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Lower Bounds for Dynamic Data Structures
on Algebraic RAMs?

A. M. Ben-Amran? and Z. Galif

Abstract. In a seminal paper of 1989, Fredman and Saks proved lower bounds for some important data-
structure problems in the cell probe model. This model assumes that data structures are stored in memory with a
known word length. In this paper we consider random access machines (RAMs) that can add, subtract, compare,
multiply and divide integer or real numbers, with no size limitation. These are referredigedsaic RAMs

We prove new lower bounds for two important data-structure problemsn-findanddynamic prefix sum3o

this end we apply thgeneralized Fredman—Saks techniduteoduced by the authors in a previous paper. The
generalized technique relies on a certain well-defined funcBaorput Variability that characterizes in some

sense the power of the computational model. Fredman and Saks’ work implied bounds on output variability
for the cell probe model; in this paper we provide the first bounds for algebraic RAMs, and show that they
suffice for proving tight lower bounds for useful problems.

An important feature of the problems we consider is that in a data structure of, gtze data stored are
members of(0, ..., n}. This makes the derivation of lower bounds for such problems on a RAM without
word-size limitations a particular challenge; previous RAM lower bounds we are aware of depend on the fact
that the data for the computation can vary over a large domain.

Key Words. Random access machine, Cell-probe lower bounds, Union-find, Dynamic prefix sum.

1. Introduction. In a seminal paper, Fredman and Saks [17] proved lower bounds
for some important data-structure problems in the cell probe model: a model where the
complexity of a computation is measured by the number of memory cells accessed,
and memory cells have a specific word size (number of bits). A typical word size is
logarithmic in the size of the problem instance. In particular, tight lower bounds were
given on worst-case and amortized operation cost fouttien-find problem and the
prefix sunmproblem.

In a previous paper [5] we showed how their results can be derived from a main
theorem which involves two quantitieBroblem Variability(PV), a characteristic of the
difficulty of a dynamic problem; an@®utput Variability (OV), a characteristic of the
power of an abstract machine, or computational model. This separation means that by
establishing OV for different computational models we can rather easily make use of
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problem analysis done once. In fact, what we actually use is an upper bound on OV. To
clarify this idea, consider the following examples. The number of leaves of a decision tree
of heighth is bounded by 2, this simple upper bound on the “power” of the tree model is
the key to standard lower bound results suck@slogn) for sorting. A more involved
upper bound is that given by Ben-Or [7] on the number of connected components of a
set recognized by aalgebraic computation tred his too is an upper bound that implies
lower bounds in much the same way as the sorting result. The definition of OV (givenin
Section 2) is a little more complicated as it is geared towards the handling of dynamic
problems.

Attempts to extend classical lower bounds from decision or computation trees to
Random Access Machines (RAMSs) had to deal with the RAM'’s capabilitpdifect
addressingthe capability that makesita “random access” machine. This powerful feature
enables fast solutions to certain problems, for example, sorting integers of a limited range
with bucket sort [1]. A seminal paper that showed how to cope with indirect addressing
and its combination with computational instructions is [27]. The method relies on the
fact that in a large set of possible inputs, there will be some that do not satisfy a given
non-trivial equation. Thus a worst-case input can be chosen that defies non-trivial use
of indirect addressing. This approach has been later used in several works, e.g., [9],
[12], [24], [26], and [6]. The analysis in this paper requires a further refinement of the
technique because the inputs and outputs in our type of problems belong to a small set
(say{1,...,n}) and the algorithm might exploit it.

The main result of this paper is an upper bound on OV for the algebraic RAM, an
idealized random access machine with capabilities for computation with real numbers.
This model is strictly stronger than the classical RAM model with unbounded integers
[1], [10], but is incomparable with the cell probe model, since the latter has a bounded
word size but an unrestricted “instruction set.”

Interestingly, we obtain a bound on the RAM’s OV that is quite close to the bound
known for cell probe. Plugging this result into the previous lower-bound arguments,
we obtain the first tight lower bounds for the complexity of the above data-structure
problems on the algebraic RAM. More specifically, we proveSagx(m, n)) lower
bound on the amortized costof- 1 unions andn finds; an2 (logn/log logn) worst-
case lower bound for a single union or find; and&togn/log logm) amortized lower
bound form prefix sum operations on an array of lengtt-or more details and additional
results, including tradeoff relations between the costsxainandfind, see the following
sections.

This paper begins with definitions of PV and OV and the presentation of the Main
Theorem from [5]. We then define our RAM models and state the results on their OV. The
following sections include the lower-bound proofs for the above problems. We include
all the definitions and attempt to make this paper self-contained, except for not repeating
the proof of any statement that we can simply cite from [5]. In fact it is the very merit of
our method that we can re-use much of the earlier work (a large part of that even goes
back to [17], but Fredman and Saks’ presentation was not fitted to our framework, so it
was remolded thus in [5]).

The derivation of bounds on RAMs’ OV, which is the main resultin a technical sense,
is given last. Thus, a reader can find out how these bounds are used before delving into
the details of their proof.
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2. Output Variability and Problem Variability.  Consider aquery programthat is

given an input number in the range -2 n and, using a data structure kept in memory,
produces an answer in the range im. The significance of these numbers is problem
dependent; in fact, any rangemfconsecutive integers may replace the one above, and
any set of sizen can be used as query inputs. For notational convenience, we use the
above simple sets.

The query program can be said to have two sources of input: external (here a single
number) and internal (the data structure stored in memory). We consider the mem-
ory to consist of a (possibly infinite) set oklls A memory image Ms a sequence
of integersM (0), M (1), ... which specifies the contents of the cells. I(@ti, M) de-
note the result of a query with inputon the memory imag®1. The vector of results
(Q(1, M), ..., Q(n, M)) will be denoted byQ(M).

