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Augmenting Trees to Meet Biconnectivity and
Diameter Constraints!

V. Chepof and Y. Vaxe$

Abstract.  Given a graphG = (V, E) and a positive integeD, we consider the problem of finding a
minimum number of new edgds’ such that the augmented gragh= (V, E U E’) is biconnected and has
diameter no greater thad. In this note we show that this problem is NP-hard for all fix2doy employing a
reduction from the DOMINATING SET problem. We prove that the problem remains NP-hard even for forests
and trees, but in this case we present approximation algorithms with worst-case bounds 3 (2} anerb

(for odd D). A closely related problem of finding a minimum number of edges such that the augmented graph
has diameter no greater th@nhas been shown to be NP-hard by Schoone et al. [21] ithen3, and by Li

etal. [17] whenD = 2.
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1. Preliminaries. The problem of augmenting a graph to reach a certain connectivity
requirement by adding new edges is one of the important problems of network reliability
and fault-tolerant computing. In the most basic version, given an undirected @raph

(V, E) one should add a minimum number of ed@g€ssuch that the augmented graph

G’ = (V, E U FE’) is biconnected. Eswaran and Tarjan [9] characterized the minimum
number of edges which must be added, leading to a linear time algorithm for this problem
[20], [12]; for a survey of related problems and results see [14]. In this note we consider
the biconnectivity augmentation problem with an additional diameter constraint:

PrROBLEM BADC (Biconnectivity Augmentation under Diameter Constraints). Given
a graphG = (V, E) and a positive integeD, add a minimum number of new edgge$
such that the augmented gragh = (V, E U E’) is biconnected and has diameter no
greater tharD.

Biconnectivity is a fundamental requirement to the topology of communication networks:

a biconnected network survives any single link or single node failure (the probability

of two or several simultaneous failures is much smaller). Since the delay of sending a
message from nodeto nodev is roughly proportional to the number of nodes (or links)

the message has to traverse, it is desirable to route the messages along paths as short as
possible. Therefore a network having an underlying graph of small diameter ensures a
low communication delay between any two nodes (the all-to-all communication model).
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Problem BADC can be viewed as a network improvement problem wBei the
initial communication network and a minimum number of additional communication
links must be added so that the upgraded netv@rineets the biconnectivity and the
diameter requirements.

In Section 2 we show that problem BADC is NP-hard for trees. Moreover, we establish
that this problem and the related

ProBLEM ADC (Augmentation under Diameter Constraints). Given a grapdind a
positive integerD, add a minimum number of edges to obtain a graph of diameter at
mostD

are NP-hard for any fixe® > 2. Our reduction shows that both problems BADC and
ADC are at least as difficult as the SET COVER or DOMINATING SET problems.
From recent nonapproximability results for SET COVER [1], [2], [10], [19] it follows
that unless P= NP there are no constant approximation polynomial time algorithms for
both BADC and ADC and any fixeB®. After completing a part of this work we learned
about papers [21] and [17]; Schoone et al. [21] show that ADC is NP-hard DherB,
while Li et al. [17] proved that the same problem is NP-hard wbeg 2.

In Section 3 we present polynomial time approximation algorithms for problem
BADC (and for ADC and even values dd) in trees and forests. Additionally, we
show that for trees one can solve in polynomial time the radius version of ADC (this
version is motivated by the one-to-all communication model):

ProBLEM ARC (Augmentation under Radius Constraints). Givenagf&phd apos-
itive integerR, add a minimum number of edges such that the augmented graph has radius
no greater tharm.

Note that an optimal solution of ARC can be found by solving the following problem
for each vertex and selecting a solution with the minimum number of edges:

ProBLEM AEC(G, R, b) (Augmentation under Eccentricity Constraints). Given a
graphG = (V, E), a positive integeR, and a verteXb € V, find a minimum aug-
mentationE’ such that in the grap®’ = (V, E U E’) the eccentricity ob is no greater
thanR.

We conclude this introductory section with a few necessary definitions. A polynomial
algorithm is called aw-factor approximatioralgorithm for a minimization problerfl
if for each instancd of II, it returns a solution whose value is at mastimes the
optimal value ofl plus a constant not depending brfor a graphG = (V, E) and two
verticesu, v € V, we denote byls (u, v) thedistancebetween these vertices (ifand
v are in distinct connected components®fwve setdg (U, v) = o0). The eccentricity
ec(u) of a vertexu is the distance to a vertex furthest framThe diameterdiam(G)
and theradiusrad(G) of G are respectively the largest and the smallest eccentricities of
vertices ofG. For a positive integek and a vertexs € V let

B(u,k) ={v e V: ds(u,v) <k}
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denote thdvall centered a1 of radiusk. A Helly graphis a graph in which every family
of pairwise intersecting balls has a nonempty intersection. Trees are simplest examples
of Helly graphs; see [3].

2. NP-Completeness. The decision variants of four problems formulated in the intro-
duction evidently belong to the class NP. In all subsequent proofs of NP-completeness
we present pseudo-polynomial transformations from some known NP-complete in the
strong sense problems to BADC, ADC, and AEC . From Lemma 4.1. of [11] it follows
that the decision variants of all four problems are NP-complete as well.

2.1. General Graphs

PropPosiITION1. Problems BADCADC, ARG and AEC are NP-hard for any fixed
integers D> 2and R> 2.

PROOFE  We present pseudo-polynomial transformations from the problems SET COVER
and DOMINATING SET. We distinguish two cases.

Casel: D = 2. To settle this case, we need the following variant of SET COVER
which we prove to be NP-hard.

PrROBLEM SET COVER. Given a seX of n elements to be covered and a collection
of subsetsS of X such that every element of belongs to at least two sets, while each
pair of elements oK belongs to a common set 8f find a subcollection of set§' that
forms a cover ands := |S’| is minimized.

CLAM. SET COVERis NP-hard

The given proof of the claim was suggested by the referee and uses the fact that it
is NP-hard to find a cover consisting of exadjlgets for a family of sets, each of size
3, over a ground set ofg3elements (EXACT COVER BY 3-SETS). Indeed, take an
instanceS® of this problem and extend® to the collectionS by adding all pairs of
elements ofX. Clearly, the instanc&® has answer “yes” if and only if the instanSeof
SET COVER has an optimal solution of sizg(sets of size 2 are useless).

