
DOI: 10.1007/s00453-002-0981-6

Algorithmica (2002) 34: 480–501 Algorithmica
© 2002 Springer-Verlag New York Inc.

The Quantum Black-Box Complexity of Majority

Thomas P. Hayes,1 Samuel Kutin,2 and Dieter van Melkebeek3

Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error
ε using only 2

3 N + O(
√

N log(ε−1 log N)) queries: the algorithm returns the correct answer with probability
at least 1− ε, and “I don’t know” otherwise. Our algorithm is given as a randomized “XOR decision tree” for
which the number of queries on any input is strongly concentrated around a value of at most 2

3 N . We provide

a nearly matching lower bound of 2
3 N − O(

√
N) on the expected number of queries on a worst-case input in

the randomized XOR decision tree model with zero-sided error o(1). Any classical randomized decision tree
computing the majority on N bits with zero-sided error 1

2 has cost N .

Key Words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.

1. Introduction. How do you tell how a committee of three people will vote on an
issue? The obvious approach is to ask each individual what vote he or she is planning to
cast. If the first two committee members agree, you can skip the third one, but, if they
disagree, you need to talk to all three members.

Suppose, however, that you can perform quantum transformations on the committee
members. This allows you to ask, with one quantum question, whether the first two
members agree or disagree. If they agree, you can disregard the third member and ask
one of the first two for her vote. If the first two disagree, you know their votes will cancel,
so it suffices to ask the third member for his vote. Either way, you will learn the answer
in only two queries.

In this paper we discuss generalizations of this procedure to arbitrarily many voters.
We allow our algorithms to ask whether two voters agree at the cost of one query. We
consider both deterministic and randomized algorithms, allowing different kinds of error.
Our algorithms can be simulated very efficiently on quantum machines, yielding new
upper bounds for the quantum complexity of the MAJORITY function.

1.1. Overview. Suppose we wish to compute the value f (X) of a function f on {0, 1}N
where the input X is given to us as a black-box X : {0, . . . , N −1} → {0, 1}. The cost of
the computation will be the number of queries we make to the oracle X . In the classical
case, this model of computation is known as a decision tree, and has been well studied.

More recently, a quantum mechanical version of the model has been considered, which
is inherently probabilistic. Several complexity measures are investigated: the number of

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA.
hayest@math.uchicago.edu.
2 Department of Computer Science, University of Chicago, 1100 E. 58th Street, Chicago, IL 60637, USA.
kutin@cs.uchicago.edu.
3 Computer Sciences Department, University of Wisconsin, 1210 W. Dayton Street, Madison, WI 53706, USA.
dieter@cs.wisc.edu.

Received March 1, 2001. Communicated by M. Mosca and A. Tapp.
Online publication September 16, 2002.

The Quantum Black-Box Complexity of Majority 481

queries needed to compute f exactly, with zero-sided error ε, or with bounded error ε.
Beals et al. [3] show that for any function f these measures are all polynomially related
to the classical decision tree complexity. Beals et al. also look more closely at some
specific functions f . In particular, they consider the majority function, whose decision
tree complexity equals N . They prove that in the quantum model the exact and zero-sided
error cost functions are between N/2 and N (for any ε < 1); a result by Paturi [9] implies
that the bounded error cost function is �(N) (for any constant ε < 1

2).
In this paper we investigate these cost measures for MAJORITY more closely. We

provide improved upper bounds, as well as matching lower bounds in related models.
Our first result is a quantum black-box network which exactly computes MAJORITY

using N + 1 − w(N) queries, where w(N) equals the number of ones in the binary
expansion of N . So, for N of the form 2n − 1, we can save �log N� queries.

Our algorithm exploits the fact, due to Cleve et al. [5], that the XOR of two input bits
can be determined in a single quantum query. In fact, our algorithm can be viewed as an
XOR decision tree, i.e., a classical decision tree with the additional power of computing
the XOR of two input bits at the cost of a single query. The complexity of MAJORITY
in this model has been studied before [11], [1], [2], independently of the connection with
quantum computation. A tight bound of N + 1 − w(N) was known [11], [1]. We give
a simpler proof for the lower bound which generalizes to the case where computing the
parity of arbitrarily many input bits is permitted in one query. The lower bound shows
that our procedure cannot be improved without at least introducing a new quantum trick.

Our main result is a quantum black-box network that computes MAJORITY with
zero-sided error ε using only 2

3 N + O(
√

N log(ε−1 log N)) queries. For any positive ε

we construct such a network. The algorithm can be viewed as a randomized variant of an
XOR decision tree given by Alonso et al. [2]. We construct an exact randomized XOR
decision tree with an expected number of queries of at most 2

3 N + 2 log N on any input.
We argue that the number of queries is sufficiently concentrated to yield our main result.

Alonso et al. [2] show that the average cost of their algorithm over all N -bit inputs is
2
3 N −�(

√
N). They also show that the average-case complexity of MAJORITY in the

XOR decision tree model is at least 2
3 N − O(

√
N). We instead are interested in the cost

of randomized XOR decision trees on worst-case inputs. A standard argument shows
that the Alonso et al. lower bound also holds for the expected number of queries on a
worst-case input. We also prove that classical randomized decision trees need N queries
to compute MAJORITY with zero-sided error 1

2 .
In the general bounded-error setting, van Dam [12] has shown how to compute any

function f using 1
2 N +

√
N log ε−1 quantum queries. We point out that van Dam’s

technique does not provide a zero-sided error network for MAJORITY of cost less than
N . We prove that any classical randomized decision tree for MAJORITY has to have
cost N to achieve a bounded error of at most 1

4 .

1.2. Organization. Section 2 provides some preliminaries, including background on
the XOR decision tree model, the quantum black-box model, and their relationship.
Section 3 describes and analyzes our quantum network for computing MAJORITY
exactly using N + 1 − w(N) queries. In Section 4 we discuss our randomized XOR
decision tree for MAJORITY that has small zero-sided error and cost about 2

3 N , and we
relate this to the zero-error quantum query complexity. In Section 5 we show that the

482 T. P. Hayes, S. Kutin, and D. van Melkebeek

exact algorithm of Section 3 is optimal in a generalized version of the XOR decision tree
model. In Section 6 we discuss lower bounds for the cost of randomized XOR decision
trees and classical randomized decision trees for computing MAJORITY. Finally, in
Section 7, we give a table summarizing the known results and propose several questions
for further research.

2. Preliminaries. We first introduce some general notation. Then we discuss XOR
decision trees, quantum black-box networks, and their relationship.

Let X = X0 X1 · · · X N−1 be a Boolean string of length N . We often think of X as
a function X : {0, 1, . . . , N − 1} → {0, 1}. We define MAJORITY(X) to be zero if X
contains more zeros than ones, and one otherwise. This is a weak definition, which we
use to establish our lower bounds. Our algorithms always yield a stronger result in that
they will answer “tie” when the number of zeros and ones are equal. The discrepancy
of X is the size of the majority, i.e., the absolute value of the difference in the number
of zeros and ones. XOR denotes the exclusive OR of two bits, and PARITY(X) denotes∑

Xi mod 2.
For a positive integer N , the Hamming weight of N , denoted w(N), is the number of

ones in the standard binary representation for N . We use the following properties.

LEMMA 1. For any integer N > 0,
∑∞

k=1�N/2k� = N − w(N).

