems, computer graphics, or scientific computing. Often, no
size limits are in sight. In this context, it is necessary to use multiple disks in parallel
efficiently in order to achieve high bandwidth.

This situation can be modeled using the one processor version of Vitter and Shriver’s
parallel disk model: A processor with M words of internal memory is connected to D
disks. In one I/O step, each disk can read or write one block of B words. For simplicity,
we also assume that I/O steps are either pure read steps or pure write steps (Section 6.1
gives a more detailed discussion).

Efficient single-disk external memory algorithms are available for a wide spectrum
of applications (e.g., [3]), yet parallel disk versions are not always easy to derive. We
face two main tasks: firstly to expose enough parallelism so that at least D blocks can
be processed concurrently and secondly to ensure that the blocks to be accessed are
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evenly distributed over the disks. In the worst case, load imbalance can completely spoil
parallelism increasing the number of I/O steps by a factor of D. This paper solves the
load balancing problem by placing blocks randomly and by using redundancy.

1.1. Summary of Results. In Section 2 we use queuing theory, Chernoff bounds, and
the concept of negative association [4] to show that writing can be made efficient if a
pool of W = O(D/ε) blocks of internal memory are reserved to support D write queues.
This suffices to admit (1−ε)D new blocks to the write queues during nearly every write
step. Subsequent read requests for blocks that have not yet been written, can be served
from the write queues.

Since our model assumes separate read and write steps, we can analyze these two
issues separately. Scheduling read accesses is more difficult since a parallel read has
to wait until all requested blocks have been read. In Section 3 we investigate random
duplicate allocation (RDA). Similar to mirroring, which is often used in practice to
achieve fault tolerance, RDA uses two copies of each logical block but these copies are
allocated to disks chosen randomly. Writing for RDA can be analyzed using the results
from Section 3 keeping in mind that two physical blocks have to be written for each logical
block. An optimal read scheduling algorithm based on maximum flow computations
decides which of the two copies of each block is to be read. We show that N blocks can
be retrieved using Lmax = �N/D� + 1 parallel read steps with high probability. We call
Lmax the maximum load. Experiments reported in Section 3.5 and recent theoretical work
[5], [6] indicate that Lmax = �N/D� can be achieved if �N/D� − N/D is sufficiently
large. On the other hand, a lower bound derived in Section 3.4 shows that regardless of
the allocation strategy Lmax = �N/D� cannot be achieved if N is a multiple of D unless
N/D is rather large. Furthermore, in Section 4 we show that schedules with �N/D�+ 1
read steps can be found faster than the worst-case bounds of maximum flow algorithms
would suggest.

In Section 5 we generalize RDA. Instead of writing two copies of each logical block,
we split the logical block into r sub-blocks and produce an additional parity sub-block
that is the bit-wise exclusive-or of these sub-blocks. These r + 1 sub-blocks are then
randomly placed as before. When reading a logical block, it suffices to retrieve any r
out of the r + 1 pieces. The scheduling algorithms allow simultaneous access to files
that have been allocated with different degrees of redundancy. Much of the analysis also
goes through as before. At the price of increasing the logical block size by a factor of r ,
we reduce the redundancy of RDA from 2 to 1 + 1/r .

Our techniques for reading and writing can be joined to a quite far-reaching result. Ag-
garwal and Vitter’s multi-head disk model [1] that allows access to D arbitrary blocks in
each I/O step, can be efficiently emulated on the independent disk model [2]. In Section 6
we summarize how this can be exploited and adapted to yield improved parallel disk
algorithms for many “classical” external memory algorithms for sorting, data structures,
and computational geometry, as well as for newer applications like video-on-demand or
interactive computer graphics. We also outline a further generalization of RDA which
allows more fault tolerance.

1.2. Related Work. The predominant general technique to deal with parallel disks in
practice is striping [7], [8]. In our terminology this means using logical blocks of size
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DB, which are split into D sub-blocks of size B—one for each disk. This yields a perfect
load balance but is only effective if the application can make use of huge block sizes. For
example, at currently realistic values of D = 64 and B = 256 KB we would get logical
blocks of 16 MB. Since many external memory algorithms work best if thousands of I/O
streams with separate buffer blocks are used, prohibitive internal memory requirements
would result. Refer to [9] for a detailed discussion and simulation results.

Reducing access contention by random placement is a well-known technique. For
example, Barve et al. [10] use it for a simple parallel disk sorting algorithm. However,
in order to access N blocks in (1 + ε)N/D steps, N must be at least �((D/ε2) log D).
If N = �(D), some disk will have to access �(log D/log log D) blocks. Our result on
writing from Section 2 shows how a buffer for O(D) blocks can solve this problem. Sec-
tion 6.3 gives further details including references to subsequent sorting results building
on Section 2 [11], [12].

Our results are also interesting from a more abstract point of view independent of the
external memory model. Load balancing when two randomly chosen locations of load
units are available has been studied using several models. Azar et al. [13] analyze an
online strategy that commits each arriving request to the least loaded unit. Berenbrink
et al. [14] analyzed this algorithm for the general case N �= D and showed that the
maximum load is Lmax = N/D+log ln D+�(1).3 Vöcking [15] showed that for N = D,
a refined variant is better by a small constant factor and is optimal among all online
strategies up to an additive constant. An obvious question is how much better we can do
if we allow offline scheduling. The best previously known bound for offline algorithms
was Lmax = O(N/D) which is worse than the online strategy for N = ω(D log log D).
Refer to Section 4.4 for a discussion of some of these techniques which have the advantage
of finding schedules in linear time. Our result yields an optimal offline strategy and shows
that the gap between the online algorithm and an optimal offline strategy is �(log log D).

For PRAM simulation, fast parallel scheduling algorithms have been developed even
earlier [16] achieving maximum load O(1). PRAM simulation using a three-collision
protocol achieves maximum load O(1) for N = D using O(log log D) iterations [17],
[18, Section 3]. This already works for O((log D)3)-universal classes of hash functions.
Similar results hold for allocation strategies with lower redundancy such as the ones we
describe in Section 5.

Heuristic load balancing algorithms using redundant storage are used by a number
of authors in multimedia applications [9], [19]–[21]. Even the idea of a parity sub-
block built out of r data sub-blocks has been used by several researchers [22], [23].
The first optimal scheduling algorithm for RDA was presented in [9]. This and other
papers give convincing experimental evidence that RDA is a good policy, yet no closed
form results were known which prove that the same is true for systems of arbitrary
size or which explain why RDA is so good. Our results close this gap. We prove the
optimality of the scheduling algorithm, generalize it to parity encoding, analyze the
quality achieved, and speed up the scheduling algorithm. A subsequent paper [5], [6]
further refines our results: When is Lmax = �N/D� possible? What about disk failures,
more fault tolerance, variable length blocks, and communication bottlenecks? Another

3 Throughout this paper log x = log2 x .
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related issue are asynchronous disk scheduling algorithms that strive to minimize waiting
times in a continous stream of requests [24].

There are several papers on deriving external memory algorithms from parallel algo-
rithms, by emulating the parallel machine on an external memory machine [25]–[28].
Most of these results also allow parallel disks [25], [27], [28] so that this is currently
the main source of parallel disk external memory algorithms. Chiang et al. [25] look at
PRAM algorithms with special structure. Dehne et al. [27], [28] look at BSP algorithms
and obtain efficient external algorithms for the special case of CGM algorithms. CGM
algorithms work in supersteps and communicate their entire memory content in every
superstep. Our emulation result adds the multi-head model [1] as a new source of algo-
rithms that can be efficiently emulated on parallel disks. A possible advantage of this
model is that no processing parallelism and only rather limited data access parallelism
is needed.

2. Queued Writing. This section shows that a fraction of 1−ε of the peak bandwidth
for writing can be reached by making W = O(D/ε) blocks of internal memory available
to buffer write requests. We first show this for any write-once access pattern that never
writes a block twice. In Section 2.2 we explain how the multiple access case can be
handled. We assume that blocks are mapped to disks uniformly and independently at
random. This could be implemented using a RAM resident directory keeping track of the
physical positions of logical blocks. Note that the space requirements for the directory
are not a big practical problem since we only need a few bytes for each block with
hundreds of kilobytes. The modified allocation strategy described in Section 6.2 reduces
the directory size by another factor of D. Nevertheless, in practice one may choose to map
blocks using some more space efficient hash function h. Our randomness assumption
is then only an approximation of the truth. However, viewing hash functions as fully
random is a fairly standard assumption in the analysis of probabilistic algorithms.

The buffer consists of queues Q1, . . . , Q D , one for each disk. Initially, all queues are
empty. Then the application invokes the procedure write shown in Figure 1 to write
up to (1 − ε)D blocks. After each invocation of write, the queues consume at most
W blocks of internal memory.4 The procedure write-to-disks stores the first block
of each nonempty queue onto the disks in parallel. Note that read requests to blocks
pending in the queues can be serviced directly from internal memory. 5

Procedure write((1 − ε)D blocks):
append blocks to Q1, . . . , Q D ;
write-to-disks(Q1, . . . , Q D);
while |Q1| + · · · + |Q D| > W do

write-to-disks(Q1, . . . , Q D).

Fig. 1. Queued writing.

4 During the execution of write more than W blocks may reside in the queues. The additional memory is
borrowed from the block buffers handed over by the calling application program.
5 If one insists on finding the result of the entire computation in the external memory, then the queues have to
be flushed at the very end of the program. However, this effort can be amortized over the entire computation,
and using Lemma 2 it is easy to show that max(Q(t)

1 , . . . , Q(t)
D ) = O((log D)/ε) with high probability.
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Section 2.1 proves Theorem 1 which represents the main result on writing, namely
that a global buffer size W which is linear in D suffices to ensure that, on the average,
a call of the write procedure incurs only about one I/O step, i.e., one invocation of
write-to-disks. The theoretical treatment is complemented by experimental find-
ings in Section 2.3 which suggest even better performance.

THEOREM 1. Consider W = (ln(2) + δ)D/ε for some constant δ > 0 and let n(t) be
the number of calls to write-to-disks during the t th invocation of write after the
new blocks have been appended. Then En(t) ≤ 1 + e−�(D).

