
DOI: 10.1007/s00453-002-0965-6

Algorithmica (2002) 34: 181–196 Algorithmica
© 2002 Springer-Verlag New York Inc.

Fair versus Unrestricted Bin Packing1

Yossi Azar,2 Joan Boyar,3 Leah Epstein,4 Lene M. Favrholdt,3

Kim S. Larsen,3 and Morten N. Nielsen3

Abstract. We consider the on-line Dual Bin Packing problem where we have n unit size bins and a sequence
of items. The goal is to maximize the number of items that are packed in the bins by an on-line algorithm.
We investigate unrestricted algorithms that have the power of performing admission control on the items, i.e.,
rejecting items while there is enough space to pack them, versus fair algorithms that reject an item only when
there is not enough space to pack it. We show that by performing admission control on the items, we get better
performance compared with the performance achieved on the fair version of the problem. Our main result
shows that with an unfair variant of First-Fit, we can pack approximately two-thirds of the items for sequences
for which an optimal off-line algorithm can pack all the items. This is in contrast to standard First-Fit where
we show an asymptotically tight hardness result: if the number of bins can be chosen arbitrarily large, the
fraction of the items packed by First-Fit comes arbitrarily close to five-eighths.

Key Words. On-line algorithms, Competitive analysis, Bin Packing, Dual Bin Packing, Restricted adver-
saries, Randomization, Admission control.

1. Introduction

The Problem. Bin Packing is one of the most classical problems in combinatorial
optimization and in theoretical computer science. In the Classical Bin Packing problem
we are given an unlimited number of unit bins and a set of items each with a non-negative
size where the goal is to minimize the number of bins used to pack all the items. In the
Dual Bin Packing problem we are given a fixed number n of unit size bins and a set of
items each with a non-negative size where the goal is to maximize the number of items
packed. The Dual Bin Packing problem has been studied in the off-line setting, starting
in [9], and its applicability to processor and storage allocation is discussed in [8]. (For
surveys on Classical Bin Packing, see [7] and [10].) In the on-line version of the problem,
the items arrive in some sequence and the assignment of an item should be done before
the next item arrives.

1 A preliminary version of this paper appeared as: Y. Azar, J. Boyar, L. M. Favrholdt, K. S. Larsen,
M. N. Nielsen. “Fair versus Unrestricted Bin Packing.” Proceedings of the Seventh Scandinavian Workshop
on Algorithm Theory, Lecture Notes in Computer Science, vol. 1851, pages 200–213, Springer-Verlag, Berlin,
2000.
2 Department of Computer Science, Tel Aviv University, Ramet Aviv, Tel Aviv, Israel. azar@tau.ac.il. Sup-
ported in part by the Israel Science Foundation, and by a USA–Israel BSF grant.
3 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
{joan,lenem,kslarsen,nyhave}@imada.sdu.dk. Supported in part by the Danish Natural Science Research Coun-
cil (SNF) and in part by the IST Programme of the EU under Contract Number IST-1999-14186 (ALCOM-FT).
4 School of Computer and Media Sciences, The Interdisciplinary Center, Herzliya, Israel. lea@idc.ac.il.

Received March 25, 2001; revised October 8, 2001. Communicated by A. B. Borodin.
Online publication June 14, 2002.

182 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

In this paper we consider the on-line Dual Bin Packing problem. In this problem the
algorithm may not be able to pack all items and the question is whether the algorithm is
allowed or not allowed to perform admission control. The Fair Bin Packing problem was
investigated in [6]. In Fair Bin Packing an algorithm is only allowed to reject an item
if it cannot fit in any bin at the time when it is given. Note that, for this version of the
problem, the off-line algorithm is also required to be fair. In this paper we also consider
what happens when the fairness restriction is removed and call the problem Unrestricted
Bin Packing.

The Performance Measures. The standard measure for the quality of on-line algorithms
is the competitive ratio. For the Bin Packing problem, the competitive ratio of an algo-
rithm A is the worst case ratio, over all possible input sequences, of the number of items
packed by A to the number of items packed by an optimal off-line algorithm.

For the Bin Packing problem, as well as for many other on-line problems, the compet-
itive ratio yields very pessimistic results. In particular, for the maximization problems
no algorithm can pack a constant fraction of the number of items packed by the optimal
algorithm and the competitive ratio must depend on the size of the smallest item (see
[1], [2], and [6], for example). Since we are interested in results that hold for arbitrary
size items (and get constant competitive ratios similar to most of the results in the Clas-
sical Bin Packing problem), we need to restrict the input sequences. Having in mind
the Classical Bin Packing problem where all items are required to be packed, a natural
assumption is to restrict the input sequences to those which can be completely packed
by an optimal off-line algorithm. This enables us to obtain significantly better results.
Such sequences are called accommodating sequences, since the off-line algorithm can
accommodate the whole sequence.

Note that on accommodating sequences, the competitive ratio of Unrestricted Bin
Packing is no worse than the competitive ratio of the fair problem, since the off-line
algorithm packs all items and hence is fair. In general, however, the competitive ratio of
Unrestricted Bin Packing is not necessarily better than the competitive ratio of the fair
problem since the off-line algorithm can also benefit from not being fair. In fact, in many
cases, considering unfair algorithms, i.e., performing admission control on the items,
is the more challenging problem; see for example the results for throughput routing in
[1]–[3]. In particular, with the Unrestricted Bin Packing problem, the competitive ratio of
different algorithms can vary over a large range. This is in contrast to on-line algorithms
for Fair Bin Packing where all competitive ratios for deterministic algorithms are within
a constant factor of each other, both for arbitrary sequences and for accommodating
sequences (see [6]).

