Algorithmica (2002) 33: 384-409

DOI: 10.1007500453-001-0125-4 Al go rithmica

© 2002 Springer-Verlag New York Inc.

Page Replacement with Multi-Size Pages
and Applications to Web Caching

S. Iran?

Abstract. We consider the paging problem where the pages have varying size. This problem has applications
to page replacement policies for caches containing World Wide Web documents. We consider two models for
the cost of an algorithm on a request sequence. In the first fiber Fnodel) the goal is to minimize the
number of page faults. In the second (the Biodel) the goal is to minimize the total number of bits that have

to be read into the cache. We show offline algorithms for both cost models that obtain approximation factors
of O(logk), wherek is the ratio of the size of the cache to the size of the smallest page. We show randomized
online algorithms for both cost models that #dlog? k)-competitive. In addition, if the input sequence is
generated by a known distribution, we show an algorithm for the Fmodel whose expected cost is within

a factor ofO(logk) of any other online algorithm.

Key Words. Online algorithms, Competitive analysis, Web caching, Paging.

1. Introduction. The problem of developing and evaluating page replacement policies
for a two-level store of memory has been, and continues to be, a fundamental problem
in computing systems. With the advent of the World Wide Web, these issues have resur-
faced with some significant variations. Developing Web cache management policies is
an extremely important problem today. The demand for resources on the Web will only
increase as its enormous popularity continues to grow and as typical uses of the Web
become more sophisticated. Maintaining a cache of pages at various points can dramat-
ically reduce demand on the network as well as latency seen by the user. A cache can
be maintained at a Web client (e.g. caches built into Web browsers) {B6Chy a

Web server [KMR]. Caches can also be very effective when placed in the network itself
[DHS].

There are several possible measurements that can be used to study the effectiveness
of a caching policy. One may wish to minimize the number of requests reaching popular
servers. Viewed another way, this amounts to minimizing the number of times a client
must wait for adocument to be retrieved from a remote cite. We call this modelthe F
model in which the number of cache faults are counted. Alternatively, one may wish to
minimize the total volume of traffic resulting from document requests. In this model,
which we call the Br model, the cost is the total size of the pages that are requested on
cache faults. Alternatively, one may want to minimize the latency experienced by the
user. Measuring latency requires the development of an accurate model for predicting
the time to fetch a requested document from the appropriate server. We do not consider

1 This research was supported in part by NSF Grants CCR-9309456 and CCR-9625844.
2 Information and Computer Science Department, University of California, Irvine, Irvine, CA 92697, USA.
irani@ics.uci.edu.

Received January 21, 2000; revised March 25, 2001. Communicated by M. Goodrich.
Online publication March 25, 2002.

Page Replacement with Multi-Size Pages and Applications to Web Caching 385

this latter model here. TheabLT and BT models, which we do consider here, are the
most common in the literature on Web caching [WAJAW], [M].

Empirical studies have indicated that the choice of page replacement policy for Web
caches can have a profound effect on the utility of the cache [WYABI]. Conventional
wisdom that has been gained in the context of page replacement for CPU caches does not
necessarily transfer to Web caches. In particular, the Least-Recently-Used (LRU) policy,
which on a fault evicts the page whose next request is farthest in the future, usually
performs quite well for CPU caches but can be highly inferior to other policies for Web
caches. One reason is that LRU does not take into account the size of the documents in
choosing a page to evict. This is not a problem in traditional CPU caches where data
is divided into uniform size blocks. However, Web documents can vary dramatically in
size depending largely on the type of information they contain (video, audio, text, etc.).
Developing effective page replacement policies for documents that vary in size is the
main focus of this paper.

We present here a theoretical analysis of page replacement policies for multi-size
pages using measures of analysis that are now standard in the literature of online al-
gorithms. When evaluating an algorithm that knows nothing about future requests (an
online algorithn), we use competitive analysis. Ledst a(o) be the cost incurred by
an online algorithmA on the input sequenee, be it under the B or the RuLT model.

Let OPT be the optimal offline algorithm, and tetst opr(o) be the costincurred by the
optimal offline algorithm on input . We say that the online algorithis c-competitive
if there exists a constabtsuch that on every request sequesace

cost a(o) < c-cost gpr(o) + b.

The competitive raticof the algorithmA, denotect,, is the infimum ovec such thatA
is c-competitive.

We use a slightly different version of the paging problem that does not change the
analysis significantly, although it does better suit the application of Web caching: when a
page is requested, the algorithm is not forced to bring the page into the cache. If the page
is not in the cache, the algorithm can pay the price of a fault and leave the page outside
the cache. In this case it would have to pay again the next time the page is requested.
To avoid confusion with the standard version where the requested page must be brought
into the cache, we call our version of the problem theuM-SizE OPTIONAL PAGING
PROBLEM.

One issue that we do not address is that of cache consistency. We assume that the
pages are static. Thus, if a page is referenced and a copy of the page resides in the cache,
the request can be immediately satisfied. One way to deal with out-of-date pages is to
treat requests to pages that have not been retrieved within a certain time limit as requests
to new pages. The details of such a scheme are beyond the scope of this paper.

The best competitive ratio that can be achieved by any deterministic online algorithm
is achieved by the familiar LRU:

THEOREM1 [FKIP]. LRU is(k+1)-competitive for th&1ULTI-SIZE OPTIONAL PAGING
PrOBLEM in both theFauLT and theBIT models This bound is the best achievable by a
deterministic online algorithm in both cost models

386 S. Irani

Throughout this papek denotes the maximum number of pages that can fit into the
cache (i.e. the size of the cache divided by the size of the smallest page). The proof of
Theorem 1 involves straightforward adaptations of the bounds for uniform size pages by
Sleator and Tarjan [ST]. Since LRU has been observed to be sub-optimal in practice, these
results indicate that a more refined analysis is needed to evaluate Web cache replacement
policies.

Although the problem we wish to solve is inherently online, often algorithms that work
with partial information attempt to imitate the behavior of the optimal offline algorithm
to the extent possible with their limited information. For this reason, itis useful to have an
understanding of the behavior of the optimal offline algorithm. Indeed, the randomized
online algorithm and probabilistic analysis discussed below depend heavily on the offline
approximation algorithm presented in Section 4. When the pages all have the same size,
there is a simple rule, due to Belady, for obtaining the optimal replacement policy [B]:
on a fault evict the page whose next request is farthest in the future. Such a simple rule
for the multi-size case does not seem to exist. In fact the problem of devising the optimal
replacement policy for a given sequence of requests is NP-hard inttmedglel [F]. It is
unknown whether the problem is i for the FRuLT model. We develop approximation
algorithms for the EuLT and BT model and prove the following theorem:

THEOREM2. There is a polynomial-time offline algorithm for tif@uLT model and

a polynomial-time offline algorithm for thBIT model whose cost is guaranteed to be
within O(logk) of the optimal offline algorithm for th®1uLTI-SizE OPTIONAL PAGING
PROBLEM.

The algorithm uses Belady's rule to pick among pages of similar size. The factor of
O(logk) comes from balancing among pages of different sizes. Fortunately, the rule for
picking among pages of different sizes requires no information about the future which
means that it can be combined with known online algorithms for page replacement with
pages of uniform size. This is the idea involved in the online randomized algorithms
in Section 5. We use a variation of the Randomized Marking Algorithm developed in
[FKL*] combined with the offline approximation presented here. Although we borrow
the basic structure of the algorithm from [FK], it was necessary to develop an alternate
proof of their bound based on a potential function in order to combine it with the proof
for the offline approximation algorithm. The alternate proof is implicit in the proof of
the following theorem.

THEOREM 3. There is a randomized online algorithm for tBer model and a random-
ized online algorithm for th&auLT mode] both of which achieve a competitive ratio of
O(log? k) for the MULTI-SiZE OPTIONAL PAGING PROBLEM.

Finally we turn to probabilistic analysis. Again, we combine the approximation al-
gorithms in Section 4 with a known algorithm for the uniform size case. We use the
algorithm of Lund et al. for paging when the sequence is generated by an arbitrary
known distribution [LPR]. The cost of the Lund et al. algorithm is within a factor of 4
of any online algorithm that knows the distribution in advance. We prove the following
theorem:

Page Replacement with Multi-Size Pages and Applications to Web Caching 387

THEOREM4. Given a distribution over input sequencéisere is a randomized algo-
rithm for the FAULT model whose expected cost is within a factor afogk) of the
expected cost of any online algorithm that knows the distribution generating the input
The expectation is taken over the random choices of the algorithm as well as the random
choices made in generating the sequence

The proof of Theorem 4 follows the structure of the proofin [LPR] quite closely. However,
some extra machinery is required.