2.1. Analysis. By reducing the arrival rate to 1 − ε we can bound the queues by the
stationary distribution of a queuing system with batched arrivals. This means that the
while-loop is entered infrequently (Lemma 3) for a suitably chosen W . As the first step,
we derive the expected queue length and a Chernoff-type tail bound for one queue.

LEMMA 2. Let Q(t)
i be the length of Qi at the t th invocation of write. Then EQ(t)

i ≤
1/(2ε) and

P[Q(t)
i > q] < 2e−εq for all q > 0.

PROOF. Clearly, the queues can only become shorter if the while-loop is entered.
Hence, it is sufficient for an upper bound on the queue length to consider the case where
W is so large that this never happens.

Let X(t)
i denote the number of blocks that are appended to Qi at the t th invocation of

write. Then X(1)
i , X(2)

i , . . . are independent B((1 − ε)D, 1/D) binomially distributed
random variables. We describe the queue Qi together with its input X(1)

i , X(2)
i , . . . as a

queuing system with batched arrivals. In particular, one block can leave per time unit and
a B((1 − ε)D, 1/D)-distributed number of blocks arrive per time unit. We first derive
the probability generating function (pgf) of Q(t)

i for the stationary state by adapting the
derivation from Section 12-2 of [29] to the case of batched arrivals. Let Gt (z) be the pgf
of Q(t)

i . Then G0(z) = 1 and for all t ∈ {0, 1, . . .},

Gt+1(z) = (z−1Gt (z) + (1 − z−1)Gt (0)) · H(z),

where H(z) = (z/D +1−1/D)(1−ε)D is the binomial pgf of X(t)
i . Since the average rate

of arrival is 1 − ε and the rate of departure is 1, a stationary state exists. In the stationary
state Gt+1 = Gt . By applying l’Hôpital’s rule and normalizing via G(1) = 1 we find
that G(0) = ε and the stationary pgf is

G(z) = (1 − z)ε

1 − zH(z)−1
.

We now show that the stationary distribution is an upper bound on the distribution of
Q(t)

i for all t in the sense

P[Q(t)
i > q] ≤ P[Q(∞)

i > q] for all q > 0,
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where Q(∞)
i is a G-distributed random variable describing the steady state. To see the

bound, consider two queues processing identical input but with different initial length.
Then in any step, the difference in length either remains the same or gets reduced by
one. This continues until (possibly) the lengths become equal for the first time and from
then on the queues coincide for all time because they process the same input.

Thus, EQ(t)
i ≤ EQ(∞)

i = G ′(1) and by applying l’Hôpital’s rule twice we obtain

G ′(1) = 1

2ε
− 1 − ε + Dε2

2Dε
≤ 1

2ε
.

For the tail bound, note that ln(1+x) < x for x > 0 implies ln H(eε) < (1−ε)(eε−1).
Thus

G(eε) <
ε(1 − eε)

1 − exp(ε − (1 − ε)(eε − 1))
< 2.

The tail bound follows from the general tail inequality P[Q(∞)
i > q] < G(eε)e−εq for

all q > 0 (from Exercise 8.12a of [30]).

Based on Lemma 2 we give an upper bound on the probability that the while-loop
is entered for a given limit W = qD of internal memory.

LEMMA 3. Let Q(t) = Q(t)
1 +· · ·+ Q(t)

D with Q(t)
i as in Lemma 2. Then EQ(t) ≤ D/(2ε)

and

P[Q(t) > qD] < e−(εq−ln 2)D for all q > 0.

PROOF. The technical problem here is that Q(t)
1 , . . . , Q(t)

D are not independent. However,
the variables are negatively associated (NA) in the sense of Definition 3 of [4]6 as we
will now show.

Define the indicator variable B(t)
i,k = 1 if the kth request of the t th invocation of write

is placed in Qi and B(t)
i,k = 0 otherwise. Then Proposition 12 of [4] states that all B(t)

i,k

are NA. Furthermore, Q(t)
i is a nondecreasing function of all B(t ′)

i,k for all k and all t ′ ≤ t ,
since adding a request to Qi can only increase the queue length in the future. In this
situation, Proposition 8(2) of [4] implies that Q(t)

1 , . . . , Q(t)
D are NA.

Now we can use Chernoff’s method to derive the tail bound. Consider Markov’s
inequality

P[Q(t) > W ] = P[eεQ(t)
> eεW ] < e−εW

EeεQ(t)
.

Using the negative association

EeεQ(t) = Ee
ε
∑n

i=1
Q(t)

i = E

n∏
i=1

eεQ(t)
i ≤

n∏
i=1

EeεQ(t)
i = (EeεQ(t)

1 )D.

6 For every two disjoint subsets of {Q(t)
1 , . . . , Q(t)

D }, A and B, and all functions f : R
|A| → R and g: R

|B| → R

which are both nondecreasing or both nonincreasing,

E[ f (A)g(B)] ≤ E[ f (A)]E[g(B)].
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Since EeεQ(t)
1 = G(eε) < 2 (proof of Lemma 2) the tail bound follows. The bound on the

expected value follows directly from Lemma 2 and the linearity of the expected value.

We are now ready to prove Theorem 1, the main result of this section.

PROOF OF THEOREM 1. Write-to-disks is called at least once during the t th invo-
cation of write. Lemma 3, with W/D = q = (ln(2) + δ)/ε, gives the probability that
the body of the while-loop is entered as

p = P[Q(t) > W ] ≤ e−(εW/D−ln(2))D = e−δD.

Even in the worst case after W + D iterations all queues must be empty. Thus, the
expected number of calls to write-to-disks is

En(t) ≤ 1 + p · (W + D) = 1 + O(D/ε)e−δD,

which is bounded by 1 + e−�(D).

2.2. Writing Blocks Multiple Times. We now generalize the analysis from Section 2.1 to
access patterns where blocks can be written multiple times. The basic idea is simple. We
remap blocks, i.e., whenever a block is written, we choose a fresh random location for it.
Now the system behaves in the same way as a system where all blocks are only written
once. Unfortunately, a direct implementation of this remapping idea would require a
RAM resident directory mapping logical block IDs to their physical position.

We now describe how one can stick to a static allocation of most blocks using a fixed
hash function h and achieve the same effect as full remapping at the price of a constant
factor more I/Os and a small directory h′ that can take k = �(D log D) entries. Note
that the space consumption for the directory is small compared with the space needed
for write buffers as long as the block size is large compared with log D. Accesses to h′

can be performed in constant expected time if h′ is implemented as a hash table. We
maintain the invariant that a block b not in the write queues can be found at physical
position h′(b) if h′(b) �= ⊥ and at position h(b) else (⊥ stands for undefined).

Writing now works in epochs. At the beginning of an epoch, all write queues are empty
and h′ is empty, i.e., all blocks are mapped by the static hash function h. Write requests
to blocks that are written for the first time in an epoch are independent of each other.
Blocks rewritten within an epoch are remapped. Hence, within an epoch the analysis
from Section 2.1 transfers. Remapping is implemented as follows: When a block b is
written for the first time this can be detected by the test h′(b) = ⊥. Block b need not
be remapped yet but we remember the access by setting h′(b) = h(b). If a block b is
rewritten within the epoch, this can be detected because h′(b) �= ⊥. In this case b is
remapped: A new block buffer f on a random disk is allocated and we set h′(b) = f . If
b was already remapped (h′(b) �= h(b)), its old position is de-allocated.

An epoch ends when |h′| > k. Then the queues are emptied. By Lemma 3 this takes
O(log D) steps with high probability. Subsequently, all remapped blocks b are retrieved
from h′(b) and rewritten to their original position h(b). Remapping alternates between
reading and writing. It performs parallel input steps until at least (1 − ε)D blocks are
available in 2D read buffers. Writing is done using queued writing. Using standard
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Fig. 2. The smallest value for ε such that in 106 calls to write, passing (1 − ε)D blocks each, none needs
more than one call of write-to-disks.

balanced allocation results for reading, our previous analysis for queued writing, and
the fact that the write addresses are independent of the reading process, it can be seen
that remapping takes at most O(log D) I/O steps including time to empty all the write
queues.

After an epoch ends, the next epoch starts. The same analysis as before applies since
we are in the same system state—h′ and the write queues are empty.

2.3. Experiments. The above closed form results leave open the behavior for small D
and W and the constant factor relating memory requirements W and the admission rate
(1 − ε)D. To fill this gap partially, we have performed a small series of experiments
with D ∈ {16, 64, 256} disks and variable buffer space W . Since there is now an opti-
mal write scheduling algorithm [12] that should be used to achieve good average case
performance, we concentrate on the application in a soft real time system where we
want high probability guarantees for every write step. The experiments summarized in
Figure 2 performed 106 write steps writing (1 − ε)D blocks in each step for different
values of ε, D, and the ratio W/D. The plotted points show the smallest ε for which none
of the operations in an experiment need more than one write step. One can see that for
large D, the optimal choice approaches ε = D/2W . This is interesting since Lemma 2
implies that for this ε the expected total queue size approaches W . In other words, the
total queue size is apparently sharply concentrated around its expectation. This suggests
that the constant ln 2 in Theorem 1 is an artifact of our analysis and could be replaced
by 1

2 .

3. Random Duplicate Allocation. In this section we investigate reading a batch of N
logical blocks from D disks. There are copies of block i on disks ui and vi . The batch is de-
scribed by the undirected allocation multigraph Ga = ({1..D}, ({u1, v1}, . . . , {uN , vN })).
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Observe that there can be multiple edges between two nodes. As in Section 2, logical
blocks are mapped to the disks with a hash function assumed to be random. The logical
block starting at external memory address kB is mapped to the disks h(2k) and h(2k +1)

using the hash function h.7 Therefore, Ga is a random multigraph with D nodes and N
edges chosen independently and uniformly at random.

A schedule for the batch is a directed version Gs of Ga . (The directed edge (ui , vi )

means that block i is read from disk ui .) The load Lu(Gs) of a node u is the outdegree of
u in the schedule Gs . (We omit “(Gs)” when it is clear from the context which schedule is
meant.) The maximum load Lmax(Gs) := max(L1(Gs), . . . , L D(Gs)) gives the number
of read steps needed to execute the schedule. A schedule Gs for Ga is called optimal if
there is no schedule G ′

s with Lmax(G ′
s) < Lmax(Gs). The load of an optimal schedule is

denoted by L∗
max.