PROOF. Let � = �log N�, and write N =∑�
j=0 bj 2 j , where bj ∈ {0, 1}. We then have

∞∑
k=1

⌊
N

2k

⌋
=
∞∑

k=1

�∑
j=k

bj 2
j−k =

�∑
j=1

bj

j∑
k=1

2 j−k =
�∑

j=1

bj (2
j − 1) =

�∑
j=0

bj 2
j −

�∑
j=0

bj ,

which is simply N − w(N).

COROLLARY 2. For any integer N > 0, N ! is exactly divisible by 2N−w(N).

PROOF. For any positive integer k, there are exactly �N/2k�multiples of 2k contributing
to N !. So the exponent of the largest power of 2 dividing N ! is given by

∑∞
k=1�N/2k�,

which is equal to N − w(N) by Lemma 1.

2.1. XOR Decision Trees. An XOR decision tree is an algorithm for a given input
length N which adaptively queries the input X and outputs a value. A query may be
either

• Xi , where 0 ≤ i ≤ N − 1, or
• Xi ⊕ X j , where 0 ≤ i, j ≤ N − 1 and ⊕ denotes XOR.

The cost on a given input X is the number of queries made. The cost of an XOR decision
tree is the maximum cost over all inputs of length N . An XOR decision tree can be
viewed as a binary tree. The depth of this tree equals the cost of the XOR decision tree.
We refer to Section 5.1 for a further generalization of XOR decision trees.

The Quantum Black-Box Complexity of Majority 483

We define a randomized XOR decision tree T as an XOR decision tree in which
we can toss a coin with arbitrary bias at any point in time, and proceed based on the
outcome of the coin toss. Equivalently, we can view T as a probability distribution
over (deterministic) XOR decision trees. The number of queries on a given input X is a
random variable. We define the cost on input X as the maximum of this random variable,
and the cost of T as the maximum cost over all inputs X .

The following definitions apply to a randomized decision tree T on N -bit inputs, and
more generally to any probabilistic process T that takes a Boolean string of length N as
input and outputs a value. Let f be a function on {0, 1}N . If on any input X , T outputs
f (X) with probability at least 1−ε, we say that T computes f with error ε. If T outputs
f (X) with probability at least 1 − ε and says “I don’t know” otherwise (i.e., T never
produces an incorrect output) we say that T computes f with zero-sided error ε. In the
case where ε = 0, we say that T exactly computes f .

A randomized decision tree that exactly computes f at cost C can trivially be trans-
formed into a deterministic tree computing f at the same cost. It can often also be
transformed into a randomized XOR decision tree for f with zero-sided error ε and cost
C ′ < C , e.g., if on any input the number of queries is strongly concentrated around a
value less than C ′. More precisely, suppose that on any input X , with probability at least
1−ε, T makes no more than C ′ queries. Then we can run T , but as soon as we attempt to
make more than C ′ queries, it stops the process and outputs “I don’t know.” The modified
randomized decision tree has zero-sided error at most ε and cost at most C ′.

2.2. Quantum Black-Box Networks. A quantum computer performs a sequence of uni-
tary transformations U1, U2, . . . , UT on a complex Hilbert space, called the state space.
The state space has a canonical orthonormal basis which is indexed by the configurations
s of some classical computer M . The basis state corresponding to s is denoted by |s〉.

The initial state ϕ0 is a basis state. At any point in time t , 1 ≤ t ≤ T , the state ϕt is
obtained by applying Ut to ϕt−1, and can be written as

ϕt =
∑

s

αs,t |s〉,

where
∑

s |αs,t |2 = 1.
At time T , we measure the state ϕT . This is a probabilistic process that produces

a basis state, where the probability of obtaining state |s〉 for any s equals |αs,T |2. The
output of the algorithm is the observed state |s〉 or some part of it.

We define the quantum black-box model following Deutsch and Jozsa [7]. In a quantum
black-box network A for input length N , the initial state ϕ0 is independent of the input
X = X0 X1 · · · X N−1. We allow arbitrary unitary transformations independent of X . In
addition, we allow A to make quantum queries. This is the transformation U taking the
basis state |i, b, z〉 to |i, b ⊕ Xi , z〉, where:

• i is a binary string of length log N denoting an index into the input X ,
• b is the contents of the location where the result of the oracle query will be placed,
• z is a placeholder for the remainder of the state description,

and comma denotes concatenation.

484 T. P. Hayes, S. Kutin, and D. van Melkebeek

We define the cost of A to be the number of times the query transformation U is
performed; all other transformations are free.

The error notions introduced in Section 2.1 for arbitrary probabilistic processes also
apply to quantum black-box networks.

2.3. From XOR Decision Trees to Quantum Black-Box Networks. Bernstein and Vazi-
rani have shown [4] that a quantum computer can efficiently simulate classical determin-
istic and probabilistic computations. It is also known that we can efficiently compose
quantum algorithms. In terms of quantum black-box networks these results imply that a
classical randomized decision tree T that uses quantum black-box networks as subrou-
tines can be efficiently simulated by a single quantum black-box network. The cost of
the simulation will be the sum of the cost of T and the costs of the subroutines. Similarly,
the error of the simulation will be bounded by the sum of the error of T and the errors of
the subroutines. The simulation will have zero-sided error if all of the components do.

We describe our quantum black-box networks for MAJORITY as classical random-
ized decision trees that use the following exact quantum black-box network developed
by Cleve et al. [5] for computing the XOR of two input bits.

LEMMA 3 [5]. There exists a quantum black-box network of unit cost that on input two
bits X0 and X1 exactly computes their XOR.

The above argument shows that an XOR decision tree for a function f can be trans-
formed into a quantum black-box network for f of the same cost. The transformation
works in the exact setting, as well as for zero-sided or arbitrary error ε.

3. Computing MAJORITY Exactly. In the Introduction we discussed how to use an
XOR query to determine the MAJORITY of three input bits. In this section we generalize
this idea to an input of arbitrary length. We first describe a general approach for construct-
ing XOR decision trees or exact randomized XOR decision trees for MAJORITY. We call
it the “homogeneous block approach.” We use this approach to develop the “oblivious-
pairing” algorithm, an XOR decision tree that computes MAJORITY exactly on N -bit
inputs using at most N + 1− w(N) queries. In Section 5 we show that this is optimal.

The oblivious-pairing algorithm was first introduced and analyzed by Saks and Wer-
man [11]. It forms a first step towards the zero-sided error randomized XOR decision
tree for MAJORITY which we develop in Section 4.

3.1. The Homogeneous Block Approach. XOR queries allow us to compare bits of the
input X . If the bits differ in value, we can discard them since the two of them together
will not affect the majority value. If the bits have the same value, we can combine them
into a homogeneous block of size 2, i.e., a subset of two input bits which we know have
the same value but we do not know what that value is. More generally, we can apply
the following operation “COMBINE” to two disjoint nonempty homogeneous blocks R
and S. Suppose that |R| ≥ |S|. We compare a bit from R with a bit from S. If the bits
differ, we discard block S completely together with |S| bits from block R. Otherwise,
we combine blocks R and S into a single homogeneous block of size |R| + |S|.

