
DOI: 10.1007/s00453-001-0125-4

Algorithmica (2002) 33: 384–409 Algorithmica
© 2002 Springer-Verlag New York Inc.

Page Replacement with Multi-Size Pages
and Applications to Web Caching1

S. Irani2

Abstract. We consider the paging problem where the pages have varying size. This problem has applications
to page replacement policies for caches containing World Wide Web documents. We consider two models for
the cost of an algorithm on a request sequence. In the first (the FAULT model) the goal is to minimize the
number of page faults. In the second (the BIT model) the goal is to minimize the total number of bits that have
to be read into the cache. We show offline algorithms for both cost models that obtain approximation factors
of O(logk), wherek is the ratio of the size of the cache to the size of the smallest page. We show randomized
online algorithms for both cost models that areO(log2 k)-competitive. In addition, if the input sequence is
generated by a known distribution, we show an algorithm for the FAULT model whose expected cost is within
a factor ofO(logk) of any other online algorithm.

Key Words. Online algorithms, Competitive analysis, Web caching, Paging.

1. Introduction. The problem of developing and evaluating page replacement policies
for a two-level store of memory has been, and continues to be, a fundamental problem
in computing systems. With the advent of the World Wide Web, these issues have resur-
faced with some significant variations. Developing Web cache management policies is
an extremely important problem today. The demand for resources on the Web will only
increase as its enormous popularity continues to grow and as typical uses of the Web
become more sophisticated. Maintaining a cache of pages at various points can dramat-
ically reduce demand on the network as well as latency seen by the user. A cache can
be maintained at a Web client (e.g. caches built into Web browsers) [BCC+] or by a
Web server [KMR]. Caches can also be very effective when placed in the network itself
[DHS].

There are several possible measurements that can be used to study the effectiveness
of a caching policy. One may wish to minimize the number of requests reaching popular
servers. Viewed another way, this amounts to minimizing the number of times a client
must wait for a document to be retrieved from a remote cite. We call this model the FAULT

model in which the number of cache faults are counted. Alternatively, one may wish to
minimize the total volume of traffic resulting from document requests. In this model,
which we call the BIT model, the cost is the total size of the pages that are requested on
cache faults. Alternatively, one may want to minimize the latency experienced by the
user. Measuring latency requires the development of an accurate model for predicting
the time to fetch a requested document from the appropriate server. We do not consider

1 This research was supported in part by NSF Grants CCR-9309456 and CCR-9625844.
2 Information and Computer Science Department, University of California, Irvine, Irvine, CA 92697, USA.
irani@ics.uci.edu.

Received January 21, 2000; revised March 25, 2001. Communicated by M. Goodrich.
Online publication March 25, 2002.

Page Replacement with Multi-Size Pages and Applications to Web Caching 385

this latter model here. The FAULT and BIT models, which we do consider here, are the
most common in the literature on Web caching [WAS+], [AW], [M].

Empirical studies have indicated that the choice of page replacement policy for Web
caches can have a profound effect on the utility of the cache [WAS+], [M]. Conventional
wisdom that has been gained in the context of page replacement for CPU caches does not
necessarily transfer to Web caches. In particular, the Least-Recently-Used (LRU) policy,
which on a fault evicts the page whose next request is farthest in the future, usually
performs quite well for CPU caches but can be highly inferior to other policies for Web
caches. One reason is that LRU does not take into account the size of the documents in
choosing a page to evict. This is not a problem in traditional CPU caches where data
is divided into uniform size blocks. However, Web documents can vary dramatically in
size depending largely on the type of information they contain (video, audio, text, etc.).
Developing effective page replacement policies for documents that vary in size is the
main focus of this paper.

We present here a theoretical analysis of page replacement policies for multi-size
pages using measures of analysis that are now standard in the literature of online al-
gorithms. When evaluating an algorithm that knows nothing about future requests (an
online algorithm), we use competitive analysis. Letcost A(σ) be the cost incurred by
an online algorithmA on the input sequenceσ , be it under the BIT or the FAULT model.
Let OPT be the optimal offline algorithm, and letcost OPT(σ) be the cost incurred by the
optimal offline algorithm on inputσ . We say that the online algorithmA isc-competitive
if there exists a constantb such that on every request sequenceσ ,

cost A(σ) ≤ c · cost OPT(σ)+ b.

Thecompetitive ratioof the algorithmA, denotedcA, is the infimum overc such thatA
is c-competitive.

We use a slightly different version of the paging problem that does not change the
analysis significantly, although it does better suit the application of Web caching: when a
page is requested, the algorithm is not forced to bring the page into the cache. If the page
is not in the cache, the algorithm can pay the price of a fault and leave the page outside
the cache. In this case it would have to pay again the next time the page is requested.
To avoid confusion with the standard version where the requested page must be brought
into the cache, we call our version of the problem the MULTI-SIZE OPTIONAL PAGING

PROBLEM.
One issue that we do not address is that of cache consistency. We assume that the

pages are static. Thus, if a page is referenced and a copy of the page resides in the cache,
the request can be immediately satisfied. One way to deal with out-of-date pages is to
treat requests to pages that have not been retrieved within a certain time limit as requests
to new pages. The details of such a scheme are beyond the scope of this paper.

The best competitive ratio that can be achieved by any deterministic online algorithm
is achieved by the familiar LRU:

THEOREM1 [FKIP]. LRU is(k+1)-competitive for theMULTI-SIZE OPTIONAL PAGING

PROBLEM in both theFAULT and theBIT models. This bound is the best achievable by a
deterministic online algorithm in both cost models.

386 S. Irani

Throughout this paper,k denotes the maximum number of pages that can fit into the
cache (i.e. the size of the cache divided by the size of the smallest page). The proof of
Theorem 1 involves straightforward adaptations of the bounds for uniform size pages by
Sleator and Tarjan [ST]. Since LRU has been observed to be sub-optimal in practice, these
results indicate that a more refined analysis is needed to evaluate Web cache replacement
policies.

Although the problem we wish to solve is inherently online, often algorithms that work
with partial information attempt to imitate the behavior of the optimal offline algorithm
to the extent possible with their limited information. For this reason, it is useful to have an
understanding of the behavior of the optimal offline algorithm. Indeed, the randomized
online algorithm and probabilistic analysis discussed below depend heavily on the offline
approximation algorithm presented in Section 4. When the pages all have the same size,
there is a simple rule, due to Belady, for obtaining the optimal replacement policy [B]:
on a fault evict the page whose next request is farthest in the future. Such a simple rule
for the multi-size case does not seem to exist. In fact the problem of devising the optimal
replacement policy for a given sequence of requests is NP-hard in the BIT model [F]. It is
unknown whether the problem is inP for the FAULT model. We develop approximation
algorithms for the FAULT and BIT model and prove the following theorem:

THEOREM2. There is a polynomial-time offline algorithm for theFAULT model and
a polynomial-time offline algorithm for theBIT model whose cost is guaranteed to be
within O(logk) of the optimal offline algorithm for theMULTI-SIZE OPTIONAL PAGING

PROBLEM.

The algorithm uses Belady’s rule to pick among pages of similar size. The factor of
O(logk) comes from balancing among pages of different sizes. Fortunately, the rule for
picking among pages of different sizes requires no information about the future which
means that it can be combined with known online algorithms for page replacement with
pages of uniform size. This is the idea involved in the online randomized algorithms
in Section 5. We use a variation of the Randomized Marking Algorithm developed in
[FKL+] combined with the offline approximation presented here. Although we borrow
the basic structure of the algorithm from [FKL+], it was necessary to develop an alternate
proof of their bound based on a potential function in order to combine it with the proof
for the offline approximation algorithm. The alternate proof is implicit in the proof of
the following theorem.

THEOREM3. There is a randomized online algorithm for theBIT model and a random-
ized online algorithm for theFAULT model, both of which achieve a competitive ratio of
O(log2 k) for theMULTI-SIZE OPTIONAL PAGING PROBLEM.

Finally we turn to probabilistic analysis. Again, we combine the approximation al-
gorithms in Section 4 with a known algorithm for the uniform size case. We use the
algorithm of Lund et al. for paging when the sequence is generated by an arbitrary
known distribution [LPR]. The cost of the Lund et al. algorithm is within a factor of 4
of any online algorithm that knows the distribution in advance. We prove the following
theorem:

Page Replacement with Multi-Size Pages and Applications to Web Caching 387

THEOREM4. Given a distribution over input sequences, there is a randomized algo-
rithm for theFAULT model whose expected cost is within a factor of O(logk) of the
expected cost of any online algorithm that knows the distribution generating the input.
The expectation is taken over the random choices of the algorithm as well as the random
choices made in generating the sequence.

The proof of Theorem 4 follows the structure of the proof in [LPR] quite closely. However,
some extra machinery is required.