The main result of this section is the following theorem, which is proven in Section 3.2.

THEOREM 4. Consider a batch of N randomly and duplicately allocated blocks to be
read from D disks. Then, abbreviating b = �N/D�, Lmax ≤ b + 1 with probability at
least 1 − O(1/D)b+1.

We want to point out that Lemma 6 below also provides more accurate bounds for small
D and N that can be evaluated numerically. A corresponding lower bound which shows
that Lmax = �N/D� is unlikely for integer N/D is given in Section 3.4.

A difficulty in establishing Theorem 4 is that optimal schedules are complicated to
analyze directly using probabilistic arguments because their structure is determined by a
complicated scheduling algorithm. Therefore, we first give a characterization of optimal
schedules in terms of the allocation graph Ga . Since this characterization is of completely
combinatorial nature, and has nothing to do with the randomness of the allocation graph
we have separated it out into Section 3.1.

In Section 3.3 we explain how an optimal schedule can be found in polynomial time
using a small number of maximum flow computations. Section 4 will then show why
optimal schedules can be found even faster than the worst-case bounds for maximum flow
algorithms might suggest. Section 3.5 evaluates the scheduling quality experimentally.

3.1. Unavoidable Loads. Consider a subset � of disks and define the unavoidable
load L� as the number of blocks that have both copies allocated on a disk in � for a
given batch of requests. Clearly, all these L� blocks have to be read by some disk in �.
The following theorem characterizes L∗

max in terms of the unavoidable load.

THEOREM 5 [31]. L∗
max = max∅�=�⊆{1..D}�L�/|�|�.

The proof has been previously given by Schoenmakers [31, Theorem 1] who used the
theorem for a different application. For self-containedness and as a warm-up for more

7 We can additionally make sure that the two copies are always mapped to different disks. A refined analysis
then yields a probability boundO(1/D)2b+1 in a strengthened version of Theorem 4. For the sake of simplicity,
we do not go into this.
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complicated arguments yet to come, we nevertheless state a short proof here:

PROOF. (≥) For any �, a schedule fetches at least L� blocks from the disks in �.
Hence, there must be at least one disk u ∈ � with load Lu ≥ �L�/|�|�.

(≤) It remains to be shown that there is always a subset � with �L�/|�|� ≥ L∗
max

witnessing that L∗
max cannot be improved. Consider an optimal schedule Gs , which has

no directed paths of the form (v, . . . , w) with Lv = L∗
max and Lw ≤ L∗

max − 2. Such
a schedule always exists, since in schedules with such paths, the number of maximally
loaded nodes can be decreased by moving one unit of load from v to w by reversing the
direction of all edges on the path.

Choose a node v with load L∗
max and let � denote the set containing v and all nodes

to which a directed path from v exists. Using this construction, all edges leaving a node
in � also have their target in � so that the unavoidable load L� is simply

∑
u∈� Lu . By

definition of Gs and v, we get L� ≥ 1+|�|(L∗
max −1), i.e., L�/|�| ≥ 1/|�|+ L∗

max −1.
Taking the ceiling on both sides yields �L�/|�|� ≥ �1/|�| + L∗

max − 1� = L∗
max as

desired.

3.2. Proof of Theorem 4. The proof developed here could be considered a special case
of the results obtained in Section 4.2 for fast scheduling. To obtain a better compromise
between accessibility and conciseness we choose a different approach however. The
main line of argument for the proof is developed here in detail so that Section 4.2 only
needs to note the necessary modifications. We also achieve better constant factors inside
the analysis of the simple case. On the other hand, the less interesting technical lemmata
are proven for the general case.

It should first be noted that, without loss of generality, we can assume that N is a
multiple of D, i.e., b = �N/D� = N/D, since it only makes the scheduling problem
more difficult if we add D�N/D� − N dummy blocks to the batch.

The starting point of our proof is the following simple probabilistic upper bound on
the maximum load of optimal schedules, which is based on Theorem 5.

LEMMA 6.

P[L∗
max > b + 1] ≤

D∑
d=1

(
D

d

)
Pd ,

where Pd := P[L� ≥ d(b + 1) + 1] for a subset � of size d.

PROOF. By the principle of inclusion–exclusion and Theorem 5 it suffices to count the
number of subsets of size d ,

(D
d

)
, multiply this with Pd and add over all possible set

sizes d .

Lemma 6 is useful because L� only depends on the allocation graph Ga and is bi-
nomially B(bD, d2/D2) distributed for |�| = d. The bound already yields an efficient
way to estimate P[L∗

max > b + 1] numerically since the cumulative distribution function
of the binomial distribution can be efficiently evaluated by using a continued fraction
development of the incomplete Beta-function [32, Section 6.4]. Furthermore, most sum-
mands will be very small so that it suffices to use simple upper bounds on

(D
d

)
Pd for
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them. Overall, we view it as likely that P[L∗
max > b + 1] can be well approximated in

time O(D) yielding high probability bounds faster than using simulation.
Furthermore, good closed form tail bounds are known for the binomial distribution.

We use the strongest possible Chernoff bound in order to bound Pd , the probability
to overload a given set of disks of size d. Throughout this section let p := d/D and
q = 1 − p.

LEMMA 7. For any x > EL�,

P[L� ≥ x] ≤
(

Np2

x

)x (
1 − p2

1 − x/N

)N−x

.

PROOF. Define the independent identically distributed 0-1 random variables Xi that
take the value one if both copies of block i are allocated to �. We have L� = ∑D

i=1 Xi

and P[Xi = 1] = p2. For this type of sum, Chernoff’s technique can be applied without
any approximations beyond using Markov’s inequality [33, Lemma 2.2]:8

P[L� ≥ (p2 + t)N ] ≤
((

p2

p2 + t

)p2+t (
1 − p2

1 − p2 − t

)1−p2−t
)N

.

Solving (p2 + t)N = x for t yields t = x/N − p2. Substituting this value into the above
equations yields the desired bound after straightforward simplifications.

The technically most challenging part is to bound the resulting expressions further to
obtain easy to interpret asymptotic estimates. We do this by splitting the summation over
d into three partial sums for d ≤ D/8 (Lemma 8 with α = 1

8 ), D/8 < d < Db/(b + 1)

(Lemma 9) and
∑

d≥Db/(b+1)

(D
d

)
Pd which is simply zero.

LEMMA 8. For any constant α < e−2,

∑
d≤αD

(
D

d

)
Pd = O(1/D)b+1.

PROOF. Lemma 15 proves a bound for small � which we can apply in its simplest form
(setting ε = 0) to see that (

D

d

)
Pd ≤

(
d

D

)db+1

ed(b+1)+1.

Viewing this bound as a function f (d) of d, it can be verified that f ′′(d) ≥ 0 (differen-
tiate, remove obviously growing factors, and differentiate again). Therefore, f assumes

8 Several more well-known simpler forms do not suffice for our purposes. This bound is the strongest possible
in the sense that it only uses the Markov inequality once and no further estimates.
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its maximum over any positive interval at one of the borders of that interval. We get∑
d≤αD

(D
d

)
Pd ≤ f (1) + αD max{ f (2), f (αD)}, where

f (1) = D−b−1eb+2 = e(e/D)b+1 = O(1/D)b+1,

αD f (2) = αD(2/D)2b+1e2b+3 = O(1/D)2b,

αD f (αD) = αDααDb+1eαD(b+1)+1 = O(D)eαD(b(1+ln α)+1) =e−�(D) if α < e−2.

All these values are in O(1/D)b+1.

When |�| is at least a constant fraction of D, Pd actually decreases exponentially
with D.

LEMMA 9.

∑
D/8<d<Db/(b+1)

(
D

d

)
Pd = O(

√
D · 0.9D).

PROOF. Remembering that p = d/D and N = bD we get

d(b + 1) + 1 ≤ d(b + 1) = pD(b + 1)

and using Lemma 7 we get

Pd ≤
(

bDp2

pD(b + 1)

)pD(b+1) (
1 − p2

1 − (pD(b + 1))/bD

)bD−pD(b+1)

=
((

bp

b + 1

)p(b+1) ( 1 − p2

1 − p − p/b

)b−p(b+1)
)D

.

Note that D only appears as an exponent now.
(D

d

) = ( D
pD

)
can be brought into a similar

form. Using the Stirling approximation (e.g., [34]) it can be seen that(
D

pD

)
= O

(√
D

pD(D − pD)

(
D

pD

)pD ( D

D − pD

)D−pD
)

= O
(√

1

Dpq
(p−pq−q)D

)
= O

(√
1

D
(p−pq−q)D

)

for 1
8 < p < b/(b + 1).

Since we are summing O(D) terms it remains to show that

Bb(p) := (bp/(b + 1))p(b+1)((1 − p2)/(1 − p − p/b))b−p(b+1)

p pqq
≤ 0.9

for all 1
8 < p < b/(b + 1). For fixed b, this is easy. Bb(p) is a smooth function

and the open right border of the interval is no problem since limp→b/(b+1) Bb(p) =
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Fig. 3. Behavior of B3(p) together with bounds obtained by our interval arithmetics verification.

(b/(b + 1))2b2/(b+1) < 0.9. For b ∈ {1, 2, 3, 4} we have verified the claim using interval
arithmetics. We have written a small Mathematica program that adaptively subdivides
the interval [ 1

8 , b/(b + 1)]. Note that this approach yields a rigorous proof since interval
arithmetics produces conservative upper and lower bounds. The right border was handled
by implementing interval arithmetics for the function x x with 00 = 1 and expressing Bb

in terms of this function and the built-in functions. Figure 3 shows B3 together with the
bounds computed by our program. To save space, we only give plain plots for B1, B2,
and B4 in Figure 4.