The Quantum Black-Box Complexity of Majority 485

In the homogeneous block approach, we keep track of a collection of disjoint non-
empty homogeneous blocks with the property that the majority of the bits in the union
of the blocks equals MAJORITY(X). We start out with the partition of the input into
blocks of size 1, i.e., individual bits. Then we use some criterion to decide to which
two blocks we apply the operation COMBINE. We keep doing so until we end up in
a configuration consisting of an empty collection or one in which one of the blocks is
larger than the union of all other blocks. In the former case, we have a tie. In the latter,
the largest block determines the majority, and querying any of its bits gives us the value
of the majority. One of these situations will eventually be reached since the number of
blocks goes down by one or two in each step.

Building a homogeneous block of size k requires only k − 1 comparisons between
the bits in the block. In general, the number of comparisons performed upon reaching a
configuration consisting of � homogeneous blocks equals N − � − c, where c denotes
the number of times two blocks cancelled each other out completely. It follows that,
compared with the trivial procedure of querying every input bit, the homogeneous block
approach saves one query for every block in the final configuration except the dominating
block, and one for every cancellation of equal-sized blocks.

3.2. The Oblivious-Pairing Algorithm. In the oblivious-pairing algorithm we first build
homogeneous blocks of size 2 by pairing up the initial blocks of size 1, leaving the last
block of size 1 untouched when N is odd. Then we build blocks of size 4 out of the
blocks of size 2, possibly leaving the last block of size 2 untouched, etc. In general,
during the kth phase of the algorithm, we pairwise COMBINE the homogeneous blocks
of size 2k−1 to either cancel or form homogeneous blocks of size 2k . There will be at
most one block of size 2k−1 left after the end of the kth phase.

There can be at most �log N� phases. Afterwards, either there are no blocks left, in
which case we have a “tie,” or else all remaining blocks have sizes that are different
powers of 2. The largest block then dominates all the others combined and dictates the
majority.

We provide the pseudo-code for the oblivious-pairing algorithm in Figure 1. We keep
track of the collection of disjoint nonempty homogeneous blocks as a list S .= (Sj)

�
j=1 of

subsets of {0, 1, . . . , N − 1} of nonincreasing size. We always compare two consecutive
blocks in the list, say Si and Si+1, a procedure captured by the subroutine COMBINE. We
also use the following notation: if X is homogeneous on a subset S of {0, 1, . . . , N −1},
we write X S for the value of any bit Xi , i ∈ S.

For any positive integer k, the blocks of size 2k−1 are pairwise disjoint. We pair them
up during the kth phase of the algorithm. It follows that the number of COMBINE
operations during the kth phase is bounded from above by �N/2k�. Each application
of COMBINE involves one XOR. Therefore, Lemma 1 gives us an upper bound of
N − w(N) on the total number of XORs. There can be at most one more query, for a
total of N + 1−w(N). This total is reached, e.g., for homogeneous inputs (all zeros or
all ones). There are no cancellations on homogeneous inputs, and w(N) is the smallest
number of power-of-2 blocks that add up to N . We conclude:

THEOREM 4 [11]. The oblivious-pairing algorithm for MAJORITY on N-bit inputs
has XOR decision tree cost N + 1− w(N).

486 T. P. Hayes, S. Kutin, and D. van Melkebeek

Input: X
.= (Xi)

N−1
i=0 ∈ {0, 1}N

Output: MAJORITY(X)

Notation: �
.= |S|

Sj
.= j th element of S, 1 ≤ j ≤ �

X Sj

.= Xi for any i ∈ Sj , 1 ≤ j ≤ �

Subroutine: COMBINE(S, i , X)

if XOR(X Si , X Si+1) = 0

then replace Si , Si+1 in S by Si ∪ Si+1

else remove Si , Si+1 from S
Algorithm:

S ← ({i})N−1
i=0

for k = 1, 2, . . . , �log N�
while I

.= { j | 1 ≤ j < � and |Sj | = |Sj+1| = 2k−1} �= ∅
i ← min I

COMBINE(S, i, X)

if � = 0

then return “tie”

else return X S1

Fig. 1. The oblivious-pairing algorithm.

COROLLARY 5. We can compute MAJORITY exactly on N-bit inputs using at most
N + 1− w(N) quantum black-box queries.

4. Computing MAJORITY with Zero-Sided Error. In Section 3 we considered the
oblivious-pairing XOR decision tree. We showed that it has a cost of N −w(N)+1. We
now consider exact randomized XOR decision trees for MAJORITY. Our main result
is the randomized greedy-pairing algorithm, for which the number of queries on any
input is highly concentrated around a value of about 2

3 N on a worst-case input. Using the
techniques discussed in Sections 2.1 and 2.3, this gives us a randomized XOR decision
tree and a quantum black-box network with small zero-sided error of cost about 2

3 N . In
Section 6 we give a nearly matching lower bound on the expected number of queries on
a worst-case input for randomized XOR decision trees with small zero-sided error.

In Section 4.1 we discuss a simple randomized version of the oblivious-pairing al-
gorithm. We carefully analyze the number of queries it makes, as we will need that
result later. In Section 4.2 we describe a deterministic algorithm of Alonso et al. [2], the
greedy-pairing algorithm, for which the average number of queries over all N -bit inputs
is roughly 2

3 N . In Section 4.3 we analyze a randomized version of the greedy-pairing

The Quantum Black-Box Complexity of Majority 487

algorithm. We prove that the number of queries it makes is with high probability not
much larger than 2

3 N .

4.1. The Randomized Oblivious-Pairing Algorithm. The oblivious-pairing algorithm
is efficient when we can get pairs of blocks to cancel. Recall that the number of XORs
made in any homogeneous block algorithm for MAJORITY equals N − �− c, where �

denotes the number of blocks at the end, and c is the number of cancellations of equal-
sized blocks that occurred. In the oblivious-pairing algorithm, � can be at most log N ,
so not much savings can be expected from that term. The number of cancellations can
be much larger. On the input 010101 . . ., all N/2 pairs of individual bits cancel, and we
can declare a tie with only N/2 queries. However, even if we know the input is perfectly
balanced, there is no guarantee that any cancellations occur until the very end.

One natural approach is to permute the input bits randomly before we begin the
algorithm: Choose some permutation π of {0, 1, . . . , N − 1} uniformly at random, let
X ′i = Xπ(i), and run the oblivious-pairing algorithm on the input X ′. The distribution of
the number of queries on a given input now only depends on the number of ones and the
number of zeros it contains.

Consider the randomized oblivious-pairing algorithm running on a perfectly balanced
input of length N . We perform N/2 queries comparing individual bits; we expect roughly
half of those to cancel, and half to yield homogeneous blocks of size 2. We next pair up
the N/4 blocks of size 2, which takes N/8 queries. Again, we expect roughly half of
those queries to cancel, and half to yield blocks of size 4. The overall number of queries
should then be about

N

2
+ N

8
+ N

32
+ · · · = 2

3
N .

We prove below that the number of queries the oblivious-pairing algorithm makes on a
balanced input is indeed highly concentrated around 2

3 N .
However, consider a homogeneous input. Permuting the input bits has no effect; the

input remains homogeneous, blocks will never cancel, and the randomized oblivious-
pairing algorithm still takes N − w(N) + 1 queries. We need to do something else to
reduce the computation cost on such inputs. We return to this question in Section 4.2.

Before doing so, we prove the following theorem about the number of comparisons
the oblivious-pairing algorithm makes on input X . We use the theorem in our analysis
of our main result in Section 4.3.

