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Augmenting Trees to Meet Biconnectivity and
Diameter Constraints1

V. Chepoi2 and Y. Vaxes2

Abstract. Given a graphG = (V, E) and a positive integerD, we consider the problem of finding a
minimum number of new edgesE′ such that the augmented graphG′ = (V, E ∪ E′) is biconnected and has
diameter no greater thanD. In this note we show that this problem is NP-hard for all fixedD, by employing a
reduction from the DOMINATING SET problem. We prove that the problem remains NP-hard even for forests
and trees, but in this case we present approximation algorithms with worst-case bounds 3 (for evenD) and 6
(for oddD). A closely related problem of finding a minimum number of edges such that the augmented graph
has diameter no greater thanD has been shown to be NP-hard by Schoone et al. [21] whenD = 3, and by Li
et al. [17] whenD = 2.

Key Words. Biconnectivity augmentation, Diameter, Radius, Trees, Approximation algorithms.

1. Preliminaries. The problem of augmenting a graph to reach a certain connectivity
requirement by adding new edges is one of the important problems of network reliability
and fault-tolerant computing. In the most basic version, given an undirected graphG =
(V, E) one should add a minimum number of edgesE′ such that the augmented graph
G′ = (V, E ∪ E′) is biconnected. Eswaran and Tarjan [9] characterized the minimum
number of edges which must be added, leading to a linear time algorithm for this problem
[20], [12]; for a survey of related problems and results see [14]. In this note we consider
the biconnectivity augmentation problem with an additional diameter constraint:

PROBLEM BADC (Biconnectivity Augmentation under Diameter Constraints). Given
a graphG = (V, E) and a positive integerD, add a minimum number of new edgesE′

such that the augmented graphG′ = (V, E ∪ E′) is biconnected and has diameter no
greater thanD.

Biconnectivity is a fundamental requirement to the topology of communication networks:
a biconnected network survives any single link or single node failure (the probability
of two or several simultaneous failures is much smaller). Since the delay of sending a
message from nodeu to nodev is roughly proportional to the number of nodes (or links)
the message has to traverse, it is desirable to route the messages along paths as short as
possible. Therefore a network having an underlying graph of small diameter ensures a
low communication delay between any two nodes (the all-to-all communication model).
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Problem BADC can be viewed as a network improvement problem whereG is the
initial communication network and a minimum number of additional communication
links must be added so that the upgraded networkG′ meets the biconnectivity and the
diameter requirements.

In Section 2 we show that problem BADC is NP-hard for trees. Moreover, we establish
that this problem and the related

PROBLEM ADC (Augmentation under Diameter Constraints). Given a graphG and a
positive integerD, add a minimum number of edges to obtain a graph of diameter at
mostD

are NP-hard for any fixedD ≥ 2. Our reduction shows that both problems BADC and
ADC are at least as difficult as the SET COVER or DOMINATING SET problems.
From recent nonapproximability results for SET COVER [1], [2], [10], [19] it follows
that unless P= NP there are no constant approximation polynomial time algorithms for
both BADC and ADC and any fixedD. After completing a part of this work we learned
about papers [21] and [17]; Schoone et al. [21] show that ADC is NP-hard whenD = 3,
while Li et al. [17] proved that the same problem is NP-hard whenD = 2.

In Section 3 we present polynomial time approximation algorithms for problem
BADC (and for ADC and even values ofD) in trees and forests. Additionally, we
show that for trees one can solve in polynomial time the radius version of ADC (this
version is motivated by the one-to-all communication model):

PROBLEM ARC (Augmentation under Radius Constraints). Given a graphG and a pos-
itive integerR, add a minimum number of edges such that the augmented graph has radius
no greater thanR.

Note that an optimal solution of ARC can be found by solving the following problem
for each vertex and selecting a solution with the minimum number of edges:

PROBLEM AEC(G, R, b) (Augmentation under Eccentricity Constraints). Given a
graphG = (V, E), a positive integerR, and a vertexb ∈ V , find a minimum aug-
mentationE′ such that in the graphG′ = (V, E ∪ E′) the eccentricity ofb is no greater
thanR.

We conclude this introductory section with a few necessary definitions. A polynomial
algorithm is called anα-factor approximationalgorithm for a minimization problem5
if for each instanceI of 5, it returns a solution whose value is at mostα times the
optimal value ofI plus a constant not depending onI . For a graphG = (V, E) and two
verticesu, v ∈ V , we denote bydG(u, v) thedistancebetween these vertices (ifu and
v are in distinct connected components ofG we setdG(u, v) = ∞). Theeccentricity
eG(u) of a vertexu is the distance to a vertex furthest fromu. Thediameterdiam(G)
and theradiusrad(G) of G are respectively the largest and the smallest eccentricities of
vertices ofG. For a positive integerk and a vertexu ∈ V let

B(u, k) = {v ∈ V : dG(u, v) ≤ k}
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denote theball centered atu of radiusk. A Helly graphis a graph in which every family
of pairwise intersecting balls has a nonempty intersection. Trees are simplest examples
of Helly graphs; see [3].

2. NP-Completeness. The decision variants of four problems formulated in the intro-
duction evidently belong to the class NP. In all subsequent proofs of NP-completeness
we present pseudo-polynomial transformations from some known NP-complete in the
strong sense problems to BADC, ADC, and AEC . From Lemma 4.1. of [11] it follows
that the decision variants of all four problems are NP-complete as well.

2.1. General Graphs

PROPOSITION1. Problems BADC, ADC, ARC, and AEC are NP-hard for any fixed
integers D≥ 2 and R≥ 2.

PROOF. We present pseudo-polynomial transformations from the problems SET COVER
and DOMINATING SET. We distinguish two cases.

Case1: D = 2. To settle this case, we need the following variant of SET COVER
which we prove to be NP-hard.

PROBLEM SET COVER2. Given a setX of n elements to be covered and a collection
of subsetsS of X such that every element ofX belongs to at least two sets, while each
pair of elements ofX belongs to a common set ofS, find a subcollection of setsS ′ that
forms a cover andcS := |S ′| is minimized.

CLAIM . SET COVER2 is NP-hard.

The given proof of the claim was suggested by the referee and uses the fact that it
is NP-hard to find a cover consisting of exactlyq sets for a family of sets, each of size
3, over a ground set of 3q elements (EXACT COVER BY 3-SETS). Indeed, take an
instanceS0 of this problem and extendS0 to the collectionS by adding all pairs of
elements ofX. Clearly, the instanceS0 has answer “yes” if and only if the instanceS of
SET COVER2 has an optimal solution of sizeq (sets of size 2 are useless).

We polynomially transform SET COVER2 to BADC and ADC withD = 2. Let an
arbitrary instance of SET COVER2 be given by a setX = {x1, . . . , xn} and a collection
S = {S1, . . . , Sm} of subsets ofX. We construct a graphG = (V, E) by creating a
vertex for each element ofX and each set ofS, and adding three new verticesa1,a2,
andb. Define an edge between each pairSi , Sj of sets, and between the verticesa1 and
a2 and everySj . An edge betweenxi andSj exists if and only ifxi ∈ Sj . Additionally
assume thatb is adjacent only with the verticesa1 anda2; see Figure 1 for an illustration.
The resulting graphG is biconnected and all pairwise distances exceptdG(b, xi ) are at
most 2.