2. Related Work. To our knowledge, this is the first paper that gives a theoretical
analysis of paging with multi-size pages. Since these results were obtained, there have
been several papers that address paging with multi-size pages where the cost of bring-
ing a page into the cache is arbitrary. Cao and Irani [CI] and Young [Y2] analyze a
generalization of an algorithm callegteedy-dualdeveloped by Young [Y1]. This de-
terministic algorithm is shown to bg + 1)-competitive. Young shows that it is in fact
(k + 1/k — h + 1)-competitive when the optimal algorithm has a cache siZe @fao
and Irani also perform an empirical evaluation of the algorithm using trace data. Cohen
and Kaplan then give an alternate proof of {ke- 1/ k — h 4+ 1)-competitiveness of this
algorithm using a linear programming formulation of the problem [CK]. They use the
linear programming formulation to give an offline algorithm that gives an approximate
solution when the size of the largest page is small with respect to the size of the cache.
Albers et al. [AAK] examine the general cost model and obtairnCdaf)-approx-
imation algorithm for the offline problem that uses an additional amount of memory that
is O(1) times the size of the largest page. When no additional memory is allowed, they
give an algorithm that achieves @xlog(M + C)) approximation factor, wher#! is
the size of the cache ar@l is the largest cost to bring a page into the cache. Finally,
they give a randomized algorithm for therBnodel that achieves a competitive ratio of
O(In(1+ 1/c)) while usingM (1 + ¢) memory for anyc > S/M, whereSis the size of
the largest page.

3. Preliminaries. InWeb terminology the objects being cached are callsmiments
A Web page can be comprised of many documents. In order to stay consistent with the
terminology of the online algorithms literature, we refer to the objects being cached as
pages

The size of the pages are measured by the number of bits they contain. In the discussion
that follows, we normalize all page sizes so that the smallest page has size 1. This may
mean that a page may contain a fractional number of bits, but it does not affect the
algorithms or analysis. The size of a pggés denoted by p|. In some cases we define
our algorithms in terms of a relaxed algorithm that is allowed to evict a page partially.
In these caseg|qut (resp.|plin) denotes the number of bits pfthat the algorithm has
outside (resp. inside) the cache.

In all of the algorithms the pages are divided into at mésgk| + 1 classes. Class
| contains pages of size at leastdd less than'2!. We refer to the pages in clasas
I-pages We say that the class size fdenotedcs(x)) is the class that contains pages
of sizex (i.e. |logx]).

388 S. Irani

In all the proofs in this paper we compare the cost of an approximation or online
algorithm with the cost of the optimal offline algorithm. This is achieved by examining
an arbitrary sequence of page requests and analyzing the cost of both algorithms as they
service the requests in that sequence. Since we are working with the version of paging
where we are not obliged to bring the requested page into the cache, we can view a
request as occurring in the following three steps:

1. Ifanalgorithm does not have the requested page in the cache, it brings in the requested
page (and may afterwards exceed its memory capacity).

2. Therequest is served and the time of the next request to that page is updated.

3. The algorithm evicts at least enough pages so that it does not exceed its memory
capacity.

In every proof we charge an algorithm for the pages it evicts instead of the pages
it brings into the cache. Bringing a page into the cache is free. Changing the charging
scheme in this manner changes the cost of a given algorithm on any particular sequence
by at most an additive factor & We usee to denote the amount by which the cache is
exceeded. For any set of paggshemost distanpage inSis the page irS whose next
request is farthest in the future. L8t (1) be the set of-pages that algorithm has in
the cache. In general, we use lowercase letters to denote the size of asaélt) sothe
number of pages from clagshat A has in the cache. We ubg (1) to refer to the sum
of the sizes of thé-pages that\ has in the cache.

4. Offline Algorithms

4.1. TheFAULT Model Figure 1isadescription of the algorithm that we call the Offline
Fault Model Algorithm (OFMA). The essential idea of the algorithm is that we know
how to make decisions in choosing which page to evict within a class since the page
sizes within a class only vary by a factor of at most 2: we can use Belady'’s rule to evict
the two most distant pages. However, when we must make room in the cache, we may
not know from which class to pick. The algorithm solves this problem by evicting two
pages from every class. Since the algorithm pays for evictions, we get a factor d&f.2 log

OFFLINE FAULT MODEL ALGORITHM

Consider a request to [-page p:

(1) if p is in the cache, do nothing.

(2) else bring p into the cache.

(3) if the size of the cache is exceeded,

@ for all |, do twice:
(5) if there is a j-page in cache,
(6) evict the most distant

j-page in the cache.

Fig. 1. Offline approximation algorithm for theabLT model.

Page Replacement with Multi-Size Pages and Applications to Web Caching 389

This is established more formally in the following theorem:

THEOREM5. The number of faults incurred by OFMA on any sequence of requests is
within a factor of2 logk of the number of faults incurred by the optimal offline algorithm

PrROOF For the purposes of our proof, we give the optimal offline algorithm (OPT)

a special discount on evicting pages. On requests in which OFMA evicts a page, we
allow OPT, for the price of one eviction, to evict from each class either the two pages

that OFMA has chosen to evict or one page of its choice. Any additional evictions made
by OPT are undiscounted. Certainly the optimal algorithm with this special discount

performs at least as well as the optimal algorithm without the discount. Furthermore,
OPT will not perform any undiscounted evictions unless it is forced to make room in its

cache. We claim that the behavior of an optimal algorithm with the discount is exactly

the behavior of OFMA. Since the optimal gets at most 2ayictions for the price of

one, if the claim is true, our cost is at most 2 loimes the optimal.

We prove our claim by induction an Suppose that up to tintehe behavior of OPT
and OFMA are the same. The next request at timel is already in OPT’s cache if and
only if it is in OFMA's cache. If the page is not in either’'s cache, then it is brought in.
The capacity of OPT'’s cache is exceeded if and only if the capacity of OFMA's cache is
exceeded. If the capacity is not exceeded, then we go on to the next request.

Suppose that the capacity of the cache is exceeded. OPT must evict at least one
page, incurring a cost of 1. Since OPT must evict at least one page, it may as well take
advantage of the special discount and evict one or two pages from each class (depending
on whether it chooses to evict the same pages as OFMA). Remember that bringing pages
into the cache is free but evicting pages has a cost.

The remaining fact to prove is that for each clgssuch that the algorithms have at
least twoj-pages in the cache, OPT always chooses to evict the farages as OFMA.
Suppose the two most distajypages arg andq. These are the two pages that OFMA
evicts. If OPT does not evigt andq, then it evicts some other page

We can convert OPT into another algorithm ORffat evictsp andq at timet and
does at least as well as OPT. If OPT evicts eithar g at some time’ before the next
request to, then OPTevictsr attimet’. The rest of the eviction choices remain exactly
the same except for the fact that OPT may have to gvimtq where OPThas already
evicted them. Note that until the next request {@PT has at least as much unused
space in the cache as OPT. This is because the total space tagemby is at least the
space taken up hy. After the request to, the only difference in their configurations is
that until the next requests fwandq, OPT does not have those pages in the cache while
OPT may havep or q in memory. Since we do not penalize an algorithm for bringing a
page into memory, OPTs at least as well off as OPT. O

4.2. TheBIT Model Figure 2 contains a description of the algorithm that we call the
Offline Bit Model Algorithr {OBMA). A counter is maintained for each clasd.) is the
current value of the counter for clalssAll counters are initialized to 0 at the beginning

of the sequence. The idea behind this algorithm is similar to that of OFMA. The problem
here, however, is that we cannot afford to evict a large page if the memory capacity is

390 S. Irani

OFFLINE BIT MODEL ALGORITHM

Consider a request to a page p of size X

from class |I:

(1) Bring p into the cache if not there.

(2) if the capacity of cache is exceeded by e > 0 hits.

(3 if Zj <cs(e) boema(j) < €

4) let i be the smallest number greater than cs(e)
such that there is at least one i-page in the
cache. Let m be the size of the most distant
i-page.