THEOREM 6. There exists a constant d such that the following holds. Let COP(X) denote
the number of comparisons the oblivious-pairing algorithm makes on input X . Let N > 0,
and let A+ B = N , A, B ≥ 0. Let X be chosen uniformly at random from all strings of
A ones and B zeros. Then for any r ≥ 1,

Pr
X

[COP(X) ≥ N − 2
3 min(A, B)+ d

√
rN] ≤ 2−r log N .

The proof of Theorem 6 uses the following tail law.

LEMMA 7. There exists a constant d ′ such that the following holds. Let c(X) denote
the number of cancellations during the first phase of the oblivious-pairing algorithm on

488 T. P. Hayes, S. Kutin, and D. van Melkebeek

input X . Let N > 0, and let A + B = N , A, B ≥ 0. Let X be chosen uniformly at
random from all strings of A ones and B zeros. Then for every r ≥ 1,

Pr
X

[∣∣∣∣c(X)− AB

N

∣∣∣∣ ≥ d ′
√

rN

]
≤ 2−r .

The combinatorial problem underlying Lemma 7 is a special case of “Levene’s match-
ing problem” [6], and has been well studied. We suspect that the tail law given in Lemma 7
is known but have not been able to find a reference. We include a proof sketch in the
Appendix.

PROOF OF THEOREM 6. The proof goes by induction on N . We first do the induction
step.

Assume without loss of generality that A ≥ B. Look at the sequence of homogeneous
blocks of size 2 after the first phase of oblivious-pairing on input X . Let X ′ denote the
input obtained by replacing each block in this sequence by a single bit of the same value.
We have that COP(X) = �N/2� + COP(X ′).

Let A′ denote the number of ones in X ′, B ′ the number of zeros, and N ′ = A′ + B ′.
Note that N ′ = �N/2� − c(X), B ′ = �(B − c(X))/2�, and A′ ≥ B ′.

Conditioned on A′ and B ′, the distribution of X ′ is uniform. Therefore, by our induc-
tion hypothesis, we have that with probability at least 1− 2−r log N ′,

COP(X ′) ≤ N ′ + 2
3 B ′ + d

√
rN ′

=
⌊

N

2

⌋
− c(X)− 2

3

⌊
B − c(X)

2

⌋
+ d
√

rN ′

≤ N

2
− B

3
− 2

3
c(X)+ d

√
rN ′ + 1

3 .

By Lemma 7, with probability at least 1− 2−r ,

c(X) ≥ AB

N
− d ′
√

rN ≥ B

2
− d ′
√

rN.

Taking everything together, and using that fact that N ′ ≤ N/2, we have that with
probability at least 1− 2−r log N ′ − 2−r ≥ 1− 2−r log N ,

COP(X) ≤ N − 2
3 B +

(
2d ′

3
+ d√

2

)√
rN + 1

3

≤ N − 2
3 B + d

√
rN,

provided d is large enough that (2d ′ + 1)/3 ≤ (1− 1/
√

2)d. This proves the induction
step.

By picking d larger as needed, we can take care of the base cases.

Theorem 6 can be strengthened to show that the random variable COP(X) is strongly
concentrated around a value slightly smaller than N − 2

3 min(A, B). We omit the precise

The Quantum Black-Box Complexity of Majority 489

expression for the concentration point, as it is rather cumbersome and is not needed for
what follows. A proof similar to the above (but simpler and not relying on Lemma 7)
shows that the expected value of COP(X) in Theorem 6 is bounded above by N −
2
3 min(A, B).

4.2. The Greedy-Pairing Algorithm. As we mentioned in Section 4.1, the oblivious-
pairing algorithm requires N − w(N)+ 1 queries on the all ones input, whether or not
we randomize. In contrast, the trivial algorithm for MAJORITY, which simply queries
bits until the observed discrepancy is larger than the number of bits remaining, takes
�N/2� + 1 queries on the all ones input. Therefore, we should be able to improve the
oblivious-pairing algorithm.

The oblivious-pairing algorithm always COMBINEs two smallest blocks of equal
size. A first idea is that we may always decide to COMBINE two largest blocks of equal
size instead, and stop as soon as the largest block (if any) is larger than the union of
the other blocks. This leads to an improvement on some inputs, e.g., on homogeneous
inputs of length N = 2k − 1: we build up a block of size 2k−1 using �N/2� XORs
and query one bit in that block, for a total cost of �N/2� + 1. However, on homo-
geneous inputs of length N = 2k + 1, we still make N − 1 queries: we construct a
block S1 of size 2k−1, and then perform another 2k−1 − 1 queries to form another large
block, even though one additional query combining S1 with another bit would guarantee
a majority.

In order to do better, we should allow COMBINE operations on blocks of unequal
size. As cancellations of blocks of equal size are beneficial, we still prefer to COMBINE
such blocks, but we should only do so if we reasonably expect the answer to be useful.
Alonso et al. [2] introduce a homogeneous block algorithm for MAJORITY which does
just this: they COMBINE two blocks only if they are sure they will need to know the
answer. We call this the “greedy-pairing” algorithm.

More precisely, the greedy-pairing algorithm works as follows. Suppose that in some
step we find a pair Si , Si+1 of large blocks of equal size. Instead of automatically
combining these two blocks, however, we now ask a question: Are we sure this is
necessary? In other words, if we assumed all blocks up to i all agreed, would that
still not be enough to determine a majority? If the answer is yes, we COMBINE the
two blocks. If the answer is no, then we try to build up the largest block by running
COMBINE on S1 and S2.

When we compare two blocks of the same size, we are trying to gain by cancelling and
reducing � by two in a single step. When we compare two blocks of different sizes, we
are trying to gain by greedily constructing a large enough block to guarantee a majority.

Since the only COMBINE operations between blocks of unequal size involve S1, all
blocks except possibly S1 will have sizes that are powers of 2. Say |Sj | = 2sj , 2 ≤ j ≤
�

.= |S|, where the sj ’s are integers. The size of S1 can be written as |S1| = (2m + 1)2s1

for some integers m and s1. Note that s1 ≥ s2 ≥ · · · ≥ s�. We think of S1 as being
composed of several power-of-2 blocks. The smallest such subblock has size 2s1 .

The precise criterion we use to determine which blocks Si and Si+1 to compare is
given in the pseudo-code of Figure 2. Note that the smallest j such that sj = sj+1 exists
during each execution of the while loop. If there were no such j , the block S1 would
dominate all the other blocks combined and we would have exited the loop.

490 T. P. Hayes, S. Kutin, and D. van Melkebeek

Input: X
.= (Xi)

N−1
i=0 ∈ {0, 1}N

Output: MAJORITY(X)

Notation: �
.= |S|

Sj
.= j th element of S, 1 ≤ j ≤ �

X Sj

.= Xi for any i ∈ Sj , 1 ≤ j ≤ �

s1
.= largest integer t such that 2t divides |S1|

sj
.= |Sj |, 2 ≤ j ≤ �

Subroutine: COMBINE(S, i , X)

if XOR(X Si , X Si+1) = 0

then replace Si , Si+1 in S by Si ∪ Si+1

else if |Si | > |Si+1|
then remove |Si+1| elements from Si

remove Si+1 from S
else remove Si , Si+1 from S

Algorithm:

S ← ({i})N−1
i=0

while � > 0 and |S1| ≤
∑�

j=2 |Sj |
i ← smallest integer j such that sj = sj+1

if
∑i

j=1 |Sj | >
∑�

j=i+1 |Sj |
then i ← 1

COMBINE(S, i, X)

if � = 0

then return “tie”

else return X S1

Fig. 2. The greedy-pairing algorithm.