2. Related Work. To our knowledge, this is the first paper that gives a theoretical
analysis of paging with multi-size pages. Since these results were obtained, there have
been several papers that address paging with multi-size pages where the cost of bring-
ing a page into the cache is arbitrary. Cao and Irani [CI] and Young [Y2] analyze a
generalization of an algorithm calledgreedy-dualdeveloped by Young [Y1]. This de-
terministic algorithm is shown to be(k+ 1)-competitive. Young shows that it is in fact
(k + 1/k − h+ 1)-competitive when the optimal algorithm has a cache size ofh. Cao
and Irani also perform an empirical evaluation of the algorithm using trace data. Cohen
and Kaplan then give an alternate proof of the(k+1/k−h+1)-competitiveness of this
algorithm using a linear programming formulation of the problem [CK]. They use the
linear programming formulation to give an offline algorithm that gives an approximate
solution when the size of the largest page is small with respect to the size of the cache.

Albers et al. [AAK] examine the general cost model and obtain anO(1)-approx-
imation algorithm for the offline problem that uses an additional amount of memory that
is O(1) times the size of the largest page. When no additional memory is allowed, they
give an algorithm that achieves anO(log(M + C)) approximation factor, whereM is
the size of the cache andC is the largest cost to bring a page into the cache. Finally,
they give a randomized algorithm for the BIT model that achieves a competitive ratio of
O(ln(1+ 1/c)) while usingM(1+ c)memory for anyc > S/M , whereS is the size of
the largest page.

3. Preliminaries. In Web terminology the objects being cached are calleddocuments.
A Web page can be comprised of many documents. In order to stay consistent with the
terminology of the online algorithms literature, we refer to the objects being cached as
pages.

The size of the pages are measured by the number of bits they contain. In the discussion
that follows, we normalize all page sizes so that the smallest page has size 1. This may
mean that a page may contain a fractional number of bits, but it does not affect the
algorithms or analysis. The size of a pagep is denoted by|p|. In some cases we define
our algorithms in terms of a relaxed algorithm that is allowed to evict a page partially.
In these cases|p|out (resp.|p|in) denotes the number of bits ofp that the algorithm has
outside (resp. inside) the cache.

In all of the algorithms the pages are divided into at mostblogkc + 1 classes. Class
l contains pages of size at least 2l and less than 2l+1. We refer to the pages in classl as
l-pages. We say that the class size ofx (denotedcs(x)) is the class that contains pages
of sizex (i.e. blogxc).

388 S. Irani

In all the proofs in this paper we compare the cost of an approximation or online
algorithm with the cost of the optimal offline algorithm. This is achieved by examining
an arbitrary sequence of page requests and analyzing the cost of both algorithms as they
service the requests in that sequence. Since we are working with the version of paging
where we are not obliged to bring the requested page into the cache, we can view a
request as occurring in the following three steps:

1. If an algorithm does not have the requested page in the cache, it brings in the requested
page (and may afterwards exceed its memory capacity).

2. The request is served and the time of the next request to that page is updated.
3. The algorithm evicts at least enough pages so that it does not exceed its memory

capacity.

In every proof we charge an algorithm for the pages it evicts instead of the pages
it brings into the cache. Bringing a page into the cache is free. Changing the charging
scheme in this manner changes the cost of a given algorithm on any particular sequence
by at most an additive factor ofk. We usee to denote the amount by which the cache is
exceeded. For any set of pagesS, themost distantpage inS is the page inSwhose next
request is farthest in the future. LetSA(l) be the set ofl -pages that algorithmA has in
the cache. In general, we use lowercase letters to denote the size of a set, sosA(l) is the
number of pages from classl that A has in the cache. We usebA(l) to refer to the sum
of the sizes of thel -pages thatA has in the cache.

4. Offline Algorithms

4.1. TheFAULT Model. Figure 1 is a description of the algorithm that we call the Offline
Fault Model Algorithm (OFMA). The essential idea of the algorithm is that we know
how to make decisions in choosing which page to evict within a class since the page
sizes within a class only vary by a factor of at most 2: we can use Belady’s rule to evict
the two most distant pages. However, when we must make room in the cache, we may
not know from which class to pick. The algorithm solves this problem by evicting two
pages from every class. Since the algorithm pays for evictions, we get a factor of 2 logk.

OFFLINE FAULT MODEL ALGORITHM

Consider a request to l -page p:

(1) if p is in the cache, do nothing.
(2) else bring p into the cache.
(3) if the size of the cache is exceeded,
(4) for all j , do twice:
(5) if there is a j -page in cache,
(6) evict the most distant

j -page in the cache.

Fig. 1.Offline approximation algorithm for the FAULT model.

Page Replacement with Multi-Size Pages and Applications to Web Caching 389

This is established more formally in the following theorem:

THEOREM5. The number of faults incurred by OFMA on any sequence of requests is
within a factor of2 logk of the number of faults incurred by the optimal offline algorithm.

PROOF. For the purposes of our proof, we give the optimal offline algorithm (OPT)
a special discount on evicting pages. On requests in which OFMA evicts a page, we
allow OPT, for the price of one eviction, to evict from each class either the two pages
that OFMA has chosen to evict or one page of its choice. Any additional evictions made
by OPT are undiscounted. Certainly the optimal algorithm with this special discount
performs at least as well as the optimal algorithm without the discount. Furthermore,
OPT will not perform any undiscounted evictions unless it is forced to make room in its
cache. We claim that the behavior of an optimal algorithm with the discount is exactly
the behavior of OFMA. Since the optimal gets at most 2 logk evictions for the price of
one, if the claim is true, our cost is at most 2 logk times the optimal.

We prove our claim by induction ont . Suppose that up to timet the behavior of OPT
and OFMA are the same. The next request at timet + 1 is already in OPT’s cache if and
only if it is in OFMA’s cache. If the page is not in either’s cache, then it is brought in.
The capacity of OPT’s cache is exceeded if and only if the capacity of OFMA’s cache is
exceeded. If the capacity is not exceeded, then we go on to the next request.

Suppose that the capacity of the cache is exceeded. OPT must evict at least one
page, incurring a cost of 1. Since OPT must evict at least one page, it may as well take
advantage of the special discount and evict one or two pages from each class (depending
on whether it chooses to evict the same pages as OFMA). Remember that bringing pages
into the cache is free but evicting pages has a cost.

The remaining fact to prove is that for each classj such that the algorithms have at
least twoj -pages in the cache, OPT always chooses to evict the samej -pages as OFMA.
Suppose the two most distantj -pages arep andq. These are the two pages that OFMA
evicts. If OPT does not evictp andq, then it evicts some other pager .

We can convert OPT into another algorithm OPT′ that evictsp andq at timet and
does at least as well as OPT. If OPT evicts eitherp or q at some timet ′ before the next
request tor , then OPT′ evictsr at timet ′. The rest of the eviction choices remain exactly
the same except for the fact that OPT may have to evictp or q where OPT′ has already
evicted them. Note that until the next request tor , OPT′ has at least as much unused
space in the cache as OPT. This is because the total space taken byp andq is at least the
space taken up byr . After the request tor , the only difference in their configurations is
that until the next requests top andq, OPT′ does not have those pages in the cache while
OPT may havep or q in memory. Since we do not penalize an algorithm for bringing a
page into memory, OPT′ is at least as well off as OPT.

4.2. TheBIT Model. Figure 2 contains a description of the algorithm that we call the
Offline Bit Model Algorithm(OBMA). A counter is maintained for each class.c(l) is the
current value of the counter for classl . All counters are initialized to 0 at the beginning
of the sequence. The idea behind this algorithm is similar to that of OFMA. The problem
here, however, is that we cannot afford to evict a large page if the memory capacity is

390 S. Irani

OFFLINE BIT MODEL ALGORITHM

Consider a request to a page p of size x
from class l :
(1) Bring p into the cache if not there.
(2) if the capacity of cache is exceeded by e> 0 bits.
(3) if

∑
j≤cs(e) bOBMA(j) ≤ e

(4) let i be the smallest number greater than cs(e)
such that there is at least one i -page in the
cache. Let m be the size of the most distant
i -page.

(5) else m← e
(6) for all j ≤ cs(e):
(7) Continue until the total size of the pages

evicted is at least m or there are no j -pages
in the cache:

(8) Evict the most distant j -page.
(9) for all j > cs(e):

(10) if there is a j -page in cache,
(10) c(j)← c(j)+m;
(11) while c(j) ≥ size of most distant j -page q,
(12) Evict q.
(13) c(j)← c(j)− |q|.

Fig. 2.Offline approximation algorithm for the BIT model.

only exceeded by a small amount. What we would like to do instead is to evicte bits
from every class if the memory capacity is exceeded bye bits. Since we cannot evict
partial pages, ife is smaller than the pages in a class, we just add to that class’s counter.
When the counter is large enough to account for the cost of evicting a page from that
class, we cash in the counter and evict a page.