We assert thatcS ≤ k if and only if there is a solution of BADC (or ADC) with at
mostk edges. IfS ′ ⊆ S is a set cover, then by adding an edge betweenb and each vertex
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Fig. 1.ARC instance resulting from SET COVER.

representing a subset ofS ′ we will get a graph of diameter 2. Conversely, suppose there
exists a feasible augmentation ofG using at mostk edges. One can easily check that it can
be replaced by a solutionE′ of the same size which consists solely of edges connecting
b with vertices designing subsets ofS. Indeed, an edgexi Sj can be replaced by an edge
bSl , wherexi ∈ Sl . The edgebxi and all edges of the typexi xj can be replaced by the
same number of edges betweenb and subsets containing the corresponding elements.
The same operation can be performed with all edges of typeal xi . Thus all edges ofE′

have the formbSj . The collectionS ′ = {Sj : bSj ∈ E′} coversX, settling Case 1. This
shows also that ARC and AEC are NP-hard forR= 2.

Case2: D ≥ 3. SetD := 2R+2 for evenD andD := 2R+1 for oddD, whereR> 0.
We present a pseudo-polynomial transformation from DOMINATING SET. (Recall its
formulation: given a graphG = (V, E) and an integerk > 0, is there a subsetS of
vertices with|S| ≤ k whose neighborhoodsB(s,1), s ∈ S, coverV?) To construct an
instance of problem ADC we proceed in the following way. First, we take a copyV ′

of V , transform it into a clique, and make adjacent every vertexv′ ∈ V ′ with its twin
v ∈ V and all neighbors ofv in G. Then add a vertexa adjacent to all vertices ofV ′ and
a vertexb adjacent toa. For each vertexv ∈ V add a pathPv of lengthR− 1 issuing
from v. Finally, addn := 2|V |+1 pathsQ1, . . . , Qn with one end inb, and each having
lengthR+1 if D = 2R+2 and lengthR if D = 2R+1. Denote the resulting graph by
H. As an instance of problem AEC we consider graphH , vertexb, and the eccentricity
R+ 1. For an illustration of these constructions see Figure 2. To define an instance of
problem BADC, we take a copyH ′ of H and make adjacent every vertexv′ of H ′ with
its twin v and all its neighbors inH. The resulting graphH∗ is biconnected.

We assert thatG has a dominating set of sizek if and only if problems ADC and
AEC on graphH or problem BADC on graphH∗ have a solution consisting ofk edges.
Notice thatdH (x, y),dH∗(x, y) ≤ D, unlessx is the end-vertex of aQ-path andy is the
end-vertex of aP-path or vice versa (further, we suppose thatx andy are vertices of first
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Fig. 2.ARC and ADC instance resulting from DOMINATING SET.

type). If S is a dominating set ofG, then we may define a feasible solution of problems
ADC, AEC, and BADC of size|S| by adding the edgesbs, s ∈ S.The eccentricity ofb in
the augmented graph0 is R+1: indeed,d0(b, y) = 1+R−1= R if y is the end-vertex
of a pathPs with s ∈ S, andd0(b, y) = 2+ R−1= R+1 otherwise. This implies that
d0(x, y) = d0(x,b)+R= D−1 in the first case andd0(x, y) = d0(x,b)+R+1= D
in the second case, therefore the diameter of0 is D. Conversely, assume that there is a
solution of ADC onH (respectively, BADC onH∗) consisting ofk (≤ |V |) edges. From
the choice ofn one can easily deduce that at least one of the pathsQ1, . . . , Qn, does
not contain vertices incident to added edges. This means thatk is at least as large as the
number of edges in a solution of problem AEC. Since the converse also holds, we may
find a solution of AEC(H, R+ 1,b) consisting ofk edges. We need an auxilliary result.

LEMMA 1. Given a graph H, a vertex b, and a positive integer r, there is an optimal
solution of problem AEC(H, r,b) consisting entirely of edges incident to b(i.e.,a solution
in the form of a star centered at b).

PROOF. Let E′ be an arbitrary optimal solution of AEC. Denote byH ′ the graph
obtained fromH by adding the edges ofE′. Every edgeuv ∈ E′, u, v 6= b, belongs
to a shortest path ofH ′ (of length at mostr ) connectingb with a vertexq (otherwise
we can remove the edgeuv from E′). This implies that the verticesu andv are not
equidistant fromb. SupposedH ′(u,b) < dH ′(v,b). Replace inE′ every edgeuv by the
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edgevb. Since in the new graphH ′′ still dH ′′(b,q) ≤ r , we get an optimal solution of
AEC(H, r,b) in the form of a star centered atb.

By Lemma 1 there is a solution of AEC(H, R+ 1,b) which induces a star centered
at b. Replace in this star every edgebu such that eitheru = v′ ∈ V ′ or u ∈ Pv by
the edgebv. Clearly, the new set of edges is a solution of AEC(H, R+ 1,b) and also
defines a star centered atb. The tips of this star constitute a subsetSof size at mostk of
the vertex-set ofG. We assert thatS is a dominating set ofG. Suppose not; then there
exists a vertexv ∈ V at distance≥ 2 from every vertex ofS. Let p be the end-vertex of
the pathPv. ThendH (b, p) = dH (b, v) + d(v, p) ≥ 3+ R− 1 = R+ 2, contrary to
the fact that we have a solution of AEC(H, R+ 1,b). ThusS is a dominating set ofG,
concluding the proof of Proposition 1.

The proof of Proposition 1 shows that every feasible solution of sizek of each of
the problems BADC, ADC, ARC, and AEC leads to a feasible solution of the same
size for the corresponding problem SET COVER2 (D = 2) and DOMINATING SET
(D ≥ 3) and vice versa. Therefore anα-factor approximation algorithm for any one
of the four first problems would lead to anα-factor approximation algorithm for the
last two problems. On the other hand, there is a simple polynomial reduction showing
that anα-factor approximation algorithm for SET COVER2 would lead to a 2α-factor
approximation algorithm for SET COVER. Indeed, take an instanceS0 of SET COVER
and extendS0 to the collectionS as in the proof of the claim. Clearly,cS ≤ cS0. Let
S ′ be a solution of the instanceS returned by anα-factor approximation algorithm for
SET COVER2. We can derive a feasible solutionS ′0 for SET COVER by replacing every
2-element set ofS ′ which is not in a set ofS0 by one or two sets ofS0 containing the
corresponding elements. Since|S ′0| ≤ 2|S ′| ≤ 2αcS ≤ 2αcS0, we are done. Hence, our
four augmentation problems are at least as difficult as SET COVER which isÄ(logn)-
hard unless P= NP [10], [1], [19].