For b ≥ 5 we exploit that p−pq−q ≤ 2 so that it also suffices to show that

fp(b) :=
(

pb

b + 1

)p(b+1) ( 1 − p2

1 − p − p/b

)b−p(b+1)

≤ 0.45.
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Fig. 4. Behavior of Bb(p) for small b.
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In Figure 4 it can be seen that this relation holds for b = 5 and Lemma 17 (setting
ε = 0) implies that for a larger b the maximum of fp(b) can only decrease (again, we
used interval arithmetics to verify the result rigorously).

3.3. Finding Optimal Schedules. We can efficiently find an optimal schedule by trans-
forming the problem into a sequence of maximum flow computations: Suppose we
have a schedule Gs = (V, E) for a given batch Ga , and we try to find an improved
schedule G ′

s with Lmax(G ′
s) = L ′ < Lmax(Gs). Consider the flow network N =

((V ∪ {s, t}, E+), c, s, t) where E+ = E ∪ {(s, v): Lv(Gs) > L ′} ∪ {(u, t): Lu(Gs) <

L ′}. Edges (u, v) stemming from E have unit flow capacity c(u, v) = 1; c(s, v) =
Lv(Gs) − L ′ for (s, v) ∈ E+; c(u, t) = L ′ − Lu(Gs) for (u, t) ∈ E+. s and t are
artificial source and sink nodes, respectively. The edges leaving the source indicate how
much load should flow away from an overloaded node. Edges into the sink indicate how
much additional load can be accepted by underloaded nodes.

If an integral maximum flow throughN saturates the edges leaving s, we can construct
a new schedule G ′

s with Lmax(G ′
s) = L ′ by flipping all edges in Gs that carry flow.

Furthermore, if the edges leaving s are not saturated, Lmax cannot be reduced to L ′:

LEMMA 10. If a maximum flow in N does not saturate all edges leaving s, then
L∗

max > L ′.

PROOF. It suffices to identify a subset � with unavoidable load L� > L ′|�|. Consider a
minimal s-t-cut (S, T ). Define � := S −{s}. Since not all edges leaving s are saturated,
� is nonempty. Let cs := ∑

(s,v)∈E ′ c(s, v) denote the capacity of the edges leaving s
and let cST := ∑

{(u,v): u∈S,v∈T } c(u, v) denote the capacity of the cut. The unavoidable
load of � is L� = L ′|�| + cs − cST (by definition of the flow network). By the max-
flow min-cut Theorem, cST is identical to the maximum flow. By construction we get
cs > cST . Therefore, L� > L ′|�| and by Theorem 5, L∗

max > L ′.

An optimal schedule can now be found using binary search in at most log N steps
and much less if a good heuristic initialization scheme is used [9]. Moreover, Theorem 4
shows that the optimal solution is almost always �N/D� or �N/D� + 1 so that we only
need to try these two values for L ′ most of the time.

3.4. A Lower Bound. We have seen that maximum load Lmax = �N/D� + 1 is almost
always possible. A natural question is whether a perfect balance of Lmax = �N/D� can
also be achieved perhaps using a different allocation strategy. The following theorem
answers this question negatively for small integer N/D even for average case problems
and even if we allow more redundancy.

THEOREM 11. Assume that w copies of each of U logical blocks have been placed on
D disks. Define a positive integer b ≤ (ln D)/3w Then for sufficiently large U , an access
to a subset of bD logical blocks chosen uniformly at random needs L∗

max ≥ b + 1 read
steps with probability 1 − O(1/D) regardless of how the blocks have been placed.
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PROOF. Let wi/D denote the fraction of the logical blocks which are present on disk
i with at least one copy and note that

∑D
i=1 wi ≤ wD. Now consider a set of requested

logical blocks chosen uniformly at random without replacement. We show that with high
probability at least one disk i0 holds no copy of any of the requested blocks so that the
set � = {1, . . . , D}\{i0} is overloaded.

Let Xi denote the number of blocks which could be served by disk i . We have

P[Xi = 0] =
∏

j<bD

(
1 − wiU/D

U − j

)
≥
∏

j<bD

(
1 − wiU

D(U − bD)

)

=
(

1 − wiU

D(U − bD)

)bD

≈ e−wi b

as U → ∞ and for sufficiently large D. Let X denote the number of disks without usable
blocks. We have

EX :=
D∑

i=1

P[Xi = 0] ≥
D∑

i=1

e−wi b ≥ De−wb.

The last step can be verified by minimizing the function g(w1, . . . , wD) = ∑D
i=1 e−wi b

under the constraint
∑D

i=1 wi ≤ wD using calculus.
Now we use the method of bounded differences [35, Theorem 4.18] to show that X

is sufficiently sharply concentrated around its mean that it is improbable that all Xi are
nonzero. We view X as a function f of the bD random variables denoting the requested
blocks. Fixing one of these variables changes EX by at most w. We get

P[X < 1] = P[X < EX − (De−wb − 1)] ≤ exp

(
− (De−wb − 1)2

2bDw2

)

≤ exp

(
−e−wb(De−wb − 2)

2bw2

)
≤ exp

(
− D1/3 − 2D−1/3

2
3w ln D

)
= O(1/D).

The last “≤” uses e−wb ≤ e−w ln(D)/(3w) = D−1/3 and De−wb − 2 ≥ 0 for D ≥ 5 and
b ≤ ln(D)/(3w). The last “=” makes use of the fact that 1 ≤ b ≤ ln(D)/(3w) and
hence w ≤ ln(D)/3.

3.5. Experiments. Similar to the case of queued writing, it is of practical interest to
complement the asymptotic analysis for RDA with concrete numbers for small D. We can
do that using a combination of simulation and numerical evaluation of the tail bound from
Lemma 6. Simulation quickly yields approximations for the average performance and
estimates for not-so-small failure probabilities. On the other hand, the tail bound makes
it possible to estimate large deviations which would be very expensive to approximate
using simulation. Figure 5 shows the overhead (one minus efficiency) of RDA for D = 16
and D = 64 based on expected performance and high probability performance.

It can be seen that average performance does not grow monotonically with N/D but
achieves local optima shortly before N becomes divisible by D. So, if an application
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Fig. 5. Overhead 1 − N/L∗
max of RDA with N blocks to be retrieved.

has some freedom regarding the number of blocks to be submitted for a parallel read
request, it can be wise to submit fewer blocks than maximally possible. The curves
for the average performance exhibit little dependence on D. To get high probability
guarantees for good performance other choices for N/D can be useful. In particular,
bad average performance means that there will usually be just a few disks with load
Lmax. However this also means that it is quite improbable that there are any disks with
even more load. Using Figure 6 this behavior can be studied in more detail. For D = 64
the failure rates are already so low that in most cases a hardware failure is much more
probable than a request set which is difficult to schedule. For D = 16, we can achieve
similarly low failure rates if N/D is large enough or if we are willing to accept a load
of �N/D� + 2.
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Fig. 6. Failure probabilities of RDA with N blocks to be retrieved. Probabilities exceeding 0.01 are estimated
using simulation. Smaller probabilities use the tail bound from Lemma 6.

We have also made experiments regarding the question when perfect balance Lmax =
N/D for integer N/D is achievable. It looks like for N ≈ D�2.3 log D� perfect balance
can be achieved in 90% of all cases.

4. Fast Scheduling. For very large D, the worst-case bounds for maximum flow com-
putations (�(D3/2) [36]) might become too expensive, since eventually, the scheduling
time exceeds the access time.9 Therefore, we now explain why slightly modified maxi-

9 We have a prototype server with eight disks. At least for this machine the scheduling time is still negligible.
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mum flow algorithms can actually find a schedule with Lmax = �N/D� + 1 efficiently
with high probability. In Section 4.4 even faster linear time approximations are discussed.

THEOREM 12. Consider a batch of N = �(D) blocks. Let b = �N/D� and define a
constant 0 < ε ≤ 1

5 . A schedule with Lmax = b+1 can then be found in timeO(D log D)

with probability 1 − O(1/D)b+1−ε.

The proof is executed similarly to Section 3 and starts with graph-theoretic arguments
in Section 4.1, continues with a probabilistic analysis in Section 4.2, and only then
considers algorithmic questions in Section 4.3.

The general idea is based on the observation that maximum flow algorithms essentially
compute optimal schedules by removing all paths from overloaded to underloaded nodes.
We call such paths augmenting paths following the tradition in flow computations. The
key observation is that it is actually sufficient to perform flow augmentations that remove
all augmenting paths of at most logarithmic length. Why is this sufficient? Consider a
schedule without augmenting paths of length ≤ c log D. Assume Lmax > b +1 and let v

denote a disk with load Lv ≥ b+2. Section 4.1 establishes that in that case, a set of disks
� with L� > |�|(b+1−ε) must also exist. We then prove that such a subset is unlikely
to exist for a random allocation graph Ga . This requires a slightly strengthened version
of the probabilistic analysis done in Section 3.2. Finally, in Section 4.3 we explain how
maximum flow algorithms can be adapted to find augmenting paths of logarithmic length
very efficiently. In particular, even a simple preflow push algorithm solves the task in
O(D log D) steps.

4.1. Unavoidable Loads. Our key argument is a counterpart to Theorem 5:

LEMMA 13. Consider a schedule graph Gs = ({1..D}, E), any disk v with load Lv ,
and a parameter γ ∈ (0, 1). If there is no directed path (v, . . . , u) from v to a disk u
with Lu ≤ Lv − 2 and a path length |(v, . . . , u)| ≤ log1+γ D + 1, then there must be a
subset � of disks with unavoidable load L� > |�|(1 − γ )(Lv − 1).

PROOF. Consider the neighborhoods of v reached by i steps of breadth first search:
�0 := {v} and �i+1 := �i ∪ {u: ∃w ∈ �i | ∃(w, u) ∈ E}. Let j := min{i : |�i+1| <

(1 + γ )|�i |} denote the first neighborhood that grows by a factor less than 1 + γ . We
have D ≥ |�| ≥ (1 + γ ) j and hence j ≤ log1+γ D. Let �′ := �j+1 − �j and let �̄

denote the set of disks in �′ that have at least Lv incoming edges from �j . We argue
that � := �j ∪ �̄ has L� > |�|(1 − γ )(Lv − 1). By assumption, the disks in �j

have total load exceeding |�j |(Lv − 1). Load can only be moved out of � over at most
|�′ − �̄|(Lv − 1) edges leaving �, i.e., � has unavoidable load

L� > |�j |(Lv − 1) − |�′ − �̄|(Lv − 1)

= (|�j | + |�̄| − |�′|)(Lv − 1)

= (|�| − |�′|)(Lv − 1)

≥ (|�| − γ |�j |)(Lv − 1)

≥ |�|(1 − γ )(Lv − 1).
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We proceed as follows: Set γ = ε/(b + 1). Set up a maximum flow problem for
the algorithm from Section 3.3 with target maximum load L ′ = b + 1. Now run a
modified maximum flow algorithm, which stops when no augmenting paths of length
log1+γ D + 1 ≈ 1 + (b + 1) log(D)/ε exist.