The key to the good performance of the greedy-pairing algorithm is the following
observation. Let M denote the index of the (�N/2� + 1)st input bit agreeing with the
majority. If X is balanced, let M

.= N . Let Y denote the substring consisting of the
first M bits of X , and Z the remainder of X . Then the greedy-pairing algorithm never
performs any comparisons involving bits of Z . This is because Y forces the majority in
all of X , and the greedy-pairing algorithm only involves a new bit b in a comparison if
the bits before b cannot force the majority of X .

This is the way the greedy-pairing algorithm saves queries compared with the obli-
vious-pairing algorithm: by not making the comparisons the oblivious-pairing algorithm
makes involving bits of Z . On Y , the greedy-pairing algorithm makes some of the

The Quantum Black-Box Complexity of Majority 491

comparisons the oblivious-pairing algorithm makes, but possibly also makes some others.
We need to show that there are not too many other queries, or at least that we can account
for most of them by queries the oblivious-pairing algorithm makes on Y but the greedy-
pairing algorithm does not. We prove next that there are at most O(log2 N) queries that
we cannot account for in that way.

THEOREM 8. Let CGP(X) denote the number of comparisons the greedy-pairing algo-
rithm makes on input X , and let COP be defined as in Theorem 6. There exists a constant
d such that on any binary input X of length N ,

CGP(X) ≤ COP(Y)+ d log2 N ,

where Y denotes the first M bits of X and M the position of the (�N/2� + 1)st bit in X
agreeing with the majority. When X is balanced, M

.= N and Y
.= X .

In fact, a refinement of the argument below shows that

COP(Y) ≤ CGP(X) ≤ COP(Y)+max(2�log N� − 3, 0),

which is tight. However, the relationship as stated in Theorem 8 is strong enough for our
purposes.

In order to prove Theorem 8, we need the following properties of the greedy-pairing
algorithm. They deal with the technical concept of an “unusual comparison,” which is
a comparison between S1 and S2 with s1 �= s2. These are precisely the comparisons
between blocks of different sizes, provided we view a comparison with S1 as one with
the last subblock of S1 of size 2s1 .

LEMMA 9. Consider running the greedy-pairing algorithm on an input X and call a
comparison unusual if it is between S1 and S2, and s1 �= s2. Let s be an integer. Let T
be the first point in time there is an unusual comparison with s2 ≤ s. (If there is no such
comparison, we let T denote the end of the algorithm.) Then the following hold:

1. All comparisons the greedy-pairing algorithm makes before T with |Si+1| ≤ 2s are
also made by the oblivious-pairing algorithm on input X .

2. After T , the greedy-pairing algorithm makes no comparisons with |Si+1| ≥ 2s and
i > 1, and none with |Si+1| > 2s and i = 1.

3. Let Bj denote the j th block S2 of size 2s which the greedy-pairing algorithm compares
with S1 at and after T . Then the sequence B1, B2, . . . , Br is one of successive blocks
of size 2s produced by the oblivious-pairing algorithm on input X .

4. The outcome of each of the greedy-pairing comparisons referred to in 3 is “unequal”
for S2 = Bj , 1 ≤ j < r .

PROOF OF LEMMA 9. We prove claim 1 by contradiction. Suppose that, at some time
before T , the greedy algorithm makes a comparison with |Si+1| = 2u , where u ≤ s,
which is not made by the oblivious-pairing algorithm. Consider the first such time U .
Since U < T , the comparison at time U is not unusual. Since no unusual comparisons
with |Si+1| ≤ 2u have occurred, we must have |Si | = |Si+1|; and, by our choice of U ,
both Si and Si+1 are also formed by the oblivious-pairing algorithm.

492 T. P. Hayes, S. Kutin, and D. van Melkebeek

By our choice of U , any earlier blocks of size 2u must have been compared as they
are in the oblivious-pairing algorithm. In particular, there must be an even number of
them. So, blocks Si and Si+1 must be the j th and (j + 1)st blocks of size 2u formed by
the oblivious-pairing algorithm for some odd j . Hence, this comparison is also made by
the oblivious-pairing algorithm, contradicting our choice of U .

We now consider claim 2. Clearly, at time T , only |S1| can have size larger than 2s ,
and, if s2 > 0, |Si | < |S2| for i > 2. (Proof: if |S2| = |S3|, then S3 must have been
formed at some time U < T ; since the algorithm did not do an unusual comparison at
time U , it would have chosen to compare S2 and S3 at time U + 1.)

At time T , let j be the smallest index such that |Sj | = |Sj+1|. Then we must have∑ j
k=1 |Sk | > 1

2

∑�
k=1 |Sk |. Since all blocks up to Sj have different sizes, and |S2| ≤ 2s ,

we conclude that, at time T ,

|S1| + 2s+1 − 1 >
1

2

�∑
k=1

|Sk |.(1)

Once inequality (1) holds, it remains true for the remainder of the algorithm. (No com-
parison can increase the right-hand side. The left side is decreased only by an “unequal”
comparison between S1 and S2, in which case both sides decrease by |S2|.)

So, suppose that, at some later time, there is a block of size 2s , and, if a comparison
were done between some Si and Si+1, it would form a second such block. By (1), the
greedy-pairing algorithm would choose to do a comparison between S1 and S2 instead.
Hence, from time T onward, there can be at most one block Si of size 2s for i > 1,
which proves claim 2.

To prove claim 3, we let U be the first time (if any) that there is an unusual comparison
with s2 < s. (If s2 < s at time T , then U = T and r = 0.) By claim 2, all blocks Bj

are formed before time U . So, by claim 1 applied to s − 1, the comparisons which form
those blocks are all performed by the oblivious-pairing algorithm.

Finally, by the above reasoning, at the time that S1 is compared with Bj , there is no
other block of size 2s . If the comparison were “equal,” then the next comparison would
be unusual as well, with |S2| < 2s , and no additional blocks Bj would form. We conclude
that, for each j < r , the comparison between S1 and Bj is “unequal.”

Using Lemma 9, we can prove Theorem 8 as follows.

PROOF OF THEOREM 8. Fix a nonnegative integer s and look at the comparisons the
greedy-pairing algorithm makes on input X with |Si+1| = 2s . Let T be as defined in
Lemma 9.

By claim 1 of Lemma 9, all such comparisons before T are also made by the oblivious-
pairing algorithm on input X at some point in time. As the greedy-pairing algorithm only
involves bits of Y in comparisons, these comparisons are actually made by the oblivious-
pairing algorithm on input Y .