(5) elsem<«e
(6) for all | <cs(e):

@) Continue until the total size of the pages
evicted is at least m or there are no j-pages
in the cache:

(8) Evict the most distant j-page.

9) for all | > cs(e):

(10) if there is a j-page in cache,

(10) c(j) < c(j)+m;

(11) while c(j) > size of most distant j-page d,

(12) Evict qg.

(13) c(j) «<c(j) —1ql.

Fig. 2. Offline approximation algorithm for theiB model.

only exceeded by a small amount. What we would like to do instead is to ebits

from every class if the memory capacity is exceedect jts. Since we cannot evict
partial pages, ié is smaller than the pages in a class, we just add to that class’s counter.
When the counter is large enough to account for the cost of evicting a page from that
class, we cash in the counter and evict a page.

The analysis makes use of a potential function. (For an introduction to the use of
potential functions see [T]). Before defining the potential function, some preliminary
definitions are necessary. Defifgsua(l, t) to be the set of pages in cldsthat OBMA
currently has in the cache whose next request occurs on or aftet.ténpage that is
never requested again is assumed to be requested atti®g(l, t) is defined similarly
for the optimal algorithm OPT. Ldiogua(l, t) denote the sum of the sizes of pages in
the setSoewa(l, t). bopr(l, t) is defined similarly for OPT. Lettbe the time of the current
request. Define

o = rpg)quBMA (1, t") — bopr(l, t},

0 if o <0,
max{e, 2+2/5) — c(1)/5 if o >0.

Page Replacement with Multi-Size Pages and Applications to Web Caching 391

The value of the potential function is just the sum of i's:
¢ = Z (V8
|

Notice that after each request is processgd, < 2'+1 which means thag, is always
non-negative.
We also use another potential functidnthat is just the sum of all the counters of

OBMA:
Zc(l) =A.
|

We use the notation @ to denote the change in a potential functibrover some given
event. That is, it will denote the value of the potential function after the event minus the
value of the potential function before the event. We charge each algorithm for the pages
they evict and prove the following lemma:

LEMMA 6. After each stage of the request
OBMA's cost+ AA < 5(logk + 4)(OPT'’s cost— A®).

The lemma is sufficient to establish that OBMA iddg k + 4)-competitive since both
potential functions are always non-negative and both start at 0.
Before proving Lemma 6, we prove the following small lemma:

LEMMA 7. Suppose that OBMA evicts the most distant |-page p afitel the eviction
a) > 0. Theno has decreased hy|.

PrROOF Let f be the time thatp is requested next. Aftep is evicted, all the pages
that OBMA has in the cache are requested before fimEhus, afterp is evicted,
boswa(l,t) = O for all t > f. Sincea; > O after p is evicted, it must be the case
that max{boswa(l, t’) — bopr(l, t')} is maximized when’ < f. Suppose it is maxi-
mized for somd = t'. Sincef < f, p € Seua(l, T) beforep is evicted but not after
it is evicted. Thushggwa(l, t) decreases byp| when p is evicted. This means that
max >t {bosma (I, t") — bopr(l, t')} decreases by at leggi| when p is evicted. O

PROOF OFLEMMA 6. Consider a request to pageat timet. Letl = cs(p). We break
the analysis into four cases:

Casel: both OPT and OBMA have p in the cacheNeither algorithm incurs any cost.
Since both algorithms hawe in the cache, page is in Soeua(t’, 1) if and only if it is
in Spr(t’, 1) for all t’. This is true before the request poat timet and after the next
request top is updated to some later time. Thdsdoes not change.

Case2: OBMA does not have p in the caclend OPT does have p in the cache
Consider the moment before OBMA bringanto the cache. Since OPT already tas
in the cachebgpr(t, |) = bopr(t + 1, 1) 4| p|. Since OBMA does not havein the cache,

392 S. Irani
bogwa (t, 1) = boswa(t + 1,1). Thus,

Boema (1, 1) — bopr(l, 1) = bogma(l, t + 1) — (Boer(l, t + 1) + [pD)
= rtT)SX{bOBMAq) = boer(l, t)} = |pl.

This means that before the page is broughbigua(l,t) — bopr(l, t) is |p| less than
o = maxsi{boswa(l, ") — bopr(l, t')}. Thus, after the page is brought tBpgwa(l, t)
increases byp|, butey remains unchanged.

Then the time of the next request pochanges to some tintein the future. Since
OPT and OBMA both have in the cacheg does not change. (This is just the same as
the argument in Case 1.)

Now suppose that OBMA has exceeded its memory capacity by bringing inpétge
evicts some pages and adds to the counter of other classes. How much does OBMA pay?
For j < cs(e), the sum of the sizes of the pages that OBMA evicts is at most2i 1.
Forj > cs(e), m points are added to the countemof This amounts to a total amortized
cost of

cse)
(mlogk) + Z 2+t

i=0

(mlogk) + 4 - 2¢5M

IA

IA

(mlogk) + 4m

IA

(logk + 4)ym.

If the algorithm trades i points fromc(l) in exchange for evicting a page of sizdts
amortized cost (cost AA) is 0.

We must now prove thab decreases by at least/5.

Lete(j) = boawa(j) — bopr(j). OBMA hase(j) more bits belonging tg-pages in
memory than OPT. We make the following claim:

CLam 8. For j < cs(e), if e(j) > 0, theng; decreases by at leasi(jp/5. For

j > cs(e), ife(j) > 0,theng; decreases by at least/5.

Note that in either case, as longe(g) > 0, theny; decreases by at leaatj)/5 since
m > e > e(j). The claim will be sufficient to establish th&tdecreases by at least/5
because ifn was chosen to be, then we have that

doe(h=) e(j)=e=m,

e(j)>0 i
and as long ag; decreases bg(j)/5 for each class witk(j) > 0, the total decrease is
at leastm/5. Note thaty; does not increase for arjywhen OBMA evicts a page, so we
need not be concerned with those clasisés whiche(j) < 0.

Alternatively, suppose was chosen to be the smallest page in the cache from a class
larger tharcs(e). We know that in this case the sum of the sizes of the pages in classes
of sizecs(e) or less are not enough to compensate for the excess that OBMA has in the
cache. Thus, for somg > cs(e), the sum of the sizes of thepages that OBMA has

Page Replacement with Multi-Size Pages and Applications to Web Caching 393

in cache is more than OPT. Thus, we are guaranteeathat- 0 for somej > cs(e).
Then, by the claimgp; decreases by at leasi/5.
Now we must prove the claim. We break the analysis into two cases:

j > cs(e). Firstc(j) is incremented byn. Note that if the algorithm has at least
one page from claspin the cache, thef > cs(m). This implies tham < 21+1,
Sincee(j) > 0, we know thaty; > 0. This is because max{bogma(j,t") —
borr(j, t')} > e(j) sincet’ can always be chosentob@&eforec() isincremented
bym, c(j) < 2+ which means thap; > 21+1/5. Sincem < 2/*1, whenc(j) is
incremented byn, ¢; will decrease by at least/5.

Now we must establish that if a page from clgds evicted ana(j) is decre-
mented, the; does notincrease. Suppose the evicted page has $izafter the
eviction,«; becomes 0, theg; also becomes 0. Singg is always non-negative,
it certainly has not increased. Now suppose that- 0 after the eviction. By
Lemma 7«; decreases by at leastThis means that méaw;, 21+2/5) decreases
by at leasts — 2/72/5 andg; decreases by at leagt — 2!+2/5) — s/5. Since
s > 2, ¢; does not increase.

j <cs(e). Suppose that; > 0 after the evictions. Letbe the number of bits from
classj that OBMA evicts. We know thas > e(j). We also know thas > 2
since allj-pages have at least Bits. By Lemma 7¢; decreases by at leasbits.
Thus,y; decreases by at least

i 277 e
i _c 23U
max{2’, e(j)} 5 > 5
Now suppose thap; = 0 after the evictions. We know that before the evictions
aj > e(j) > 0 becauseyj = max:t{bosua(j,t’) — bopr(j,t)} ande(j) =
Boema (j, 1) — bopr(j, t). Thus,p; decreases by at least
2i+2 2i+1 . Qj . e(])
max{aj,s} 5252 ¢

Case3: both OBMA and OPT fault Both algorithms bring into the cache in step (1).