The analysis makes use of a potential function. (For an introduction to the use of
potential functions see [T]). Before defining the potential function, some preliminary
definitions are necessary. DefineSOBMA(l , t) to be the set of pages in classl that OBMA
currently has in the cache whose next request occurs on or after timet . A page that is
never requested again is assumed to be requested at time∞. SOPT(l , t) is defined similarly
for the optimal algorithm OPT. LetbOBMA(l , t) denote the sum of the sizes of pages in
the setSOBMA(l , t). bOPT(l , t) is defined similarly for OPT. Lett be the time of the current
request. Define

αl = max
t ′≥t
{bOBMA(l , t

′)− bOPT(l , t
′)},

ϕl =
{

0 if αl ≤ 0,

max{αl ,2l+2/5} − c(l)/5 if αl > 0.

Page Replacement with Multi-Size Pages and Applications to Web Caching 391

The value of the potential function is just the sum of theϕl ’s:

8 =
∑

l

ϕl .

Notice that after each request is processed,c(l) ≤ 2l+1 which means thatϕl is always
non-negative.

We also use another potential function3 that is just the sum of all the counters of
OBMA: ∑

l

c(l) = 3.

We use the notation18 to denote the change in a potential function8 over some given
event. That is, it will denote the value of the potential function after the event minus the
value of the potential function before the event. We charge each algorithm for the pages
they evict and prove the following lemma:

LEMMA 6. After each stage of the request:

OBMA’s cost+13 ≤ 5(logk+ 4)(OPT’s cost−18).

The lemma is sufficient to establish that OBMA is 5(logk + 4)-competitive since both
potential functions are always non-negative and both start at 0.

Before proving Lemma 6, we prove the following small lemma:

LEMMA 7. Suppose that OBMA evicts the most distant l-page p and, after the eviction,
αl > 0. Thenαl has decreased by|p|.

PROOF. Let t̂ be the time thatp is requested next. Afterp is evicted, all the pages
that OBMA has in the cache are requested before timet̂ . Thus, afterp is evicted,
bOBMA(l , t) = 0 for all t ≥ t̂ . Sinceαl > 0 after p is evicted, it must be the case
that maxt ′≥t {bOBMA(l , t ′) − bOPT(l , t ′)} is maximized whent ′ < t̂ . Suppose it is maxi-
mized for somēt = t ′. Sincet̄ < t̂ , p ∈ SOBMA(l , t̄) before p is evicted but not after
it is evicted. Thus,bOBMA(l , t̄) decreases by|p| when p is evicted. This means that
maxt ′≥t {bOBMA(l , t ′)− bOPT(l , t ′)} decreases by at least|p| when p is evicted.

PROOF OFLEMMA 6. Consider a request to pagep at timet . Let l = cs(p). We break
the analysis into four cases:

Case1: both OPT and OBMA have p in the cache. Neither algorithm incurs any cost.
Since both algorithms havep in the cache, pagep is in SOBMA(t ′, l) if and only if it is
in SOPT(t ′, l) for all t ′. This is true before the request top at time t and after the next
request top is updated to some later time. Thus,8 does not change.

Case2: OBMA does not have p in the cache, and OPT does have p in the cache.
Consider the moment before OBMA bringsp into the cache. Since OPT already hasp
in the cache,bOPT(t, l) = bOPT(t+1, l)+|p|. Since OBMA does not havep in the cache,

392 S. Irani

bOBMA(t, l) = bOBMA(t + 1, l). Thus,

bOBMA(l , t)− bOPT(l , t) = bOBMA(l , t + 1)− (bOPT(l , t + 1)+ |p|)
≤ max

t ′≥t
{bOBMA(l , t

′)− bOPT(l , t
′)} − |p|.

This means that before the page is brought in,bOBMA(l , t) − bOPT(l , t) is |p| less than
αl = maxt ′≥t {bOBMA(l , t ′) − bOPT(l , t ′)}. Thus, after the page is brought in,bOBMA(l , t)
increases by|p|, butαl remains unchanged.

Then the time of the next request top changes to some timêt in the future. Since
OPT and OBMA both havep in the cache,8 does not change. (This is just the same as
the argument in Case 1.)

Now suppose that OBMA has exceeded its memory capacity by bringing in pagep. It
evicts some pages and adds to the counter of other classes. How much does OBMA pay?
For j ≤ cs(e), the sum of the sizes of the pages that OBMA evicts is at mostm+ 2 j+1.
For j > cs(e), m points are added to the counter ofm. This amounts to a total amortized
cost of

(m logk)+
cs(e)∑
i=0

2i+1 ≤ (m logk)+ 4 · 2cs(m)

≤ (m logk)+ 4m

≤ (logk+ 4)m.

If the algorithm trades ins points fromc(l) in exchange for evicting a page of sizes, its
amortized cost (cost +13) is 0.

We must now prove that8 decreases by at leastm/5.
Let e(j) = bOBMA(j) − bOPT(j). OBMA hase(j) more bits belonging toj -pages in

memory than OPT. We make the following claim:

CLAIM 8. For j ≤ cs(e), if e(j) > 0, then ϕj decreases by at least e(j)/5. For
j > cs(e), if e(j) > 0, thenϕj decreases by at least m/5.

Note that in either case, as long ase(j) > 0, thenϕj decreases by at leaste(j)/5 since
m≥ e≥ e(j). The claim will be sufficient to establish that8 decreases by at leastm/5
because ifm was chosen to bee, then we have that∑

e(j)>0

e(j) ≥
∑

j

e(j) = e= m,

and as long asϕj decreases bye(j)/5 for each class withe(j) > 0, the total decrease is
at leastm/5. Note thatϕj does not increase for anyj when OBMA evicts a page, so we
need not be concerned with those classesj for whiche(j) ≤ 0.

Alternatively, supposem was chosen to be the smallest page in the cache from a class
larger thancs(e). We know that in this case the sum of the sizes of the pages in classes
of sizecs(e) or less are not enough to compensate for the excess that OBMA has in the
cache. Thus, for somej > cs(e), the sum of the sizes of thej -pages that OBMA has

Page Replacement with Multi-Size Pages and Applications to Web Caching 393

in cache is more than OPT. Thus, we are guaranteed thate(j) > 0 for somej > cs(e).
Then, by the claim,ϕj decreases by at leastm/5.

Now we must prove the claim. We break the analysis into two cases:

j > cs(e). First c(j) is incremented bym. Note that if the algorithm has at least
one page from classj in the cache, thenj ≥ cs(m). This implies thatm< 2 j+1.
Sincee(j) > 0, we know thatαj > 0. This is because maxt ′≥t {bOBMA(j, t ′) −
bOPT(j, t ′)} ≥ e(j)sincet ′ can always be chosen to bet . Beforec(j) is incremented
by m, c(j) < 2 j+1 which means thatϕj ≥ 2 j+1/5. Sincem< 2 j+1, whenc(j) is
incremented bym, ϕj will decrease by at leastm/5.

Now we must establish that if a page from classj is evicted andc(j) is decre-
mented, thenϕj does not increase. Suppose the evicted page has sizes. If, after the
eviction,αj becomes 0, thenϕj also becomes 0. Sinceϕj is always non-negative,
it certainly has not increased. Now suppose thatαj > 0 after the eviction. By
Lemma 7,αj decreases by at leasts. This means that max{αj ,2 j+2/5} decreases
by at leasts − 2 j+2/5 andϕj decreases by at least(s − 2 j+2/5) − s/5. Since
s ≥ 2 j , ϕj does not increase.

j ≤ cs(e). Suppose thatϕj > 0 after the evictions. Lets be the number of bits from
class j that OBMA evicts. We know thats ≥ e(j). We also know thats ≥ 2 j

since all j -pages have at least 2j bits. By Lemma 7,αj decreases by at leasts bits.
Thus,ϕj decreases by at least

max{2 j ,e(j)} − 2 j+2

5
>

e(j)

5
.

Now suppose thatϕj = 0 after the evictions. We know that before the evictions
αj ≥ e(j) > 0 becauseαj = maxt ′≥t {bOBMA(j, t ′) − bOPT(j, t ′)} and e(j) =
bOBMA(j, t)− bOPT(j, t). Thus,ϕj decreases by at least

max

{
αj ,

2 j+2

5

}
− 2 j+1

5
≥ αj

2
≥ e(j)

5
.

Case3: both OBMA and OPT fault. Both algorithms bringp into the cache in step (1).
The argument that8 does not change is the same as Case 1. Similarly, when the time of
the next reference top is updated,8 also does not change. Now OPT may have to evict
some pages in order to keep the number of bits in the cache at mostk. Suppose OPT
evictsh bits from classj . OPT paysh. αj (and henceϕj) increases by at mosth. If the
capacity of the cache is exceeded, OBMA may have to evict some pages. This part of
the argument is identical to Case 2.