By claims 2 and 3 of Lemma 9, there are r more comparisons the greedy-pairing
algorithm makes at and after time T with |Si+1| = 2s . With these comparisons,
we can associate the comparisons the oblivious-pairing algorithm makes involving
the blocks B1, B2, . . . , Br and their superblocks. By claim 3, B1, B2, . . . , Br−1 are

The Quantum Black-Box Complexity of Majority 493

subsequent blocks the oblivious-pairing algorithm produces during phase s. By claim 4,
all of them have the same value. The oblivious-pairing algorithm will spend at least
r−1−�log(r − 1)� comparisons on combining the blocks B1, . . . , Br−1. So, the greedy-
pairing algorithm makes at most r − (r − 1− �log(r − 1)�) ≤ 2+ log N queries with
|Si+1| = 2s which we cannot account for by queries the oblivious-pairing algorithm
makes on Y . Adding this surplus over all values of s we get that

CGP(X) ≤ COP(Y)+ (2+ log N) log N ,

which establishes the upper bound.

We point out that Alonso et al. [2] showed that the average case complexity of the
greedy-pairing algorithm is optimal up to an O(log N) term. In particular, they estab-
lished the following upper bound.

THEOREM 10 [2]. The average number of comparisons made by the greedy-pairing
algorithm over all N-bit inputs equals

2N

3
−
√

8N

9π
+ O(log N).

The term
√

8N/9π comes from the average discrepancy over all N -bit inputs, which is√
2N/π + O(1).
However, the analysis by Alonso et al. is not sufficient for our purposes. We need an

algorithm which performs well on the worst-case input. It is with this goal in mind that
we now study a randomized version of the greedy-pairing algorithm.

4.3. The Randomized Greedy-Pairing Algorithm. In Section 4.1 we randomized the
oblivious-pairing algorithm by first applying a random permutation π to the input bits.
We can use the same technique to randomize the greedy-pairing algorithm. This is the
algorithm which leads to our main result.

The following analysis is essential.

THEOREM 11. There exists a constant d such that the following holds. Let CGP(X)

denote the number of comparisons the greedy-pairing algorithm makes on input X . Let
N > 0, and let A + B = N , A, B ≥ 0. Let X be chosen uniformly at random from all
strings of A ones and B zeros. Then for every r ≥ 1,

Pr
X

[CGP(X) ≥ 1
2 N + 1

3 min(A, B)+ d
√

rN] ≤ 2−r log N .

Theorem 11 shows that the worst-case inputs for the randomized greedy-pairing
algorithm are the balanced ones. We conclude:

COROLLARY 12. There exists a constant d such that for any positive ε and any binary
string X of length N , with probability at least 1 − ε the randomized greedy-pairing
algorithm makes no more than 2

3 N + d
√

N log(ε−1 log N) comparisons on input X .

494 T. P. Hayes, S. Kutin, and D. van Melkebeek

As with Theorem 6, we make use of a concentration result in the proof of Theorem 11.
Here, as there, we believe this result is already known, but have not found a reference.
A proof sketch is in the Appendix.

LEMMA 13. There exists a constant d such that the following holds. Let N = A+B > 0,
where A ≥ B ≥ 0. Let X be chosen uniformly at random from all strings of A ones and
B zeros. Let M denote the index of the (�N/2� + 1)st one of X . If A = B, let M

.= N .
Then for every r ≥ 1,

Pr
X

[∣∣∣∣M − N 2

2A

∣∣∣∣ > d
√

rN

]
≤ 2−r .

PROOF OF THEOREM 11. Let Y be the string consisting of the first M bits of X , where,
as before, M is the position of the (�N/2� + 1)st bit in X agreeing with the majority.
When X is balanced, M

.= N and Y
.= X . By Theorem 8,

CGP(X) ≤ COP(Y)+ O(log2 N).

If X is exactly balanced, then Y = X is uniformly distributed among strings having
N/2 ones and N/2 zeros. In this case, we have reduced to Theorem 6.

Suppose X is not exactly balanced. Without loss of generality, let A > B. Y has
exactly (�N/2� + 1) ones and M − (�N/2� + 1) zeros, the M th bit being a one. Let Y ′

be the string of length M − 1 obtained by dropping the last one from Y .
Conditioned on M being fixed, Y ′ is uniformly distributed among strings having

�N/2� ones and M − 1− �N/2� zeros. Hence Theorem 6 applied to Y ′ yields

COP(Y
′) ≤ M − 2

3

(
M −

⌊
N

2

⌋)
+ d
√

rM ≤ M + N

3
+ d
√

rN

with probability at least 2−r log N .
Since Y differs from Y ′ only in the rightmost bit, oblivious pairing does all the same

comparisons on Y as on Y ′, plus at most one additional comparison per phase. Hence

COP(Y) ≤ COP(Y
′)+ log N .

Putting this together,

CGP(X) ≤ M + N

3
+ d
√

rN + O(log2 N)

with probability at least 1−2−r log N . Since M ≤ N , this is already enough to establish
Corollary 12.

By Lemma 13, M ≤ N 2/2A+ d ′
√

rN with probability at least 1− 2−r . Hence, with
probability at least 1− 2−r (1+ log N),

CGP(X) ≤ N 2 + 2AN

6A
+ (d + d ′)

√
rN + O(log2 N)

= 3AN + B N

6A
+ d ′′
√

rN

The Quantum Black-Box Complexity of Majority 495

≤ 3AN + 2AB

6A
+ d ′′
√

rN

= N

2
+ B

3
+ d ′′
√

rN.

Theorem 11 can be strengthened to show that the random variable CGP(X) is strongly
concentrated around a value slightly smaller than N/2 − min(A, B)/3. We omit the
precise expression for the concentration point, as it is rather cumbersome and not needed
for what follows.

A simplified version of the proof of Theorem 11 shows that the expected number of
comparisons the randomized greedy pairing algorithm makes on an N -bit input with A
ones and B zeros is bounded above by

1
2 N + 1

3 min(A, B)+ 2 log N = 2
3 N − 1

6 D + 2 log N ,

where D denotes the discrepancy of the input. This gives us a bound of the form
2
3 N − O(

√
N) on the average-case cost of the (randomized) greedy-pairing algorithm.

However, the constant hidden in the O(
√

N) term is not as good as that achieved by
Alonso et al. [2] in Theorem 10.

Using the techniques from Section 2.3, Corollary 12 yields our main result.

THEOREM 14 (Main Result). There exists a constant d such that, for any positive inte-
ger N and any ε > 0, there exists a quantum black-box network of cost

2
3 N + d

√
N log(ε−1 log N)

that computes the majority of N bits with zero-sided error ε.

5. Lower Bounds for Computing MAJORITY Exactly. Beals et al. [3] establish
a lower bound of N/2 quantum queries for computing MAJORITY exactly. In this
section we show that any XOR decision tree computing MAJORITY must use at least
N + 1− w(N). Hence, the oblivious-pairing algorithm of Section 3 is optimal.

We first define a more general model of computation, a decision tree relative to a
set of functions. We then show that, relative to the collection of all parity functions, the
oblivious-pairing algorithm is the best possible.

Recall that the classical decision tree complexity of MAJORITY equals N .

5.1. Relative Decision Tree Complexity. A decision tree relative to a class of functions
G is one which is permitted to apply any function from G to a subset of the input bits
(taken in any order) at unit cost.

DEFINITION 15 (G-Decision Tree). Let G = {g1, g2, . . .} be a collection of functions
where gk is a function on Mk bits. A G-decision tree is a deterministic algorithm for a
given input length N which can query its input bits X0, . . . , X N−1, and which can also
perform queries of the form gk(Xσ(0), . . . , Xσ(Mk−1)), where σ is a one-to-one function
from {0, . . . , Mk − 1} to {0, . . . , N − 1}. The cost of a G-decision tree is the maximum

496 T. P. Hayes, S. Kutin, and D. van Melkebeek

over all N -bit inputs of the total number of queries performed on that input, including
individual input bits as well as functions gk .