When the flow is computed, a schedule Gs is derived from it as described in Sec-
tion 3.3. If the flow saturates the source node, we have a maximum flow and L ′ = b + 1
as desired. Otherwise, there must be a node with load at least b + 2 and Lemma 13 tells
us that there must also be set of disks � with unavoidable load L� > |�|(b + 1 − ε).

4.2. Proof of Theorem 12. We introduce the abbreviations bε := b + 1 − ε and Pε
d :=

P[L� ≥ dbε +1] for a subset � of size d. Analogous to Lemma 6 and its proof, we have
to prove that

∑D
d=1

(D
d

)
Pε

d = O(1/D)bε .

As in Section 3.2, the sum
∑D

d=1

(D
d

)
Pε

d is split into three parts. Now, small � are
between 0 and �D/16�. Pε

d disappears for very large � with at least b/bε disks.

4.2.1. Small �

LEMMA 14.
∑

d≤D/16

(D
d

)
Pd = O(1/D)bε .

The proof is very similar to the proof of Lemma 8 and can be found in Section A.1 of
the Appendix. It is based on the following bound which we prove here in detail since it
is also needed for the proof of Lemma 8.

LEMMA 15. For any 0 ≤ ε < 1, and bε = (b + 1 − ε),(
D

d

)
P[L� ≥ dbε + 1] ≤

(
d

D

)d(b−ε)+1

ed(b+1)+1.

PROOF. First, we estimate (
D

d

)
≤
(

De

d

)d

=
(

D

d

)d

ed

using the Stirling approximation. Now, setting x = dbε + 1, p = d/D, N = bD in
Lemma 7, we get P[L� ≥ dbε + 1] ≤ f · g where

f =
(

bd2/D

dbε + 1

)dbε+1

and g =
(

1 − d2/D2

1 − (dbε + 1)/bD

)bD−dbε−1

.

We have

f ≤
(

bd

Dbε

)dbε+1

=
(

d

D

)dbε+1 ( b

bε

)dbε+1

≤
(

d

D

)dbε+1 ( b

bε

)dbε

≤
(

d

D

)dbε+1

e−d(1−ε),
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where the last estimate stems from the relation(
b

bε

)bε

=
(

1 − 1 − ε

bε

)bε

≤ e−(1−ε).

Since 1 − d2/D2 = (1 + d/D)(1 − d/D), we can write the second factor, g, as
g = g1 · g2 where

g1 =
(

1 + d

D

)bD−dbε−1

≤
(

1 + d

D

)bD

≤ ebd and

g2 =
(

1 − d/D

1 − (dbε + 1)/bD

)bD−dbε−1

=
(

1 + dbε − db + 1

bD − dbε − 1

)bD−dbε−1

≤ edbε−db+1.

Multiplying the bounds for
(D

d

)
, f , g1, and g2 yields

(
D

d

)
P[L� ≥ d(b + 1 − ε) + 1] ≤

(
D

d

)d

ed

(
d

D

)dbε+1

e−d(1−ε)ebdedbε−db+1

=
(

d

D

)d(b+1−ε)−d

ed−d(1−ε)+bd+d(b+1−ε)−db+1

=
(

d

D

)d(b−ε)+1

ed(b+1)+1.

4.2.2. Larger �

LEMMA 16. For ε ≤ 1
5 ,

∑
D/16<d<Db/bε

(
D

d

)
Pε

d = e−�(D).

PROOF. Using an analogous argument as in the proof of Lemma 9 we can see that it
suffices to evaluate

Bb(p) :=
(

bp

bε

)pbε
(

1 − p2

1 − p − p(1 − ε)/b

)b−pbε

p−pq−q < 1

on the interval [ 1
16 , b/bε). Since (∂/∂ε)Bb(p) ≥ 0 it suffices to consider the case ε = 1

5 .
Figure 7 shows the plots for b ≤ 4. For b = 5, we even have

fp(b) :=
(

bp

bε

)pbε
(

1 − p2

1 − p − p(1 − ε)/b

)b−pbε

< 0.5,

and Lemma 17 shows that the maximum of fp(b) can only decrease for larger b.
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Fig. 7. Behavior of Bb(p) for ε = 1
5 and small b.

LEMMA 17. Given constants 0 < α ≤ 1
2 and 0 ≤ ε < 1 and the abbreviation bε =

(b + 1 − ε), consider the function

fp(b) :=
(

bp

bε

)pbε
(

1 − p2

1 − p − p(1 − ε)/b

)b−pbε

.

Then supα≤p<b/bε
fp(b) is monotonically decreasing for integer b ≥ 5.

PROOF. Consider any b > 5 and any p where fp(b) is maximized. Such a value must
exist in the interior of [αp, b/bε) since limp→b/bε

(∂/∂p) fp(b) = −∞.

Case p ≤ (b − 2)/b. In Lemma 23 it is shown that fp(b) is nonincreasing for p ≤
(b − 1)/(b + 1). In particular, it can only decrease on the interval [b − 1, b].

Case p > (b − 2)/b. We make the substitution p := (b − δ)/bε, i.e., δ = b − pbε and
the condition p > (b − 2)/b becomes δ < 1 + ε + 2(1 + ε)/b ≤ 4. In Lemma 24 it is
shown that

gδ(b) := fp(b)

[
p ← b − δ

bε

]

is nonincreasing for its range of definition b ≥ δ.10 In particular, for b ≥ 5 and δ ≤ 5,
gδ(b) is defined and nonincreasing on the interval [b − 1, b]. We get

fp(b) = gb−p(b+1−ε)(b) ≤ gb−p(b+1−ε)(b − 1)

= f((b−1)−(b−p(b+1−ε)))/((b−1)+1−ε)(b − 1) = fp−(1−p)/(b−ε)(b − 1)

since p − (1 − p)/(b − ε) ≥ 1
2 for b ≥ 5, ε ≤ 1, and p > (b − 2)/b ≥ 3

5 .

The technical Lemmata 23 and 24 are proven in Section A.2 of the Appendix.

10 The notation e[a ← b] stands for the expression e where a is consistently subsituted by b.
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4.3. Maximum Flow with Short Augmenting Paths. What remains to be done to estab-
lish Theorem 12 is to explain how all augmenting paths of at most logarithmic length
can be removed in time O(N log D) time where N = O(D) is the number of edges of
the allocation graph.

To explain why flow computations can be easier if only augmenting paths of loga-
rithmic length need to be considered we start with a simple example. Dinitz’ algorithm
[37] removes all augmenting paths of length i in the i th iteration. Each iteration com-
putes a blocking flow. Even a simple backtracking implementation of the blocking flow
routine can do that in time O(iN) so that the time for the O(log D) first iterations
is O(N log2 D). Note that the same simplistic implementation needs O(D3) steps for
unconstrained maximum flows.

We can prove an even better bound for preflow push algorithms by using the fact that
we are essentially dealing with a unit capacity flow problem. This can be made precise by
transforming the flow problem as formulated in Section 3.3 into a problem with only unit
capacity edges: Replacing an edge (s, v) or (u, t) with integer capacity c by c parallel
unit capacity edges. For target load L ′ = O(N/D), the number of additional edges will
be in O(N ).

Since detailed treatments of the preflow push algorithm are standard textbook material
[38], [39], we only sketch the changes needed for our analysis: A preflow push algorithm
maintains a preflow, which respects the capacity constraints of the flow network but
relaxes the flow conservation constraints. Nodes with excess flow are called active. The
difference between the original flow network and the preflow is the residual network
that defines which edges are still able to carry flow. The algorithm also maintains a
height H(v) which is a lower bound for the distance of a node v to the sink node t , i.e.,
the minimum number of residual edges needed to connect v to t . Units of flow can be
pushed downward from active nodes. Active nodes that lack downward residual edges can
be lifted.

In the standard preflow push algorithm, H(s) is initialized to D to make sure that
flow can only return to the source if no path to the sink is left. If we are only interested in
augmenting paths of length at most Hmax, we can initialize H(s) to Hmax. The standard
analysis of preflow push is straightforward to adapt so that it takes the additional parame-
ter Hmax into account. It turns out that the number of lift operations is bounded by 2DHmax

and the number of saturating push operations is bounded by NHmax. Furthermore, the
algorithm can be implemented to spend only constant time per push operation and a total
of O(NHmax) operations in other operations. The most difficult part in the analysis of
general preflow push algorithms, namely bounding the number of nonsaturating push
operations, is simple here. Since there are only unit capacity edges, no nonsaturating
pushes occur. Altogether, preflow push can be implemented to run in time O(NHmax)

for unit capacity flow networks. Since N = O(D) and Hmax = O(log D) in our case,
we get the desired O(D log D) bound.

4.4. Linear Time Approximation. Azar et al. [40] give a construction that achieves
maximum load 10 for N = D. This is mainly of theoretical interest but they attribute
a method that achieves maximum load 2 for N ≤ 1.6D to Frieze. A similar result is
described in more detail by Czumaj and Stemann in the full paper [41, Section 7] using
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a result by Pittel et al. on “k-cores” [42]. For N ≤ 1.67D it is unlikely that there is any
3-core, i.e., a subset of nodes of Ga which induces a subgraph with minimum degree 3.
Therefore, an algorithm which repeatedly removes nodes v with minimal degree by
committing all its incident requests to v will yield a schedule with maximum load 2 with
high probability.