We polynomially transform SET COVERo BADC and ADC withD = 2. Let an
arbitrary instance of SET COVERe given by a seX = {X, ..., X} and a collection
S =1{S,..., Sy} of subsets ofX. We construct a grap® = (V, E) by creating a
vertex for each element of and each set of, and adding three new vertices, a,
andb. Define an edge between each (fair§ of sets, and between the vertiaasand
ap and everyS. An edge betweer; and§ exists if and only ifx; € §. Additionally
assume thdiis adjacent only with the verticeg anday; see Figure 1 for an illustration.
The resulting grapi® is biconnected and all pairwise distances exckyib, x;) are at
most 2.

We assert thats < k if and only if there is a solution of BADC (or ADC) with at
mostk edges. IfS’ C S is a set cover, then by adding an edge betweand each vertex
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Fig. 1. ARC instance resulting from SET COVER.

representing a subset 8f we will get a graph of diameter 2. Conversely, suppose there
exists a feasible augmentation®tising at mosk edges. One can easily check thatitcan
be replaced by a solutiof’ of the same size which consists solely of edges connecting
b with vertices designing subsets&fIndeed, an edge § can be replaced by an edge
bS, wherex; € S. The edgebx; and all edges of the typgx; can be replaced by the
same number of edges betwdeand subsets containing the corresponding elements.
The same operation can be performed with all edges ofdyge Thus all edges oE’

have the formb§. The collectionS” = {§: bS e E’} coversX, settling Case 1. This
shows also that ARC and AEC are NP-hard foe 2.

Case2:D > 3. SetD := 2R+2forevenD andD := 2R+ 1 for oddD, whereR > 0.

We present a pseudo-polynomial transformation from DOMINATING SET. (Recall its
formulation: given a grapls = (V, E) and an integek > 0, is there a subset of
vertices with|S| < k whose neighborhoodB(s, 1), s € S, coverV?) To construct an
instance of problem ADC we proceed in the following way. First, we take a &py

of V, transform it into a clique, and make adjacent every vertex V' with its twin

v € V and all neighbors of in G. Then add a vertea adjacent to all vertices of” and

a vertexb adjacent ta. For each vertex € V add a pathP, of lengthR — 1 issuing
fromwv. Finally, addn := 2|V |+ 1 pathsQg, . .., Q, with one end irb, and each having
lengthR+1if D = 2R+ 2 and lengtlR if D = 2R+ 1. Denote the resulting graph by
H. As an instance of problem AEC we consider graphvertexb, and the eccentricity

R + 1. For an illustration of these constructions see Figure 2. To define an instance of
problem BADC, we take a copyl’ of H and make adjacent every vertexof H” with

its twin v and all its neighbors itd. The resulting graph * is biconnected.

We assert thaG has a dominating set of sizeif and only if problems ADC and
AEC on graphH or problem BADC on grapti * have a solution consisting &fedges.
Notice thatdy (X, y), dy: (X, ¥) < D, unlessx is the end-vertex of -path andy is the
end-vertex of &-path or vice versa (further, we suppose thandy are vertices of first
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Fig. 2. ARC and ADC instance resulting from DOMINATING SET.

type). If Sis a dominating set oB, then we may define a feasible solution of problems
ADC, AEC, and BADC of siz¢S| by adding the edgdss, s € S. The eccentricity obin

the augmented graghis R+ 1: indeeddr (b, y) = 14+ R—1 = Rif yis the end-vertex

of a pathPs with s € S, anddr-(b, y) = 24+ R—1 = R+ 1 otherwise. This implies that
dr(x,y) = dr(x,b)+ R = D—1inthefirstcase and-(x, y) = dr(x,b)+ R+1=D

in the second case, therefore the diametdr &f D. Conversely, assume that there is a
solution of ADC onH (respectively, BADC orH*) consisting ok (< |V|) edges. From
the choice ofn one can easily deduce that at least one of the paths. ., Qn, does
not contain vertices incident to added edges. This meang thatt least as large as the
number of edges in a solution of problem AEC. Since the converse also holds, we may
find a solution of AEQH, R+ 1, b) consisting ok edges. We need an auxilliary result.

LEMMA 1. Given a graph H a vertex hand a positive integer,rthere is an optimal
solution of problem AE(H, r, b) consisting entirely of edges incident t¢ ., a solution
in the form of a star centered a) b

PROOF Let E’ be an arbitrary optimal solution of AEC. Denote ¥/ the graph
obtained fromH by adding the edges d’. Every edgeuv € E’, u, v # b, belongs
to a shortest path afi’ (of length at most) connectingo with a vertexq (otherwise
we can remove the edges from E’). This implies that the vertices andv are not
equidistant fromb. Supposealy (u, b) < dy/ (v, b). Replace inE’ every edgaiv by the
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edgevb. Since in the new graphl” still dy~(b, q) < r, we get an optimal solution of
AEC(H, r, b) in the form of a star centered kat O

By Lemma 1 there is a solution of AEE, R + 1, b) which induces a star centered
at b. Replace in this star every edfpe such that eitheu = v € V' oru € P, by
the edgebv. Clearly, the new set of edges is a solution of AEC R + 1, b) and also
defines a star centerediatThe tips of this star constitute a sub&atf size at mosk of
the vertex-set 06. We assert thaB is a dominating set o6. Suppose not; then there
exists a vertex € V at distance> 2 from every vertex o8. Let p be the end-vertex of
the pathP,. Thendy (b, p) = dy(b,v) +d(v, p) > 3+ R— 1= R+ 2, contrary to
the fact that we have a solution of AEB, R+ 1, b). ThusSis a dominating set o5,
concluding the proof of Proposition 1. O

The proof of Proposition 1 shows that every feasible solution of lsiné each of
the problems BADC, ADC, ARC, and AEC leads to a feasible solution of the same
size for the corresponding problem SET COVE® = 2) and DOMINATING SET
(D = 3) and vice versa. Therefore anfactor approximation algorithm for any one
of the four first problems would lead to anfactor approximation algorithm for the
last two problems. On the other hand, there is a simple polynomial reduction showing
that anc-factor approximation algorithm for SET COVERvould lead to a 2-factor
approximation algorithm for SET COVER. Indeed, take an instdfyaef SET COVER
and extendSy to the collectionS as in the proof of the claim. Clearlgs < cs,. Let
S’ be a solution of the instancgreturned by am-factor approximation algorithm for
SET COVER. We can derive a feasible solutiéfj for SET COVER by replacing every
2-element set of’ which is not in a set 08, by one or two sets afy containing the
corresponding elements. Singg)| < 2|S’| < 2acs < 2aCs,, we are done. Hence, our
four augmentation problems are at least as difficult as SET COVER whieklag) n)-
hard unless P= NP [10], [1], [19].