On the other hand, one can solve ARC and AEC using SET COVER. As we noticed
before, a solution for ARC can be obtained by solving problem AEC for each vertex of
the input graphG = (V, E). To solve AEC(G, R,b) we proceed in the following way.
By Lemma 1 there is a solution in the form of a star and we will search for a solution
of this type. Notice that in the graph augmented in this way every shortest path issuing
from b contains at most one new edge. For a potential new edgebu let Su be a subset of
V consisting of all verticesv ∈ V such thatdG(b, v) > R butdGu(b, v) ≤ R, whereGu

is the graph obtained fromG by adding the edgebu. Denote byS the resulting collection
of subsetsSu,u ∈ V. If S ′ is a minimum cover ofS, thenE′ = {bu: Su ∈ S ′} is an
optimal solution of AEC(G, R,b). Similarly, a version of ADC asking for a minimum
augmentation of graphG to obtain a graph in which every pair of vertices can be
connected by a path of length at mostD which uses at most one new edge can be solved
using SET COVER (note that the proof of Proposition 1 can be easily adapted to show
that this problem is NP-hard as well). For verticesu, v let Guv be the graphG plus
the edgeuv, and denote bySuv the set of all pairsxy, such thatdGuv(x, y) ≤ D and
dG(x, y) > D. Then taking a minimum set cover of the collectionS = {Suv: u, v ∈ V}
we obtain an optimal solution of this version of ADC.
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2.2. Trees and Forests

PROPOSITION2. Problem BADC remains NP-hard for trees.

PROOF. We present a pseudo-polynomial transformation from 3-PARTITION. Recall
the formulation of this basic NP-complete problem.

3-PARTITION. Given a setA of 3m elements, a boundB ∈ Z+, and a sizes(a) ∈ Z+,
such that eachs(a)satisfiesB/4< s(a) < B/2 and such that

∑
a∈A s(a) = mB, canAbe

partitioned intomdisjoint setsS1, S2, . . . , Sm such that, for 1≤ i ≤ m,
∑

a∈Si
s(a) = B?

(The above constraints on thes(a)’s imply that everySi must contain exactly three
elements fromA.) First we present a transformation from 3-PARTITION to BADC on
forests (which seems especially simple and elegant), and then we show how to modify
this construction to get a transformation to the problem on trees.

Let A = {a1,a2, . . . ,a3m}, B ∈ Z+, ands(a1), s(a2), . . . , s(a3m) ∈ Z+ be an ar-
bitrary instance of 3-PARTITION. SetD := B + 6. Define a forestF consisting of
a “bistar” S formed by a pathP0 of length D + 1 plusm leaves at each end, and 3m
paths, where thei th pathPi corresponds to the elementai ∈ A and has lengths(ai ); see
Figure 3(a). Letx0 andy0 be the end-vertices ofP0. We assert that 3-PARTITION has
answer “yes” if and only if there exists a solution of problem BADC inF with D = B+6
which has at most 4m edges.

The forestF contains 8m leaves. Since any leaf needs a new edge in a biconnected
augmentation, the smallest biconnectivity augmentation ofF consists of exactly 4m
edges, therefore any feasible solution of the corresponding instance of BADC contains
at least 4m edges. Every biconnected graphH obtained fromF by adding exactly 4m

Fig. 3.NP-hardness for forests.
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edges has a rather precise shape. Namely,H consists ofm cyclesC1,C2, . . . ,Cm glued
together along the pathP0. We call the content of a cycleCi minus the edges ofP0 an
ear and denote it by Eari . It consists of two edges ofS, one incident tox0 and the other
to y0 (after a suitable relabeling, we may assume without loss of generality that these
are the edgesx0xi andy0yi ), a certain number of paths (which maybe equal to 0 in the
degenerate case), and some new edges each connecting either the end-vertices of two
paths or an end-vertex of a path withxi or yi (in the degenerate case, Eari is formed by
the edgesx0xi , y0yi , and the new edgexi yi ). For an illustration see Figure 3(b). Letl i
be the length of Eari . Clearly,

∑m
i=1 l i = mB+ 6m.We call an earbig, normal, or small

if its length is, respectively, larger than, equal to, or smaller thanB+ 6.
First, suppose that the required 3-partitionS1, S2, . . . , Sm of A exists. Then biconnect

F by adding the following 4m new edges: for everySi = {ai1,ai2,ai3} add an edge
betweenxi and one end ofPi1, an edge between the second end ofPi1 and one end ofPi2,
an edge between the second end ofPi2 and one end ofPi3, and, finally, an edge between
the second end ofPi3 and the vertexyi ; see Figure 3. All ears of the resulting graphH
are normal, therefore the distance inH between two vertices located on different ears
is at mostD. Every cycleCi has length 2B + 13= 2D + 1, thus the distance between
a vertex on Eari and a vertex onP0 does not exceedD as well. This shows that the
diameter ofH is D.

Now suppose that we are given a solution of BADC consisting of 4m edges. LetH
be the augmented graph. To establish that a required 3-partition ofA exists, it suffices
to show that all ears ofH are normal. Assume the contrary, i.e, the graphH contains a
big ear, say Ear1. The length of the cycleC1 is at least 2B + 14, therefore the distance
in H between the middle vertexz0 (one of the two middle vertices ifB+7 is odd) ofP0

and its opposite vertex (or one of its opposite vertices if|C1| is odd) inC1 is larger than
D = B+6, contrary to the choice ofH.This establishes that BADC is NP-hard for forests.

To establish the same result for trees we have to modify the previous construction.
First, instead of taking paths of lengths(ai ) we take paths of lengthl i := 24s(ai ). Set
D := 24B + 6 and, as in the previous case, letP0 be a path of lengthD + 1 between
x0 andy0. Let zi denote the middle vertex of the pathPi for i = 1, . . . ,n and letz0 be
the middle vertex ofP0 at distance 12B+4 fromx0. As an instance of BADC we define
a treeT obtained from the forestF (with updated lengths) by adding a star centered at
a new vertexc0 : it consists of a pathQ0 of length 13B + 3 betweenc0 andz0, and
3m pathsQi of length 8B + 1 joining the vertexc0 with the vertexzi , i = 1, . . . ,m;
see Figure 4. The pathsQ0, Q1, . . . , Q3m pairwise intersect only in the vertexc0. As
before, we assert that 3-PARTITION has answer “yes” if and only if there is a solution
of BADC onT with D = 24B+6 using at most 4m edges. As in the case of forests, any
biconnected augmentation ofT needs at least 4m edges, and every biconnected graph
H obtained fromT by adding exactly 4m edges has the same form:m ears Ear1, . . . ,
Earm, the pathP0, and, additionally, the pathsQ0, Q1, . . . , Q3m.

Since everys(ai ) is an integer andB/4< s(ai ) < B/2, one can easily deduce that

6B+ 6≤ l i ≤ 12B− 12

and

3B+ 3≤ l i /2≤ 6B− 6.
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Fig. 4.NP-hardness for trees.