The argument thab does not change is the same as Case 1. Similarly, when the time of

the next reference tp is updated® also does not change. Now OPT may have to evict

some pages in order to keep the number of bits in the cache atkmBsppose OPT
evictsh bits from classj. OPT paysh. ¢ (and hence;) increases by at most If the
capacity of the cache is exceeded, OBMA may have to evict some pages. This part of

the argument is identical to Case 2.

Cased: OPT faults and OBMA does not faultOPT bringsp into the cache® can only
decrease. Then OPT may evict some pages in order not to exceed the the cache capacity
of k. If OPT evictsh bits, then it pay$ and® can increase by at molt O

5. Randomized Online Algorithms. The randomized algorithms for both theUeT
and the Br model will be described in terms of a relaxed version that will be allowed
to evict a portion of a page. The real algorithms will evict the entire page as soon as any

394 S. Irani

Evict(l, C)

(1) if there is a page g that is partially evicted:
(2) Let x <« min{|qlin, C}.

3) Evict X bits of qg.

4) C <« C-x

(5) while C #£0:

(6) if there are |-pages in the cache:

7) if there are no unmarked |-pages:

(8) Unmark all |-pages.

9) Pick an unmarked I-page q at random.
(10) Let x <« min{|q], C}.

(11) Evict X bits of g from the cache.
(12) C<«~C-x

(13) if there are fewer than 2 bits belonging to

unmarked |-pages in the cache, evict them.

Fig. 3. Eviction algorithm used in both the randomized algorithms for the.F and BT models.

portion of a given page have been evicted. This guarantees that the sizes of the pages in
the cache never exceed the capacity of the cache. We also charge the relaxed versions the
cost of evicting the entire page (a cost of 1 in th&F model and the size of the page
in the BT model), as soon as any of the bits of a given page are evicted. This ensures
that the cost of the real algorithm and its relaxed version are the same.

Each of the randomized algorithms makes use of a marking scheme as introduced
in [KMRS]. Figure 3 shows the eviction routine that is common to both algorithms. It
is called whenever it is necessary to evizhits belonging to pages of claksBoth
algorithms work according to the following principles. If there is a request to a page
it is brought into the cache and marked. Only unmarked pages are ever evicted from the
cache. If it is necessary to evict &qpage and all thé-pages in the cache are marked,
then the algorithm unmarks all thepages. For each class, the sequence is divided into
phases. The current phase for claéslso called ah-phase) ends and a new one begins
whenever the pages of that class are unmarked as in step (8) of the eviction algorithm.
The set of markettpages is always exactly the setlgbages that have been requested
in the current-phase. At the end of a phase, the sdt-péges in the cache are exactly
thosel-pages that have been requested in thhase.

Throughout Sections 5.1 and 5.2, we denote the size of a page| byplin (resp.
| plout) denotes the number of bits of pag¢hat the Randomized Fault Model Algorithm
has inside (resp. outside) the cache.

5.1. The FauLT Model We now describe the Randomized Fault Model Algorithm

(RFMA). As with the algorithm in the previous section, RFMA resolves the problem of
which class to evict from by evicting from every class. The decision of which page to
evict from a given class is made according to the Randomized Marking Algorithm of
[FKL*]. Although the idea appears simple, in order to combine the proofs of the two

Page Replacement with Multi-Size Pages and Applications to Web Caching 395

RANDOMIZED FAULT MODEL ALGORITHM:
Consider a request tepagep:
(1) Bring p into the cache if not there.
(2) Mark page p.
(3) if p was requested in the previous phase,
4) Let u be the number of bits belonging to
unmarked |-pages in the cache.
() Evict(l, minfur, [plout})-
(6) if total sizes of pages in
cache exceed Kk bits,
do the following twice for all j:
(7) EBvict(j, 2i*h).

Fig. 4. Randomized online algorithm for the®.T model.

algorithms, it is necessary to prove the competitiveness of the Randomized Marking
Algorithm using a potential function argument that is substantially different than the
original proof.

The randomized algorithm for theaBLT model is shown in Figure 4. We will need
the following lemma about the distribution of the number of bits RFMA has in the cache.

LEMMA 9. After each requestis processéar each | the following three items depend
only on the request sequence and are completely independent of the random choices
made by the algorithm

1. The set of marked pages
2. The number of bits belonging to unmarked |-pages that RFMA has in its cache
3. The beginning and end of the I-phases

PrROOFE Let M, denote the set of markdepages and lat; denote the number of bits
belonging to unmarkettpages that RFMA has in its cache. We prove this lemma by
induction on the number of requests. We assume that the cache starts out empty, so the
lemma is vacuously true after no pages are requested. Suppose that it is true for any
sequence df requests, and suppose we have a requestitgpagep at timet + 1. pis
broughtinto the cache and markédj.continues to be independent of any random choices
made by the algorithm. By the inductive assumption, the eventthes requested in

the previous-phase is independent of the random choices made by the algoritipm. If
was not requested in the previous phase, then RFMA did not pavéhe cache and,
remains unchanged. ff was requested in the previous phase and was unmarked, then at
this point, the lemma may not be true. This is becdpsg| bits may have been evicted

and the number of bits from that RFMA has in its cache does depend on the random
choices made by the algorithm. Let denote the new value far at step (4) of the
algorithm afterp is marked.u; = u; — |Plin. | Plout < u; is true if and only if| p| < u

which is independent of the random bits used by RFMA I& | p|ou, thenu; goes to

0 after step (5). Otherwise, an additiompby| bits will be evicted which means tha

396 S. Irani

will go down tou; — | p| which is again independent of the random choices made by the
algorithm.

At step (6) of the algorithm, the number of bits the algorithm has in its cache is inde-
pendent of the random bits used by the algorithm. If the size of the cache is exceeded,
then we proceed to\BCT(j, 21*2) for every j. By the inductive hypothesis; is inde-
pendent of the random bits used by the algorithr; I& 21+1 the algorithm will evict
21+1 bits from unmarked -pages and; decreases by'2%. If u; < 21*1, the algorithm
will evict u; bits and a new phase begins. Denote the new number of bits belonging to
unmarked pages hy . The algorithm will then evict mifu;, 21+1 —y;} bits. Thus, the
number of bits evicted and whether a new phase is started are still independent of the
random choices made by the algorithm. Finally, if the number of unmarked bits only
depends on the input sequence, the number of bits that are evicted in step (13) also only
depends on the input sequence. O

For each class, we normalize the size of the pages by dividing By Phus, the
normalized size of every page is less than 2 and at least 1. We use the following three
definitions in the proof:

e Letd(l) denote the sum of the normalized sizes of the pages that were requested in
the previous phase and are not currently marked (i.e. have not yet been requested in
the current phase).

e Let h(l) be the sum of the normalized sizes of thpages that the algorithm has
evicted in the current phase that remain outside RFMA's cache. Note that since these
pages were evicted in the current phase, they must have been requested in the previous
phase or else they would not be in the cache in the first place. Since they are outside
RFMAs cache, they are unmarked. Thagl) = d(1) — (u;/2")). (u was defined in
the algorithm to be the number of bits belonging to unmatkedges that RFMA has
in its cache.)

e Letm(l) be the sum of the normalized sizes of pages that were requested in the previous
or current phase that are not in OPT’s cache.

Note that if the algorithm has partially evicted a pggep’s contribution toh(l) will be
the fraction ofp that has been evicted. Thusxibits of p have been evicted, then the
contribution fromp to h(l) will be x/2'. d(l), h(l) andm(l) are all independent of the
random choices made by the algorithm.

The following lemma is key to the proof of competitiveness for RFMA:

LEMMA 10. Fix a page p that was requested in the previous phase that is not currently
marked The probability that any bits of p have been evicted is at ralogd) /d(l).

PROOF At any given point, the probability thai is in the cache is the same as if the
pages had been evicted according to the following process: pick a random permutation
of thed pages that were requested in the previous phase and are currently unrdarked.
is at leastl(1)/2 since, in the worst case, all the pages have size Bvict pages in this

order untilh(l) bits have been evicted. What is the probability that a given pagél

be evicted? The number of pages that will be evicted is at mbstThus, if p appears

in the lastd — h(l) pages in the permutation, it will remain in the cache. The probability

Page Replacement with Multi-Size Pages and Applications to Web Caching 397

that p will remain in the cache is atlea&d — h(l))/d =1 — h({)/d > 1 — 2h()/d().
This means that the probability thptis not in the cache is at mosh@)/d(l). O

We use three potential functions per class:
e y is the sum of the normalized sizes of markgohges that RFMA has in its cache

o and that OPT does not have in its cache.