On the other hand, one can solve ARC and AEC using SET COVER. As we noticed
before, a solution for ARC can be obtained by solving problem AEC for each vertex of
the input graptG = (V, E). To solve AEGG, R, b) we proceed in the following way.

By Lemma 1 there is a solution in the form of a star and we will search for a solution
of this type. Notice that in the graph augmented in this way every shortest path issuing
from b contains at most one new edge. For a potential new bdtgt S, be a subset of

V consisting of all vertices € V such thatlg (b, v) > Rbutdg, (b, v) < R, whereG,

is the graph obtained fro®@ by adding the edgleu. Denote bys the resulting collection

of subsetsy,,u € V. If &’ is a minimum cover of5, thenE’ = {bu: §, € S’} is an
optimal solution of AECG, R, b). Similarly, a version of ADC asking for a minimum
augmentation of grapls to obtain a graph in which every pair of vertices can be
connected by a path of length at m@stvhich uses at most one new edge can be solved
using SET COVER (note that the proof of Proposition 1 can be easily adapted to show
that this problem is NP-hard as well). For vertiacgs let G, be the graphG plus

the edgeuv, and denote byg,, the set of all pairxy, such thatdg,,(x,y) < D and

ds (X, y) > D. Then taking a minimum set cover of the collectiSn= {S,,: u, v € V}

we obtain an optimal solution of this version of ADC.
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2.2. Trees and Forests

PropPOSITION2. Problem BADC remains NP-hard for trees

PrROOFE We present a pseudo-polynomial transformation from 3-PARTITION. Recall
the formulation of this basic NP-complete problem.

3-PARTITION. Given asef of 3melements, abounl € Z+, and asizes(a) € Z™,
suchthateact(a) satisfieB/4 < s(a) < B/2andsuchthat_,_, s(a) = mB canAbe
partitioned intandisjointsetss;, S, ..., Sysuchthat, forl<i < m, Zaes s(a) = B?

(The above constraints on tle¢a)’'s imply that everyS must contain exactly three
elements fromA.) First we present a transformation from 3-PARTITION to BADC on
forests (which seems especially simple and elegant), and then we show how to modify
this construction to get a transformation to the problem on trees.

Let A = {a,a,...,asm}, B € Z*, ands(ay), s(ay), ..., S(asm) € Z* be an ar-
bitrary instance of 3-PARTITION. SdD := B + 6. Define a forest+ consisting of
a “bistar” S formed by a pathP, of lengthD + 1 plusm leaves at each end, anth3
paths, where thigh pathP, corresponds to the elemeste A and has lengtb(g;); see
Figure 3(a). Letxy andyp be the end-vertices d¥. We assert that 3-PARTITION has
answer “yes” if and only if there exists a solution of problem BADEiwith D = B+6
which has at mostm edges.

The forestF contains & leaves. Since any leaf needs a new edge in a biconnected
augmentation, the smallest biconnectivity augmentatiofr afonsists of exactly mh
edges, therefore any feasible solution of the corresponding instance of BADC contains
at least 4n edges. Every biconnected graphobtained fromF by adding exactly vh

1 g hn
9 Yo
To Yo

Tm Ym

3m paths ™m ears

(@ (®)

Fig. 3. NP-hardness for forests.
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edges has a rather precise shape. Nankklypnsists ofn cyclesCy, C,, ..., Cy, glued
together along the pathy. We call the content of a cyckg; minus the edges d®, an
earand denote it by Earlt consists of two edges @, one incident tocg and the other
to yo (after a suitable relabeling, we may assume without loss of generality that these
are the edgegox; andypy;), a certain number of paths (which maybe equal to 0 in the
degenerate case), and some new edges each connecting either the end-vertices of two
paths or an end-vertex of a path withor y; (in the degenerate case, Earformed by
the edgexoX;, YoVYi, and the new edge v;). For an illustration see Figure 3(b). Ligt
be the length of EarClearly,> ", Ii = mB+ 6m. We call an eabig, normal or small
if its length is, respectively, larger than, equal to, or smaller tRan 6.
First, suppose that the required 3-partit@n S, . . ., S, of Aexists. Then biconnect
F by adding the following th new edges: for ever$s = {a,, &,, &,} add an edge
betweerx; and one end of,, an edge between the second en&ofind one end oR,,,
an edge between the second endkgfand one end oP,, and, finally, an edge between
the second end d?, and the vertex;;; see Figure 3. All ears of the resulting gragh
are normal, therefore the distancehhbetween two vertices located on different ears
is at mostD. Every cycleC; has length B 4+ 13 = 2D + 1, thus the distance between
a vertex on Earand a vertex orPy does not excee® as well. This shows that the
diameter ofH is D.
Now suppose that we are given a solution of BADC consistingnoiediges. LeH
be the augmented graph. To establish that a required 3-partitidreafsts, it suffices
to show that all ears dfl are normal. Assume the contrary, i.e, the gréplontains a
big ear, say Ear The length of the cycl€; is at least B + 14, therefore the distance
in H between the middle vertezg (one of the two middle vertices B + 7 is odd) ofP,
and its opposite vertex (or one of its opposite verticé€if is odd) inC; is larger than
D = B+6, contrarytothe choice ¢1. This establishes that BADC is NP-hard for forests.
To establish the same result for trees we have to modify the previous construction.
First, instead of taking paths of lengtli; ) we take paths of length ;= 24s(g;). Set
D := 24B + 6 and, as in the previous case, Rtbe a path of lengtiD + 1 between
Xo andyp. Let z denote the middle vertex of the pahfori = 1, ..., n and letzy be
the middle vertex ofP at distance 1B + 4 from xq. As an instance of BADC we define
a treeT obtained from the foredt (with updated lengths) by adding a star centered at
a new vertexc : it consists of a patlQy of length 18 + 3 betweency and zy, and
3m pathsQ; of length 8 + 1 joining the vertexcy with the vertexz,i = 1,...,m;
see Figure 4. The pathq, Q1, ..., Qam pairwise intersect only in the vertey. As
before, we assert that 3-PARTITION has answer “yes” if and only if there is a solution
of BADC onT with D = 24B + 6 using at most# edges. As in the case of forests, any
biconnected augmentation @f needs at leastM edges, and every biconnected graph
H obtained fromT by adding exactly vh edges has the same form.ears Eay, . . .,
Ear,, the pathP,, and, additionally, the pathQq, Q1, ..., Qam.
Since evens(a) is an integer an®/4 < s(g) < B/2, one can easily deduce that

6B+6<I1; <12B—12

and
3B+3<1;/2<6B—6.
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6B +6 <1l < 12B — 12

Fig. 4. NP-hardness for trees.