The competitive ratio and accommodating sequences are defined formally in Sec-
tion 2.

The Results. The results in this paper are for accommodating sequences for the on-
line Dual Bin Packing problem. The Fair Bin Packing problem is considered in [6] by
analyzing the First-Fit algorithm, where each item is packed in the lowest index bin
into which it fits and rejected if it does not fit in any bin. It is shown in that paper that
First-Fit has a competitive ratio of at least 5

8 on accommodating sequences, i.e., it packs
at least 5

8 of the items. In this paper we show that the bound is asymptotically tight, i.e.,

Fair versus Unrestricted Bin Packing 183

the competitive ratio on accommodating sequences comes arbitrarily close to 5
8 for large

enough n. More specifically for any n, the competitive ratio is bounded by 5
8 +O(1/

√
n).

Since the competitive ratio on accommodating sequences is no worse for the unfair
version of the Bin Packing problem than for the fair version, First-Fit has a competitive
ratio of 5

8 also for Unrestricted Bin Packing. The main result in this paper is that we
can do better. We design an algorithm called Unfair-First-Fit whose competitive ratio
on accommodating sequences is about 2

3 . More precisely, it is 2
3 ± �(1/n). Hence,

starting from some value of n, the competitive ratio of Unfair-First-Fit on accommodating
sequences is strictly better than that of First-Fit.

We show that the competitive ratio of any on-line algorithm on accommodating se-
quences is no better than 0.857 + O(1/n), even when considering randomized algo-
rithms. For deterministic fair algorithms, we prove a slightly better hardness result of
0.809 + O(1/n).

2. The Performance Measures. For completeness, we define the competitive ratio
[14], [12] and accommodating sequences [5]. Note that Dual Bin Packing is a maxi-
mization problem, and all ratios are less than or equal to 1.

Let A(I) denote the number of items algorithm A accepts when given the sequence I
and let OPT(I) denote the number of items an optimal off-line algorithm, OPT, accepts.

DEFINITION 2.1. An on-line algorithm, A, is c-competitive if

A(I) ≥ c · OPT(I) for all input sequences I.

The competitive ratio CR = sup{c | A is c-competitive}.

Sometimes in the definition of the competitive ratio, an additive term is allowed, so
the requirement is weakened to A(I) ≥ c · OPT(I) − b, where b is a fixed constant
independent of I [4]. In that situation, our definition would then be referred to as the
strictly competitive ratio. However, we do not need the additive term in this paper.

Furthermore, one could have chosen to focus on the inverse ratio to obtain numbers
larger than 1. However, we made our choice for consistency with similar decisions in the
area of approximation algorithms where ratios for maximization problems are smaller
than 1 and the inverse is referred to as the approximation factor [11].

Next, we define accommodating sequences.

DEFINITION 2.2. A sequence of items is an accommodating sequence if an optimal
off-line algorithm can pack the whole sequence using the n bins.

Finally, we define the competitive ratio on accommodating sequences.

DEFINITION 2.3. An on-line algorithm, A, is c-competitive on accommodating se-
quences if

A(I) ≥ c · OPT(I) for all accommodating sequences I.

184 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

The competitive ratio on accommodating sequences is

AR = sup{c | A is c-competitive on accommodating sequences}.

3. Hardness Results. In this section we show hardness results on the competitive ratio
on accommodating sequences. Recall that when the sequences are all accommodating,
an optimal off-line algorithm always behaves fairly. Hence, an algorithm for Fair Bin
Packing is also an algorithm for Unrestricted Bin Packing with the same performance.

First, we show a negative result on the performance of First-Fit. This demonstrates
the need for a better algorithm.

THEOREM 3.1. For any n, First-Fit’s competitive ratio on accommodating sequences
is at most 5

8 + O(1/
√

n). If n is of the form n = 9 · 2q − 5, q ∈ N0, then First-Fit’s
competitive ratio on accommodating sequences is at most 5

8 + 1/6n.

PROOF. We first show the bound for the special values of n. Then we extend it to all
values of n. Let ε > 0 be small enough. An adversary can give the following sequence
of items, divided into q + 3 phases:

Phase 1. Three items of size A = 1
3 − 23qε.

Phases 2 · · · (q + 1). In phase j +1 (1 ≤ j ≤ q), 3 ·2 j pairs, each with one item of size
Bj = 1

3 +23q−3 j+2ε followed by an item of size Cj = 1
3 −23q−3 jε.

Phase q + 2. 3 · 2q items of size D = 2
3 + ε.

Phase q + 3. 9 · 2q − 6 items of size E = 1
3 .

First-Fit will pack the three items of the first phase in one bin, with three items. The
assumption on ε assures that four items of size A cannot be packed together. For
Phases 2, . . . , q + 1, First-fit will pack one pair in each bin. For every Phase j + 1,
each packed bin will contain one item of size Bj and one item of size Cj using 3 · 2 j

bins. After such a pair is packed, all future items are too large to join a pair. The number
of bins used in the first q + 1 phases is 1 + ∑q

j=1 3 · 2 j = 6 · 2q − 5. In the next phase,
each item will be placed in its own bin, using the last 3 · 2q bins. There will be no space
for items from the last phase.