Case4: OPT faults and OBMA does not fault. OPT bringsp into the cache.8 can only
decrease. Then OPT may evict some pages in order not to exceed the the cache capacity
of k. If OPT evictsh bits, then it paysh and8 can increase by at mosth.

5. Randomized Online Algorithms. The randomized algorithms for both the FAULT

and the BIT model will be described in terms of a relaxed version that will be allowed
to evict a portion of a page. The real algorithms will evict the entire page as soon as any

394 S. Irani

EVICT(l ,C)
(1) if there is a page q that is partially evicted:
(2) Let x← min{|q|in,C}.
(3) Evict x bits of q.
(4) C← C − x.
(5) while C 6= 0:
(6) if there are l -pages in the cache:
(7) if there are no unmarked l -pages:
(8) Unmark all l -pages.
(9) Pick an unmarked l -page q at random.

(10) Let x← min{|q|,C}.
(11) Evict x bits of q from the cache.
(12) C← C − x.
(13) if there are fewer than 2l bits belonging to

unmarked l -pages in the cache, evict them.

Fig. 3.Eviction algorithm used in both the randomized algorithms for the FAULT and BIT models.

portion of a given page have been evicted. This guarantees that the sizes of the pages in
the cache never exceed the capacity of the cache. We also charge the relaxed versions the
cost of evicting the entire page (a cost of 1 in the FAULT model and the size of the page
in the BIT model), as soon as any of the bits of a given page are evicted. This ensures
that the cost of the real algorithm and its relaxed version are the same.

Each of the randomized algorithms makes use of a marking scheme as introduced
in [KMRS]. Figure 3 shows the eviction routine that is common to both algorithms. It
is called whenever it is necessary to evictC bits belonging to pages of classl . Both
algorithms work according to the following principles. If there is a request to a pagep,
it is brought into the cache and marked. Only unmarked pages are ever evicted from the
cache. If it is necessary to evict anl -page and all thel -pages in the cache are marked,
then the algorithm unmarks all thel -pages. For each class, the sequence is divided into
phases. The current phase for classl (also called anl -phase) ends and a new one begins
whenever the pages of that class are unmarked as in step (8) of the eviction algorithm.
The set of markedl -pages is always exactly the set ofl -pages that have been requested
in the currentl -phase. At the end of a phase, the set ofl -pages in the cache are exactly
thosel -pages that have been requested in thel -phase.

Throughout Sections 5.1 and 5.2, we denote the size of a page by|p|. |p|in (resp.
|p|out) denotes the number of bits of pagep that the Randomized Fault Model Algorithm
has inside (resp. outside) the cache.

5.1. The FAULT Model. We now describe the Randomized Fault Model Algorithm
(RFMA). As with the algorithm in the previous section, RFMA resolves the problem of
which class to evict from by evicting from every class. The decision of which page to
evict from a given class is made according to the Randomized Marking Algorithm of
[FKL+]. Although the idea appears simple, in order to combine the proofs of the two

Page Replacement with Multi-Size Pages and Applications to Web Caching 395

RANDOMIZED FAULT MODEL ALGORITHM:
Consider a request tol -pagep:
(1) Bring p into the cache if not there.
(2) Mark page p.
(3) if p was requested in the previous phase,
(4) Let ul be the number of bits belonging to

unmarked l -pages in the cache.
(5) EVICT(l ,min{ul , |p|out}).
(6) if total sizes of pages in

cache exceed k bits,
do the following twice for all j :

(7) EVICT(j,2 j+1).

Fig. 4.Randomized online algorithm for the FAULT model.

algorithms, it is necessary to prove the competitiveness of the Randomized Marking
Algorithm using a potential function argument that is substantially different than the
original proof.

The randomized algorithm for the FAULT model is shown in Figure 4. We will need
the following lemma about the distribution of the number of bits RFMA has in the cache.

LEMMA 9. After each request is processed, for each l, the following three items depend
only on the request sequence and are completely independent of the random choices
made by the algorithm:

1. The set of marked pages.
2. The number of bits belonging to unmarked l-pages that RFMA has in its cache.
3. The beginning and end of the l-phases.

PROOF. Let Ml denote the set of markedl -pages and letul denote the number of bits
belonging to unmarkedl -pages that RFMA has in its cache. We prove this lemma by
induction on the number of requests. We assume that the cache starts out empty, so the
lemma is vacuously true after no pages are requested. Suppose that it is true for any
sequence oft requests, and suppose we have a request to anl -pagep at timet + 1. p is
brought into the cache and marked.Ml continues to be independent of any random choices
made by the algorithm. By the inductive assumption, the event thatp was requested in
the previousl -phase is independent of the random choices made by the algorithm. Ifp
was not requested in the previous phase, then RFMA did not havep in the cache andul

remains unchanged. Ifp was requested in the previous phase and was unmarked, then at
this point, the lemma may not be true. This is because|pout| bits may have been evicted
and the number of bits fromp that RFMA has in its cache does depend on the random
choices made by the algorithm. Letu′l denote the new value forul at step (4) of the
algorithm afterp is marked.u′l = ul − |p|in. |p|out ≤ u′l is true if and only if|p| ≤ ul

which is independent of the random bits used by RFMA. Iful ≤ |p|out, thenu′l goes to
0 after step (5). Otherwise, an additional|pout| bits will be evicted which means thatu′l

396 S. Irani

will go down toul − |p| which is again independent of the random choices made by the
algorithm.

At step (6) of the algorithm, the number of bits the algorithm has in its cache is inde-
pendent of the random bits used by the algorithm. If the size of the cache is exceeded,
then we proceed to EVICT(j,2 j+1) for every j . By the inductive hypothesis,uj is inde-
pendent of the random bits used by the algorithm. Ifuj ≥ 2 j+1, the algorithm will evict
2 j+1 bits from unmarkedj -pages anduj decreases by 2j+1. If uj < 2 j+1, the algorithm
will evict uj bits and a new phase begins. Denote the new number of bits belonging to
unmarked pages byu′j . The algorithm will then evict min{u′j ,2 j+1− uj } bits. Thus, the
number of bits evicted and whether a new phase is started are still independent of the
random choices made by the algorithm. Finally, if the number of unmarked bits only
depends on the input sequence, the number of bits that are evicted in step (13) also only
depends on the input sequence.

For each classl , we normalize the size of the pages by dividing by 2l . Thus, the
normalized size of every page is less than 2 and at least 1. We use the following three
definitions in the proof:

• Let d(l) denote the sum of the normalized sizes of the pages that were requested in
the previous phase and are not currently marked (i.e. have not yet been requested in
the current phase).
• Let h(l) be the sum of the normalized sizes of thel -pages that the algorithm has

evicted in the current phase that remain outside RFMA’s cache. Note that since these
pages were evicted in the current phase, they must have been requested in the previous
phase or else they would not be in the cache in the first place. Since they are outside
RFMA’s cache, they are unmarked. Thus,h(l) = d(l) − (ul/2l)). (ul was defined in
the algorithm to be the number of bits belonging to unmarkedl -pages that RFMA has
in its cache.)
• Letm(l)be the sum of the normalized sizes of pages that were requested in the previous

or current phase that are not in OPT’s cache.

Note that if the algorithm has partially evicted a pagep, p’s contribution toh(l) will be
the fraction ofp that has been evicted. Thus, ifx bits of p have been evicted, then the
contribution fromp to h(l) will be x/2l . d(l), h(l) andm(l) are all independent of the
random choices made by the algorithm.

The following lemma is key to the proof of competitiveness for RFMA:

LEMMA 10. Fix a page p that was requested in the previous phase that is not currently
marked. The probability that any bits of p have been evicted is at most2h(l)/d(l).

PROOF. At any given point, the probability thatp is in the cache is the same as if the
pages had been evicted according to the following process: pick a random permutation
of thed pages that were requested in the previous phase and are currently unmarked.d
is at leastd(l)/2 since, in the worst case, all the pages have size 2l+1. Evict pages in this
order untilh(l) bits have been evicted. What is the probability that a given pagep will
be evicted? The number of pages that will be evicted is at mosth(l). Thus, if p appears
in the lastd− h(l) pages in the permutation, it will remain in the cache. The probability

Page Replacement with Multi-Size Pages and Applications to Web Caching 397

that p will remain in the cache is at least(d− h(l))/d = 1− h(l)/d ≥ 1− 2h(l)/d(l).
This means that the probability thatp is not in the cache is at most 2h(l)/d(l).

We use three potential functions per class:

• γl is the sum of the normalized sizes of markedl -pages that RFMA has in its cache
and that OPT does not have in its cache.•

ϕl =


0 if all bits belonging tol -pages in RFMA’s cache
are marked orm(l)− h(l) ≤ 0,

max{m(l)− h(l), 1
2} otherwise.