First, suppose that the required 3-partition{S1, S2, . . . , Sm} of A exists. BiconnectT
as in the case of forests, previously ordering the elements of each tripletSi = {ai1,ai2,ai3}
so thatai1 ≤ ai3 ≤ ai2. Then obviouslyl i1 ≤ l i3 ≤ l i2, and, sincel i1 + l i2 + l i3 = 24B,
we conclude thatl i3 ≤ (24B− (6B+ 6))/2= 9B− 3 and(l i1 + l i3) ≤ 16B.We assert
that the diameter ofH is at mostD. Pick two verticesu, v of H. If one vertex is located
on a pathQi , i > 0, and another vertex is either on some ear or on some pathQj ,
then

dH (u, v) ≤ (8B+ 1)+ (8B+ 1)+ (6B− 6) = 22B− 4< D.

In the remaining cases we assert thatu andv lie on a common cycleC of length at most
2D + 1, yieldingdH (u, v) ≤ D. This assertion obviously holds if both verticesu, v are
located on ears, or one vertex is on an ear and another one is on the pathP0. If u ∈ Q0

andv ∈ Eari , then the role ofC is played by the cycle consisting ofQ0, Qi2, and the
half of Ci betweenzi2 andz0 which passes viav. Since the unique pathPj of Eari that
belongs entirely toC is not the longest path of this ear, its length is at most 9B − 3.
Hence the length ofC is at most

(12B+ 4)+ (13B+ 3)+ (8B+ 1)+ (6B− 6)+ (9B− 3)+ 3= 48B+ 2< 2D+ 1.

Finally, suppose thatu ∈ P0 and v ∈ Qj , j > 0. Two subcases can be distin-
guished. If j = i2, whereSi = {ai1,ai2,ai3}, then letC be the cycle consisting of
Q0, Qi2, and the half ofCi betweenz0 and zi2 passing viau. SinceC is a cycle of
the same kind as in the previous case, its length is at most 2D + 1. If j = i3 or
i1, then letC be the cycle consisting ofQi1, Qi3, and the half ofCi betweenzi1 and
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zi3 passing viau. Since(l i1 + l i3)/2 ≤ 8B, we conclude that the length ofC is at
most

(24B+ 7)+ (16B+ 2)+ 8B+ 4= 48B+ 13= 2D + 1.

This shows that the graphH indeed has diameterD.
To establish the converse, letH be a solution of BADC obtained fromT by adding

exactly 4m edges. To show that 3-PARTITION has answer “yes” it suffices to prove that
all ears ofH are normal. We proceed in two stages: first we prove that every ear consists
of three paths and then we show that they are normal. Since the 3m paths are distributed
over m ears, either all ears have three paths each or there exists an ear containing at
least four paths. Suppose by way of contradiction that Eari contains at least four paths
Pi1, Pi2, Pi3, Pi4 ordered as they occur inCi starting fromxi . Let v be the furthest from
xi end-vertex of pathPi2. First, note that every(z0, v)-path passing viac0 has length at
least

(13B+ 3)+ (8B+ 1)+ (3B+ 3) = 24B+ 7> D.

On the other hand, every(z0, v)-path passing viax0 or y0 has length at least

(12B+ 3)+ 2+ (6B+ 6)+ 1+ (6B+ 6) = 24B+ 18> D.

The obtained contradiction shows that every ear comprises precisely three paths, thus its
length is at least 3(6B + 6) + 6 = 18B + 24. We continue by showing that all ears of
H are actually normal. Suppose not, and let Eari be big. Pick the vertexu ∈ P0 located
at distance 7B+ 2 from z0 and at distance 5B+ 2 from x0. Let v be the vertex opposite
u in the cycleCi . From the choice of Eari , each of the two(u, v)-paths ofCi has length
greater thanD. On the other hand, since the length of each ear is at least 18B + 24,
one concludes that the subpath ofP0 comprised betweenu and y0 is a shortest path
between these vertices inH. HencedH (u, y0) = (7B + 2) + (12B + 3) = 19B + 5.
In order to havedH (u, v) ≤ D, no shortest(u, v)-path can pass via the vertexy0. Thus
such a path must pass viac0, whencedH (u, v) = dH (u, c0) + dH (c0, v). Notice that
dH (c0, v) ≥ 8B + 1. On the other hand, we assert thatdH (u, c0) ≥ 16B + 8. Indeed,
the length of every(u, c0)-path passing viax0, some vertexxj , one half of the pathPj1,
and the pathQj1 is at least(5B+ 2)+ 2+ (3B+ 3)+ (8B+ 1) = 16B+ 8, while the
length of the(u, c0)-path passing viaz0 is (7B + 2) + (13B + 3) = 20B + 5. Hence
dH (u, c0) ≥ 16B+8, and, as a consequence,dH (u, v) ≥ 24B+9, contrary to the choice
of H. This shows that all ears ofH are normal, whence there exists a feasible 3-partition
of A, thus completing the proof of Proposition 2.

3. Approximation Algorithms for Trees and Forests. In this section we present poly-
nomial time approximation algorithms for solving problems BADC and ADC for trees,
forests, and, more generally, for graphs on which the domination and thek-domination
problems can be solved efficiently. Our solution is mainly based on the linear time algo-
rithm for solving thek-DOMINATING SET problem on these graphs and the relationship
between this problem and problem AEC. Recall, given a graphG = (V, E) and a set
X ⊆ V , k-DOMINATING SET consists in finding a covering ofX with a minimum
number of balls of radiusk. This problem can be solved in linear time for trees [7], [13],
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sun-free chordal graphs [8], and dually chordal graphs [6] (dually chordal graphsare
the Helly graphs whose intersection graph of balls is chordal, or, equivalently, graphs
whose ball hypergraph is a hypertree), and in polynomial time for all Helly graphs whose
intersection graph of balls is perfect.

3.1. Even Diameter. We continue by showing how to reduce problem AEC(G, R,b)
to k-DOMINATING SET. For this, setX := V − B(b, R) andk := R− 1. For an
augmentationE′ of G which induces a star centered atb denoteS′ = {s: bs∈ E′} and
G′ = (V, E ∪ E′) (by Lemma 1 such a star-solution always exists); see Figure 5 for an
illustration.

LEMMA 2. The set of new edges E′ is a solution of AEC(G, R,b) if and only if S′ is a
solution of a given instance of the k-DOMINATING SET problem.

PROOF. If the setX is covered by the ballsB(s, R− 1), s ∈ S′, then for any vertex
x ∈ X there is a vertexs ∈ S such thatdG′(x,b) ≤ dG(x, s) + 1 ≤ R. Notice thats
is not adjacent tob in G, otherwisex ∈ B(b, R). ThusE′ is a feasible solution for the
eccentricity problem. Conversely, if the eccentricity ofb in the augmented graphG′ is
at mostR andv ∈ V , then eitherdG(b, v) ≤ R and thenv belongs to the ballB(b, R),
or a shortest path ofG′ betweenv andb uses a new edgebs. Since this path does not
contain other new edges, we havedG(s, v) ≤ R− 1. This shows thatS′ is a solution for
k-DOMINATING SET.