First, suppose that the required 3-partiti®, S, ..., Sy} of A exists. BiconnecT
asinthe case of forests, previously ordering the elements of each &ipleta, , a;,, a;,}
so thata;, < a, < a;,. Then obviously;, < li, <;,, and, sincé;, + i, + |, = 24B,
we conclude tha, < (24B — (6B + 6))/2 = 9B — 3 and(l;, +I;,) < 16B. We assert
that the diameter off is at mostD. Pick two verticesu, v of H. If one vertex is located
on a pathQ;, i > 0, and another vertex is either on some ear or on some @ath
then

dn(u,v) < B8B+1)+(B8B+1)+ (6B—-6)=22B—-4 < D.

In the remaining cases we assert thaindv lie on a common cycl€ of length at most
2D + 1, yieldingdy (u, v) < D. This assertion obviously holds if both vertiagsv are
located on ears, or one vertex is on an ear and another one is on thigpkth € Qg
andv € Ear, then the role ofC is played by the cycle consisting 6o, Qi,, and the
half of C; betweerz;, andz, which passes via. Since the unique patR, of Ear that
belongs entirely taC is not the longest path of this ear, its length is at md3t-93.
Hence the length dof is at most

(12B+4)+ (13B+3) + (8B + 1)+ (6B —6)+ (9B —3) +3=48B+2 < 2D + 1.

Finally, suppose thatt € Py andv € Qj, j > 0. Two subcases can be distin-
guished. Ifj = i,, where§ = {a, &, a,}, then letC be the cycle consisting of
Qo, Qi,, and the half ofC; betweenz, and z, passing viau. SinceC is a cycle of
the same kind as in the previous case, its length is at mbs#2L. If j = iz or
i1, then letC be the cycle consisting d@;,, Qi,, and the half ofC; betweenz, and
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z, passing viau. Since (l;;, + 1;;)/2 < 8B, we conclude that the length & is at
most

(24B +7) + (16B +2) + 8B + 4 = 48B + 13= 2D + 1.

This shows that the grapH indeed has diametdd.

To establish the converse, let be a solution of BADC obtained frofi by adding
exactly 4n edges. To show that 3-PARTITION has answer “yes” it suffices to prove that
all ears ofH are normal. We proceed in two stages: first we prove that every ear consists
of three paths and then we show that they are normal. Sincenipaths are distributed
over m ears, either all ears have three paths each or there exists an ear containing at
least four paths. Suppose by way of contradiction that E@mtains at least four paths
R,, B, P,. P, ordered as they occur {@; starting fromx;. Letv be the furthest from
X end-vertex of pattP,. First, note that everyzy, v)-path passing via has length at
least

(13B+3)+BB+1)+(3B+3)=24B+7 > D.
On the other hand, evelyy, v)-path passing via&p or yp has length at least

(12B +3) + 2+ (6B +6) + 1+ (6B + 6) = 24B + 18 > D.

The obtained contradiction shows that every ear comprises precisely three paths, thus its
length is at least @B + 6) + 6 = 18B + 24. We continue by showing that all ears of
H are actually normal. Suppose not, and let, BBarbig. Pick the verten € Py located

at distance B + 2 from zg and at distanceB + 2 from xp. Let v be the vertex opposite

u in the cycleC;. From the choice of Eareach of the twdu, v)-paths ofC; has length
greater tharD. On the other hand, since the length of each ear is at ledt1184,
one concludes that the subpath Rf comprised between andyy is a shortest path
between these vertices K. Hencedy (u, yo) = (7B +2) + (12B + 3) = 19B + 5.

In order to havely (u, v) < D, no shortestu, v)-path can pass via the vertgx Thus
such a path must pass g, whencedy (u, v) = dy (U, Cg) + dy (Co, v). Notice that

du (co, v) > 8B + 1. On the other hand, we assert tloiat(u, cg) > 16B + 8. Indeed,

the length of everyu, co)-path passing via,, some vertex;, one half of the patir;,,

and the patlQ;, is at leasi5B + 2) + 2+ (3B + 3) + (8B + 1) = 16B + 8, while the
length of the(u, cp)-path passing viag is (7B + 2) + (13B + 3) = 20B + 5. Hence

dy (U, ¢o) > 16B+8, and, as a consequendg,(u, v) > 24B+9, contrary to the choice

of H. This shows that all ears ¢f are normal, whence there exists a feasible 3-partition
of A, thus completing the proof of Proposition 2. O

3. Approximation Algorithms for Trees and Forests. Inthis section we present poly-
nomial time approximation algorithms for solving problems BADC and ADC for trees,
forests, and, more generally, for graphs on which the domination arlddbenination
problems can be solved efficiently. Our solution is mainly based on the linear time algo-
rithm for solving th&k-DOMINATING SET problem on these graphs and the relationship
between this problem and problem AEC. Recall, given a gapha (V, E) and a set

X C V, k-DOMINATING SET consists in finding a covering of with a minimum
number of balls of radiuk. This problem can be solved in linear time for trees [7], [13],
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sun-free chordal graphs [8], and dually chordal graphsd@h{ly chordal graphsare

the Helly graphs whose intersection graph of balls is chordal, or, equivalently, graphs
whose ball hypergraph is a hypertree), and in polynomial time for all Helly graphs whose
intersection graph of balls is perfect.

3.1. Even Diameter We continue by showing how to reduce problem ABCR, b)

to k-DOMINATING SET. For this, setX := V — B(b, R) andk := R — 1. For an
augmentatiorkE’ of G which induces a star centeredatienoteS = {s: bse E’} and

G’ = (V, EUFE’) (by Lemma 1 such a star-solution always exists); see Figure 5 for an
illustration.