0 if all bits belonging td -pages in RFMA's cache
are marked om(l) — h(l) <0,

maxm() —h(), 3} otherwise

[l

e A = 4h()(Hygy — 1), whereH; is the jth harmonic number.

Finally, we combine the potential functions for each class:

[
We prove the following lemma:

LEMMA 11. After each stage of the request

(1) RFMA'’s cost+ AA < ((64Hk + 16) logk)[OPT'’s cost— A(® + I')].

SinceA, I' and® are initially 0 and are always non-negative, the lemma implies that
RFMA is ((64H + 16) logk)-competitive. To see thaf is always non-negative, note
thatifd(l) is ever 0, ther(l) must also be 0 sinde(l) < d(l).

PrROOF Consider a request to &fpagep at timet. We break the analysis into three
cases:

Casel: pismarked RFMA already has the page in the cache. If OPT does not pave
in the cache, it brings it into the cache. When OPT brings a page into the caghean
only decrease which means thtandI" can only decrease. If OPT then evicts a page
from some class$, it incurs a cost of Im(j) can increase by at most 2 which means that
¢; andy; can increase by at most 2 each. Thus, OPT’s costplds + I') is positive.

Case2: p is not marked and was not requested in the previous pha®®T bringsp

into the cache if itis not already thera(l) and henc&@ can only decrease. Then RFMA
brings p into the cache and marks it. Since OPT already p&sthe cache, neithen

nor ¢, change. Using the same argument as the previous cases, OPT may evict a page in
which cased + I" does not decrease by more than OPT’s cost.

If RFMA has enough room for pagg no evictions are performed and the next request
is processed. If, however, there is not enough roonpfave will try and evict 21 bits
from clasd for eachl.

We first address what happens if, in the process of evicting bits fromIclaghe
I-pages in the cache are marked and must be unmarked (i.e |goiage begins). When
all thel-pages become markeg,goes to 0 which can only result in a decreasg irAt

398 S. Irani

this point, a new phase begins, so the set of pages currently in the cache become the set
of pages requested in the previous phase. This also meargltheecomes 0 since no
bits have yet been evicted in the current phase for ¢tlass

How does this change our potential functionsBecomes 0 sinde(l) is now 0. This
means thak, does not increase. The set of markguhges at the end of the digphase
are exactly thoseé-pages that RFMA has in its cache. This means that the sum of the
normalized sizes of pages that RFMA has in the cache and OPT does not have in the
cache is exactlyy. When all the pages become unmarkgdgoes to 0. The old value
of ¢ is 0. The new value af; is m(l) which is the sum of the normalized sizes of pages
that RFMA has in the cache that OPT does not have in the cache. Note that this new
value is either O or at least 1, so the “max” in the definitiopofias no effect. Thug
decreases by the amount by whighincreases and (® + I') = 0, and all the changes
to the potential functions brought about by a new phase obey inequality (1).

Now RFMA attempts to evict'2! bits from each class. Since we are charging RFMA
as soon as it evicts any bits from a given pages, this will result in at most a cost of two per
class. If any bits are evicted in step (13) ofi€r (I, C), this will not cost the algorithm
anything because this has to be a partially evicted page. For eaclh,did9sncreases
by at most 2. Thus, each increases by at mosi By, — 1), and the total amortized
costto RFMA is

logk
2logk + 8 "(Haa) — 1) < (8Hx + 2) logk.
1=1

We now prove that decreases by at Iea§1

Since RFMA has exceeded the capacity of its cache, it must be the case that for some
clasd, RFMA has more bits belonging tepages in the cache than does OPT. Pick one
suchl. Note that RFMA must have at leastiflts belonging to unmarkedpages in the
cache or else they would have been evicted in step (13y@ftd, C).

Let a be the sum of the normalized sizes of thpages that were requested in the
current or previous phase. The number of bits belonginepiages that RFMA has in its
cache isa — h(l). Letb be the sums of the normalized sizes ofltfgages that OPT has
in its cache. We know that — h(l) > b. Thus,m(l), which is at least — b, is greater
thanh(l). This means than(l) — h({) > 0.

When thel-pages are evictedy(l) increases by at least 1 and thpusdecreases
by a non-negative amount. If the valuerofl) — h(l) afterwards is negative, then
decreases by at least(since it was at leas} before and is 0 now). Ifn(l) — h(l)
is positive afterwards, then it was at least 1 before the eviction. In this gaséso
decreases by at Iea%t Since all the other evictions can only serve to decrdasee
know thatd decreases by at least

Case3: p is unmarked and was requested in the previous pha®®T bringsp into the
cache if it is not already theren(l) and henceb can only decrease. Thgnis marked
and mir{u;, | pout/} bits are evicted. Since OPT hasin its cache) does not change.
Either | p|out bits belonging td-pages are evicted or all the remaining bits belonging
to unmarked -pages are evicted. In the former cabd,) does not change ang is
unchanged. In the latter cag®,becomes 0 which means that it does not increase. As in

Page Replacement with Multi-Size Pages and Applications to Web Caching 399

case 1, if OPT evicts a page, the cost that OPT incurs is at least as large as the amount
by which ® decreases.

Finally, we examine the amortized cost of the algorithm. A page is evicted only if
p was not already in the cache. By Lemma 10, this happens with probability at most
2d(1)/h(l). The cost in evictingp|oyt bits is at most 2. Thus, the expected cost is at most
4h(l)/d(l). h(l) does not increase artil) decreases by 1. Thus, the change\ts at
most

4h()
dd)
If, at this point, all thel-pages become marked, thengoes to 0. This can only
amount to a decrease ¢ since it is always non-negative. If the size of memory is still

exceeded, RFMA will go to step (6) of the algorithm. The analysis is the same as in
Case 2. O

4h(DO[(Hagy-1 — 1) — (Hag) — D] =

5.2. TheBIT Model The randomized algorithm for theaBmodel, which we call the
Randomized Counter AlgorithRCA), is given in Figure 5. A counter is maintained
for each clasc(l) is the current value of the counter for cldsnd is initialized to O at
the beginning of the algorithm. The structure of the proof for the randomized algorithm
in the BT model is much the same as the structure of the proof for MoeTFmodel,
except for the portions that use the counter which are similar to the proof for OBMA.
We need the following lemma about the distribution of the number of bits RFMA has
in the cache.

LEMMA 12. After each requestis processéar each | the following four items depend
only on the request sequence and are completely independent of the random choices made
by the algorithm

1. The set of marked pages

2. The number of bits belonging to unmarked I-pages that RFMA has in its.cache
3. The beginning and end of the I-phases

4, c().

PrROOF The proof is almost the same as the proof for Lemma 9 with the added obser-
vation that sincen depends only on values that are independent of the random choices
made by the algorithm it is also independent of the random choices made by the algo-
rithm. Thus, any changes tgl) are also independent of the random choices made by
the algorithm. O

We use the following three definitions in the proof:

e Letd(l) denote the sum of the sizes of thpages that were requested in the previous
phase and are not currently marked (i.e. have not yet been requested in the current
phase).

e Leth(l) be the sum of the sizes bpages that the algorithm has evicted in the current
phase that remain outside RCAs cache. Note that since these pages were evicted in
the current phase, they must have been requested in the previous phase or else they

400 S. Irani

RANDOMIZED COUNTER ALGORITHM
Consider a request to &arpagep of sizex:
(1) Bring p into the cache if not already there.
(2) Mark page p.
(3) if p was requested in the previous phase,
(5) Let u be the number of bits belonging to
unmarked I-pages in the cache.
(6) Evict(l, min{u, [plout})-
(7) if the number of bits that RCA has in the
cache exceeds Kk by e> 0:
do the following:
(8) if the total sizes of pages that RCA has in
the cache belonging to classes cs(e) or
below is less than e
Let r be the lowest class greater than
cs(e) such that RCA has at least a portion
of an r-page in its cache.

9) m <« 2",
(10) elsem <« e
(11) For all j <cs(e)
12) Evict(j,m)
(13) For all j > cs(e)
(14) c(j) < c(j) +m;
(15) while ¢(j) > 2! and there are j-pages in
the cache,
(16) Evict(j,2))
7) c(j) < c(j)—2.