• λl = 4h(l)(Hd(l) − 1), whereHj is the j th harmonic number.

Finally, we combine the potential functions for each class:

8 =
∑

l

1
4ϕl , 0 =∑l

1
4γl , 3 =∑l λl .

We prove the following lemma:

LEMMA 11. After each stage of the request:

RFMA’s cost+13 ≤ ((64Hk + 16) logk)[OPT’s cost−1(8+ 0)].(1)

Since3, 0 and8 are initially 0 and are always non-negative, the lemma implies that
RFMA is ((64Hk + 16) logk)-competitive. To see thatλl is always non-negative, note
that if d(l) is ever 0, thenh(l) must also be 0 sinceh(l) ≤ d(l).

PROOF. Consider a request to anl -pagep at timet . We break the analysis into three
cases:

Case1: p is marked. RFMA already has the page in the cache. If OPT does not havep
in the cache, it brings it into the cache. When OPT brings a page into the cache,m(l) can
only decrease which means that8 and0 can only decrease. If OPT then evicts a page
from some classj , it incurs a cost of 1.m(j) can increase by at most 2 which means that
ϕj andγj can increase by at most 2 each. Thus, OPT’s cost plus1(8+ 0) is positive.

Case2: p is not marked and was not requested in the previous phase. OPT bringsp
into the cache if it is not already there.m(l) and hence8 can only decrease. Then RFMA
brings p into the cache and marks it. Since OPT already hasp in the cache, neitherγl

norϕl change. Using the same argument as the previous cases, OPT may evict a page in
which case8+ 0 does not decrease by more than OPT’s cost.

If RFMA has enough room for pagep, no evictions are performed and the next request
is processed. If, however, there is not enough room forp, we will try and evict 2l+1 bits
from classl for eachl .

We first address what happens if, in the process of evicting bits from classl , all the
l -pages in the cache are marked and must be unmarked (i.e. a newl -phase begins). When
all thel -pages become marked,ϕl goes to 0 which can only result in a decrease inϕl . At

398 S. Irani

this point, a new phase begins, so the set of pages currently in the cache become the set
of pages requested in the previous phase. This also means thath(l) becomes 0 since no
bits have yet been evicted in the current phase for classl .

How does this change our potential functions?λl becomes 0 sinceh(l) is now 0. This
means thatλl does not increase. The set of markedl -pages at the end of the oldl -phase
are exactly thosel -pages that RFMA has in its cache. This means that the sum of the
normalized sizes of pages that RFMA has in the cache and OPT does not have in the
cache is exactlyγl . When all the pages become unmarked,γl goes to 0. The old value
of ϕl is 0. The new value ofϕl is m(l) which is the sum of the normalized sizes of pages
that RFMA has in the cache that OPT does not have in the cache. Note that this new
value is either 0 or at least 1, so the “max” in the definition ofϕl has no effect. Thus,γl

decreases by the amount by whichϕl increases and1(8+ 0) = 0, and all the changes
to the potential functions brought about by a new phase obey inequality (1).

Now RFMA attempts to evict 2l+1 bits from each class. Since we are charging RFMA
as soon as it evicts any bits from a given pages, this will result in at most a cost of two per
class. If any bits are evicted in step (13) of EVICT(l ,C), this will not cost the algorithm
anything because this has to be a partially evicted page. For each classl , h(l) increases
by at most 2. Thus, eachλl increases by at most 8(Hd(l) − 1), and the total amortized
cost to RFMA is

2 logk+ 8
logk∑
l=1

(Hd(l) − 1) ≤ (8Hk + 2) logk.

We now prove that8 decreases by at least1
8.

Since RFMA has exceeded the capacity of its cache, it must be the case that for some
classl , RFMA has more bits belonging tol -pages in the cache than does OPT. Pick one
suchl . Note that RFMA must have at least 2l bits belonging to unmarkedl -pages in the
cache or else they would have been evicted in step (13) of EVICT(l ,C).

Let a be the sum of the normalized sizes of thel -pages that were requested in the
current or previous phase. The number of bits belonging tol -pages that RFMA has in its
cache isa− h(l). Let b be the sums of the normalized sizes of thel -pages that OPT has
in its cache. We know thata− h(l) > b. Thus,m(l), which is at leasta− b, is greater
thanh(l). This means thatm(l)− h(l) > 0.

When thel -pages are evicted,h(l) increases by at least 1 and thusϕl decreases
by a non-negative amount. If the value ofm(l) − h(l) afterwards is negative, thenϕl

decreases by at least1
2 (since it was at least12 before and is 0 now). Ifm(l) − h(l)

is positive afterwards, then it was at least 1 before the eviction. In this case,ϕl also
decreases by at least1

2. Since all the other evictions can only serve to decrease8, we
know that8 decreases by at least1

8.

Case3: p is unmarked and was requested in the previous phase. OPT bringsp into the
cache if it is not already there.m(l) and hence8 can only decrease. Thenp is marked
and min{ul , |pout|} bits are evicted. Since OPT hasp in its cache,γl does not change.
Either |p|out bits belonging tol -pages are evicted or all the remaining bits belonging
to unmarkedl -pages are evicted. In the former case,h(l) does not change andϕl is
unchanged. In the latter case,ϕl becomes 0 which means that it does not increase. As in

Page Replacement with Multi-Size Pages and Applications to Web Caching 399

case 1, if OPT evicts a page, the cost that OPT incurs is at least as large as the amount
by which8 decreases.

Finally, we examine the amortized cost of the algorithm. A page is evicted only if
p was not already in the cache. By Lemma 10, this happens with probability at most
2d(l)/h(l). The cost in evicting|p|out bits is at most 2. Thus, the expected cost is at most
4h(l)/d(l). h(l) does not increase andd(l) decreases by 1. Thus, the change to3 is at
most

4h(l)[(Hd(l)−1− 1)− (Hd(l) − 1)] = −4h(l)

d(l)
.

If, at this point, all thel -pages become marked, thenϕl goes to 0. This can only
amount to a decrease inϕl since it is always non-negative. If the size of memory is still
exceeded, RFMA will go to step (6) of the algorithm. The analysis is the same as in
Case 2.

5.2. TheBIT Model. The randomized algorithm for the BIT model, which we call the
Randomized Counter Algorithm(RCA), is given in Figure 5. A counter is maintained
for each class.c(l) is the current value of the counter for classl and is initialized to 0 at
the beginning of the algorithm. The structure of the proof for the randomized algorithm
in the BIT model is much the same as the structure of the proof for the FAULT model,
except for the portions that use the counter which are similar to the proof for OBMA.

We need the following lemma about the distribution of the number of bits RFMA has
in the cache.

LEMMA 12. After each request is processed, for each l, the following four items depend
only on the request sequence and are completely independent of the random choices made
by the algorithm:

1. The set of marked pages.
2. The number of bits belonging to unmarked l-pages that RFMA has in its cache.
3. The beginning and end of the l-phases.
4. c(l).

PROOF. The proof is almost the same as the proof for Lemma 9 with the added obser-
vation that sincem depends only on values that are independent of the random choices
made by the algorithm it is also independent of the random choices made by the algo-
rithm. Thus, any changes toc(l) are also independent of the random choices made by
the algorithm.

We use the following three definitions in the proof:

• Let d(l) denote the sum of the sizes of thel -pages that were requested in the previous
phase and are not currently marked (i.e. have not yet been requested in the current
phase).
• Let h(l) be the sum of the sizes ofl -pages that the algorithm has evicted in the current

phase that remain outside RCA’s cache. Note that since these pages were evicted in
the current phase, they must have been requested in the previous phase or else they

400 S. Irani

RANDOMIZED COUNTERALGORITHM

Consider a request to anl -pagep of sizex:
(1) Bring p into the cache if not already there.
(2) Mark page p.
(3) if p was requested in the previous phase,
(5) Let ul be the number of bits belonging to

unmarked l -pages in the cache.
(6) EVICT(l ,min{ul , |p|out}).
(7) if the number of bits that RCA has in the

cache exceeds k by e> 0:
do the following:

(8) if the total sizes of pages that RCA has in
the cache belonging to classes cs(e) or
below is less than e

Let r be the lowest class greater than
cs(e) such that RCA has at least a portion
of an r -page in its cache.

(9) m← 2r .
(10) elsem← e
(11) For all j ≤ cs(e)
(12) Evict(j,m)
(13) For all j > cs(e)
(14) c(j)← c(j)+m;
(15) while c(j) ≥ 2 j and there are j -pages in

the cache,
(16) Evict(j,2 j)
(17) c(j)← c(j)− 2 j .

Fig. 5.Randomized online algorithm for the BIT model.

would not be in the cache in the first place. Since they are outside RFMA’s cache,
they are unmarked. Thus,h(l) = d(l) − ul . (ul is defined in the algorithm to be the
number of bits belonging to unmarkedl -pages that RCA has in the cache.)
• Let m(l) be the sum of the sizes ofl -pages that were requested in the previous or

current phase that are not in OPT’s cache.