LEMMA 2. The set of new edges [ a solution of AEQG, R, b) if and only if Sis a
solution of a given instance of the k-DOMINATING SET problem

ProOF  If the setX is covered by the ball8(s, R — 1), s € S, then for any vertex
X € X there is a vertes € Ssuch thatdg (x, b) < ds(X,s) + 1 < R. Notice thats
is not adjacent td in G, otherwisex € B(b, R). ThusE' is a feasible solution for the
eccentricity problem. Conversely, if the eccentricitybof the augmented grap®’ is
at mostR andv € V, then eithedg (b, v) < R and therw belongs to the balB(b, R),
or a shortest path d&’ betweerv andb uses a new eddas. Since this path does not
contain other new edges, we halg(s, v) < R— 1. This shows tha§ is a solution for
k-DOMINATING SET. O

To solve problem ARC on a graph, we must solve AEQG, R, b) for every vertex
b and among all solutions pick an admissible augmentation with the least number of

Fig. 5. A star-solution.
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edges. The complexity of this procedureQg|V||E|) for all graphsG in which k-
DOMINATING SET can be solved in linead®(|E|) time, in particular for trees.

LEMMA 3. If G isaHelly graphthen an optimal solution for problem ARC constructed
by the previous method isZafactor approximation for problem ADC with B 2R.

PrOOF Obviously, if we take a feasible solution for ARC in the form of a star, then
the augmented graph has diameter at méstQonversely, leE’ be an optimal solution
for ADC and letG’ be the augmented graph. Denote®yhe set of end-vertices of the
edges fromE’. Take around each vertgxe P the ballB(p, R — 1), and letQ be the
set of vertices 065 not covered by such balls, i.€) :=V — [ J{B(p, R—1): p e P}.

We assert that the diameter@fis at mostD, in other words, thadg (u, v) < D for any
u,v € Q. Suppose not and lek (u, v) > D for someu, v € Q. Sincedg (U, v) < D,
every shortest path i’ betweenu andv will use at least one new edge. This means
that such a path consists of three tiles: a subpath framtil the first vertexp, from P,
followed by a tile consisting of subpaths @fand one or several new edges ending with
the last vertexp, of P, and, finally, a subpath @ from p, tov. Sinceu ¢ B(py, R—1)
andv ¢ B(p,, R— 1), we deduce thalls'(u,v) > R+ 1+ R > D, contrary to the
choice ofE’. Thus the distance 6 between any two vertices @ is at most R, thus
the ballsB(q, R), q € Q, pairwise intersect. Sind@ is a Helly graph, these balls have a
vertexb in common (which is not necessarily a vertex@f SetE” = {bp. p e P}—E.
Clearly, E” is an admissible solution for problem AEG, R, b). Since|E"| < 2|E/|
(the worst case occurs whéii is a matching orP), we obtain the desired inequalify.

ProPOSITION3. There is a3-factor approximation algorithm for problem BADC with
D = 2R on trees and forest@nd, more generallyon dually chordal graphswith
complexity Q|V||E|).

PrOOF The algorithm constructs an admissible augmentation by solving separately
the biconnectivity augmentation problem and problem ARC.d etdges be used to
biconnect the input graph and let oth&r edges be used to solve the augmentation
problem under radius constraints. Suppose that an optimal solution for BAD€ has
edges. Since > ¢’ andc” < 2c by Lemma 3, we are done. O

One can construct examples of trees for which the heuristic employed to solve problem
ADC does not find an optimal solution. If, for example, we take the path on five vertices
andD = 2, then our algorithm will add two edges, while the optimal augmentation uses
only one edge and the augmented graph is the 5-cycle. Next, if we consider the path onten
vertices and = 2, then we will add seven edges, while the optimal augmentation uses
six edges and the augmented graph is the Petersen graph. One of the main results of [21]
establishes that far > 11 andD = 2 an optimal augmentation of a path owertices
hasn — 3 edges, i.e., our augmentation in the form of a star is optimal. Nevertheless,
we were not able to find examples of trees for which the difference between the star-
augmentation and the optimal augmentation is larger than one, or to prove that problem
ADC remains NP-hard for trees or forests. We leave this apan questioand actually
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conjecturethat there exists a constannot depending on the tréleand of the value of

D such that either there is a solution of ADC with at mestdges or the star-solution of
problem ARC is an optimum for ADC (this will result in a polynomial time algorithm
for ADC on trees); in the most optimistic version one can supposextkas.

As to problem BADC on forests, we can present examples for which the number of
edges added by our algorithm is twice the number of edges in an optimal augmentation.
For this, consider a forest consisting Dfisolated edges. An optimal biconnectivity
augmentation hab edges, and the resulting graph is a simple cycle of lengthtBus
an optimal solution for BADC. On the other hand, our augmentation will u3e-22
edges. For the forests occurring in the proof of Proposition 2 the error ratjd.is 7

In Appendix A we consider problem BADC for two particular classes of trees: (i) stars
(consisting of a center aridpaths of lengthgs, ..., pk) and (ii) trees with a few leaves
(trees withn vertices and at most/ (1 (2R — 1)) leaves, wherg. > 1). In both cases
we slightly modify our heuristic in order to get better approximations.

3.2. Odd Diameter Finally, consider problem BADC on forests for oBd= 2R + 1.
The simplest approach to design a polynomial approximation algorithm for BADC is to
find such an algorithm for problem ADC, and then to proceed as in thel@ase2R.
Unfortunately, designing an approximation algorithm for ADC seems to be more difficult
than in the case of even diameter. Instead, we address directly problem BADC and show
that a version of the heuristic used for BADC with= 2Ris an approximation algorithm
for D = 2R+ 1 as well.

LetT be atree whose set of leavesidDenote byng_; andng the minimum numbers
of balls of radiusR — 1 andR, respectively, necessary to covierSimple examples of
trees show that in general there are no relationships betmgandng_;. Nevertheless,
the following holds:

LEMMA 4.

2ng + [L|, if R>2,
Nr-1 = .
3ng+|L|, if R=1

Moreovey for any coveringCr = {B(s, R): s € S} of T with balls of radius R there
exists a coveringr_1 = {B(s, R— 1): s € S} of T with at mostL U S| + |S| balls of
radius R— 1if R > 2 and with at mostL U S| 4+ 2|S] balls of radius R— 1if R = 1,
suchthat LUSC S.