Fig. 5. Randomized online algorithm for theBmodel.

would not be in the cache in the first place. Since they are outside RFMA's cache,
they are unmarked. Thubk(l) = d(l) — u;. (u, is defined in the algorithm to be the
number of bits belonging to unmarkégbages that RCA has in the cache.)

e Let m(l) be the sum of the sizes dipages that were requested in the previous or
current phase that are not in OPT’s cache.

Note that if the algorithm has partially evicted a pggep’s contribution toh(l) will
be the fraction ofp that has been evicted. Thusxitbits of p have been evicted, then
the contribution fromp to h(l) will be x. d(I), h(l) andm(l) are all independent of the
random choices made by the algorithm.

The following lemma will be key to the proof of competitiveness for RCA:

LEMMA 13. Fix a page p that was requested in the previous phase that is not currently
marked The probability that any bits of p have been evicted is at ralogd) /d().

Page Replacement with Multi-Size Pages and Applications to Web Caching 401

PROOE The proof is almost the same as the proof for Lemma 10, except that since the
definitions are in terms of the actual sizes of the pages instead of the normalized sizes
of the pagesd is at leastd(l)/2+! and the number of pages that have been partially
evicted is at mosi(l)/2'. O

We use three potential functions per class:

e y is the sum of the normalized sizes of markguhges that OPT does not have in its

cache.
[]

0 if all bits belonging td -pages in
cache are marked on(l) — h(l)
(p| = S 07

maxm() — h(l), 2'+2/5} — c(1)/5 otherwise

o A =4h(l)(Hqq)21 — D + 2c() (H¢ — 1), whereH; is the jth harmonic number.

Note that wherm is added tac(l) in step (13), it is always the case thmat< 2'. This
means that(l) < 2' after every request is processed gnis always non-negative.
Finally, we combine the potential functions for each class:

q):Z%(ph F=Z|%VI» A:Z|)"|'
|

We prove the following lemma:

LEMMA 14. After each stage of the request
2 RCA's cost+ AA < ((25Hk + 20) logk)[OPT'’s cost— A(® + IN)].

SinceA, I and® are initially 0 and are always non-negative, the lemma implies that
RFMA is ((25Hk + 20) logk)-competitive. To see thaj is always non-negative, note
that ifd(l) is ever 0, ther(l) must also be 0 sinde(l) < d(l).

ProOOF Now consider a request to &pagep at timet. We break the analysis into
three cases:

Casel: p is marked RFMA already has the page in the cache. If OPT does not have
p in the cache, it brings it into the cache. When OPT brings a page into the cag@he,
can only decrease, which means tiadndI” can only decrease. If OPT evictslapage

p of size|p|, itincurs a cost of p|. m(l) and hence, andy can increase by at mogt|
each. Thus, OPT's cost plus(® + I') is positive.

Case2: p is not marked and was not requested in the previous pha®®T bringsp

into the cache if it is not already thema(l) and henced can only decrease. Then RCA
brings p into the cache and marks it. Since OPT already ph&sthe cache, neithen

nor ¢, change. Using the same argument as the previous cases, OPT may evict a page in
which cased + I' does not decrease by more than OPT's cost.

402 S. Irani

If RCA has enough room for page no evictions are performed and the next request
is processed. If, however, there is not enough roompiothe algorithm proceeds to
step (8).

We first address what happens if, in the process of evicting bits fromIclalshe
I-pages in the cache are marked and must be unmarked (i.e |gpi@se begins). When
all thel-pages become markeg,goes to 0 which can only result in a decreaseg, irAt
this point, a new phase begins, so the set of pages currently in the cache become the set
of pages requested in the previous phase. This also meargltheecomes 0 since no
bits have yet been evicted in the current phase for ¢tlass

How does this change our potential functions? Sihde goes to 0 and was non-
negative beforei; does not increase. The set of markgaages at the end of the old
I-phase are exactly thosgages that RFMA has in its cache. This means that the sum
of the sizes of pages that RFMA has in the cache and OPT does not have in the cache
is exactlyy . When all the pages become unmarkgdjoes to 0. The old value @f is
0. The new value of; is m(l) which is the sum of the sizes of pages that RFMA has in
the cache and that OPT does not have in the cache. Note that this new value is either O
or at least 2 so the “max” in the definition ofy has no effect. Thus; decreases by the
amount by whichy, increases and (¢ + I') = 0, and all the changes to the potential
functions brought about by a new phase obey inequality (2).

Now, the algorithm attempts to eviot bits from eacH-class.

For j < cs(e), the algorithm will evict at mogtn bits from classj. Since we charge
the algorithm for evicting an entire page whenever it evicts the first bit for a page,
the algorithm will incur a cost of at most + 21+%, h(j) increases by at most. Thus,
the total amortized cost is at mo&m + 2i+1) Haqy. For j > cs(e), we addm to
¢(j)- Thus, the total amortized cost is at mosgt B. The total amortized cost for all
classes is

Z (5m+2j+l)Hrd(J‘)/2q + Z 2m H

j<cs(e) j>cs(e)

< 5mlogk He + Z 21+1H,

j=<cs(m)

< 5mlogkHx + 4mH = (5logk + 4)Him.

If any additional bits are evicted in step (13) ofiET(I, C), they do not cost the algorithm
since those bits must belong to a partially evicted page.

We must now prove thab decreases by at leasi/5.

Denote bybger(j) the sum of the sizes of thppages that OPT has in its cache.
Similarly, brca(j) is the sum of the sizes of thepages that RCA has in its cache. Let
e(j) = brea(j) — bopr(j). Let S be the sum of the sizes of the pages that have been
requested in the previous or the current phase. We haventtjat> S — bopr(j) and
S— h(l) = brea(j). Putting these together, we get timatj) — h(j) > e(j). We make
the following claim:

CLAam 15. For j < cs(e), if e(j) > O, theng; decreases by at leas{(jp/5. For
j > cs(e), ife(j) > 0,theng; decreases by at least/5.

Page Replacement with Multi-Size Pages and Applications to Web Caching 403

Ineither case, aslongasj) > 0,¢; decreases by atleast)/5, sincan > e > e(j).
The claim will be sufficient to establish thét decreases by at leasi/5 because im
was chosen to be then we have that

doe()=) e(h=e=m,

e(j)>0 i

and as long ag; decreases bg(j)/5 for each clasg with e(j) > 0, the total decrease
to @ is at leasim/5. Note thatp; does not increase for afywhen RCA, so we need not
be concerned with those clasgefor whiche(j) < 0.

Alternatively, supposem was chosen in step (9). Lebe the lowest class greater than
cs(e) such that RCA has at least a portion ofrapage in its cache. We know that the
sum of the sizes of the pages in classes ofc#e) or less are not enough to compensate
for the excess that RCA has in the cache. Thus, for spmecs(e), the sum of the sizes
of the j-pages that RCA has in cache is more than OPT. Thus, we are guaranteed that
e(j) > 0 for somej > cs(m). Then, by the claimyp; decreases by at leasi/5.

Now we must prove the claim. We break the proof of the claim into two cases:

j > cs(e). Firstc(j) isincremented byn. Note that since the algorithm has at least
some portion of a page from clagdn the cachej > cs(m). This implies that
m < 2i+1, Sincee(j) > 0, we know tham(j) — h(j) > 0. Sincec(j) < 2i*!
beforec(j) is incrementedy; > 21+1/5 peforec(j) is incremented. This means
that whenm is added ta(), ¢; does in fact decrease loy/5.