By splitting the input into �N/1.67� sub-batches one gets a schedule with maximum
load 2�N/1.67� in linear time. A further improvement is possible by using sub-batches
of size up to 2.57D. Using similar arguments as before it can be shown that those can be
scheduled with maximum load 3, yielding a slightly better load balance. One should not
apply the algorithm to larger sub-batches however since it then deteriorates, approaching
a maximum load of 2N/D for N � D log D.

5. Reducing Redundancy. We model this more general storage scheme already out-
lined in the Introduction in analogy to RDA: The allocation of r + 1 sub-blocks of a
logical block is coded into a hyperedge e ∈ E of a hypergraph Ha = ({1..D}, E) con-
necting the r + 1 nodes (disks), to which sub-blocks have been allocated. Both e and
E are multisets. A schedule is a directed version of this hypergraph Hs , where each
hyperedge points to the disk which need not access the sub-block. RDA is the special
case where all hyperedges connect exactly two nodes. Note that not all edges need to
connect the same number of nodes. On a general purpose server, different files might
use different tradeoffs between storage overhead and logical block size. A logical block
without redundancy can be modeled by an undirected hyperedge incident to only one
node.

The unavoidable load of a subset of disks � is the difference between the number of
times an element of � appears in an edge and the number of incident edges. Formally,
L� := ∑

e∈E |� ∩ {e}| − |{e ∈ E : � ∩ E �= ∅}|. With these definitions, Theorem 5 can
be adapted to hypergraphs and the proof can be copied almost verbatim. Maximum flow
algorithms for ordinary graphs can be applied by coding the hypergraph into a bipartite
graph in the obvious way. Lemma 10 is also easy to generalize.

The most difficult part is again the probabilistic analysis. We would like to generalize
Theorem 4 for arbitrary r . Indeed, we have no analysis yet which holds for all values of r
and N/D. Yet, in Section 5.1, we outline an analysis which can be applied for any fixed
r (we do that for r ≤ 10) and yields the desired bound for sufficiently large N/D but still
for all D. This already suffices to analyze a concrete application in a scalable way, and
to establish a general emulation result between the multi-head model and independent
disks. This result is summarized by the following lemma:

LEMMA 18. For given b = N/D and r , let

Bbr(p):

[
1

14r
,

rb

rb + 1

)
→ R, Bbr(p) = (q R + ((pT + q)R − q R)/T )b

T p(br+1) p pqq
,

where R := r + 1, q = 1 − p, and T = (q/p) · (1 + Rp)/(qr − p/b). If Bbr < 1 in its
range of definition, then Lmax ≤ �br� + 1 with probability at least 1 − O(1/D)br+1.
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Fig. 8. Behavior of Bb2(p) for b ≥ 2 and Bb4(p) for b ≥ 14.

Using a simple trick, we can study the behavior of Bbr(p) for fixed r and arbitrarily
large b. We simply substitute y ← 1/b and plot the resulting two-dimensional function
gr (y, p). Using this approach, Figure 8 shows the behavior of Bb2(p) and Bb4(p) for
values of b which are large enough to ensure a value less than one. The following table
gives the smallest b which ensures that Bbr < 1 for r ∈ {2, . . . , 10}:

r 2 3 4 5 6 7 8 9 10
b 2 6 14 24 38 56 77 101 130

Section 5.2 provides simulation result which indicate that even smaller N/D work well.

5.1. Proof of Lemma 18. Let �, d = |�|, p = d/D be defined as in Section 3 and
introduce the abbreviations q := 1− p, R := r +1, and Pd := P[L� ≥ d(rb+1)+1] for
a subset � of size d . The structure of the analysis is analogous to the proof of Theorem 4.
Lemma 6 still applies. As before, if Xi denotes the unavoidable load incurred by logical
block i , we have L� = ∑N

i=1 Xi . However, for r ≥ 2, the Xi are not 0-1 random variables
and L� is not binomially distributed. Instead Xi has the shifted binomial distribution
max{0,B(R, d/D)− 1}. Fortunately, the Xi are independent and we can use Chernoff’s
technique to develop a tail bound for L�:

LEMMA 19. For any x ≥ E[L�] and any T ≥ 1,

P[L� > x] ≤ (q R + ((pT + q)R − q R)/T )N

T x
.
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PROOF. We have P[L� > x] = P[T L� > T x ] and hence, using Markov’s inequality,

P[L� > x] ≤ E[T L� ]/T x . By definition of L�, E[T L� ] = E[T
∑

i
Xi ] = E[

∏
i T Xi ] =

E[T X1 ]N . Using the binomial theorem, it is easy to evaluate E[T Xi ] = q R + ((pT +
q)R − q R)/T .

For greater flexibility, we have left the parameter T unspecified. (There seems to be
no closed form optimal choice for T and general r .) Still, by picking an appropriate T ,
we can use Lemma 19 in a similar way as we used Lemma 7 in the proof for r = 1.

We split the sum from Lemma 6 into the intervals {0..D/(14r)}, {D/(14r)..Drb/(rb+
1)}, and {Drb/(rb + 1)..D} where the last interval contributes only zero summands.

Section A.3 of the Appendix proves the following generalization of Lemma 8 by
setting T = 1 + 1/rp in the Chernoff bound from Lemma 19.

LEMMA 20. For r ≥ 2,

∑
d≤D/(14r)

(
D

d

)
Pd = O(1/D)br+1.

Concerning larger � we argue similarly to Lemma 9 that for r ≥ 2,

∑
D/(14r)<d<Db/(rb+1)

(
D

d

)
Pd = e−�(D)(1)

for sufficiently large b depending on r .
We start the computation by setting

T = q

p
· N + x

rN − x
= q

p
· 1 + Rp

qr − p/b
,

where N = bD and x = pD(rb + 1) < pD(rb + 1) + 1. Lemma 19 then yields

Pd < P[L� > x] <

(
(q R + ((pT + q)R − q R)/T )b

T p(br+1)

)D

.

Since T does not depend on D, relation (1) can be established by showing that

Bbr(p) := (q R + ((pT + q)R − q R)/T )b

T p(br+1) p pqq

is bounded by some constant B̂ < 1 for 1/(14r) ≤ p < rb/(rb+1). The factor 1/(p pqq)

stems from the Stirling approximation of the binomial coefficient that was already used
in the proof of Lemma 9.

5.2. Experiments. Figure 9 compares the efficiency of the r out of r +1 coding scheme
for r = 1 (RDA), r = 4, and r = 8, always using D = 64. The abscissa uses the scale
rN/D so that all the points with the same abscissa involve the the same number of sub-
blocks per disk. For r = 4 and N divisible by D the performance is quite close to the
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retrieved.

performance of RDA. However, choosing a “clever” value for N shows less dramatic
performance improvement than for RDA. For r = 8, we always need somewhat larger
batches of inputs for good performance.

The measured performance of the r out of r +1 scheme is significantly better than can
be proven using the upper bounds. For example, we have performed simulations with
D = 64 and different values for r and b = N/D to find out when the average L∗

max goes
down to rb + 1 in order to compare this with the analytical performance guarantees. For
r = 4, b = 4 suffices whereas the theoretical bound requires b = 14. For r = 8, b = 16
suffices and the theoretical bound requires b = 77.

6. Applications and Refinements. Whereas Sections 2 and 3 treat queued writing
and reading with RDA as two independent techniques, we combine them into a general
result on emulating multi-headed disks in Section 6.1. Further refinements that combine
advantages of randomization and striping are outlined in Section 6.2. Then we give
some examples of how our results can be used to improve the known bounds for external
memory problems. Applications for multimedia are singled out in Section 6.4, since
they served as a “breeding ground” for the algorithms described here. In Section 6.5 we
explain how the coding scheme can be further generalized to allow reconstruction of a
logical block from r out of w ≥ r sub-blocks using Maximum Distance Separable codes
[43], [44]. This allows more flexible tradeoffs between low redundancy and high fault
tolerance.

6.1. Emulating Multi-Headed Disks. We compare the independent disk model and the
concurrent access multi-headed disk model under the simplifying assumption that I/O
steps are either read steps or write steps.
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DEFINITION 21. Let MHDM-I-OD,B,M(i, o) denote the set of problems11 solvable on
a D-head disk with block size B and internal memory of size M using i parallel read
steps and o parallel write steps. Let IPDM-I-OD,B,M(i, o) denote the corresponding set
of problems solvable with D independent single headed disks with expected complexity
i and o assuming the availability of a random hash function.

Using queued writing (Theorem 1) and RDA (Theorem 4), we can immediately conclude:

COROLLARY 22. For any 0 < ε < 1 and b ∈ N,

MHDM-I-ObD,B,M(i, o) ⊆ IPDM-I-OD,B,M+O(D/ε+bD)(i
′, o′),

where i ′ = i · (b + 1) + O(i/D) and o′ = O(ob).

Aggarwal and Vitter’s original multi-head model [1] allows read and write operation
to be mixed in one I/O step. By buffering write operations this more general model could
be emulated on the above MHDM model with an additional slowdown factor of at most
two. However, nobody prevents us from mixing reads and writes in the emulation. The
write queues can even be used to saturate underloaded disks during reading. We have
only avoided considering mixed reading and writing to keep the analysis simple.

The parity encoding from Section 5 can be used to reduce the overhead for write
operations from two to 1 + 1/r at the price of increasing the logical (emulated) block
size by a factor of r .

6.2. Refined Allocation Strategies. It may be argued that striping, i.e., allocating log-
ical block i to disk i mod D is more efficient than random placement for applications
accessing only few, long data streams, since striping achieves perfect load balance in
this case. We can get the best of both worlds by generalizing randomized striping [10],
[45], [20], where long sequences of blocks are striped using a random disk for the first
block.

We propose to allocate short strips of D consecutive blocks in a round robin fashion.
A hash function h is only applied to the start of the strip: Block i is allocated to disk
(h(i div D) + i mod D) + 1. This placement policy has the property that two arbitrary
physical blocks i ′ and j ′ are either placed on random independent disks or on different
disks, and similar properties hold for any subset of blocks. In the case of redundant
allocation, each copy is striped independently.