ProOF It suffices to prove only the second assertion. Define a graphose vertex set

is Sand two vertices’, s” € Sare adjacent i if the path connecting ands” in T does

not contain other vertices & We assert thal is a block-graph, i.e., a graph in which

all maximal biconnected subgraphs (alias blocks) are complete subgraphs. First notice
that the graph” is chordal: existence ift of an induced cycl€ = (Xq, X2, ..., Xn, X1)

of lengthn > 3 would imply thatT has a cycle, because every vertexwould lie

on the path ofT connecting the neighbors af in C. It remains to show thal’ does

not contain induced, — e (a clique on four vertices minus one edge). Suppose the
contrary, and let all pairs of the quadruplev, X, y except the paixy be edges of".
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Consider the smallest subtree Dfcontaining these vertices. All four vertices are tips
of this subtree, otherwise a nontip vertex will belong to at least two paths between three
other vertices, implying that, v, x, y do not induceK, — e. This also infers that this
subtree cannot contain other verticesSofr herefore our quadruple induces a complete
subgraph of”, establishing thaf" is indeed a block-graph. With every block-graph one
can associate a tree by taking the blocks as vertices and defining an edge between each
pair of blocks sharing a common vertex. Therefore, one can speak of pendant blocks of
I': they correspond to leaves of the associated tree.

Now we will transform the coveringr of T into a coveringCr_; consisting of at
most|L U S| + |S] or |[L U S| + 2|S] balls of radiusR — 1 obeyingL U S C S. Let
my ;= |L|,m, :=|S],andms ;= |LN §|. FirstlocatgL U S| = m; + m, — mz centers at
the leaves off and at the centers fro® We still have to locaten, centers ifR > 2 and
2m, centers ifR = 1. For this we proceed by induction on the number of verticet.of
Pick a pendant blocB of I, sayB = {s1, ..., &, S+1}, Where all vertices oB except
possiblysc.; do not belong to other blocks. Suppose without loss of generalitysthat
is the furthest frong 1 vertex of B. On the path betweesy andsc, 1 pick the closest
to sc;1 vertexs; which verifies the conditiodr (s;, s;) < 2R — 1 (s; can coincide with
S+1)- Letx be the neighbor of; in the path betwees| ands;. Denote byT’ andT” the
connected components obtained franafter removing the edgs x, and assume that
s € T'.Setm] ;== |[LNT'|,m, :=|SNT’'|,andmj := |[(L N S) N T’|. Locate ats; a
center of a ball o€r_1.

We assert that the subtr@éis covered by the baB(s;, R — 1) andm) +m, — mj
balls of radiusR — 1 centered at the leaves ©flocated inT’ and at the vertices d&
which belong tal'’. Suppose that this is not true, i.e., there exists a verteX’ which is
not covered by any of these balls. In particuthr(z, ;) > R. Denote byTy the subtree
of T (andT’) induced by all verticeg such that lies on the path betwegnands;. The
choice ofz implies thatTy # {2z}, thus inTy one can pick a leady of T. Let B(sj, R) be
the ball ofCr coveringzy. Sincedr (z, zp) > R by our choice of, the vertexs; must be
located in the subtre&. On the other hand, sinek (sj, z) > R, we conclude that

dr(s.s) =dr(s,2 +dr(z,8) =2R>2R—-1=dr(s, 5).

Thereforedr (S, Sc+1) > dr(S1, Sct1), contrary to the choice afi. This establishes our
assertion.

Notice also thatB(s;, R) € T’, except possibly the case whejp = s (then
obviously B(s;, R) N T” € B(s41, R)). On the other hand, it may happen that for
somes € T'the ballB(s, R) (i # 1) intersects the subtré€’. Then, however, the ball
B(s;, R—1) will contain this intersection (anat, > 2 holds). Thus, the bas(s;, R—1)
covers all vertices of ' not covered by théR — 1)-balls centered at the vertices from
(LUS)NT’ and, eventually, all vertices df” covered by the balls @fr whose centers
are located N T'.

Now, assume thaR > 2 and apply the induction assumption to the tiige Its
leaves are the leaves @f which are not inT’ plus the vertexs;. As a covering of
T” with R-balls we take all balls of g whose centers are ifi”, and, additionally, the
ball B(s;, R), if it is employed to cover some vertices ®f' covered solely by balls
of Cr whose centers are ifi’ (if this happens, then we already noticed thajt >
2). By the induction assumption, we can find a required covering’ofvith at most
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(Mg —m;+ 1) +2(my —m,) — (Mg —my) (R—1)-ballsifs; is used only as a leaf and
with at most(m; — m; + 1) +2(mp —m, + 1) — (Mg —m; + 1) (R— D-ballsifs; is
simultaneously a leaf and a center of a ball. The number of balls can be written as

(Mg —mp) + 2(mp — mj) — (M3 — Mj) + u,

whereu = 1 in the first case and = 2 in the second case. Recall thaflihwe have
located othem; + m, —m; balls of radiusR — 1. Together with the balls frori”, they
constitute a covering of with at mostm; + 2m, —mz + (1 — ms) balls of radiusR — 1.
Since in both cases we hang > p, this is the desired covering.

The caseR = 1 is similar, but in order to use induction we also have to include in
S the neighbos; of s; on the path betwees{ ands..1. Then we apply all arguments
from the previous case & instead ofs;. O

To present an approximation algorithm for problem BADC on forests, we find a
covering with(R — 1)-balls of the input foresk as in the proof of Lemma 4, pick a leaf
b, and add all edges betwebrand all centers of balls in the covering, except the ball
centered ab. Let E” be the set of added edges. Clearly, the complexity of this algorithm
is linear.

PropPosITION4. The heuristic is &-factor approximation algorithm for problem BADC
with D = 2R + 1 for R > 2 and an8-factor approximation for R= 1.

ProoF LetF be aforest whose set of leaved.isand lethg be the minimum number
of R-balls necessary to cover. First, if we add the edges found by our heuristic, then the
resulting graph is biconnected and has diameter at mRsNadw, let E’ be an optimal
solution for BADC. Denote byP the set of end-vertices of the edges fréh Take
around each vertep € P the ballB(p, R), and letQ be the set of vertices d¢ not
covered by such balls. As in Lemma 3, one can show that the diametrirfF is
at mostD. ThereforeQ may be covered by one or two balls of radiRqif we have
two balls, then their centers are adjacent). HefRle+ 2 > ng. From Lemma 4 we
deduce that eithgiE”| < 2ng + |[L| — 2 0or|E”| < 3ng + |L| — 2. Since|E’| > |P|/2
and|E’| > |L|/2, all these inequalities imply thai{B’| > |[E”| — 2 for R > 2 and
8|E’| > |E”| — 4 for R = 1, establishing the required conclusion. O