Now suppose that the condition in step (15) is tr@g) is decremented by/2

The number of unmarked bits belonging jtgpages in the cache is either 0 or at
least 2 because otherwise they would be evicted in step (13yafE(j, m). This
means that 2are in fact evicted ank(j) increases by 2 Sinceh(j) increases by
the amount that(l) decreases, the changeitds at most 0. Now we determine the
change ta . If after the evictionm(j) —h(j) becomes 0, thep; also becomes 0.
Sincey; is always non-negative, it certainly has not increased. Now suppose that
m(j) — h(j) > 0 after the eviction. This means that njaxj) — h(j), 21+2/5}
decreases by atleadt221+2/5 andy; decreases by atleg@ —2/+2/5) -2} /5.
Note that this value is non-negative.

j < cs(e). Suppose thain(j) — h(j) = O after the evictionsy; decreases by at
least

2J+2} 3 2J+l . m(]) _ h(J) . @
5 5 ~ 5 - 5

Now suppose than(j)—h(j) > O after the evictions. This means that the number
of bits belonging toj -pages that RCA has in the cache after the evictions is non-
zero and the algorithm successfully evictadits. We also know thatn > 2J
sincecs(m) > cs(e) > j. Thusy; decreases by at least

maX{m(j) —h(j),

2012 m e(j
5 5 5

Case3: p is unmarked and was requested in the previous pha®#®T bringsp into the
cache if it is not already therea(l) and henceab can only decrease. Thanis marked

404 S. Irani

and mir{u,, | plout} bits are evicted. Since OPT hasn the cachey, does not change.
If pwas complete in the cache, thed) does not change. |fp|oy; bits of p had been
evicted, then aftep is markedh(l) decreases bjp|ou. In this case, eitheip|oyt bits
belonging td -pages are evicted or all the remaining bits belonging to unmarkedes
are evicted. In the former cade(l) does not change ang is unchanged. In the latter
casey becomes 0 which means that it does not increase. As in Case 1, if OPT evicts a
page, the cost that OPT incurs is at least as large as the amount bydvHitreases.
Finally, we examine the left-hand side of inequality (2). A page is evicted only if
p was not already in the cache. By Lemma 10, this happens with probability at most
2d(1)/h(l). The cost in evictingp|oy bits is at most 2. Thus, the expected cost is at
most 2t2h(l)/d(1). h(l) does not increase anttil) decreases by at least Thus, the
change toA is at most

2|+2h(|)
dd)
If at this point, all thel-pages becomed marked, thgngoes to 0. This can only
amount to a decrease ¢f since it is always non-negative. If the size of memory is still

exceeded, RFMA will go to step (6) of the algorithm. The analysis is the same as in
Case 2. O

Ah(OH[(Hrday-2),27 — D — (Hpagy21 — D] =

6. Probabilistic Analysis. Now we turn to the scenario where there is a distribution
over the sequence known to the algorithm in advance. Although from an information-
theoretic point of view, it is possible to find the algorithm that minimizes the expected
cost, itis not feasible to find this optimal algorithm. Itis shown by Karlin et al. that evenin
the case of paging with uniform size pages, the problem of computing the optimal online
strategy when the sequence is generated by a markov chain, is a linear progl@n in
variables, whera is the total number of pages [KPR]. Thus, we seek an approximation
algorithm that will come within some factor of the best online algorithm. The algorithm
that we present here is for theltT model and is a combination of the approximations
for the offline case and an algorithm due to Lund et al. for paging with uniform pages
under a known distribution [LPR].

At any moment in time, given any two pagesandd, one can determine from the
distribution over the remainder of the sequence the probabilitytieatequested before
g. Lund et al. prove that, for any s&tof pages, there is a distribution ov@(called the
dominating distributiohsuch thatifpis chosen according to the dominating distribution,
for anyq e S, the probability thaty appears at least as soonfass at least 12. The
dominating distribution, of course, depends heavily on the pairwise probabilities that a
given pagep; is requested before another page Since these pairwise probabilities
are available to the algorithm, the dominating distribution can be computed.

We use a variant of the dominating distribution in which two pages are chosen instead
of one. We call this distribution thpairs dominating distributionLet V be the set of
pages. LeV, be the set of all sets of two pages. We define a funatioly x V, — [0, 1]
with the property that ifs € {b, c}, thenw(a, {b, c}) = 0. Furthermore, ifa, b andc
are all distinct, themw(a, {b, c}) + w(b, {a, c}) + w(c, {a, b}) = 2. A pairs dominating
distribution forV andw is a probability distributionp over V, such that if{a, b} are

Page Replacement with Multi-Size Pages and Applications to Web Caching 405

FAULT MODEL DOMINATING DISTRIBUTION ALGORITHM
Consider a request tepagep:
(1) Bring p into the cache if not already there.

(2) if there are more than k bits in the cache,

(3) For all j:

4) if there are any j-pages in the cache

(5) if there is only one j-page, evict it.

(6) else evict a pair of pages chosen
according to the pairs dominating
distribution.

Fig. 6. Online algorithm under theAoLT model when the sequence is generated according to a known
distribution.

chosenaccordingtp, thenforeack € V, E[w(c, {a, b})] < % Inour casew(c, {a, b})

is the probability that ¢ {a, b} andcis not requested before badlandb. The proof that
a pairs dominating distribution always exists appears in the Appendix. If the algorithm
is asked to evict two pages from clapsit will always choose according to the pairs
dominating distribution over thg-pages that it has in its cache.

Figure 6 gives a randomized algorithm for th&uET model called the Fault Model
Dominating Distribution Algorithm (FMDD) that works when the input is generated
according to an arbitrary distribution. We will prove the following theorem:

THEOREM16. LetD beadistribution overrequestsequendastcost (D) bethe cost
under theFauLT model of an online algorithm A when the input sequence is generated
according toD. We prove that for any online algorithm, A

cost rvop(D) < (8logk)cost A(D).

ProOFE If step (2) is entered, then the algorithm performs at most R legctions.
We will prove that the expected number of times that the algorithm enterg2tepat
most eight times the expected number of faults of any online algorithm that knows the
distribution over the request sequence. In particular, we compare FMDD to an arbitrary
online algorithm ON. Le&ypp (1) denote the set dfpages that FMDD has in the cache.
Similarly for Son(l).

We use a variation of the accounting scheme developed in [LPR] for the proof of the
dominating distribution algorithm for uniform size pages. We maintain a majpingt
P be the set of all pages. L& be the set of all sets of two pagesis defined over a
subset ofP U P,. Here is how we maintain the mappiog

Consider a request to pageBoth ON and FMDD brings into the cache. ON may
evict any number of pages (includisp Now if FMDD has more thak bits in the cache,
it will evict two pages from every class. We know that before it performs these evictions,
there is some clagsfor which the sum of the sizes of thjepages that FMDD has in the
cache is more than the sum of the size of fhgages that ON has in its cache. lgeind
g’ be thej-pages that FMDD evicts. i ¢ Sn(]), thenc(q) = q. Else ifq’ ¢ Sn(j),

406 S. Irani

thenc(q’) = ¢'. Ifbothq andg’ are inS\(j), then we will prove that there is some page
P € Svon(J) — Son(j) to which nothing is mapped. We then séfg, q'}) = p. Ifatany
point ON evictsg, thenc({q, q'}) becomes undefined awdy) = q. (Similarly forq’.)
If c({a, b}) is defined and eithea or b is requested, thet({a, b}) becomes undefined.
Similarly, if c(a) is defined, ana is requested, thet(a) becomes undefined.

The following facts are easy to verify by induction:

. If c(p) is defined, ther(p) = p.

If c(p) = p, thenp & Svop U Son.

. If c({a, b}) andc({x, y}) are defined, thefm, b} N {x, y} = .

. If c({a, b}) is defined, them(a) andc(b) are not defined.

. If c({a, b}) is defined, ther({a, b}) € Swop and{a, b} € Sy — S-vop-

Now examine the moment just befarandq’ are evicted. Atthis moment, the number
of bits in S,ypp (1) is strictly larger than the number of bits &y (). By facts 1 and 2
above, ifc(X) = s for someX € P U P, ands € Sypop(l), thenX is a pair{a, b}.
Furthermore, by fact 5a, b, } € Sn() — Swop (). This means that for every pagén
Svoo (1) to which something is mapped, there is a pair of page®,idl) that maps to
s. Furthermore, by fact 3, all these pairs are disjoint. Since the sum of the sizesndf
b is at least the size af({a, b}) andS-yop (1) > Son(l), it must be the case that there is
ans € Syop(l) — Son(l) to which nothing is mapped.

Let x(t) = 1 if and only if FMDD makes an assignment at tilmd=-MDD incurs a
cost of at most 2 lo§ per request. Furthermore, for every request on which it incurs a
cost, it will make an assignment. This means that the cost to FMDD is

CFMDD < 2 |ng Z X (t)
t

s wN P

Suppose that FMDD makes an assignment(f§) = s at timet. We will say that
the assignment igoodif c¢(X) is requested on or before the first time any pag¥ iis
requested. There are two possibilities in this case. The first ic{datremains equal
to s at the time it is requested. In this case the requestdauses the assignment to
disappear. The second is that ON evicts some geigexX beforesis requested in which
case the assignment is movectt@) = p. In this case the next requestpanakes the
assignment disappear. In either case ON will incur a cost on the request that causes the
assignment to disappear since the requested page is not in ON's caché)Let1 iff
FMDD makes a good assignmentdgX) at timet. Since only two elements iR U P,
can be assigned to the sase P, each request in which ON incurs a cost can make at
most two assignments disappear and we have that

Con > % 2av(®).