OPT can pack each item from Phase 1 with two of the items of size B1 from Phase 2,
using a total of three bins for this. Then it can combine two items of size Bj+1 with one
item of size Cj (for all j ≤ q − 1). This occupies 3 · 2 j bins for all 1 ≤ j ≤ q − 1.
Finally, it can pack one item of size Cq together with one item of size D using a total of
3 · 2q for this. The number of bins used is 3 + 3

∑q−1
j=1 2 j + 3 · 2q = 6 · 2q − 3. There

are now 3 · 2q − 2 empty bins which can each hold three items from the last phase. The
ratio is thus

15 · 2q − 9

24 · 2q − 15
= 5

8
+ 1

8(8 · 2q − 5)
≤ 5

8
+ 1

6 · (9 · 2q − 5)
= 5

8
+ 1

6n
.

Now we extend the proof for arbitrary n. Let n = n′s + c, where n′ = 9 · 2q − 5 =
�(

√
n) and q, s, c ∈ N and c < n′. To get the hardness result against First-Fit, the

Fair versus Unrestricted Bin Packing 185

adversary first gives c items of size 1 and then repeats s times each phase of the above
sequence for n′ bins. Clearly, First-Fit will accept c + s(15 · 2q − 9) where OPT accepts
c + s(24 · 2q − 15), and thus the ratio is 5

8 + O(1/n′ + c/n) = 5
8 + O(1/

√
n).

In [6] it is shown that the competitive ratio of First-Fit on accommodating sequences
is at least 5

8 . Hence, 5
8 is an asymptotically tight bound on the competitive ratio of First-Fit

on accommodating sequences.
In [6] it was shown that any deterministic Fair Bin Packing algorithm has a competitive

ratio on accommodating sequences of at most 6
7 for n even. The same result and essentially

the same proof hold when the fairness restriction is removed, even for randomized
algorithms.

THEOREM 3.2. Any deterministic or randomized on-line algorithm for Unrestricted
Bin Packing has a competitive ratio of at most 6

7 + 6/(21n − 7) on accommodating
sequences.

PROOF. Let ε > 0 be a small enough constant. Consider an arbitrary on-line algorithm
A. An adversary can proceed as follows: Give n items of size 1

2 − ε, and let q denote the
number of bins which contain two items after this. In the case where E[q] < 2n/7, the
adversary gives �n/2� long items of size 1. The off-line algorithm can pack the first n
items in the first �n/2� bins and thus accept all items. On average, the on-line algorithm
places two items in E[q] bins and has at most one item in every other bin. Thus, by
linearity of expectation, the performance ratio is at most

E[q] + n

n + �n/2� ≤ E[q] + n

n + (n − 1)/2
<

2n + 4n/7

3n − 1
= 18n

21n − 7
= 6

7
+ 6

21n − 7
.

In the case where E[q] ≥ 2n/7, the adversary gives n items of size 1
2 +ε. The off-line

algorithm can pack the first n items one per bin and thus accept all 2n items. The on-line
algorithm must reject at least E[q] items on average. The performance ratio is at most
(2n − E[q])/2n ≤ 6

7 .

However, for fair deterministic algorithms, we can slightly improve the hardness
result of Theorem 3.2.

THEOREM 3.3. The competitive ratio of any fair deterministic on-line algorithm is at
most

(4
√

3 − 3)(n − 1)

(8
√

3 − 9)(n − 1) − 2
= 23 + 4

√
3

37
+ O

(
1

n

)
< 0.809 + O

(
1

n

)

on accommodating sequences.

PROOF. Let ε > 0 be a small enough constant. Consider an arbitrary fair on-line
algorithm A. First, assume that n is even. An adversary can start the sequence by n items
of size 1

2 − 2ε3. Let q denote the number of on-line bins containing two items. Since

186 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

the algorithm is fair, all items are accepted. Hence, there are also q empty bins, and
the remaining n − 2q bins contain one item each. We continue by one of two different
sequences, depending on the value of q. If q ≥ (2−√

3)n, we get the following sequence
of items, containing five phases:

1. n − q items of size 1
2 + 2ε3.

2. q − 1 items of size 1
2 − 6ε3.

3. One item of size 1
2 − 8qε3 + 2ε3.

4. q − 1 items of size 8ε3.
5. 2q − 1 items of size 4ε3 + ε4.

All items of Phase 1 are packed in an on-line bin which contains at most one item of size
1
2 − 2ε2. All items of Phases 2 and 3 are packed in a bin with one Phase 1 item. Denote
the bin that got the item of Phase 3 by z. Note that since ε is small enough, the item of
Phase 3 could only fit into a bin with one item. At this point, all on-line bins except z
are filled to at least 1 − 4ε3. Hence, all items of Phase 4 fit into z, and do not fit into
any other bin. Consequently, bin z is also occupied by 1 − 4ε3 after Phase 4. There is no
room for any item of Phase 5.

OPT has n−q bins with the pair 1
2 −2ε3 and 1

2 +2ε3, q−1 bins with the triplet 1
2 −6ε3,

1
2 −2ε3, 8ε3, and all other items in one bin. The total number of items is 2n +3q −2 and
the on-line algorithm accepts 2n +q −1 of them. The ratio (2n + q − 1)/(2n + 3q − 2)

grows as q decreases. Thus, the ratio is at most

2n + (2 − √
3)n − 1

2n + 3(2 − √
3)n − 2

= (4 − √
3)n − 1

(8 − 3
√

3)n − 2
.