DEFINITION 16 (G-Decision Tree Complexity). Let f be a function on {0, 1}N . The G-
decision tree complexity of f , denoted DG(f), is the minimum cost of a G-decision tree
computing f . When G = {g}, we write this simply as Dg(f).

We consider two instances, namelyG = {XOR} andG = PARIT Y , wherePARIT Y
denotes the collections of all PARITY functions (on any number of bits).

We trivially have that DPARIT Y(f) ≤ DXOR(f) for any function f . The discussion
in Section 2.3 shows that there exists a quantum black-box network that computes f
exactly with cost at most DXOR(f).

The following lemma establishes a limit on how much we can expect PARIT Y to
help simplify the computation of a function f . It is an extension of a result of Rivest and
Vuillemin [10] for standard decision trees.

LEMMA 17. Let f be a Boolean function on {0, 1}N . If DPARIT Y(f) ≤ d, then 2N−d

divides | f −1(1)|.

PROOF. Each leaf of the decision tree corresponds to a set of inputs: those inputs for
which the computation terminates at that leaf. These sets partition {0, 1}N ; in particular,
the accepting leaves partition f −1(1). So it suffices to prove that the size of the set
corresponding to any leaf is divisible by 2N−d .

View {0, 1}N as a vector space of dimension N over GF(2) (with coordinate-wise
addition). Each parity query or input bit query is of the form: “Is the input in a subspace
of codimension 1?” (A subspace has codimension c if it has dimension N − c.) If every
response is “yes,” then the set corresponding to the leaf is also a subspace; since at most
d questions were asked, this space is of codimension at most d. If some response is “no,”
then the set is an affine subspace. This is either empty or nonempty of codimension at
most d . In every case, the size of the set is a multiple of 2N−d .

5.2. Lower Bound for MAJORITY. As we have noted, the oblivious-pairing algorithm
in Section 3 is an XOR decision tree. Theorem 4 therefore implies that DXOR(MAJOR-
ITY) ≤ N +1−w(N). We now show that equality actually holds. Hence, the oblivious-
pairing algorithm is optimal.

THEOREM 18. DPARIT Y(MAJORITY) = DXOR(MAJORITY) = N + 1− w(N).

PROOF. As noted above, we already know that

DXOR(MAJORITY) ≤ N + 1− w(N)

by Theorem 4. Since DPARIT Y(MAJORITY) ≤ DXOR(MAJORITY), it suffices to
show that

DPARIT Y(MAJORITY) ≥ N + 1− w(N).

The Quantum Black-Box Complexity of Majority 497

We use Lemma 17 to do so; the first step is to compute what power of 2 divides
|MAJORITY−1(1)|.

We first consider the case where N is even, say N = 2m. The 22m possible inputs can
be divided into three types: those with more ones than zeros, those with more zeros than
ones, and the

(2m
m

)
perfectly balanced inputs. The number of inputs with a majority of

ones is therefore 22m−1− 1
2

(2m
m

)
. Since

(2m
m

) = (2m)!/(m!)2, Corollary 2 states that
(2m

m

)
is exactly divisible by 2k for k = (2m − w(2m)) − 2(m − w(m)) = w(2m) = w(N).
Therefore, since w(N) < N , |MAJORITY−1(1)| is exactly divisible by 2w(N)−1.

If we had DPARIT Y(MAJORITY) ≤ N−w(N), then, by Lemma 17, we would have
2w(N) dividing |MAJORITY−1(1)|. Since this is false, we must have DPARIT Y(MA-
JORITY) ≥ N + 1− w(N) for even N .

When N is odd, we note that we can use an algorithm for MAJORITY on N variables
to solve the problem on N−1 variables: pad the N−1 input bits with one zero. Since the
above argument for the even case only relies on the number of inputs mapped to one, we
thus conclude that DPARIT Y(MAJORITY) for N odd is at least (N−1)+1−w(N−1) =
N + 1− w(N), which proves the desired result.

6. Lower Bounds for Computing MAJORITY with Zero-Sided Error. Beals et
al. [3] prove a lower bound of 1

2 N on the number of queries a quantum black-box
network needs to compute MAJORITY on N -bit strings with zero-sided error ε < 1.
We will show that the cost of a randomized XOR decision tree computing MAJORITY
with zero-sided error ε = o(1) cannot be reduced below 2

3 N −o(N). We will also prove
that any classical randomized decision tree with zero-sided error ε = 1

2 has to have cost
at least N . In fact, we will show the stronger result that any classical randomized decision
tree with arbitrary error bounded by 1

4 has cost at least N .
This result about randomized XOR decision trees follows directly from the average

case lower bound of Alonso et al. [2] using a standard argument.

THEOREM 19 [2]. There exists a constant d such that the following holds for any input
length N . For any XOR decision tree computing MAJORITY, the average cost over all
inputs of length N is at least

2
3 N −

√
8N

9π
− d.

COROLLARY 20. There exists a constant d such that the following holds for any input
length N . For any randomized XOR decision tree computing MAJORITY exactly, there
exists an input of length N such that the expected number of queries is at least 2

3 N −√
8N/9π − d on that input.

PROOF. Let g(N) denote 2
3 N −√8N/9π − d from Theorem 19.

Look at the randomized XOR decision tree T as a distribution over deterministic XOR
decision trees {Ti }. Each deterministic tree Ti in the support of T computes MAJORITY
exactly. By Theorem 19, the average cost of each Ti is at least g(N). Consequently, the

498 T. P. Hayes, S. Kutin, and D. van Melkebeek

expected average cost of T is at least g(N). Therefore, there exists an input on which
the expected number of queries is at least g(N).

A randomized XOR decision tree T with zero-sided error ε and cost C , can be
transformed into an exact randomized XOR decision tree T ′ for the same function with
an expected number of queries of at most C + ε(N − C) ≤ C + εN on any input. We
just run T and whenever it is about to answer “I don’t know,” we query individual bits
until we know the entire input. Using Corollary 20, we obtain:

THEOREM 21. Any randomized XOR decision tree computing MAJORITY on N-bit
inputs with zero-sided error ε has cost at least 2

3 N − εN − O(
√

N).

In contrast, a classical randomized decision tree needs N queries to compute MA-
JORITY with error ε for any sufficiently small constant ε.

THEOREM 22. Any randomized decision tree that computes the MAJORITY of N bits
with bounded error ε ≤ 1

4 has cost at least N .

PROOF. Let t denote �N/2�. Suppose there exists a randomized decision tree T that
computes MAJORITY on N -bit inputs with bounded error ε ≤ 1

4 and cost at most N−1.
Without loss of generality, we can assume that T always queries exactly N − 1 of the N
input bits.

Consider a deterministic tree of cost N − 1 and suppose we pick an N -bit input
uniformly at random among those with exactly A ones. Then the probability that the
unique bit not queried is a one equals A/N . Also, for any final state s of T , the probability
that we end up there only depends on the number of ones seen when we reach s.