We can think of assigning(-) as follows. Pick ars € Soy — S:wop t0 Which nothing
is mapped. Then the pafq, g’} is chosen according to the dominating distribution. If
s € {g, q'}, thenc(s) = s and it is definitely the case thait) = 1. If s € {q, d'}, then
the probability thak is requested after the first requesttor ' is at least 12 by the
fact that{q, g’} was chosen according to a dominating distribution. Thus, we have that
thatE[2y (1)] > E[x (t)]. Putting the inequalities, we get that

8logkE[Con] > E[Cempo]- O

Page Replacement with Multi-Size Pages and Applications to Web Caching 407

Acknowledgments. The author would like to thank Anja Feldman, Steven Phillips,
Anna Karlin and David Karger for many useful discussions and for bringing this problem
to her attention.

Appendix. In this section we prove that a pairs dominating distribution exists for
any set of pages. Léf be any finite set and le¥, be the set of all sets of size two
subsets ofV. We define a functionw: V x V, — [0, 1] with the property that if

a € {b,c}, thenw(a, {b,c}) = 0. Furthermore, ifa, b and c are all distinct, then
w(a, {b, c}) + w(b, {a, c}) + w(c, {a, b}) = 2. A pairs dominating distribution foy
andw is a probability distributiorp overV, such that if{a, b} are chosen according to

p, then for eaclt € V, E[w(c, {a, b})] < 3.

LEMMA 17. Given any set V and functianwith the properties described abqgteere
is a pairs dominating distribution fofV, w).

The following technical lemma will be useful:

LEMMA 18. LetV be any finite set and let p be a distribution overmtien

1 Yev (P@)? _
1= 3 ey (P)? ~

3
>

PROOF We start with the case that there are only two elemenasdv, in V with non-
zero probability. Lefp(v1) = X. Thenp(vz) = 1—x andp(v) = 0 for anyv ¢ {vy, vo}.
In this case:

1- 3,0 (P@)® 1-x2—(1-x?2 3

1-Y,cv(Pp)? 1—-x3—(1-x)3 >

Now suppose that we start with some distributipand change it by subtracting some
weight from an element with non-zero weight and add it to an elemeyvith 0 weight.
Thatis,p'(v) = p(v) forv & {v;, v}, pP'(vi) = p(vi) — 8 andp'(vj) = p(vj) + 8 = 4.
How does this change the quantity in question?

The numerator increases by@;i)28 — 3p(vi)82. The denominator increases by
26p(vj). Note that the ratio of the changes is at mésﬂ'hus, if the current quantity
in question is at mo% and we make a change such that the ratio of the change to the
numerator and the change to the denominator is boundédbyn the resulting quantity
is also bounded by.

Finally, we can achieve any distribution, by starting with p(vy) = q(v1)
and p(vp) = Z{‘zzq(vi) and fori = 3,...,n, moving q(v;) weight from p(v,)
to p(vi). O

408 S. Irani
PROOF OFLEMMA 17. Consider the following linear program: minimixesubject to

> w(. fabhp(fa.bh <x foral ceV,

{a,bjeV,

Y. p(abh =1,

{a,b}eV,
p({a,b}) >0 forall {a, b} e V..

The claim is that the solution to the linear program is at ng)sThe dual linear
program is to maximize subject to

Zw(c, {a,bhqc) >y forall {a, b}eVs,

ceV
Y a© =1

ceV

qe) >0 forall ceV.

It suffices to show that for any distributiap there is ar{a, b} € V, such that

> w(e. {a. bhg(c) < 3.

ceV

To this end, consider

Y~ a@ab) w(c, {a bhHa(c)

{a,b}eV, ceV

- Z Z q@qb)g(c)w(c, {a, b})

{a,b}eV, ceV

= Y g@qbda©w(c, {a b)) +wb, (a c}) + w(@, {c, b)]

a,b,ceV/|a<b<c

= Y 29@qb)q(c).

a,b,ceV|a<b<c

We also use the following inequality:

3
1:(Zq<c)> >Y q©°+6 Y d@aqba(©).

ceV ceV a,b,ceV]a<b<c

Putting these together, we get that

> abjev, A@ab) 3., w(c, {a, bha(c)
> iabev, d@d(b)
_ Yabey, A@0a0) 3 e, w(c, {a, bh)g(c)
1-3 v a@?

Page Replacement with Multi-Size Pages and Applications to Web Caching 409

_ Za,b,ceV|a<b<c 2q(a)q(b)q(c)
- 1- Zaev q(a)2

1\ 1- Zcev Q(C)3
(§> 1- Yo a@?

=

NI

The last inequality comes from the technical lemma above. Thus, we know that for a
weighted average ovéa, b}, > .., w(c, {a, b})q(c) is bounded b)é. This means that

there must be somi@, b} for which)", w(c, {a, b})q(c) < % O
References
[AAK] S.Albers, S. Arora, and S. Khanna. Page replacement for general caching proBletesedings
of the10th Annual ACM-SIAM Symposium on Discrete Algorithpps 31-40, 1999.

[AW] M.F. Arlittand C.L. Williamson. Web server workload characterization: the search for invariants.

Performance Evaluation Revie®4(1):126-137, May 1996.
[B] L.A. Belady. A study of replacement algorithms for virtual storage computéB$/ Systems
Journal 5:78-101, 1966.
[BCC*] A. Betsavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mirdad. Application-level
document caching in the intern€troceedings of the Second International Workshop on Services
in Distributed and Networked Environmenpp. 166-173, June 1995.
[CI] P.CaoandS. Irani. Cost-aware www proxy caching algorithm®roteedings of the USENIX
Symposium on Internet Technologies and Systpma93-206, 1997.
[CK] E.Cohen and H. Kaplan. LP-based analysis of greedy-dual Bimeeedings of th&0th Annual
ACM-SIAM Symposium on Discrete Algorithmpg. 879-880, 1999.

[DHS] P.B. Danzig, R.S. Hall, and M.F. Schwartz. A case for caching file objects inside internetworks.

Proceedings of ACM Sigcomipp. 239—-248, September 1993.
[F] A. Fiat. Private communication.
[FKIP] A. Feldman, A. Karlin, S. Irani, and S. Phillips. Private communication.
[FKL*] A. Fiat, R. Karp, M. Luby, L.A. McGeoch, D. Sleator, and N.E. Young. Competitive paging
algorithms.Journal of Algorithms12:685-699, 1991.
[KMR] T.T. Kwan, R.E. McGrath, and D.A. Reed. NCSA's World Wide Web server: design and perfor-
mance.lEEE Computer28(11):68—74, November 1995.
[KMRS] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy cachlgg-
rithmica, 3(1):79-119, 1988.

[KPR] A.R. Karlin, S.J. Phillips, and P. Raghavan. Markov pagiyoceedings of th&3rd IEEE
Symposium on Foundations of Computer Sciepages 208-217, 1992.

[LPR] C. Lund, S. Phillips, and N. Reingold. Ip over connection-oriented networks and distributional
paging. Proceedings of th85th IEEE Symposium on Foundations of Computer Scigrages
424-435, 1994.

[M] E.P.Markatos. Main memory caching of web docume@tsmputer Networks and ISDN Systems
28(7-11):893-905, May 1996.
[ST] D.Sleatorand R.E. Tarjan. Amortized efficiency of list update and paging &amunications
of the ACM 28:202-208, 1985.
[T] R.E.Tarjan. Amortized computational complexiSIAM Journal on Discrete Mathematj&(2),
1985.

[WAST] A.Williams, M. Abrams, C.R. Stanbridge, G. Abdulla, and E.F. Fox. Removal policies in network
caches for world-wide web document€omputer Communications Revie#6(4):293-305,
October 1996.

[Y1] N. Young. Thek-server dual and loose competitiveness for pagiigorithmica 11:525-541,
1994.
[Y2] N.Young. Online file cachingProceedings of théth Annual ACM—-SIAM Symposium on Discrete

Algorithms pp. 82-86, 1998.