Finally, consider problem ADC on trees for ofld= 2R + 1. For a positive integer
k and an edgevof T we call the seB(u, k) U B(v, k) anedge-ballcentered ativ with
radiusk. A way to get an admissible augmentation for ADC would be to cover the tree
T with a certain numben; of edge-balls of radiuR and a certain numbe, of balls of
radiusR — 1. Add all edges between the end-vertices of centerg edge-balls (in the
worst case, when the edge-centers will be pairwise disjoint, the added edges will create
a complete grapK,, minus a perfect matching) and then add an edge from the center
of each ball of radiu®k — 1 to an end-vertex of some center of an edge-ball. In this way
we get a graph of diametdd and we inserted at most + 2n;(n; — 1) new edges.
Now we have to find a covering af with edge-balls of radiufk and balls of radius
R — 1 minimizing the quantity, + 2n;(n1 — 1). We call the resulting problemdIXED
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COVERING. Below we establish that an optimal solution for MIXED COVERING
provides a 6-factor approximation for problem ADC. However, we do not know whether
MIXED COVERING on trees is polynomially solvable or NP-hard, and we leave this
as anotheppen questionObviously, MIXED COVERING can be solved by varying

the numbein; of edge-balls, and, for each fixed valuemf by locating the edge-balls

to minimize the number of balls of radil® — 1 necessary to cover the remaining part

of T. This problem is closely related to the followih@XED CLIQUE COVERING
problem on chordal graphs (note that it is customary to formulate and solve the covering
problems of trees by subtrees as clique covering problems of underlying chordal graphs):
Given two graph$& = (V, E) andGq = (V, Eg) with Eq C E (Gg is a partial subgraph

of G) and an integen;, locaten; cliques of G so that the uncovered vertices can be
covered with a minimum number of cliques of the gr&ih As Bodlaender [4] showed,
MIXED CLIQUE COVERING is NP-hard if bottG andG are chordal graphs. Setting

G = T?R*1andGy := T?R-2 whereT ¥ is thekth power of the tred@ , we see that every
edge-ball of radiuR is a clique ofG and everyR — 1)-ball is a clique ofG, and vice
versa, hence MIXED COVERING o is reduced to MIXED CLIQUE COVERING

for chordal graphd 2R+ and T2R-2,

PROPOSITIONS.  An augmentation provided by an optimal solution of MIXED COVER-
ING is a6-factor approximation for problem ADC with B: 2R + 1 on trees

PrOOF Let E’ be an optimal solution for ADC and I&’ be the augmented graph.
Denote byP the set of end-vertices of the edges fr&f) and letn, := |P|. As in the
proof of Lemma 3, leQ := V — [ J{B(p, R— 1): p € P}. Define a grapii 2R*1(Q)
with Q as a vertex-set and two verticasv € Q adjacent inT2R*1(Q) if and only if
dr(u, v) < 2R + 1. Notice that a seS C Q is a stable set of 2R+1(Q) if and only if
dr(x,y) > 2R+1foranyx, y € S. Onthe other hand, a cliq@@of T2R*1(Q) consists
of vertices ofQ with pairwise distances 2R+1. The least subtreg(C) of T containing
the sefC has diametex 2R + 1, thus its radius is eithet Ror R+ 1. In the first case
T (C) can be covered by a ball of radiis In the second cas&,(C) has two (adjacent)
central vertices and (C) can be covered by two balls of radii&centered at these
vertices. AnywayT (C) can be covered with an edge-ball of radRisAs a consequence,
a covering ofT 2R*+1(Q) with a minimum number of cliques corresponds to a covering
of Q with a minimum numben; of edge-balls of radiuR. Since the grapi 2Rt1(Q)
is perfect (because it is chordal), the largest stabl¥ T 2R*1(Q) has cardinality;.
Pick two verticeal, v € Y. Sincedgs (U, v) < R, every shortest path i@’ between
u andv will use an edge oE’. Such a shortest path consists of a patfT aff length
R each connecting the vertexto some vertexp, € P, the new edge, p, € E’, and
the path ofT of length R connecting the vertep, € P to v. For a vertexu € Y, let
P, be the collection of all vertices d® which occur asp, in such a path of5’. Since
dr(u, v) > 2R+ 1 for distinct verticess, v € Y, we conclude thaP, N P, = #. Every
edge ofE’ occurring in a shortesu, v)-path of G’ cannot participate in a shortest path
of G’ between another pair of vertices\afThereford E’| > n;(n; — 1) /2. On the other
hand,|E’| > ny/2. The feasible solution for ADC constructed using an optimal solution
for MIXED COVERING contains at most, + 2n;(n; — 1) edges. Hence this number
is at most 6E’|. O
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In Theorem 9.3 from [6] it is shown that DOMINATING SET remains NP-hard
for Helly graphs. If in Case 2 of the proof of Proposition 1 we take a Helly graph as
graphG, then one can easily show that the balls of the resulting gkastill obey the
Helly property. Therefore problems ADC and ARC remain NP-hard on Helly graphs
for all D > 3. We were not able to establish that ADC is NP-hard for el2eand any
class of graphs where DOMINATING SET &DOMINATING SET can be solved in
polynomial time. Nevertheless, we can establish this fact for dually chordal graphs and
alloddD > 3.

PROPOSITIONG. Problem ADC remains NP-hard for dually chordal graphs and all odd
values of D> 3.

See Appendix B for the proof of this proposition.

Appendix A. Examples. Consider problem BADC on some particular instances of
trees. To analyze the performance of our heuristics we use the fact that every biconnected
graph of diameteD = 2R with n vertices contains at leag2R/(2R — 1))n — 0o(1)

edges. It is conjectured [16] thafl) is actually 1, but it is established only thatl) is

at most 44R — 2)R~1 (see Theorem 2.8 of [5]). If we apply this bound to biconnected
graphs of diametdD obtained from a tre& onn vertices, we deduce that every feasible
augmentation of uses at least/(2R — 1) + 1 — o(1) edges.

ExaMPLE 1 (Stars). First, suppose that the input tleés a star with centec andk
pathsPy, ..., P of lengthspy, po. ..., p. Trivially, T hasn := Y F  p —k+1
vertices. Addk — 1 edges between the lelafof the pathP and all remaining leaves.
Next locate ab the center of the ball of radiuR and atc a center of a ball of radius

R — 1, and make adjacent td. It remains to cover with balls of radil® — 1 a subpath

of length pi — 2R of each pathP, (a subpath of lengtliR — 1 of eachP, is covered

by the ball centered dt). This can be done witli(p; — 2R)/(2R — 1)] balls. Add an
edge betweeh and the center of every such ball, thus getting an admissible solution for
BADC. The number of added edges is

k k
pi — 2R pi — 2R
;[ZR—JJFKSM r—1 T2

Itcan be easily seen that this number is smaller than or equna{2R— 1) +-k. Comparing

this withn/(2R — 1) + 1 — 0o(1), one can conclude that for stars the error is augmenting
asymptotically with the number of paths in the star and not with their lengths. Second,
for stars with a few branches (say for paths) our heuristic gives an augmentation which
(asymptotically) provides not a factor approximation but an approximation within an
additive constant to the optimum.