If q < (2 − √
3)n, we continue with the following five phases:

1. q items of size 1.
2. n − 2q − 1 items of size 1

2 − 4ε2 + 2ε3.
3. One item of size 1

2 + 4ε2 − 2ε3 − 2ε2(n − 2q)(2 − ε).
4. n/2 − q − 1 items of size 8ε2 − 4ε3.
5. n − 2q − 2 items of size 4ε2 + ε4.

After the first phase the on-line algorithm has no empty bins. All items of Phase 2 are
packed in bins with a single item of the initial sequence. Since ε is small enough, the
item of Phase 3 is also packed in such a bin; denote this bin by w. All items in Phase 4
are also packed in bin w. There is again no room for items of Phase 5.

OPT has q bins with one item of size 1, n/2 bins with two items of the initial phase,
n/2 − q − 1 bins with a pair of items from Phase 2 and one from Phase 4, and all
other items in one bin. The total number of items is 3.5n − 4q − 3, and the on-line
algorithm accepts 2.5n − 2q − 1. The ratio (2.5n − 2q − 1)/(3.5n − 4q − 3) grows
when q increases. Thus, the ratio is at most

2.5n − 2(2 − √
3)n − 1

3.5n − 4(2 − √
3)n − 3

= (4
√

3 − 3)n − 2

(8
√

3 − 9)n − 6
,

which is larger than the bound from case 1.

Fair versus Unrestricted Bin Packing 187

If n is odd, the adversary gives an item of size 1 just before Phase 1. This item will be
accepted by both algorithms. Then the five phases described above are given with n/2
replaced by �n/2�. The performance ratio is at most

2.5(n − 1) − 2(2 − √
3)(n − 1) − 1 + 1

3.5(n − 1) − 4(2 − √
3)(n − 1) − 3 + 1

= (4
√

3 − 3)(n − 1)

(8
√

3 − 9)(n − 1) − 2
= 23 + 4

√
3

37

+ 8
√

3 − 6

(273 − 144
√

3)n + 128
√

3 − 255

< 0.809 + O

(
1

n

)
.

This is the weakest of the bounds, and thus the result.

4. Unfair-First-Fit

4.1. The Algorithm. The algorithm Unfair-First-Fit (UFF) (Figure 1) is shown to have
a competitive ratio on accommodating sequences which approaches 2

3 as n increases.
Hence, above some fixed n, UFF is strictly better than First-Fit.

In the description of Unfair-First-Fit (see Figure 1), A denotes the set of items accepted
and R denotes the set of items rejected. Since every item is worth the same, it seems
reasonable to reject large items. Therefore, for each item in the input sequence, Unfair-
First-Fit examines if the item is larger than 1

2 and if the performance ratio would still
be at least 2

3 , even if the item were rejected. If both conditions are satisfied, the item is
rejected (placed in the set R); otherwise the item is accepted (placed in the set A). All
accepted items are packed according to the First-Fit packing rule.

Input: S = 〈o1, o2, . . . , on〉
Output: A, R, and a packing for those items in A

A:= {}; R:= {}
while S �= 〈〉

o:=hd(S); S:=tail(S)

if size(o) > 1
2 and |A|

|A|+|R|+1 ≥ 2
3

R:= R ∪ {o}
else if there is space for o in some bin

pack o according to the First-Fit rule

A:= A ∪ {o}
else

R:= R ∪ {o}
Fig. 1. The algorithm Unfair-First-Fit.

188 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

4.2. Competitive Ratio on Accommodating Sequences. We introduce some notation:
As stated above, A denotes the set of items accepted by Unfair-First-Fit, and R denotes
the items rejected by Unfair-First-Fit. The term “large” is used for items strictly larger
than 1

2 , since they are considered in a special way by the algorithm. Let L denote the
set of large items that are alone in a bin in UFF’s packing. Let s denote the size of the
smallest item in R. We divide R into two disjoint sets, Rs containing small items and Rl

containing large items. Let t denote the time just after the last large item was accepted
by UFF and let At denote the set of items accepted at time t . We assume that the bins
are numbered from 1 through n and ordered from left to right. When First-Fit is used to
pack a sequence of items, it uses the bins in that order.

We now show that Unfair-First-Fit has a competitive ratio of approximately 2
3 . Since

we consider accommodating sequences, all items will be packed by an optimal off-line
algorithm. Therefore the sum of the sizes of items which are rejected is at most the sum
of the empty space in all bins in Unfair-First-Fit’s packing. We show later that at most
n items can be rejected. Therefore a sequence showing that 2

3 is impossible must be
packed by Unfair-First-Fit with some items alone. We show that to have a ratio smaller
than 2

3 , the average empty space in each bin is approximately 1
3 . With many large items

rejected, the total number of rejected items is significantly smaller than n, which is the
intuition behind the algorithm. We first relate the number of items packed alone to the
number of (large) items rejected by admission control, and, finally, we relate this to the
total number of items rejected.

THEOREM 4.1. For n ≥ 9, the competitive ratio of Unfair-First-Fit on accommodating
sequences is more than 2

3 − 2/(4n + 1).

PROOF. We divide the proof into two cases depending on the size of s. The first case is
easy.

Case 1: s > 1
2 . Since the smallest item in R is larger than 1

2 , the items in R ∪ L are all
larger than 1

2 . Thus, since all items can be packed in n bins, |R|+|L| ≤ n, or |R| ≤ n−|L|.
Furthermore, at most one small item can be alone in a bin: |A| ≥ 2n − |L| − 1. Thus,
the performance ratio is

|A|
|A| + |R| ≥ 2n − |L| − 1

2n − |L| − 1 + n − |L| ≥ 2n − 1

3n − 1
= 2

3
− 1

9n − 3
.