Note that if the algorithm has partially evicted a pagep, p’s contribution toh(l) will
be the fraction ofp that has been evicted. Thus, ifx bits of p have been evicted, then
the contribution fromp to h(l) will be x. d(l), h(l) andm(l) are all independent of the
random choices made by the algorithm.

The following lemma will be key to the proof of competitiveness for RCA:

LEMMA 13. Fix a page p that was requested in the previous phase that is not currently
marked. The probability that any bits of p have been evicted is at most2h(l)/d(l).

Page Replacement with Multi-Size Pages and Applications to Web Caching 401

PROOF. The proof is almost the same as the proof for Lemma 10, except that since the
definitions are in terms of the actual sizes of the pages instead of the normalized sizes
of the pages,d is at leastd(l)/2l+1 and the number of pages that have been partially
evicted is at mosth(l)/2l .

We use three potential functions per class:

• γl is the sum of the normalized sizes of markedl -pages that OPT does not have in its
cache.
•

ϕl =


0 if all bits belonging tol -pages in

cache are marked orm(l)− h(l)
≤ 0,

max{m(l)− h(l),2l+2/5} − c(l)/5 otherwise.

• λl = 4h(l)(Hdd(l)/2l e − 1)+ 2c(l)(Hk − 1), whereHj is the j th harmonic number.

Note that whenm is added toc(l) in step (13), it is always the case thatm ≤ 2l . This
means thatc(l) ≤ 2l after every request is processed andϕl is always non-negative.

Finally, we combine the potential functions for each class:

8 =
∑

l

1
2ϕl , 0 =∑l

1
2γl , 3 =∑l λl .

We prove the following lemma:

LEMMA 14. After each stage of the request:

RCA’s cost+13 ≤ ((25Hk + 20) logk)[OPT’s cost−1(8+ 0)].(2)

Since3, 0 and8 are initially 0 and are always non-negative, the lemma implies that
RFMA is ((25Hk + 20) logk)-competitive. To see thatλl is always non-negative, note
that if d(l) is ever 0, thenh(l) must also be 0 sinceh(l) ≤ d(l).

PROOF. Now consider a request to anl -pagep at time t . We break the analysis into
three cases:

Case1: p is marked. RFMA already has the page in the cache. If OPT does not have
p in the cache, it brings it into the cache. When OPT brings a page into the cache,m(l)
can only decrease, which means that8 and0 can only decrease. If OPT evicts anl -page
p of size|p|, it incurs a cost of|p|. m(l) and henceϕl andγl can increase by at most|p|
each. Thus, OPT’s cost plus1(8+ 0) is positive.

Case2: p is not marked and was not requested in the previous phase. OPT bringsp
into the cache if it is not already there.m(l) and hence8 can only decrease. Then RCA
brings p into the cache and marks it. Since OPT already hasp in the cache, neitherγl

norϕl change. Using the same argument as the previous cases, OPT may evict a page in
which case8+ 0 does not decrease by more than OPT’s cost.

402 S. Irani

If RCA has enough room for pagep, no evictions are performed and the next request
is processed. If, however, there is not enough room forp, the algorithm proceeds to
step (8).

We first address what happens if, in the process of evicting bits from classl , all the
l -pages in the cache are marked and must be unmarked (i.e. a newl -phase begins). When
all thel -pages become marked,ϕl goes to 0 which can only result in a decrease inϕl . At
this point, a new phase begins, so the set of pages currently in the cache become the set
of pages requested in the previous phase. This also means thath(l) becomes 0 since no
bits have yet been evicted in the current phase for classl .

How does this change our potential functions? Sinceh(l) goes to 0 and was non-
negative before,λl does not increase. The set of markedl -pages at the end of the old
l -phase are exactly thosel -pages that RFMA has in its cache. This means that the sum
of the sizes of pages that RFMA has in the cache and OPT does not have in the cache
is exactlyγl . When all the pages become unmarked,γl goes to 0. The old value ofϕl is
0. The new value ofϕl is m(l) which is the sum of the sizes of pages that RFMA has in
the cache and that OPT does not have in the cache. Note that this new value is either 0
or at least 2l , so the “max” in the definition ofϕl has no effect. Thus,γl decreases by the
amount by whichϕl increases and1(8 + 0) = 0, and all the changes to the potential
functions brought about by a new phase obey inequality (2).

Now, the algorithm attempts to evictm bits from eachl -class.
For j ≤ cs(e), the algorithm will evict at mostm bits from classj . Since we charge

the algorithm for evicting an entire page whenever it evicts the first bit for a page,
the algorithm will incur a cost of at mostm+ 2 j+1. h(j) increases by at mostm. Thus,
the total amortized cost is at most(5m + 2 j+1)Hd(l). For j > cs(e), we addm to
c(j). Thus, the total amortized cost is at most 2mHk. The total amortized cost for all
classes is ∑

j≤cs(e)

(5m+ 2 j+1)Hdd(j)/2 j e +
∑

j>cs(e)

2mHk

≤ 5m logkHk +
∑

j≤cs(m)

2 j+1Hk

≤ 5m logkHk + 4mHk = (5 logk+ 4)Hkm.

If any additional bits are evicted in step (13) of EVICT(l ,C), they do not cost the algorithm
since those bits must belong to a partially evicted page.

We must now prove that8 decreases by at leastm/5.
Denote bybOPT(j) the sum of the sizes of thej -pages that OPT has in its cache.

Similarly, bRCA(j) is the sum of the sizes of thej -pages that RCA has in its cache. Let
e(j) = bRCA(j) − bOPT(j). Let S be the sum of the sizes of the pages that have been
requested in the previous or the current phase. We have thatm(j) ≥ S− bOPT(j) and
S− h(l) = bRCA(j). Putting these together, we get thatm(j)− h(j) ≥ e(j). We make
the following claim:

CLAIM 15. For j ≤ cs(e), if e(j) > 0, thenϕj decreases by at least e(j)/5. For
j > cs(e), if e(j) > 0, thenϕj decreases by at least m/5.

Page Replacement with Multi-Size Pages and Applications to Web Caching 403

In either case, as long ase(j) > 0,ϕj decreases by at leaste(j)/5, sincem≥ e≥ e(j).
The claim will be sufficient to establish that8 decreases by at leastm/5 because ifm
was chosen to bee, then we have that∑

e(j)>0

e(j) ≥
∑

j

e(j) = e= m,

and as long asϕj decreases bye(j)/5 for each classj with e(j) > 0, the total decrease
to8 is at leastm/5. Note thatϕj does not increase for anyj when RCA, so we need not
be concerned with those classesj for whiche(j) ≤ 0.

Alternatively, supposem was chosen in step (9). Letr be the lowest class greater than
cs(e) such that RCA has at least a portion of anr -page in its cache. We know that the
sum of the sizes of the pages in classes of sizecs(e) or less are not enough to compensate
for the excess that RCA has in the cache. Thus, for somej > cs(e), the sum of the sizes
of the j -pages that RCA has in cache is more than OPT. Thus, we are guaranteed that
e(j) > 0 for somej ≥ cs(m). Then, by the claim,ϕj decreases by at leastm/5.

Now we must prove the claim. We break the proof of the claim into two cases:

j > cs(e). Firstc(j) is incremented bym. Note that since the algorithm has at least
some portion of a page from classj in the cache,j ≥ cs(m). This implies that
m < 2 j+1. Sincee(j) > 0, we know thatm(j) − h(j) > 0. Sincec(j) < 2 j+1

beforec(j) is incremented,ϕj > 2 j+1/5 beforec(j) is incremented. This means
that whenm is added toc(j), ϕj does in fact decrease bym/5.

Now suppose that the condition in step (15) is true.c(j) is decremented by 2j .
The number of unmarked bits belonging toj -pages in the cache is either 0 or at
least 2j because otherwise they would be evicted in step (13) of EVICT (j,m). This
means that 2j are in fact evicted andh(j) increases by 2j . Sinceh(j) increases by
the amount thatc(l) decreases, the change toλl is at most 0. Now we determine the
change toϕl . If after the eviction,m(j)−h(j) becomes 0, thenϕj also becomes 0.
Sinceϕj is always non-negative, it certainly has not increased. Now suppose that
m(j) − h(j) > 0 after the eviction. This means that max{m(j) − h(j),2 j+2/5}
decreases by at least 2j −2 j+2/5 andϕj decreases by at least(2 j −2 j+2/5)−2 j /5.
Note that this value is non-negative.

j ≤ cs(e). Suppose thatm(j) − h(j) = 0 after the evictions.ϕj decreases by at
least

max

{
m(j)− h(j),

2 j+2

5

}
− 2 j+1

5
≥ m(j)− h(j)

5
≥ e(j)

5
.