ExAamPLE 2 (Trees with a Few Leaves). L&t = (V, E) be a tree withm vertices and
having at mosh/(u (2R — 1)) leaves, wherg. > 1. Suppose that the diameter dfis
larger thanD = 2R, otherwise we are done. Transfofimnto a rooted tree whose root
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is a central vertek of T. Pick a leafc as far as possible frofm and leth := dr (b, c).
Add new edges betwe@rand all remaining leaves af. Let T’ be the augmented graph.
Next we use an idea from [18] (see also [15]), where it is shown that theltieses a
k-dominating set of cardinality: [n/(k 4+ 1)]. We will give a better bound for the size
of ak-dominating set in the graph’ (we setk := R — 1).

Divide the vertices oT into levelsTy, Ty, ..., Ty according to their height in the tree,
assigning all the vertices (excegtof heighti to T;. Clearly, To = {b}. We merge the
levelsTy, ..., Ty into 2R — 1 setsDy, ..., Dog_1 by letting

Di = U Tivjer-y,
j=1

i.e., Ti and every(2R — 1)st level thereafter. These sets form a partitiofvof {b, c},
therefore at least one of the sets (£ is of size at mostn/(2R — 1) |. We assert that
the setD; U {c, b} is ak-dominating set (wittkk = R — 1) of the graphT’. Indeed, every
vertexv € V either belongs to a path df between two vertices db; lying in levels
Ti+jer-1 andTiyj+1@r-1), Or to a path off between a vertex d; and the verte,

or to a path ofT’ between a vertex ob; and the vertex. Since every such path has
length< 2R — 1, we deduce that m{dr: (v, X): x € D; U{b, c}} < R— 1, establishing
our assertion. To obtain a feasible solution of BADC Towe augmenf’ by adding an
edge betweeh andc, and an edge betwedrand every vertex ob;. The total number
of added edges is at most

n 14 n 1< n 1—|—1
w(2R—-1) 2R-1 —2R-1 w)’

Comparing this with the lower bound for the number of edges in a biconnected graph of
diameter R, we may conclude that asymptotically our heuristic ida 1/u)-factor
approximation algorithm for problem BADC.

Appendix B. Proof of Proposition 6. Given a fixedD = 2R + 1, we transform
problem CLIQUE to problem ADC in a dually chordal graph. ll¢t= (X, F) be an
arbitrary instance of problem CLIQUE, wheXe= {xy, ..., X,}. We construct a dually
chordal graptG = (V, E) by taking a copy oH, a vertexb adjacent to all vertices of
H, and by adding to each € X a pathP, = (X, ..., ¥;) of lengthR; see Figure 6 for
an illustration. Obviously, this construction can be accomplished in pseudo-polynomial
time and the resulting graph is dually chordal. We assert that dgraphs a clique of
sizeg if and only if there exists a grap®’ = (V, E U E’) of diameter no greater than
Dand|E'| <n— .

First, letQ be a clique oH. To obtain a grapl®s’ = (V, EUE’) with |[E’'| < n—|Q)]
and dianiG) < D, for eachx; ¢ Q we add one edge between the vertgxand an
arbitrary vertex ofQ. Conversely, leG’ = (V, E U E’) be of diameter no greater than
D. We assert thaH has a clique of size no smaller than= n — |E’|. Define a new
graphT” with {1, ..., n} as a vertex-set. Two verticésand j are connected ifi' by s
edges if and only if there are exacedges inE’ with one end inP; and another end in
P, . Additionally, add a loop ait for each edgéu € E' withu € P, — {x;}; see Figure 6.
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Fig. 6. Sketch for the proof of Proposition 6.

Consider the connected components of the giap8incel” has exactlyn vertices
and |E’| edges, it must contain at leagttree-like connected components, i.e., con-
nected components which are trees without loops and multiple edges. Denote them by
Ty, ..., Ty, Wherep' > ¢.

CLam. For each T there is a vertex;je T; such that & (y;, X) = R and ¥ is the
unique closest to;yvertex of X

PROOF We proceed by induction on the number of verticeg;ofPick a leafl € T;.
Obviously,ds (vi, X)) = R. If the vertexy, obeys the required condition, then et= |
and we are done. So, assume that there exists a vegtex X, p # |, such that
de (¥, Xp) < R. Lett be the unique neighbor bfn T;. Denote byuw the unique edge
of E” with one endu in B and another one’ in P;. Clearly,

(1) do (Y1, Xp) = der (Wi, U) + 1+ de (w', Xp) < R.

Deleting!l from T;, we obtain a smaller tre&’. By the induction hypothesisl;’
contains a vertegwhich verifies our assertion in the graph obtained f@hby deleting
the edgauw. We may suppose thak (ys, X)) < R, otherwises is the required vertex
of Ti in G’. The shortest path betwegn andx, will use the edgaiw and some other
edgevw” € E’ with w” € P;. In particular, we obtain

(2 do (Ys, %) = da(Ys, w”) + dg (w”, w') + 14+ R—dg (i, u) < R.

From (2) we conclude thalg (v, u) > dg/(ys, w”) + dg (w”, w’) + 1. Together with
(2) this implies that

de (Ys, Xp) < da'(¥s, w”) + de (w”, w') + 2+ de (W', Xp) < R,

contrary to the choice of the vertexe T/. This concludes the proof of the claim. O
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In each tree-componeiit select a vertey; as described in the claim. We assert that
the vertices;,, . .., xj,, induce a complete subgraph in the graphTo show this, pick
two verticesx;, andx;, . Any shortest path between the vertiggsandy;,, will pass via
the setX. Sincedg (y;,, X) = da (y;,,, X) = Randx;, andx;, are the unique vertices
of X closest toy;, andyj,,, respectively, the inequalitye (y;,, ¥j,) < 2R+ 1 implies
that the vertices;, andx;,, are adjacent. O
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