To solve problem ARC on a graphG, we must solve AEC(G, R,b) for every vertex
b and among all solutions pick an admissible augmentation with the least number of

Fig. 5.A star-solution.
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edges. The complexity of this procedure isO(|V ||E|) for all graphsG in which k-
DOMINATING SET can be solved in linearO(|E|) time, in particular for trees.

LEMMA 3. If G is a Helly graph, then an optimal solution for problem ARC constructed
by the previous method is a2-factor approximation for problem ADC with D= 2R.

PROOF. Obviously, if we take a feasible solution for ARC in the form of a star, then
the augmented graph has diameter at most 2R.Conversely, letE′ be an optimal solution
for ADC and letG′ be the augmented graph. Denote byP the set of end-vertices of the
edges fromE′. Take around each vertexp ∈ P the ballB(p, R− 1), and letQ be the
set of vertices ofG not covered by such balls, i.e.,Q := V −⋃{B(p, R− 1): p ∈ P}.
We assert that the diameter ofQ is at mostD, in other words, thatdG(u, v) ≤ D for any
u, v ∈ Q. Suppose not and letdG(u, v) > D for someu, v ∈ Q. SincedG′(u, v) ≤ D,
every shortest path inG′ betweenu andv will use at least one new edge. This means
that such a path consists of three tiles: a subpath fromu until the first vertexpu from P,
followed by a tile consisting of subpaths ofG and one or several new edges ending with
the last vertexpv of P, and, finally, a subpath ofG from pv tov.Sinceu /∈ B(pu, R−1)
andv /∈ B(pv, R− 1), we deduce thatdG′(u, v) ≥ R+ 1+ R > D, contrary to the
choice ofE′. Thus the distance inG between any two vertices ofQ is at most 2R, thus
the ballsB(q, R),q ∈ Q, pairwise intersect. SinceG is a Helly graph, these balls have a
vertexb in common (which is not necessarily a vertex ofQ). SetE′′ = {bp: p ∈ P}−E.
Clearly, E′′ is an admissible solution for problem AEC(G, R,b). Since|E′′| ≤ 2|E′|
(the worst case occurs whenE′ is a matching onP), we obtain the desired inequality.

PROPOSITION3. There is a3-factor approximation algorithm for problem BADC with
D = 2R on trees and forests(and, more generally, on dually chordal graphs) with
complexity O(|V ||E|).

PROOF. The algorithm constructs an admissible augmentation by solving separately
the biconnectivity augmentation problem and problem ARC. Letc′ edges be used to
biconnect the input graph and let otherc′′ edges be used to solve the augmentation
problem under radius constraints. Suppose that an optimal solution for BADC hasc
edges. Sincec ≥ c′ andc′′ ≤ 2c by Lemma 3, we are done.

One can construct examples of trees for which the heuristic employed to solve problem
ADC does not find an optimal solution. If, for example, we take the path on five vertices
andD = 2, then our algorithm will add two edges, while the optimal augmentation uses
only one edge and the augmented graph is the 5-cycle. Next, if we consider the path on ten
vertices andD = 2, then we will add seven edges, while the optimal augmentation uses
six edges and the augmented graph is the Petersen graph. One of the main results of [21]
establishes that forn ≥ 11 andD = 2 an optimal augmentation of a path onn vertices
hasn − 3 edges, i.e., our augmentation in the form of a star is optimal. Nevertheless,
we were not able to find examples of trees for which the difference between the star-
augmentation and the optimal augmentation is larger than one, or to prove that problem
ADC remains NP-hard for trees or forests. We leave this as anopen questionand actually
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conjecturethat there exists a constantα not depending on the treeT and of the value of
D such that either there is a solution of ADC with at mostα edges or the star-solution of
problem ARC is an optimum for ADC (this will result in a polynomial time algorithm
for ADC on trees); in the most optimistic version one can suppose thatα ≤ 6.

As to problem BADC on forests, we can present examples for which the number of
edges added by our algorithm is twice the number of edges in an optimal augmentation.
For this, consider a forest consisting ofD isolated edges. An optimal biconnectivity
augmentation hasD edges, and the resulting graph is a simple cycle of length 2D, thus
an optimal solution for BADC. On the other hand, our augmentation will use 2D − 2
edges. For the forests occurring in the proof of Proposition 2 the error ratio is 7/4.

In Appendix A we consider problem BADC for two particular classes of trees: (i) stars
(consisting of a center andk paths of lengthsp1, . . . , pk) and (ii) trees with a few leaves
(trees withn vertices and at mostn/(µ(2R− 1)) leaves, whereµ ≥ 1). In both cases
we slightly modify our heuristic in order to get better approximations.

3.2. Odd Diameter. Finally, consider problem BADC on forests for oddD = 2R+ 1.
The simplest approach to design a polynomial approximation algorithm for BADC is to
find such an algorithm for problem ADC, and then to proceed as in the caseD = 2R.
Unfortunately, designing an approximation algorithm for ADC seems to be more difficult
than in the case of even diameter. Instead, we address directly problem BADC and show
that a version of the heuristic used for BADC withD = 2R is an approximation algorithm
for D = 2R+ 1 as well.

LetT be a tree whose set of leaves isL .Denote bynR−1 andnR the minimum numbers
of balls of radiusR− 1 andR, respectively, necessary to coverT. Simple examples of
trees show that in general there are no relationships betweennR andnR−1.Nevertheless,
the following holds:

LEMMA 4.

nR−1 ≤
{

2nR+ |L|, if R ≥ 2,

3nR+ |L|, if R = 1.

Moreover, for any coveringCR = {B(s, R): s ∈ S} of T with balls of radius R there
exists a coveringCR−1 = {B(s, R− 1): s ∈ S′} of T with at most|L ∪ S| + |S| balls of
radius R− 1 if R ≥ 2 and with at most|L ∪ S| + 2|S| balls of radius R− 1 if R = 1,
such that L∪ S⊆ S′.

PROOF. It suffices to prove only the second assertion. Define a graph0 whose vertex set
is Sand two verticess′, s′′ ∈ Sare adjacent in0 if the path connectings′ ands′′ in T does
not contain other vertices ofS. We assert that0 is a block-graph, i.e., a graph in which
all maximal biconnected subgraphs (alias blocks) are complete subgraphs. First notice
that the graph0 is chordal: existence in0 of an induced cycleC = (x1, x2, . . . , xn, x1)

of lengthn > 3 would imply thatT has a cycle, because every vertexxi would lie
on the path ofT connecting the neighbors ofxi in C. It remains to show that0 does
not contain inducedK4 − e (a clique on four vertices minus one edge). Suppose the
contrary, and let all pairs of the quadrupleu, v, x, y except the pairxy be edges of0.
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Consider the smallest subtree ofT containing these vertices. All four vertices are tips
of this subtree, otherwise a nontip vertex will belong to at least two paths between three
other vertices, implying thatu, v, x, y do not induceK4 − e. This also infers that this
subtree cannot contain other vertices ofS. Therefore our quadruple induces a complete
subgraph of0, establishing that0 is indeed a block-graph. With every block-graph one
can associate a tree by taking the blocks as vertices and defining an edge between each
pair of blocks sharing a common vertex. Therefore, one can speak of pendant blocks of
0: they correspond to leaves of the associated tree.