6.3. External Memory Algorithms. We first consider the classical problem of sorting N
keys, since many problems can be solved externally using sorting as a subroutine [3]. Per-
haps the best algorithm for both a single disk and a parallel multi-head disk is multiway
merge sort. This algorithm can be implemented using about 2(N/DB) logM/B(N/M)

I/Os [45]. Ingenious deterministic algorithms have been developed that adapt mul-
tiway merging to independent disks [46]. Since the known deterministic algorithms

11 In a complexity theoretic sense.
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increase the number of I/Os by a considerable factor, Barve et al. [10] have devel-
oped a more practical algorithm based on randomized striping, which also achieves
O((N/DB) logM/B(N/M)) I/Os if M = �(D log D). Our general emulation result
does not have this restriction and achieves 2(1 + 1/r + ε)(N/DB) log�(M/B)(N/M) for
ε > DB/M . (Note that during a merging operation, blocks are only written once so that
the bound for writing from Theorem 1 can be applied directly.)

Since the publication of the conference version [47] of this paper, the bounds for
sorting have further improved. Vitter and Hutchinson [11] have proven a conjecture
in the conference paper that the distribution sorting algorithm of Barve et al. can be
improved using our analysis of writing. The key to this success was a generalization of
randomized striping that combines the advantages of striping and fully random allocation.
Subsequently, Hutchinson et al. [12] have improved the constant factors involved and
explain how merge sort can be implemented optimally without redundancy. The key to
this result is the observation that algorithms for write scheduling yield read schedules
if they are applied to the reverse of the sequence of blocks to be read. The resulting
algorithms for distribution sorting and merge sort meet the lower bound for sorting up
to lower-order terms.

Efficient external memory algorithms for more complicated problems than sorting
have so far mainly been developed for the single disk case. However, many of them are
easily adapted to the multi-head model so that our emulation result yields randomized
algorithms for parallel independent disks, which need a factor �(D) fewer I/O steps than
using one disk. Many external memory algorithms have easily predictable read accesses
and only writing is not predictable. For example, this is true for the batched geometric
problems mentioned in [3] (orthogonal range queries, line segment intersection, three-
dimensional convex hulls, triangulation of point sets, point location, etc.) and also for
data structures like buffer trees buffer trees [48]. In this case, redundancy can be avoided
using the methods outlined above for distribution sorting.

Despite some overhead for redundancy, algorithms based on reading from multiple
sources can still be the best choice. For example, although buffer trees yield an asymptot-
ically optimal algorithm for priority queues, specialized algorithms based on multiway
merging can be a large constant factor faster [49]. A 50% overhead for duplicate writing
is not an issue in this case.

6.4. Interactive Multimedia. In video-on-demand applications, almost all I/O steps
concern reading. Hence, the disadvantage of RDA of having to write two copies of each
block is of little significance to these applications. In addition, if many users have to
be serviced simultaneously by a video-on-demand server, then disk bandwidth, rather
than disk storage space, tends to be the limiting resource. In that case the duplicate
storage of RDA need not imply that more disks are required for storage. Otherwise, the
redundancy can be reduced as shown in Section 5. Also bear in mind that similar kinds of
redundancy (mirroring, parity blocks) are even needed in current systems to ensure fault
tolerance.

Similar properties hold for interactive graphics applications [19]. In these applications
it is very important to be able to handle arbitrary access patterns while at the same time
to realize small response times. In this respect, RDA clearly outperforms striping and
also random allocation without redundancy.
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6.5. More General Encodings. The parallel disk system (the redundant storage strategy
together with the protocol to read and write) can be seen as a communication system in
the sense of Shannon. The channel is represented by the read-protocol which deliberately
introduces erasures in order to be able to balance the load on the disks. Another possible
source of erasures is disk failure.

Consider the following mechanism: Each block is split into k equally sized parts
to which another n − k redundant parts are added as linear combinations of the first
k parts. The linear combinations are described by an [n, k, d] error correcting block
code with minimum distance d = n − k + 1. Such a code is called maximum distance
separable (MDS).12 MDS codes are optimal in the sense that the original block can be
reconstructed from any set of at least k parts. The use of MDS codes for fault tolerance
has been investigated for example in [44].

All storage strategies mentioned in this article are special cases of binary MDS en-
coding: Striping uses the [D, D, 1] trivial code where D is the number of disks, RDA
uses the [2, 1, 2] repetition code, and “r -out-of-(r +1)” uses the [r +1, r, 2] parity check
code. In fact, it is known that the only existing binary MDS codes are the [n, n, 1] trivial,
[n, n − 1, 2] parity, and [n, 1, n] repetition codes (from Corollary 1 of [50]). Over larger
alphabets, however, other MDS codes exist (e.g., Reed–Solomon codes). By the choice
of an appropriate MDS code one can protect against disk failure (as in [44]), even against
failure of multiple disks, and guarantee efficient load balancing at the same time.

Acknowledgments. The authors thank David Maslen and Mike Keane for contribu-
tions to the analysis of RDA and Ludo Tolhuizen for advice on error correcting codes.
Jeff Vitter and David Irwin helped to develop the rewriting algorithm in Section 2.2.

Appendix. Proof Details

A.1. Proof of Lemma 14

PROOF. Lemma 15 is now applied in its full generality. Setting

f (d) :=
(

d

D

)d(b−ε)+1

ed(b+1)+1,

we can see that f ′′(d) is positive as before if d ≥ 3 and ε ≤ 1
2 , so that it suffices

to consider values at the boundary of the interval [3, D/16]. We get
∑

d≤αD

(D
d

)
Pε

d ≤
f (1) + f (2) + αD max{ f (3), f (αD)}, where

f (1) = (1/D)bε eb+2 = e1+ε(e/D)bε = O(1/D)bε .

12 For a treatment of coding theory refer to the book of MacWilliams and Sloane [43], in particular to Chapter 1
(“Linear codes”) and Chapter 11 (“MDS codes”). The symbol [n, k, d] denotes the parameters of a linear block
code encoding k information symbols into n code symbols with a minimum distance of d.
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Similarly,

f (2) = (2/D)2(b−ε)+1e2b+3 = O(1/D)2(b−ε)+1,

αD f (3) = αD(3/D)3(b−ε)e3b+4 = O(1/D)3(b−ε),

αD f (αD) = αDααD(b−ε)+1eαD(b+1)+1 = O(D)eαD((b−ε) ln α+b+1) = e−�(D)

if α < e−2/(1−ε).

All these values are in O(1/D)bε for ε < 1
5 and α < 1

16 .

A.2. Auxiliary Lemmata for the Proof of Lemma 16

LEMMA 23. For p < (b − 1)/(b + 1) and any 0 ≤ ε < 1,

fb(p) =
(

bp

bε

)pbε
(

1 − p2

1 − p − p(1 − ε)/b

)b−pbε

is nonincreasing.

PROOF. Consider the derivative of fp(b),

f ′
p(b) = fp(b)

(
p ln

(
bp

bε

)
+ (1 − p) ln

(
1 − p2

1 − p − p(1 − ε)/b

))
.

Since fp(b) is positive, we have to verify that

lb(p) := p ln

(
bp

bε

)
+ (1 − p) ln

(
1 − p2

1 − p − p(1 − ε)/b

)
≤ 0

for p ≤ (b − 1)/(b + 1). However, since (∂/∂ε)lb(p) ≤ 0 for p < b/bε, it suffices to
consider the case ε = 0 within the rest of this proof.

We first consider extreme values of p: We have lb(0) = 0 and

lb

(
b − 1

b + 1

)
= 4

b + 1
ln

(
2b

b + 1

)
+ b − 1

b + 1
ln

(
b(b − 1)

(b + 1)2

)
.

By inspection, it can be seen that this is indeed negative for b ≤ 34. For larger b, we use
2b/(b + 1) ≤ 2 and estimate

ln

(
b(b − 1)

(b + 1)2

)
= ln

(
1 − 3b + 1

(b + 1)2

)
≤ − 3b + 1

(b + 1)2

using series development. We get

lb

(
b − 1

b + 1

)
≤ 4 ln(2)

b + 1
− (b − 1)(3b + 1)

(b + 1)3
.

This can be shown to be negative for b ≥ 34 by solving a simple quadratic equation.
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To complete the proof, we show that lb(p) cannot assume larger values for 0 < p <

(b − 1)/(b + 1) because lb(p) is concave, i.e., l ′′b (p) > 0. l ′′b (p) is a rational function
and has the positive denominator (p + 1)2(1 − p)(b − bp − p)2 p so that its sign only
depends on the numerator, the polynomial Pb(p) := (p4 − 4p3 + 6p2 − 4p + 1)b2 +
(2p3 − 6p2 + 6p − 2)pb + p4 − p3 + 3p2 + p. Since the b-independent summand
p4 − p3 + 3p2 + p is nonnegative for p ∈ [0, 1], it suffices to show that

Qb(p) := (Pb(p) − p4 − p3 + 3p2 + p)/b

= (p4 − 4p3 + 6p2 − 4p + 1)b + (2p3 − 6p2 + 6p1 − 2)p

= (1 − p)3(b − p(b + 2))

is nonnegative. This is the case for p ≤ b/(b + 2), i.e., even beyond (b − 1)/(b + 1).
Rolling up our chain of arguments, we conclude that Pb(p) ≥ 0 and l ′′b (p) ≥ 0 for
p ∈ [0, (b − 1)/(b + 1)], i.e., lb(p) is concave. Therefore, it was sufficient to prove that
lb(0) ≤ 0 and lb((b − 1)/(b + 1)) ≤ 0 to establish that fp(b) is nonincreasing.

LEMMA 24. gδ(b) := (b(b − δ)/b2
ε )

b−δ((b/δ)(1 − (b − δ)2/b2
ε ))

δ is nonincreasing for
b ≥ δ.

PROOF. Consider

g′
δ(b) = gδ(b)ub(δ)

bε(b + bε − δ)
,

where ub(δ) := b(2δ+4(1−ε))+2−4ε+((1−ε)2+3b(1−ε)−dbε+2b2) ln(b(b−δ)/b2
ε )

is the only term that can become negative for b ≥ δ. We have

ub(0) = 2(b + bε)

(
1 − ε + bε ln

b

bε

)
.