Case 2: s ≤ 1
2 . Since we consider the competitive ratio on accommodating sequences,

an optimal off-line algorithm, OPT, can pack all items in S. It may be instructive to view
the optimal packing as being done in three phases:

1. UFF is run on S.
2. The packed items are rearranged, creating room for the rejected items.
3. The rejected items are packed.

The packing after Phase 1 is denoted by PUFF, and the packing after Phase 3 is denoted
by POPT. Similarly, EUFF and EOPT are used to denote the total empty space after Phases 1
and 3, respectively. We assume without loss of generality that no large item is moved
during Phase 2.

Fair versus Unrestricted Bin Packing 189

We use the following equation to bound the number of small items rejected:

|Rs | ≤ 1

s
·
(

EUFF − EOPT − |Rl |
2

)
.

It is easy to see that |R| < n, since the empty space in any bin in PUFF is less than
s and all rejected items have size at least s. Thus, if all bins contain at least two items
each, |A|/(|A| + |R|) > 2n/(2n + n) = 2

3 , and we are through. Therefore, assume that
some bins contain only one item. Since the empty space in any bin is less than 1

2 , such
items must be large. Thus, the items that are alone in a bin are exactly the items in L .

It is now clear that |A| ≥ 2n − |L|. However, if some bins contain more than two
items, this lower bound is too pessimistic. Therefore, we try to “spread out” the items
a little more. Assume that the items in PUFF are labeled with consecutive numbers in
each bin according to their arrival time, i.e., the first item in a bin is labeled 1, the next
one is labeled 2, and so on. We split Phase 2 into two subphases, 2A and 2B, such that
in Subphase 2A only items with labels higher than 2 are moved, and in Subphase 2B
the remaining moves are performed. Note that the pseudo-packing produced during
Subphase 2A is only technical and used for counting purposes; it might not be a legal
packing in that some bins might contain items with a total size larger than 1.

If some of the items which are moved during Subphase 2A are moved to bins con-
taining items from L , a better lower bound on |A| can now be obtained. The set of items
that are still alone after Subphase 2A is divided into two sets: L B , containing the items
that are still alone after Subphase 2B, and L A, containing those that are not. Any item
that is alone after Subphase 2A was alone in PUFF as well. Since no such item can be
combined with an item belonging to R, each item in L B is also alone in POPT. Therefore,
the bins containing an item from L B do not contribute to EUFF − EOPT.

Note that, since L A ∪ L B is the set of objects that are alone after Subphase 2A,
|A| ≥ 2n − |L A| − |L B |. The next lemma shows that increasing the number of items
alone in PUFF after Subphase 2A or 2B will increase the number of (large) items rejected
due to admission control.

LEMMA 4.1. |Rl | ≥ |L A| + 1
2 |L B | − 1.

PROOF. Recall that t denotes the time just after the last large item was accepted by UFF
and that At denotes the set of items accepted at time t . Since a large item was accepted
just before time t , all items previously rejected are large items and therefore contained
in Rl . Since the item was accepted, (|At | − 1)/(|At | − 1 + |Rl | + 1) < 2

3 . Solving for
|Rl |, we get |Rl | > 1

2 |At |− 3
2 , and since |Rl | must be an integer, we get |Rl | ≥ 1

2 |At |−1.
We complete the proof by showing that |At | ≥ 2|L A| + |L B |. To show this, we mark
all small items accepted at time t , and to every item o ∈ L A we assign a unique marked
item as described below. Since no item in L A is alone after Phase 2, we can assume that
the bin bo containing o will receive at least one item, o′, labeled 1 or 2 during Phase 2. If
o′ is marked, it is assigned to o. Otherwise, it must be labeled 2, since all items labeled 1
in bins before bo are marked. The item which was packed below o′ in PUFF was alone at
time t . Therefore, this item is not moved to any item in L A. This item (labeled 1) can be
assigned to o. In this way, every item in L A has an item assigned which arrived before
time t and which is not in L A ∪ L B . Since L A ∪ L B ⊆ At , |At | ≥ 2|L A| + |L B |.

190 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

Subcase 2a: s ≤ 1
3 . Since the smallest item in R has size s, the empty space in each

bin in PUFF is smaller than s. Thus, we can use s(n − |L B |) as an upper bound on
EUFF − EOPT:

|Rs | ≤ 1

s
·
(

EUFF − EOPT − |Rl |
2

)
<

1

s

(
s(n − |L B |) − |Rl |

2

)

= n − |L B | − |Rl |
2s

≤ n − |L B | − 3
2 |Rl |.

Now, using Lemma 4.1, we get

|R| = |Rs | + |Rl | ≤ n − |L B | − 1
2 |Rl | ≤ n − |L B | − 1

2 (|L A| + 1
2 |L B | − 1)

= n − 5
4 |L B | − 1

2 |L A| + 1
2 .