Now suppose thatm(j)−h(j) > 0 after the evictions. This means that the number
of bits belonging toj -pages that RCA has in the cache after the evictions is non-
zero and the algorithm successfully evictedm bits. We also know thatm ≥ 2 j

sincecs(m) ≥ cs(e) ≥ j . Thusϕj decreases by at least

m− 2 j+2

5
>

m

5
≥ e(j)

5
.

Case3: p is unmarked and was requested in the previous phase. OPT bringsp into the
cache if it is not already there.m(l) and hence8 can only decrease. Thenp is marked

404 S. Irani

and min{ul , |p|out} bits are evicted. Since OPT hasp in the cache,γl does not change.
If p was complete in the cache, thenh(l) does not change. If|p|out bits of p had been
evicted, then afterp is marked,h(l) decreases by|p|out. In this case, either|p|out bits
belonging tol -pages are evicted or all the remaining bits belonging to unmarkedl -pages
are evicted. In the former case,h(l) does not change andϕl is unchanged. In the latter
case,ϕl becomes 0 which means that it does not increase. As in Case 1, if OPT evicts a
page, the cost that OPT incurs is at least as large as the amount by which8 decreases.

Finally, we examine the left-hand side of inequality (2). A page is evicted only if
p was not already in the cache. By Lemma 10, this happens with probability at most
2d(l)/h(l). The cost in evicting|p|out bits is at most 2l+1. Thus, the expected cost is at
most 2l+2h(l)/d(l). h(l) does not increase andd(l) decreases by at least 2l . Thus, the
change to3 is at most

4h(l)[(Hd(d(l)−2l)/2l e − 1)− (Hdd(l)/2l e − 1)] = −2l+2h(l)

d(l)
.

If at this point, all thel -pages becomed marked, thenϕl goes to 0. This can only
amount to a decrease inϕl since it is always non-negative. If the size of memory is still
exceeded, RFMA will go to step (6) of the algorithm. The analysis is the same as in
Case 2.

6. Probabilistic Analysis. Now we turn to the scenario where there is a distribution
over the sequence known to the algorithm in advance. Although from an information-
theoretic point of view, it is possible to find the algorithm that minimizes the expected
cost, it is not feasible to find this optimal algorithm. It is shown by Karlin et al. that even in
the case of paging with uniform size pages, the problem of computing the optimal online
strategy when the sequence is generated by a markov chain, is a linear program inn

(n
k

)
variables, wheren is the total number of pages [KPR]. Thus, we seek an approximation
algorithm that will come within some factor of the best online algorithm. The algorithm
that we present here is for the FAULT model and is a combination of the approximations
for the offline case and an algorithm due to Lund et al. for paging with uniform pages
under a known distribution [LPR].

At any moment in time, given any two pagesp andq, one can determine from the
distribution over the remainder of the sequence the probability thatp is requested before
q. Lund et al. prove that, for any setSof pages, there is a distribution overS (called the
dominating distribution) such that ifp is chosen according to the dominating distribution,
for anyq ∈ S, the probability thatq appears at least as soon asp is at least 1/2. The
dominating distribution, of course, depends heavily on the pairwise probabilities that a
given pagep1 is requested before another pagep2. Since these pairwise probabilities
are available to the algorithm, the dominating distribution can be computed.

We use a variant of the dominating distribution in which two pages are chosen instead
of one. We call this distribution thepairs dominating distribution. Let V be the set of
pages. LetV2 be the set of all sets of two pages. We define a functionw: V×V2→ [0,1]
with the property that ifa ∈ {b, c}, thenw(a, {b, c}) = 0. Furthermore, ifa, b andc
are all distinct, thenw(a, {b, c})+w(b, {a, c})+w(c, {a,b}) = 2. A pairs dominating
distribution forV andw is a probability distributionp over V2 such that if{a,b} are

Page Replacement with Multi-Size Pages and Applications to Web Caching 405

FAULT MODEL DOMINATING DISTRIBUTION ALGORITHM

Consider a request tol -pagep:
(1) Bring p into the cache if not already there.
(2) if there are more than k bits in the cache,
(3) For all j :
(4) if there are any j -pages in the cache
(5) if there is only one j -page, evict it.
(6) else evict a pair of pages chosen

according to the pairs dominating
distribution.

Fig. 6. Online algorithm under the FAULT model when the sequence is generated according to a known
distribution.

chosen according top, then for eachc ∈ V , E[w(c, {a,b})] ≤ 1
2. In our case,w(c, {a,b})

is the probability thatc 6∈ {a,b} andc is not requested before botha andb. The proof that
a pairs dominating distribution always exists appears in the Appendix. If the algorithm
is asked to evict two pages from classj , it will always choose according to the pairs
dominating distribution over thej -pages that it has in its cache.

Figure 6 gives a randomized algorithm for the FAULT model called the Fault Model
Dominating Distribution Algorithm (FMDD) that works when the input is generated
according to an arbitrary distribution. We will prove the following theorem:

THEOREM16. LetD be a distribution over request sequences.Letcost A(D)be the cost
under theFAULT model of an online algorithm A when the input sequence is generated
according toD. We prove that for any online algorithm A,

cost FMDD(D) ≤ (8 logk)cost A(D).

PROOF. If step (2) is entered, then the algorithm performs at most 2 logk evictions.
We will prove that the expected number of times that the algorithm enters step(2) is at
most eight times the expected number of faults of any online algorithm that knows the
distribution over the request sequence. In particular, we compare FMDD to an arbitrary
online algorithm ON. LetSFMDD(l) denote the set ofl -pages that FMDD has in the cache.
Similarly for SON(l).

We use a variation of the accounting scheme developed in [LPR] for the proof of the
dominating distribution algorithm for uniform size pages. We maintain a mappingc. Let
P be the set of all pages. LetP2 be the set of all sets of two pages.c is defined over a
subset ofP ∪ P2. Here is how we maintain the mappingc:

Consider a request to pages. Both ON and FMDD brings into the cache. ON may
evict any number of pages (includings). Now if FMDD has more thank bits in the cache,
it will evict two pages from every class. We know that before it performs these evictions,
there is some classj for which the sum of the sizes of thej -pages that FMDD has in the
cache is more than the sum of the size of thej -pages that ON has in its cache. Letq and
q′ be the j -pages that FMDD evicts. Ifq 6∈ SON(j), thenc(q) = q. Else ifq′ 6∈ SON(j),

406 S. Irani

thenc(q′) = q′. If bothq andq′ are inSON(j), then we will prove that there is some page
p ∈ SFMDD(j)−SON(j) to which nothing is mapped. We then setc({q,q′}) = p. If at any
point ON evictsq, thenc({q,q′}) becomes undefined andc(q) = q. (Similarly for q′.)
If c({a,b}) is defined and eithera or b is requested, thenc({a,b}) becomes undefined.
Similarly, if c(a) is defined, anda is requested, thenc(a) becomes undefined.

The following facts are easy to verify by induction:

1. If c(p) is defined, thenc(p) = p.
2. If c(p) = p, thenp 6∈ SFMDD ∪ SON.
3. If c({a,b}) andc({x, y}) are defined, then{a,b} ∩ {x, y} = ∅.
4. If c({a,b}) is defined, thenc(a) andc(b) are not defined.
5. If c({a,b}) is defined, thenc({a,b}) ∈ SFMDD and{a,b} ⊆ SON − SFMDD.

Now examine the moment just beforeq andq′ are evicted. At this moment, the number
of bits in SFMDD(l) is strictly larger than the number of bits inSON(l). By facts 1 and 2
above, ifc(X) = s for someX ∈ P ∪ P2 ands ∈ SFMDD(l), then X is a pair{a,b}.
Furthermore, by fact 5,{a,b, } ⊆ SON(l)− SFMDD(l). This means that for every pages in
SFMDD(l) to which something is mapped, there is a pair of pages inSON(l) that maps to
s. Furthermore, by fact 3, all these pairs are disjoint. Since the sum of the sizes ofa and
b is at least the size ofc({a,b}) andSFMDD(l) ≥ SON(l), it must be the case that there is
ans ∈ SFMDD(l)− SON(l) to which nothing is mapped.

Let χ(t) = 1 if and only if FMDD makes an assignment at timet . FMDD incurs a
cost of at most 2 logk per request. Furthermore, for every request on which it incurs a
cost, it will make an assignment. This means that the cost to FMDD is

CFMDD ≤ 2 logk
∑

t

χ(t).