Now we will transform the coveringCR of T into a coveringCR−1 consisting of at
most |L ∪ S| + |S| or |L ∪ S| + 2|S| balls of radiusR− 1 obeyingL ∪ S ⊆ S′. Let
m1 := |L|, m2 := |S|, andm3 := |L∩S|. First locate|L∪S| = m1+m2−m3 centers at
the leaves ofT and at the centers fromS.We still have to locatem2 centers ifR≥ 2 and
2m2 centers ifR= 1. For this we proceed by induction on the number of vertices ofT.
Pick a pendant blockB of 0, sayB = {s1, . . . , sk, sk+1}, where all vertices ofB except
possiblysk+1 do not belong to other blocks. Suppose without loss of generality thats1

is the furthest fromsk+1 vertex ofB. On the path betweens1 andsk+1 pick the closest
to sk+1 vertexs′1 which verifies the conditiondT (s1, s′1) ≤ 2R− 1 (s′1 can coincide with
sk+1). Let x be the neighbor ofs′1 in the path betweens′1 ands1.Denote byT ′ andT ′′ the
connected components obtained fromT after removing the edges′1x, and assume that
s1 ∈ T ′. Setm′1 := |L ∩ T ′|, m′2 := |S∩ T ′|, andm′3 := |(L ∩ S) ∩ T ′|. Locate ats′1 a
center of a ball ofCR−1.

We assert that the subtreeT ′ is covered by the ballB(s′1, R− 1) andm′1+m′2−m′3
balls of radiusR− 1 centered at the leaves ofT located inT ′ and at the vertices ofS
which belong toT ′.Suppose that this is not true, i.e., there exists a vertexz ∈ T ′ which is
not covered by any of these balls. In particular,dT (z, s′1) ≥ R. Denote byT0 the subtree
of T (andT ′) induced by all verticesy such thatz lies on the path betweeny ands′1. The
choice ofz implies thatT0 6= {z}, thus inT0 one can pick a leafz0 of T. Let B(sj , R) be
the ball ofCR coveringz0. SincedT (z, z0) ≥ R by our choice ofz, the vertexsj must be
located in the subtreeT0. On the other hand, sincedT (sj , z) ≥ R, we conclude that

dT (sj , s
′
1) = dT (sj , z)+ dT (z, s

′
1) ≥ 2R> 2R− 1= dT (s1, s

′
1).

ThereforedT (sj , sk+1) > dT (s1, sk+1), contrary to the choice ofs1. This establishes our
assertion.

Notice also thatB(s1, R) ⊆ T ′, except possibly the case whens′1 = sk+1 (then
obviously B(s1, R) ∩ T ′′ ⊆ B(sk+1, R)). On the other hand, it may happen that for
somesi ∈ T ′ the ballB(si , R) (i 6= 1) intersects the subtreeT ′′. Then, however, the ball
B(s′1, R−1)will contain this intersection (andm′2 ≥ 2 holds). Thus, the ballB(s′1, R−1)
covers all vertices ofT ′ not covered by the(R− 1)-balls centered at the vertices from
(L ∪ S)∩ T ′ and, eventually, all vertices ofT ′′ covered by the balls ofCR whose centers
are located inS∩ T ′.

Now, assume thatR ≥ 2 and apply the induction assumption to the treeT ′′. Its
leaves are the leaves ofT which are not inT ′ plus the vertexs′1. As a covering of
T ′′ with R-balls we take all balls ofCR whose centers are inT ′′, and, additionally, the
ball B(s′1, R), if it is employed to cover some vertices ofT ′′ covered solely by balls
of CR whose centers are inT ′ (if this happens, then we already noticed thatm′2 ≥
2). By the induction assumption, we can find a required covering ofT ′′ with at most
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(m1−m′1+ 1)+ 2(m2−m′2)− (m3−m′3) (R− 1)-balls if s′1 is used only as a leaf and
with at most(m1−m′1+ 1)+ 2(m2−m′2+ 1)− (m3−m′3+ 1) (R− 1)-balls if s′1 is
simultaneously a leaf and a center of a ball. The number of balls can be written as

(m1−m′1)+ 2(m2−m′2)− (m3−m′3)+ µ,

whereµ = 1 in the first case andµ = 2 in the second case. Recall that inT ′ we have
located otherm′1+m′2−m′3 balls of radiusR−1. Together with the balls fromT ′′, they
constitute a covering ofT with at mostm1+2m2−m3+ (µ−m′2) balls of radiusR−1.
Since in both cases we havem′2 ≥ µ, this is the desired covering.

The caseR = 1 is similar, but in order to use induction we also have to include in
S′ the neighbors′′1 of s′1 on the path betweens′1 andsk+1. Then we apply all arguments
from the previous case tos′′1 instead ofs′1.

To present an approximation algorithm for problem BADC on forests, we find a
covering with(R−1)-balls of the input forestF as in the proof of Lemma 4, pick a leaf
b, and add all edges betweenb and all centers of balls in the covering, except the ball
centered atb. Let E′′ be the set of added edges. Clearly, the complexity of this algorithm
is linear.

PROPOSITION4. The heuristic is a6-factor approximation algorithm for problem BADC
with D = 2R+ 1 for R≥ 2 and an8-factor approximation for R= 1.

PROOF. Let F be a forest whose set of leaves isL, and letnR be the minimum number
of R-balls necessary to coverF.First, if we add the edges found by our heuristic, then the
resulting graph is biconnected and has diameter at most 2R. Now, let E′ be an optimal
solution for BADC. Denote byP the set of end-vertices of the edges fromE′. Take
around each vertexp ∈ P the ball B(p, R), and letQ be the set of vertices ofF not
covered by such balls. As in Lemma 3, one can show that the diameter ofQ in F is
at mostD. ThereforeQ may be covered by one or two balls of radiusR (if we have
two balls, then their centers are adjacent). Hence|P| + 2 ≥ nR. From Lemma 4 we
deduce that either|E′′| ≤ 2nR+ |L| − 2 or |E′′| ≤ 3nR+ |L| − 2. Since|E′| ≥ |P|/2
and |E′| ≥ |L|/2, all these inequalities imply that 6|E′| ≥ |E′′| − 2 for R ≥ 2 and
8|E′| ≥ |E′′| − 4 for R= 1, establishing the required conclusion.