Thus,

|A|
|A| + |R| ≥ 2n − |L A| − |L B |

2n − |L A| − |L B | + (n − 5
4 |L B | − 1

2 |L A| + 1
2)

≥ 2n − (|L A| + |L B |) + 1
3

3n − 3
2 (|L A| + |L B |) + 1

2

−
1
3

3n − 3
2 (|L A| + |L B |) + 1

2

≥ 2

3
− 2

12n − 3
,

since |L A|+|L B | ≤ 2
3 (n+1), which follows from the fact that the number of large items is

at most n: n ≥ |Rl |+|L A|+|L B | ≥ (|L A|+ 1
2 |L B |−1)+|L A|+|L B | ≥ 3

2 (|L A|+|L B |)−1.

Subcase 2b: 1
3 < s ≤ 1

2 . In this case, s(n −|L B |) is not a good bound on EUFF − EOPT,
but we will show that even in this case, EUFF − EOPT is “almost” bounded by 1

3 (n−|L B |),
if n ≥ 9 and |A|/(|A| + |R|) < 2

3 . Lemma 4.2 below with c = 2 is used for this purpose.
It says that bins containing two or more items are filled to at least 2

3 on the average.

LEMMA 4.2. Let m be the number of bins containing at least c items in a First-Fit
packing. If c ≥ 1 and m ≥ c + 1, then the total size V of the items in these m bins is
more than (c/(c + 1))m.

PROOF. Let C denote the set of bins containing at least c items, and, for any bin b, let
V (b) denote the total size of the items in b.

Suppose, for the sake of contradiction, that V ≤ (c/(c + 1))m. Then there is a bin
b ∈ C such that V (b) = c/(c + 1)− ε, ε ≥ 0. The size of any item placed in a bin to the
right of b must be greater than 1/(c + 1)+ ε, since otherwise it would fit in b. Therefore
any bin b′ ∈ C to the right of b has V (b′) > c/(c + 1) + cε ≥ c/(c + 1). This means
that there is only one bin b ∈ C with V (b) ≤ c/(c + 1), and if b is not the rightmost

Fair versus Unrestricted Bin Packing 191

nonempty bin in C , then

V > (m − 2)
c

c + 1
+

(
c

c + 1
− ε

)
+

(
c

c + 1
+ cε

)
≥ m

c

c + 1
.

Thus, b must be the rightmost nonempty bin in C .
One of the items in b must have size at most 1/(c + 1) − ε/c. Since this item was

not placed in one of the m − 1 bins to the left of b, these must all be filled to more than
c/(c + 1) + ε/c. Thus,

V > (m − 1)

(
c

c + 1
+ ε

c

)
+

(
c

c + 1
− ε

)
= m

c

c + 1
+ (m − 1)

ε

c
− ε

≥ m
c

c + 1
+ c

ε

c
− ε = m

c

c + 1
,

which is a contradiction.

Assuming that n ≥ 9, Lemma 4.2 combined with Lemma 4.3 below says that the
average empty space in bins containing more than one item is at most 1

3 .

LEMMA 4.3. Assume that n ≥ 9 and s ≤ 1
2 . Then, in PUFF, at least three bins contain

two or more items.

PROOF. Assume for the sake of contradiction that fewer than three bins contain at least
two items. We count the number of large items. Since s ≤ 1

2 , no bin contains a single
item of size at most 1

2 . Therefore, at least n −2 bins contain large items, which all arrived
before time t , i.e., |At | ≥ n − 2. By the first part of the proof of Lemma 4.1, at least
1
2 |At | − 1 large items are rejected. Noting that there can be at most n large items, we get
n − 2 + (n − 2)/2 − 1 ≤ n. Solving for n yields n ≤ 8, which is a contradiction.

Our goal is now, roughly speaking, to show that the average empty space in all n bins
is bounded by approximately 1

3 . Let l be the number of the bin in which the last large
item was placed. Let e denote the largest empty space in bins containing an item from
L . In the proof of Lemma 4.5 we show a lower bound on the number of bins to the right
of l of approximately |L|/2. Each of these bins contains at least two items of size larger
than e. Thus, even if e > 1

3 , the average empty space in the L-bins and the bins to the
right of l will be bounded above by approximately

|L|e + (1 − 2e)(n − l)

|L| + n − l
� |L|e + (1 − 2e)(|L|/2)

3|L|/2
= |L|

2
· 2

3|L| = 1

3
.

Lemma 4.2 combined with Lemma 4.4 below says that we can assume that the rest of
the bins have an average empty space of at most 1

3 .

LEMMA 4.4. Assume that n ≥ 9, s ≤ 1
2 , e ≥ 1

3 , and |A|/(|A| + |R|) < 2
3 . Then, in

PUFF, at least three of the first l bins contain two or more items.

192 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

PROOF. We count the total number of items of size larger than e. Since |A| ≥ 2n −|L|,
more than n − |L|/2 items are rejected, because otherwise we have a performance ratio
of 2

3 , which would be a contradiction. To the right of bin l, there are n − l bins containing
at least two items each. All of the rejected items and those in the last n − l bins are larger
than e and there are more than n −|L|/2 + 2(n − l) of them. Bins containing items from
L cannot accept any of these items, and only two can be put together since e ≥ 1

3 . Thus,
n − |L|/2 + 2(n − l) ≤ 2(n − |L|). Solving for l, we get l ≥ n/2 + 3

4 |L|. This shows
that at least n/2 − |L|/4 bins to the left of l contain two or more items. By Lemma 4.3,
|L| ≤ n − 3. Thus,

n

2
− |L|

4
≥ n

2
− n − 3

4
= n + 3

4
≥ 3,

since n ≥ 9.