Look at T as a probability distribution over deterministic trees of cost N − 1. Among
all final states that have seen t − 1 ones, let α be the weighted fraction that outputs
zero. Consider the input distribution that is a convex combination of β times the uniform
distribution over inputs with exactly t−1 ones, and 1−β times the uniform distribution
over inputs with exactly t ones. By the above observations, the probability of error is at
least

β

(
1− t − 1

N

)
(1− α)+ (1− β)

t

N
α.

Picking β
.= t/(N + 1) makes the factors of (1 − α) and α equal, so we get that the

probability of error is at least t (N − t+1)/N (N +1), which exceeds 1
4 . This contradicts

the assumption that ε ≤ 1
4 .

We note that the bound of 1
4 in Theorem 22 is essentially tight. Using the notation

from the above proof, the following algorithm does the job: Query N − 1 bits in random
order and output 0 if fewer than t − 1 of them are one, 1 if more, and the outcome of a
(biased) coin toss otherwise.

The Quantum Black-Box Complexity of Majority 499

COROLLARY 23. Any randomized decision tree that computes the MAJORITY of N
bits with zero-sided error ε ≤ 1

2 has cost at least N .

PROOF. Transform the randomized decision tree A with zero-sided error ε into the
randomized decision tree A′ as follows: Whenever A says “I don’t know,” output the
outcome of a fair coin toss; otherwise answer the same as A. A′ has two-sided error ε/2.
Then apply Theorem 22 to A′.

Again, the bound of 1
2 is essentially tight.

7. Open Questions. We summarize the known results in Table 1. We fix the error ε

in the table to N−2. This leads to several natural open questions.

• Our results for exact and zero-sided error in the XOR decision tree model are quite
tight. The corresponding results in the quantum black-box model are not. Can we
narrow the gap? The quantum black-box model is more powerful than the XOR
decision tree model, so we may be able to improve the quantum upper bound by
applying some other technique to MAJORITY.
• On the other hand, we may be able to improve the quantum lower bounds, in particular

in the two-sided error case. The best lower bound we currently know is �(N) for
any constant error ratio less than 1

2 . This follows from Paturi’s [9] result that the
approximating degree of the majority function (see, for example, [8] for a definition)
is �(N), and the observation by Beals et al. that half the approximating degree is a
lower bound for the quantum black-box complexity in the bounded error setting. The
constant hidden in the �(N) of Paturi’s result is much smaller than one. A constant
of one would show that van Dam’s approach is essentially optimal for MAJORITY.
• In this paper we focused on the exact and zero-sided error settings. The results in

the table for two-sided error XOR decision trees trivially follow from the classical
lower bound (Theorem 22) and the upper bound in the zero-sided error setting (Corol-
lary 12). Can we exploit the two-sided error relaxation? How about the one-sided
error setting?
• The O(

√
N) term in the lower bound for the cost of a zero-sided error randomized

XOR decision tree comes from the average size of the discrepancy of a random input.
It seems likely that, if we restrict to balanced inputs, we can improve this lower bound
to 2

3 N − O(log N). Can we do so?

Table 1. Known results.

Quantum black-box model XOR decision tree model
Cost of

MAJORITY Lower bound Upper bound Lower bound Upper bound

Exact N/2 [3] N − w(N)+ 1 N − w(N)+ 1 [11] N − w(N)+ 1 [11]

Zero-sided error 1
2 N [3] 2

3 N + O(
√

N log N) 2
3 N − O(

√
N) [2] 2

3 N + O(
√

N log N)

Two-sided error �(N) [3] 1
2 N + O(

√
N log N) [12] 1

2 N 2
3 N + O(

√
N log N)

500 T. P. Hayes, S. Kutin, and D. van Melkebeek

Acknowledgments. The authors thank László Babai, Eric Bach, Harry Buhrman,
Jin-Yi Cai, Ian Dinwoodie, Murali K. Ganapathy, Pradyut Shah, Janos Simon, Daniel
Štefankovič, Ronald de Wolf, and the anonymous referees for stimulating discussions,
pointers to the literature, and helpful comments on earlier versions of the paper.

Appendix. Tail Laws. In this section we present proof sketches of two of our more
technical results, Lemmas 7 and 13. Both of these tail laws can be established using
Azuma’s inequality. We instead provide proof sketches from first principles.

PROOF SKETCH FOR LEMMA 7. The number of inputs X yielding exactly C cancella-
tions in round 1 can be expressed using a trinomial coefficient:

F(C) =
(

�N/2�
C, �(A − C)/2�, �(B − C)/2�

)
2C ,

assuming, if N is even, that not all of A, B, C are odd (in which case there are no such
inputs).

We treat the cases of C even and C odd separately, letting

f (t) =
(

�N/2�
2t, �A/2� − t, �B/2� − t

)
4t

and

g(t) =
(

�N/2�
2t + 1, �(A − 1)/2� − t, �(B − 1)/2� − t

)
22t+1.

It is a matter of basic algebra to locate the maxima of f and g, although somewhat
tedious because the answers are affected by the parities of A and B. In all cases, the
maxima for f and for g occur at integers within 2 units distance from AB/2N .

The functions f and g both fall off very sharply away from their maxima, and in
fact satisfy much stronger tail inequalities than what we need, which can be proved by
standard techniques.

From this, it follows that F has its maximum within 4 units of AB/N , and that F
also falls away very sharply away from this maximum. The concentration result for c(X)

follows.

PROOF SKETCH FOR LEMMA 13. Fix an integer 0 ≤ k ≤ N . The probability that ex-
actly i ones occur in the first k bits of X is(

k

i

)(
N − k

A − i

)/(
N

A

)

The distribution of i is concentrated at kA/N , which can be shown using standard
techniques.

The Quantum Black-Box Complexity of Majority 501

Choosing k1 = N 2/2A−d
√

rN and k2 = N 2/2A+d
√

rN, the concentration results
for i imply that, with probability at least 1 − 2−r , at most �N/2� ones occur in the
first k1 bits of X and at least �N/2� ones occur in the first k2 bits of X . Hence k1 ≤
M ≤ k2.

References

[1] Laurent Alonso, Edward M. Reingold, and René Schott. Determining the majority. Information Pro-
cessing Letters, 47(5):253–255, 1993.

[2] Laurent Alonso, Edward M. Reingold, and René Schott. The average-case complexity of determining
the majority. SIAM Journal on Computing, 26(1):1–14, 1997.

[3] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower
bounds by polynomials. In Proceedings of the 39th IEEE FOCS, pages 352–361, 1998.

[4] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, October 1997.

[5] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited.
Proceedings of the Royal Society, London, Series A, 454:339–354, 1998. quant-ph/9708016.

[6] F. N. David and P. E. Barton. Combinatorial Chance. Griffin, 1962, Chapter 12.
[7] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings

of the Royal Society, London, Series A, 439:553–558, 1992.
[8] Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials. Computational

Complexity, 4:301–313, 1994.
[9] Ramamohan Paturi. On the degree of polynomials that approximate symmetric Boolean functions. In

Proceedings of the 24th ACM STOC, pages 468–474, 1992.
[10] Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices.

Theoretical Computer Science, 3:371–384, 1976.
[11] Michael E. Saks and Michael Werman. On computing majority by comparisons. Combinatorica,

11(4):383–387, 1991.
[12] Wim van Dam. Quantum oracle interrogation: getting all information for almost half the price. In

Proceedings of the 39th IEEE FOCS, pages 362–367, 1998.