Using series development, we get ln(b/bε) ≤ −(1 − ε)/bε and hence ub(0) ≤ 0.
Furthermore, using series development again yields

u′
b(0) = 2bε ln

(
1 + 1 − ε

b

)
− 3(1 − ε) − (1 − ε)2

b

≤ 2bε

1 − ε

b
− 3(1 − ε) − (1 − ε)2

b

= − (1 − ε)bε

b
≤ 0.

Finally,

u′′
b(δ) = − (1 + δ − ε)bε

(b − δ)2
≤ 0,

i.e., ub(δ) is convex. Together with u′
b(0) ≤ 0 and ub(0) ≤ 0 this implies that ub(δ) ≤ 0

for all 0 ≤ δ < b and the same holds for g′
δ(b).
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A.3. Proof of Lemma 20. First, we further simplify the Chernoff bound from Lemma 19
for N = bD, p = d/D, and x = d(br + 1) + 1.

LEMMA 25. For N = bD, |�| = d, and p = d/D,

P[L� ≥ x] ≤ ebd(r+1)(e−1)

(
dr

D

)x

.

PROOF. Choosing T = 1 + 1/rp in Lemma 19 yields

P[L� > x] ≤ (q R + ((p(1 + 1/rp) + q)R − q R)/(1 + 1/rp)N

(1 + 1/rp)x

= ((R/r)R + q R/rp)N

(1 + 1/rp)N+x
(since 1 + 1/rp ≥ 1/rp)

≤
((

R

r

)R

+ q R

rp

)N

(rp)N+x =
(

Rp

(
R

r

)r

+ q R

)N

(rp)x

≤ ebdR((R/r)r −1))(rp)x ≤ ebd(r+1)(e−1)

(
dr

D

)x

.

The latter two estimates are based on Lemma 26 and the fact that (R/r)r = (1 + 1/r)r

≤ e.

We now set x = d(rb + 1) + 1 and use the Stirling approximation
(D

d

) ≤ (De/d)d to
get an overall bound(

D

d

)
Pd ≤

(
De

d

)d

ebd(r+1)(e−1)

(
dr

D

)d(rb+1)+1

= (er)debd(r+1)(e−1)

(
dr

D

)dbr+1

.

Completing the proof of Lemma 20 is only slightly more complicated than it was in
Lemma 8. Let f (d) = (er)debd(r+1)(e−1)(dr/D)dbr+1. It is easy to check that f ′′′(d) ≥ 0
and f ′(1) ≤ 0 for D > ree+e/r+ln(r)/r . Therefore, for sufficiently large D, f assumes its
maximum over an interval [dmin ≥ 1, dmax] at one of the borders of that interval if dmin ≥
1. For any constant 0 < α < 1, we get

∑
d≤αD

(D
d

)
Pd ≤ f (1)+αD max{ f (2), f (αD)},

where

f (1) = ereb(r+1)(e−1)
( r

D

)br+1
= O(1/D)br+1,

αDf (2) = αD(er)2e2b(r+1)(e−1)

(
2r

D

)2br+1

= O(1/D)2br,

αDf (αD) = (er)αDebαD(r+1)(e−1)(αr)αDbr+1

= O(D)eαD(1+ln(r)+b(r+1)(e−1)+ln(αr)br) = e−�(D)

if α < 1
r e−(1+ln r)/br−(e−1)(1+1/r) or, if we prefer to choose α independently of b and

proportional to 1/r , α ≤ 1/(14r) < (1/r)e−3(e−1)/2 for r ≥ 2.
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It remains to prove the following technical lemma:

LEMMA 26. (Rp(R/r)r + q R)bD ≤ ebdR((R/r)r −1).

PROOF. (Outline) Let f (D) = (Rp(R/r)r + q R)bD ≤ ebdR((R/r)r −1). First observe that
limD→∞ f (D) = ebdR((R/r)r −1). Therefore, it suffices to show that f grows monoton-
ically. We have f ′(D) = f (D)bg(p) where g(p) = ln(pR(R/r)r + q R) + (RpqR −
pR(R/r)r )/(pR(R/r)r +q R), and it suffices to show that g(p) ≥ 0. Note that g only de-
pends on r and p = d/D. In particular, for fixed r , it suffices to discuss a one-dimensional
function. Showing that g(p) ≥ 0 for arbitrary r is tedious but possible. One way is to
show that g′(p) ≥ 0 in order to argue that g(p) ≥ g(0) = 0. The derivative g′(p) is a
rational function and its numerator can be further simplified by using 1− rp ≤ qr ≤ 1 in
the appropriate way. The denominator of the resulting function is a quadratic polynomial
in p and can be minimized analytically.
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[15] B. Vöcking. How asymmetry helps load balancing. In Proceedings of the 40th Symposium on Founda-
tions of Computer Science, pages 131–140, 1999.

[16] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a distributed memory
machine. In Proceedings of the 24th ACM Symposium on Theory of Computing, pages 318–326, May
1992.



54 P. Sanders, S. Egner, and J. Korst

[17] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulations. In Pro-
ceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures, pages 110–119, 1993.

[18] F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage redundancy to speed up
randomized shared memory simulations. Theoretical Computer Science, 162(2):245–281, August 1996.

[19] R. Muntz, J. R. Santos, and S. Berson. A parallel disk storage system for real-time multimedia applica-
tions. International Journal of Intelligent Systems, 13:1137–1174, 1998.

[20] W. Tetzlaff and R. Flynn. Block allocation in video servers for availability and throughput. Proceedings,
Multimedia Computing and Networking, 1996. www.cs.utexas.edu/users/mmcn/96/proceedings.html.

[21] R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin. Design and performance tradeoffs in clustered
video servers. Proceedings of the International Conference on Multimedia Computing and Systems,
pages 144–150, 1996.

[22] S. Berson, R. R. Muntz, and W. R. Wong. Randomized data allocation for real-time disk I/O. Proceedings
of the 41st IEEE Computer Society Conference, COMPCON ’96, pages 286–290, 1996.

[23] Y. Birk. Random RAIDs with selective exploitation of redundancy for high performance video servers.
Proceedings of NOSSDAV ’97, pages 13–23, 1997.

[24] P. Sanders. Asynchronous scheduling of redundant disk arrays. In Proceedings of the 12th ACM Sym-
posium on Parallel Algorithms and Architectures, pages 89–98, 2000.

[25] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S. Vitter. External memory
graph algorithms. In Proceedings of the 6th Annual ACM–SIAM Symposium on Discrete Algorithms,
pages 139–149, 1995.

[26] J. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In Proceedings of the 3rd Italian
Conference on Algorithms and Complexity, pages 229–240, 1997.

[27] F. Dehne, W. Dittrich, and D. Hutchinson. Efficient external memory algorithms by simulating coarse-
grained parallel algorithms. In Proceedings of the ACM Symposium on Parallel Architectures and
Algorithms, pages 106–115, 1997.

[28] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Reducing i/o complexity by simulating coarse
grained parallel algorithms. In Proceedings of the 13th International Parallel Processing Symposium,
pages 14–20, 1999.

[29] A. Papoulis. Probability, Random Variables, and Stochastic Processes, 2nd edn. McGraw-Hill, New
York, 1984.

[30] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA,
1989.

[31] L. A. M. Schoenmakers. A new algorithm for the recognition of series parallel graphs. Technical Report
CS-R9504, CWI - Centrum voor Wiskunde en Informatica, January 31, 1995.

[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, 2nd edn.
Cambridge University Press, Cambridge, 1992.

[33] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, and J. Ramirez-Alfonsin, editors, Prob-
abilistic Methods for Algorithmic Discrete Mathematics, pages 195–247. Springer-Verlag, New York,
1998.

[34] T. Worsch. Lower and upper bounds for (sums of) binomial coefficients. Technical Report IB 31/94,
Universität Karlsruhe, 1994.

[35] D. P. Dubhashi and A. Panconesi. Concentration of measure for computer scientists. Draft manuscript,
http://www.brics.dk/∼ale/papers.html, February 1998.

[36] S. Even and E. Tarjan. Network flow and testing graph connectivity. SIAM Journal on Computing,
4:507–518, 1975.

[37] E. A. Dinic (now spelled “Dinitz”). Algorithm for solution of a problem of maximum flow. Soviet
Mathematics. Doklady, 11:1277–1280, 1970. .

[38] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill, New York,
1990.

[39] R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. Prentice-Hall, Englewood Cliffs, NJ,
1993.

[40] Y. Azar, A. Z. Broder, A. R. Karlin, and Eli Upfal. Balanced allocations. SIAM Journal on Computing,
29(1):180–200, February 2000.

[41] A. Czumaj and V. Stemann. Randomized allocation processes. In Proceedings of the 38th Symposium
on Foundations of Computer Science (FOCS), pages 194–203, 1997.



Fast Concurrent Access to Parallel Disks 55

[42] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in random graph. Journal
of Combinatorial Theory, Series B, 67:111–151, 1996.

[43] F. J. MacWilliams and N. J. A. Sloane. Theory of Error-Correcting Codes. North-Holland, Amsterdam,
1988.

[44] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson. Coding techniques for
handling failures in large disk arrays, csd-88-477. Technical Report, University of California, Berkley,
1988.

[45] D. E. Knuth. The Art of Computer Programming — Sorting and Searching, volume 3, 2nd edn., Addison-
Wesley, Reading, MA, 1998.

[46] M. H. Nodine and J. S. Vitter. Greed sort: an optimal sorting algorithm for multiple disks. Journal of
the ACM, 42(4):919–933, 1995.

[47] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In Proceedings of the 11th
ACM–SIAM Symposium on Discrete Algorithms, pages 849–858, 2000.

[48] L. Arge. The buffer tree: a new technique for optimal I/O-algorithms. In Proceedings of the 4th Workshop
on Algorithms and Data Structures, number 955 in LNCS, pages 334–345. Springer-Verlag, Berlin,
1995.

[49] P. Sanders. Fast priority queues for cached memory. In ALENEX ’99, Workshop on Algorithm Engi-
neering and Experimentation, number 1619 in LNCS, pages 312–327. Springer-Verlag, Berlin, 1999.

[50] L. Tolhuizen. On maximum distance separable codes over alphabets of arbitrary size. In Proceedings
of the IEEE International Symposium on Information Theory, page 431, 1994.