LEMMA 4.5. Assume that n ≥ 9, s ≤ 1
2 , and |A|/(|A| + |R|) < 2

3 . Then EUFF−EOPT <

(n − |L B |) 1
3 + 1

2 .

PROOF. In the case where e ≤ 1
3 , we have an upper bound of 1

3 on the average empty
space in every bin. Thus, EUFF − EOPT ≤ (n − |L B |) 1

3 . Now, assume that e > 1
3 .

First we show an upper bound on l. At time t , no two bins can contain only one small
item each. Therefore, |At | ≥ 2l − |L| − 1. The total number of large items is at least
|Rl | + |L| ≥ 1

2 |At | − 1 + |L| ≥ l + |L|/2 − 3
2 . Since OPT must pack all these items in

separate bins, we have l +|L|/2 − 3
2 ≤ n. Define z ≥ 0 such that n − l = z +|L|/2 − 3

2 .
Since every bin to the right of bin l has two items of size greater than e, we have the
following upper bound on the empty space in these n − l bins and the bins with an item
from L\L B :

e(|L| − |L B |) + (1 − 2e)(n − l) = e|L| − e|L B | + (1 − 2e)

(
z + |L|

2
− 3

2

)

< e|L| − |L B |
3

+ (1 − 2e)
|L|
2

+ (1 − 2e)

(
z − 3

2

)

= |L|
2

− |L B |
3

+ (1 − 2e)

(
z − 3

2

)
≤ |L|

2
− |L B |

3

+ (1 − 2e)z <
|L|
2

− |L B |
3

+ 1

3
z.

Among the remaining bins, l − |L| = n − z − 3|L|/2 + 3
2 bins do not contain an item

from L B . All of these bins have at least two items, and, according to Lemma 4.4, enough
of these bins exist for us to conclude, by Lemma 4.2 (with c = 2), that the empty space
is at most 1

3 (n − z − 3|L|/2 + 3
2). The total empty space is then less than

|L|
2

− |L B |
3

+ z

3
+ 1

3

(
n − z − 3|L|

2
+ 3

2

)
= 1

3

(
n − |L B | + 3

2

)
.

Fair versus Unrestricted Bin Packing 193

Then, by Lemma 4.5, if n ≥ 9,

|Rs | ≤ 1

s
· (EUFF − EOPT − 1

2 |Rl |) <
1

s
(1

3 (n − |L B |) + 1
2 − 1

2 |Rl |)

< n − |L B | + 3
2 − 3

2 |Rl |,

where the last inequality follows from the fact that s > 1
3 . Since the inequality is strict

and |Rs | is an integer, |Rs | ≤ n − |L B | + 1 − 3
2 |Rl |. Using Lemma 4.1 as in Subcase 2a,

we get that, for n ≥ 9,

|R| ≤ n − |L B | + 1 − 1
2 (|L A| + 1

2 |L B | − 1) = n − 5
4 |L B | − 1

2 |L A| + 3
2 .

Thus,

|A|
|A| + |R| ≥ 2n − |L A| − |L B |

2n − |L A| − |L B | + (n − 5
4 |L B | − 1

2 |L A| + 3
2)

≥ 2n − |L A| − |L B |
3n − 3

2 |L A| − 9
4 |L B | + 3

2

≥ 2n − (|L A| + |L B |) + 1

3n − 3
2 (|L A| + |L B |) + 3

2

− 1

3n − 3
2 (|L A| + |L B |) + 3

2

≥ 2

3
− 2

4n + 1
for n ≥ 9.

This bound is lower than the lower bounds obtained in Case 1 and Subcase 2a for all n.

For completeness we show that this bound is asymptotically tight:

THEOREM 4.2. Unfair-First-Fit has a competitive ratio of at most 2n/(3n − 1) on ac-
commodating sequences.

PROOF. Let ε > 0 be small enough. The adversary can give the following sequence:

• n pairs: 1
3 + (n − i)ε and 1

3 + iε, for i = 1, . . . , n.
• n − 1 items of size 1

3 − (n − 1)ε.

Unfair-First-Fit does not reject any items due to admission control, since the items are
all smaller than 1

2 by the choice of ε. Therefore it will pack only the first 2n elements,
whereas OPT can behave as First-Fit, except on the very first element which is placed
in the last bin. The performance ratio is 2n/(3n − 1).

Besides showing that the proof above is asymptotically tight, the sequence also shows
that if a ratio better than 2

3 should be obtained, admission control should be performed
on items of size significantly smaller than 1

2 .

194 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

5. Comments on Other Possible Algorithms

5.1. Unfair-Any-Fit. As a final comment on Unfair-First-Fit, we discuss the following
question:

Is the choice of First-Fit as the packing algorithm important or could an arbitrary
Any-Fit unfair algorithm be used in its place, still with the same admission control,
and achieve the same performance?

We answer this question by giving a sequence on which an Unfair-Any-Fit variant
would have a competitive ratio on accommodating sequences of 12/(19 − 7/n) which is
below say 0.64 for n > 28. Hence Unfair-First-Fit is strictly better than Unfair-Any-Fit.

LEMMA 5.1. There exists an Any-Fit algorithm A such that when A is used instead of
First-Fit in the algorithm Unfair-First-Fit, the competitive ratio is at most 12/(19 − 7/n),
for n divisible by 7.