Finally, consider problem ADC on trees for oddD = 2R+ 1. For a positive integer
k and an edgeuvof T we call the setB(u, k)∪ B(v, k) anedge-ballcentered atuvwith
radiusk. A way to get an admissible augmentation for ADC would be to cover the tree
T with a certain numbern1 of edge-balls of radiusR and a certain numbern2 of balls of
radiusR− 1. Add all edges between the end-vertices of centers ofn1 edge-balls (in the
worst case, when the edge-centers will be pairwise disjoint, the added edges will create
a complete graphK2n1 minus a perfect matching) and then add an edge from the center
of each ball of radiusR− 1 to an end-vertex of some center of an edge-ball. In this way
we get a graph of diameterD and we inserted at mostn2 + 2n1(n1 − 1) new edges.
Now we have to find a covering ofT with edge-balls of radiusR and balls of radius
R−1 minimizing the quantityn2+2n1(n1−1).We call the resulting problemMIXED
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COVERING. Below we establish that an optimal solution for MIXED COVERING
provides a 6-factor approximation for problem ADC. However, we do not know whether
MIXED COVERING on trees is polynomially solvable or NP-hard, and we leave this
as anotheropen question. Obviously, MIXED COVERING can be solved by varying
the numbern1 of edge-balls, and, for each fixed value ofn1, by locating the edge-balls
to minimize the number of balls of radiusR− 1 necessary to cover the remaining part
of T. This problem is closely related to the followingMIXED CLIQUE COVERING
problem on chordal graphs (note that it is customary to formulate and solve the covering
problems of trees by subtrees as clique covering problems of underlying chordal graphs):
Given two graphsG = (V, E) andG0 = (V, E0)with E0 ⊆ E (G0 is a partial subgraph
of G) and an integern1, locaten1 cliques ofG so that the uncovered vertices can be
covered with a minimum number of cliques of the graphG0. As Bodlaender [4] showed,
MIXED CLIQUE COVERING is NP-hard if bothG andG0 are chordal graphs. Setting
G := T2R+1 andG0 := T2R−2, whereTk is thekth power of the treeT , we see that every
edge-ball of radiusR is a clique ofG and every(R− 1)-ball is a clique ofG0 and vice
versa, hence MIXED COVERING onT is reduced to MIXED CLIQUE COVERING
for chordal graphsT2R+1 andT2R−2.

PROPOSITION5. An augmentation provided by an optimal solution of MIXED COVER-
ING is a6-factor approximation for problem ADC with D= 2R+ 1 on trees.

PROOF. Let E′ be an optimal solution for ADC and letG′ be the augmented graph.
Denote byP the set of end-vertices of the edges fromE′, and letn2 := |P|. As in the
proof of Lemma 3, letQ := V −⋃{B(p, R− 1): p ∈ P}. Define a graphT2R+1(Q)
with Q as a vertex-set and two verticesu, v ∈ Q adjacent inT2R+1(Q) if and only if
dT (u, v) ≤ 2R+ 1. Notice that a setS⊆ Q is a stable set ofT2R+1(Q) if and only if
dT (x, y) > 2R+1 for anyx, y ∈ S.On the other hand, a cliqueC of T2R+1(Q) consists
of vertices ofQ with pairwise distances≤ 2R+1.The least subtreeT(C)of T containing
the setC has diameter≤ 2R+ 1, thus its radius is either≤ R or R+ 1. In the first case
T(C) can be covered by a ball of radiusR. In the second case,T(C) has two (adjacent)
central vertices andT(C) can be covered by two balls of radiusR centered at these
vertices. AnywayT(C) can be covered with an edge-ball of radiusR.As a consequence,
a covering ofT2R+1(Q) with a minimum number of cliques corresponds to a covering
of Q with a minimum numbern1 of edge-balls of radiusR. Since the graphT2R+1(Q)
is perfect (because it is chordal), the largest stable setY of T2R+1(Q) has cardinalityn1.

Pick two verticesu, v ∈ Y. SincedG′(u, v) ≤ R, every shortest path inG′ between
u andv will use an edge ofE′. Such a shortest path consists of a path ofT of length
R each connecting the vertexu to some vertexpu ∈ P, the new edgepu pv ∈ E′, and
the path ofT of length R connecting the vertexpu ∈ P to v. For a vertexu ∈ Y, let
Pu be the collection of all vertices ofP which occur aspu in such a path ofG′. Since
dT (u, v) > 2R+ 1 for distinct verticesu, v ∈ Y, we conclude thatPu ∩ Pv = ∅. Every
edge ofE′ occurring in a shortest(u, v)-path ofG′ cannot participate in a shortest path
of G′ between another pair of vertices ofY. Therefore|E′| ≥ n1(n1−1)/2.On the other
hand,|E′| ≥ n2/2. The feasible solution for ADC constructed using an optimal solution
for MIXED COVERING contains at mostn2 + 2n1(n1 − 1) edges. Hence this number
is at most 6|E′|.
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In Theorem 9.3 from [6] it is shown that DOMINATING SET remains NP-hard
for Helly graphs. If in Case 2 of the proof of Proposition 1 we take a Helly graph as
graphG, then one can easily show that the balls of the resulting graphH still obey the
Helly property. Therefore problems ADC and ARC remain NP-hard on Helly graphs
for all D ≥ 3. We were not able to establish that ADC is NP-hard for evenD and any
class of graphs where DOMINATING SET ork-DOMINATING SET can be solved in
polynomial time. Nevertheless, we can establish this fact for dually chordal graphs and
all odd D ≥ 3.

PROPOSITION6. Problem ADC remains NP-hard for dually chordal graphs and all odd
values of D≥ 3.

See Appendix B for the proof of this proposition.

Appendix A. Examples. Consider problem BADC on some particular instances of
trees. To analyze the performance of our heuristics we use the fact that every biconnected
graph of diameterD = 2R with n vertices contains at least(2R/(2R− 1))n − o(1)
edges. It is conjectured [16] thato(1) is actually 1, but it is established only thato(1) is
at most 4(4R− 2)R−1 (see Theorem 2.8 of [5]). If we apply this bound to biconnected
graphs of diameterD obtained from a treeT onn vertices, we deduce that every feasible
augmentation ofT uses at leastn/(2R− 1)+ 1− o(1) edges.

EXAMPLE 1 (Stars). First, suppose that the input treeT is a star with centerc andk
pathsP1, . . . , Pk of lengths p1, p2, . . . , pk. Trivially, T hasn := ∑k

i=1 pi − k + 1
vertices. Addk − 1 edges between the leafb of the pathPk and all remaining leaves.
Next locate atb the center of the ball of radiusR and atc a center of a ball of radius
R−1, and makec adjacent tob. It remains to cover with balls of radiusR−1 a subpath
of length pi − 2R of each pathPi (a subpath of lengthR− 1 of eachPi is covered
by the ball centered atb). This can be done withd(pi − 2R)/(2R− 1)e balls. Add an
edge betweenb and the center of every such ball, thus getting an admissible solution for
BADC. The number of added edges is

k∑
i=1

⌈
pi − 2R

2R− 1

⌉
+ k ≤

k∑
i=1

pi − 2R

2R− 1
+ 2k.