Suppose that FMDD makes an assignment toc(X) = s at timet . We will say that
the assignment isgood if c(X) is requested on or before the first time any page inX is
requested. There are two possibilities in this case. The first is thatc(X) remains equal
to s at the time it is requested. In this case the request tos causes the assignment to
disappear. The second is that ON evicts some pagep in X befores is requested in which
case the assignment is moved toc(p) = p. In this case the next request top makes the
assignment disappear. In either case ON will incur a cost on the request that causes the
assignment to disappear since the requested page is not in ON’s cache. Letγ (t) = 1 iff
FMDD makes a good assignment toc(X) at timet . Since only two elements inP ∪ P2

can be assigned to the sames ∈ P, each request in which ON incurs a cost can make at
most two assignments disappear and we have that

CON ≥ 1
2

∑
t γ (t).

We can think of assigningc(·) as follows. Pick ans ∈ SON− SFMDD to which nothing
is mapped. Then the pair{q,q′} is chosen according to the dominating distribution. If
s ∈ {q,q′}, thenc(s) = s and it is definitely the case thatγ (t) = 1. If s 6∈ {q,q′}, then
the probability thats is requested after the first request toq or q′ is at least 1/2 by the
fact that{q,q′} was chosen according to a dominating distribution. Thus, we have that
that E[2γ (t)] ≥ E[χ(t)]. Putting the inequalities, we get that

8 logkE[CON] ≥ E[CFMDD].

Page Replacement with Multi-Size Pages and Applications to Web Caching 407

Acknowledgments. The author would like to thank Anja Feldman, Steven Phillips,
Anna Karlin and David Karger for many useful discussions and for bringing this problem
to her attention.

Appendix. In this section we prove that a pairs dominating distribution exists for
any set of pages. LetV be any finite set and letV2 be the set of all sets of size two
subsets ofV . We define a functionw: V × V2 → [0,1] with the property that if
a ∈ {b, c}, thenw(a, {b, c}) = 0. Furthermore, ifa, b and c are all distinct, then
w(a, {b, c}) + w(b, {a, c}) + w(c, {a,b}) = 2. A pairs dominating distribution forV
andw is a probability distributionp overV2 such that if{a,b} are chosen according to
p, then for eachc ∈ V , E[w(c, {a,b})] ≤ 1

2.

LEMMA 17. Given any set V and functionw with the properties described above, there
is a pairs dominating distribution for(V, w).

The following technical lemma will be useful:

LEMMA 18. Let V be any finite set and let p be a distribution over V. Then

1−∑v∈V (p(v))
3

1−∑v∈V (p(v))
2
≤ 3

2
.

PROOF. We start with the case that there are only two elementsv1 andv2 in V with non-
zero probability. Letp(v1) = x. Thenp(v2) = 1− x andp(v) = 0 for anyv 6∈ {v1, v2}.
In this case:

1−∑v∈V (p(v))
3

1−∑v∈V (p(v))
2
= 1− x2− (1− x)2

1− x3− (1− x)3
= 3

2
.

Now suppose that we start with some distributionp and change it by subtracting some
weight from an elementvi with non-zero weight and add it to an elementvj with 0 weight.
That is,p′(v) = p(v) for v 6∈ {vi , vj }, p′(vi) = p(vi)− δ and p′(vj) = p(vj)+ δ = δ.
How does this change the quantity in question?

The numerator increases by 3p(vi)
2δ − 3p(vi)δ

2. The denominator increases by
2δp(vi). Note that the ratio of the changes is at most3

2. Thus, if the current quantity
in question is at most32 and we make a change such that the ratio of the change to the
numerator and the change to the denominator is bounded by3

2, then the resulting quantity
is also bounded by32.

Finally, we can achieve any distributionq, by starting with p(v1) = q(v1)

and p(v2) =
∑n

i=2 q(vi) and for i = 3, . . . ,n, moving q(vi) weight from p(v2)

to p(vi).

408 S. Irani

PROOF OFLEMMA 17. Consider the following linear program: minimizex subject to∑
{a,b}∈V2

w(c, {a,b})p({a,b}) ≤ x for all c ∈ V,

∑
{a,b}∈V2

p({a,b}) = 1,

p({a,b}) ≥ 0 for all {a,b} ∈ V2.

The claim is that the solution to the linear program is at most1
2. The dual linear

program is to maximizey subject to∑
c∈V

w(c, {a,b})q(c) ≥ y for all {a,b} ∈ V2,∑
c∈V

q(c) = 1,

q(c) ≥ 0 for all c ∈ V.

It suffices to show that for any distributionq, there is an{a,b} ∈ V2 such that∑
c∈V

w(c, {a,b})q(c) ≤ 1
2.

To this end, consider∑
{a,b}∈V2

q(a)q(b)
∑
c∈V

w(c, {a,b})q(c)

=
∑
{a,b}∈V2

∑
c∈V

q(a)q(b)q(c)w(c, {a,b})

=
∑

a,b,c∈V |a<b<c

q(a)q(b)q(c)[w(c, {a,b})+ w(b, {a, c})+ w(a, {c,b})]

=
∑

a,b,c∈V |a<b<c

2q(a)q(b)q(c).

We also use the following inequality:

1=
(∑

c∈V

q(c)

)3

≥
∑
c∈V

q(c)3+ 6
∑

a,b,c∈V |a<b<c

q(a)q(b)q(c).

Putting these together, we get that∑
{a,b}∈V2

q(a)q(b)
∑

c∈V w(c, {a,b})q(c)∑
{a,b}∈V2

q(a)q(b)

=
∑
{a,b}∈V2

q(a)q(b)
∑

c∈V w(c, {a,b})q(c)
1−∑a∈V q(a)2

Page Replacement with Multi-Size Pages and Applications to Web Caching 409

=
∑

a,b,c∈V |a<b<c 2q(a)q(b)q(c)

1−∑a∈V q(a)2

≤
(

1

3

)
1−∑c∈V q(c)3

1−∑a∈V q(a)2

≤ 1
2.

The last inequality comes from the technical lemma above. Thus, we know that for a
weighted average over{a,b},∑c∈V w(c, {a,b})q(c) is bounded by1

2. This means that
there must be some{a,b} for which

∑
c∈V w(c, {a,b})q(c) ≤ 1

2.

References

[AAK] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems.Proceedings
of the10th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 31–40, 1999.

[AW] M.F. Arlitt and C.L. Williamson. Web server workload characterization: the search for invariants.
Performance Evaluation Review, 24(1):126–137, May 1996.

[B] L.A. Belady. A study of replacement algorithms for virtual storage computers.IBM Systems
Journal, 5:78–101, 1966.

[BCC+] A. Betsavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mirdad. Application-level
document caching in the internet.Proceedings of the Second International Workshop on Services
in Distributed and Networked Environments, pp. 166–173, June 1995.

[CI] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. InProceedings of the USENIX
Symposium on Internet Technologies and Systems, pp. 193–206, 1997.

[CK] E. Cohen and H. Kaplan. LP-based analysis of greedy-dual size.Proceedings of the10th Annual
ACM–SIAM Symposium on Discrete Algorithms, pp. 879–880, 1999.

[DHS] P.B. Danzig, R.S. Hall, and M.F. Schwartz. A case for caching file objects inside internetworks.
Proceedings of ACM Sigcomm, pp. 239–248, September 1993.

[F] A. Fiat. Private communication.
[FKIP] A. Feldman, A. Karlin, S. Irani, and S. Phillips. Private communication.

[FKL+] A. Fiat, R. Karp, M. Luby, L.A. McGeoch, D. Sleator, and N.E. Young. Competitive paging
algorithms.Journal of Algorithms, 12:685–699, 1991.

[KMR] T.T. Kwan, R.E. McGrath, and D.A. Reed. NCSA’s World Wide Web server: design and perfor-
mance.IEEE Computer, 28(11):68–74, November 1995.

[KMRS] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy caching.Algo-
rithmica, 3(1):79–119, 1988.

[KPR] A.R. Karlin, S.J. Phillips, and P. Raghavan. Markov paging.Proceedings of the33rd IEEE
Symposium on Foundations of Computer Science, pages 208–217, 1992.

[LPR] C. Lund, S. Phillips, and N. Reingold. Ip over connection-oriented networks and distributional
paging. Proceedings of the35th IEEE Symposium on Foundations of Computer Science, pages
424–435, 1994.

[M] E.P. Markatos. Main memory caching of web documents.Computer Networks and ISDN Systems,
28(7–11):893–905, May 1996.

[ST] D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications
of the ACM, 28:202–208, 1985.

[T] R.E. Tarjan. Amortized computational complexity.SIAM Journal on Discrete Mathematics, 6(2),
1985.

[WAS+] A. Williams, M. Abrams, C.R. Stanbridge, G. Abdulla, and E.F. Fox. Removal policies in network
caches for world-wide web documents.Computer Communications Review, 26(4):293–305,
October 1996.

[Y1] N. Young. Thek-server dual and loose competitiveness for paging.Algorithmica, 11:525–541,
1994.

[Y2] N. Young. Online file caching.Proceedings of the9th Annual ACM–SIAM Symposium on Discrete
Algorithms, pp. 82–86, 1998.