PROOF. The Any-Fit algorithm we consider does the following: Whenever the item can
be packed within the bins already open, it uses the bin which was opened last. If there
is no space in the open bins, the algorithm opens a new bin (if there is one), otherwise
the item is rejected. Let n = 7l for l ∈ N, and let ε > 0 be small enough. An adversary
could give the following sequence:

• 2l times the triple 〈 1
2 − 2ε, 5ε, 1

2 + ε〉.
• l times the triple 〈 1

2 + 2ε, 1
2 + 2ε, 1

2 + ε〉.
• 3l times the pair 〈 1

2 − ε, 3ε〉.
• 4l − 1 times 1

2 .

From the first 2l triples, A packs the two first items in one bin. The third item in the triple
is rejected due to admission control. This uses 2l bins. Next, all items of size 1

2 + 2ε are
accepted, whereas items of size 1

2 + ε are rejected due to admission control. This will
use another 2l bins. Next, the 3l pairs will be packed in the remaining 3l bins, one pair
in each bin. All items of size 1

2 must be rejected, since the empty space in each bin is less
than 1

2 . The total number of accepted items is 2 · 2l + 2l + 2 · 3l = 12l. The total number
of items given is 3 · 2l + 3l + 2 · 3l + 4l − 1 = 19l − 1, resulting in a performance ratio
of 12l/(19l − 1) = 12/(19 − 7/n).

We now show how OPT can pack the entire sequence: Items of size 1
2 −2ε and 1

2 +2ε

are packed together and items of size 1
2 − ε and 1

2 + ε are packed together. This will
use a total of 5l bins. The items of size 1

2 can be packed in 2l − 1 bins plus half of the
last bin. Finally, small items (of size 3ε and 5ε) have a total size of 19lε < 1

2 for small
enough ε. Hence these items are packed in the remaining part of the last bin.

5.2. Randomized Algorithms. Finally, we would like to comment on a simple way to
convert an algorithm for the Classical (minimization) Bin Packing problem to a random-
ized algorithm for the Unrestricted (maximization) Bin Packing problem on accommo-
dating sequences. Assume that we are given an algorithm A that is known to be able
to pack any accommodating sequence of items in βn bins for some constant β. We

Fair versus Unrestricted Bin Packing 195

can simulate this algorithm using βn “virtual” bins. At the beginning, the randomized
algorithm R randomly decides which n of the βn virtual bins are going to correspond
to the “real” n bins. If the simulation of A packs an item in a bin that corresponds to
a real bin, then R packs it in the corresponding real bin. All other items are rejected.
The expected fraction of the items which R accepts is at least 1/β, since on average
n/βn = 1/β of the items accepted by A are packed. The algorithm with the best known
value of β is Harmonic++ [13]. In [13] it is shown that when n goes to infinity, β goes
to a value that is at most 1.58889. This yields an algorithm for Unrestricted bin packing
with a competitive ratio of about 1/1.58889 ≈ 0.629. This is slightly better than the
performance of First-Fit (0.625), but worse than that of Unfair-First-Fit (0.666). It is
also shown that HARMONIC++ belongs to a class of algorithms called SUPER HARMONIC

and that no algorithm in this class has a β smaller than 1.58333. Furthermore, it is proven
in [15] that no on-line algorithm can have a β smaller than 1.54014. Thus, using this
approach we cannot get a competitive ratio better than 1/1.54014 ≈ 0.649, which is
worse than the performance achieved by our Unfair-First-Fit.

Acknowledgment. We thank two anonymous referees for many useful comments
which have definitely improved the presentation of our results. Regarding extra re-
sults, the sequence in Theorem 4.2 was found by one of the referees who also raised the
question regarding Any-Fit which was answered in Lemma 5.1.

References

[1] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-Competitive On-Line Routing. In Proceedings of
the 34th IEEE Symposium on Foundations of Computer Science, pages 32–40, 1993.

[2] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive Non-Preemptive Call Control. In Proceed-
ings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, pages 312–320, 1994.

[3] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-Line Admission Control and Circuit Routing
for High Performance Computation and Communication. In Proceedings of the 35th IEEE Symposium
on Foundations of Computer Science, pages 412–423, 1994.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, 1998.

[5] J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica, 25:403–417, 1999.
[6] J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function: A Generalization of the

Competitive Ratio. SIAM Journal on Computing, 31(1):233–258, 2001.
[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Algorithms for Bin Packing: A

Survey. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, chapter 2, pages
46–93. PWS, Boston, MA, 1997.

[8] E. G. Coffman, Jr., and J. Y.-T. Leung. Combinatorial Analysis of an Efficient Algorithm for Processor
and Storage Allocation. SIAM Journal on Computing, 8:202–217, 1979.

[9] E. G. Coffman, Jr., J. Y.-T. Leung, and D. W. Ting. Bin Packing: Maximizing the Number of Pieces
Packed. Acta Informatica, 9:263–271, 1978.

[10] J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In A. Fiat and G. J. Woeginger,
editors, Online Algorithms, volume 1442 of Lecture Notes in Computer Science, chapter 7, pages
147–177. Springer-Verlag, Berlin, 1998.

[11] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS, Boston, MA, 1997.
[12] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive Snoopy Caching. Algorithmica,

3:79–119, 1988.

196 Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen

[13] S. Seiden. On the Online Bin Packing Problem. In Proceedings of the 28th International Colloquium
on Automata, Languages and Programming, pages 237–248, 2001.

[14] D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging Rules. Communications
of the ACM, 28(2):202–208, 1985.

[15] A. van Vliet. An Improved Lower Bound for Online Bin Packing Algorithms. Information Processing
Letters, 43:277–284, 1992.