It can be easily seen that this number is smaller than or equal ton/(2R−1)+k.Comparing
this withn/(2R− 1)+ 1− o(1), one can conclude that for stars the error is augmenting
asymptotically with the number of paths in the star and not with their lengths. Second,
for stars with a few branches (say for paths) our heuristic gives an augmentation which
(asymptotically) provides not a factor approximation but an approximation within an
additive constant to the optimum.

EXAMPLE 2 (Trees with a Few Leaves). LetT = (V, E) be a tree withn vertices and
having at mostn/(µ(2R− 1)) leaves, whereµ ≥ 1. Suppose that the diameter ofT is
larger thanD = 2R, otherwise we are done. TransformT into a rooted tree whose root
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is a central vertexb of T. Pick a leafc as far as possible fromb, and leth := dT (b, c).
Add new edges betweenc and all remaining leaves ofT. Let T ′ be the augmented graph.
Next we use an idea from [18] (see also [15]), where it is shown that the treeT has a
k-dominating set of cardinality≤ bn/(k+ 1)c. We will give a better bound for the size
of ak-dominating set in the graphT ′ (we setk := R− 1).

Divide the vertices ofT into levelsT0, T1, . . . , Th according to their height in the tree,
assigning all the vertices (exceptc) of heighti to Ti . Clearly,T0 = {b}. We merge the
levelsT1, . . . , Th into 2R− 1 setsD1, . . . , D2R−1 by letting

Di :=
⋃
j≥1

Ti+ j (2R−1),

i.e., Ti and every(2R− 1)st level thereafter. These sets form a partition ofV − {b, c},
therefore at least one of the sets (sayDi ) is of size at mostbn/(2R− 1)c.We assert that
the setDi ∪ {c,b} is ak-dominating set (withk = R− 1) of the graphT ′. Indeed, every
vertexv ∈ V either belongs to a path ofT between two vertices ofDi lying in levels
Ti+ j (2R−1) andTi+( j+1)(2R−1), or to a path ofT between a vertex ofDi and the vertexb,
or to a path ofT ′ between a vertex ofDi and the vertexc. Since every such path has
length≤ 2R− 1, we deduce that min{dT ′(v, x): x ∈ Di ∪ {b, c}} ≤ R− 1, establishing
our assertion. To obtain a feasible solution of BADC forT we augmentT ′ by adding an
edge betweenb andc, and an edge betweenb and every vertex ofDi . The total number
of added edges is at most

n

µ(2R− 1)
− 1+

⌊
n

2R− 1

⌋
+ 1≤ n

2R− 1

(
1+ 1

µ

)
.

Comparing this with the lower bound for the number of edges in a biconnected graph of
diameter 2R, we may conclude that asymptotically our heuristic is a(1+ 1/µ)-factor
approximation algorithm for problem BADC.

Appendix B. Proof of Proposition 6. Given a fixedD = 2R + 1, we transform
problem CLIQUE to problem ADC in a dually chordal graph. LetH = (X, F) be an
arbitrary instance of problem CLIQUE, whereX = {x1, . . . , xn}.We construct a dually
chordal graphG = (V, E) by taking a copy ofH , a vertexb adjacent to all vertices of
H , and by adding to eachxi ∈ X a pathPi = (xi , . . . , yi ) of lengthR; see Figure 6 for
an illustration. Obviously, this construction can be accomplished in pseudo-polynomial
time and the resulting graph is dually chordal. We assert that graphH has a clique of
sizeϕ if and only if there exists a graphG′ = (V, E ∪ E′) of diameter no greater than
D and|E′| ≤ n− ϕ.

First, letQ be a clique ofH. To obtain a graphG′ = (V, E∪ E′)with |E′| ≤ n−|Q|
and diam(G) ≤ D, for eachxi /∈ Q we add one edge between the vertexyi and an
arbitrary vertex ofQ. Conversely, letG′ = (V, E ∪ E′) be of diameter no greater than
D. We assert thatH has a clique of size no smaller thanϕ := n − |E′|. Define a new
graph0 with {1, . . . ,n} as a vertex-set. Two verticesi and j are connected in0 by s
edges if and only if there are exactlys edges inE′ with one end inPi and another end in
Pj . Additionally, add a loop ati for each edgebu∈ E′ with u ∈ Pi −{xi }; see Figure 6.
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Fig. 6.Sketch for the proof of Proposition 6.

Consider the connected components of the graph0. Since0 has exactlyn vertices
and |E′| edges, it must contain at leastϕ tree-like connected components, i.e., con-
nected components which are trees without loops and multiple edges. Denote them by
T1, . . . , Tϕ′ , whereϕ′ ≥ ϕ.

CLAIM . For each Ti there is a vertex ji ∈ Ti such that dG′(yji , X) = R and xji is the
unique closest to yji vertex of X.

PROOF. We proceed by induction on the number of vertices ofTi . Pick a leafl ∈ Ti .

Obviously,dG′(yl , xl ) = R. If the vertexyl obeys the required condition, then setji := l
and we are done. So, assume that there exists a vertexxp ∈ X, p 6= l , such that
dG′(yl , xp) ≤ R. Let t be the unique neighbor ofl in Ti . Denote byuw′ the unique edge
of E′ with one endu in Pl and another onew′ in Pt . Clearly,

dG′(yl , xp) = dG′(yl ,u)+ 1+ dG′(w
′, xp) ≤ R.(1)

Deleting l from Ti , we obtain a smaller treeT ′i . By the induction hypothesis,T ′i
contains a vertexs which verifies our assertion in the graph obtained fromG′ by deleting
the edgeuw′. We may suppose thatdG′(ys, xl ) ≤ R, otherwises is the required vertex
of Ti in G′. The shortest path betweenys andxl will use the edgeuw′ and some other
edgevw′′ ∈ E′ with w′′ ∈ Pt . In particular, we obtain

dG′(ys, xl ) = dG′(ys, w
′′)+ dG′(w

′′, w′)+ 1+ R− dG′(yl ,u) ≤ R.(2)

From (2) we conclude thatdG′(yl ,u) ≥ dG′(ys, w
′′) + dG′(w

′′, w′) + 1. Together with
(1) this implies that

dG′(ys, xp) < dG′(ys, w
′′)+ dG′(w

′′, w′)+ 2+ dG′(w
′, xp) ≤ R,

contrary to the choice of the vertexs ∈ T ′i . This concludes the proof of the claim.
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In each tree-componentTi select a vertexji as described in the claim. We assert that
the verticesxj1, . . . , xjϕ′ induce a complete subgraph in the graphH. To show this, pick
two verticesxji ′ andxji ′′ . Any shortest path between the verticesyji ′ andyji ′′ will pass via
the setX. SincedG′(yji ′ , X) = dG′(yji ′′ , X) = R andxji ′ andxji ′′ are the unique vertices
of X closest toyji ′ andyji ′′ , respectively, the inequalitydG′(yji ′ , yji ′′ ) ≤ 2R+ 1 implies
that the verticesxji ′ andxji ′′ are adjacent.

Acknowledgment. We are grateful to the anonymous referee for several pertinent
suggestions.
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