QV is a characteristic of the efficiency in which a computational model supports
dynamic data structures. The definition involves two different cost measures associated
with programs for data-structure problems on the given model. The first idatae
structure costw, which we leave unspecified for the moment. A typical choice would
be the amount of memory it uses. The second igjthery cost qQuery cost is required
to be at least the number of memory cells read during the processing of the query, but
may account for additional processing costs as well.

The OV of a model is the functio®V(w, X, q) defined as follows. LeM be a
memory image that contains a data structure whose cast lset M* be the set of
memory images obtained fromM by modifying the contents of at mostells. LetQ be
a query program such that for all inputand memory images € M* the computation
of Q(i, N) costs at most]; the definition of query cost is also model dependent, but
is required to be at least the number of memory cells read while processing it. More
generally, we consider g-truncated program: this is a progra@ obtained from a
real query progran@Q’ by forcing it to halt and output a “dummy” answer (say, 1)
whenever its run would originally cost more thguOV(w, X, q) is the supremum, over
all such memory imageM and programgQ, of the cardinality of the set of vectors
{Q(N) | N e M*}.

For a simple example of how OV can be bounded for a useful model we refer the
reader to [5], where the cell probe model is considered. A slightly more involved, and
more precise, bound on OV for the cell probe model can be found in [2].

We next define PV. This definition involves both queries and updates; we denote by
U the set of possible inputs to an update operation, assumed finite.

An update schem# is defined as a set of sequences of update operations which are
subdivided intaz roundsof lengthsry, ro, ..., r.. Formally,i € Utz We denote
by U4; the set obtained by taking the firstounds of each sequencelifa

Uy ={o eU™ | Ju: op eU).

Thusl/ is the same dg,. For obtaining our results, we requikgo obey theequipartition
property for each member dff; the number of its continuationg @bove) is the same.

This holds, in particular, if the operations of each round are chosen independently. Here
isan example: let) = {a,b,c},ry =r, =rz3=2andry =rs =rg = 1; thusz > 6.
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A possible scheme is represented by the following expression:

ab) (aa a b
o (e 3] )

We havellis| = 4, |Ugs| = 24.

LetO < i < j beroundnumbers. For each sequence of operatians(; defineA(o)
to be the vector of correct answers to queries enl, ..., n following the execution of
o. For eachr € U;_1 we defineC; j(t) to be the set of continuations ofto a sequence
in Z/{j .

Ci,j(l’) ={u: T e Uj}.
Referring to the above example,

a b
Cye(abbbch = { b {a}{ }
c c

Note that the equipartition property implies th& j ()| is the same for alk. For

defining PV we need just one more notation. For an arbitrary vectofZ", let By (v)

denote the ball of radiug (with respect to Hamming distance) centered at the vactor

We define

{u € Cij(r): A(zp) € Bsn(v)}]
1Ci.j (7)]

thusgs (i, |, t) indicates the fraction of answer vectors that may be “close” to an arbitrary
vectorv. We definePVy, s(i, j) by

’

05(i. j. 7) = max

. 1 o
(PVy 50, )7t = > g1

1l &,

A large value of PV indicates thaf; is often small; hence the set of answer vectors
following a sequence froy; is sparse.

3. The Main Theorem and Some Corollaries. The Main Theorem of [5] states a
connection between PV, OV and the complexity of solving the given problem in the
given computational model.

The theorem refers to a set of operation sequences which include both updates and
gueries. These sequences are obtained by enriching an update scheme (as described in the
last section) with query operations. We further associate with these sequerepeschn
schemethat defines a subdivision of each sequence into time-intervals called epochs.

Letl be a given update scheme, anddet zbe a round number. patternfor L is
a stringry of k + f lettersk u'sand f g’s, for somef > 0. According to the pattern,
lUy| - n™ operation sequences are formed by assigning the update rounds spedified by
to the positions marked hy, and a single query operation, ranging overhgossible
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queries, to each position markeddpyWe denote the set of operation sequences obtained
by Yk = 2U, my).

Let ¢ be as above and lgt < k. The subpattertr; is defined as the prefix ofy
that extends up to, but not including, the+ 1)stu (if j = k, thenr; = 7). An epoch
scheme for U4 is defined by subdividing the pattern string if@ochs The subdivision
is defined by a set of indices j; < j» < --- < j. Epoche consists of the operations
ranging from thgeth u up to (but not including) thg. ; st (or the end of the string). Thus
each epoch may contain batls (update rounds) angls (queries), but all start with an
update round. This subdivision naturally induces a subdivision on every sequexnice in
Here is an example (the vertical lines delimit epochs):

e = Ujuug |uugquq |, ji=1 j2=2, js=4, j=6.

This pattern can be associated with the exampléf§g@resented in the previous section.
Taking the set of query inputs to B&, 2} eachq can be assigned two values. We obtain
|X6| = 24- 2% = 192. One particular sequencein (in fact, the first in lexicographic
order) isabjaachl|aalbl|. The vertical lines delimit epochs, induced by epochs of the
pattern.

MAIN THEOREM. Fix a data-structure problem and a model of computatidansider
an update schenié, an epoch schemgfor ¢ that includes q epochsonstantss > 0
and c< 1 and parametersxandw such that for all epochs,e

OV(w7 Xea q) S CP\éJ,S(je, J)

Assume that there is a constantad< d < 1, such that at least a fraction d of the pairs
(0,€) € & x {1,..., q} satisfy the following conditiongi) Throughoutr, the cost of
the data structure is bounded hy (i) At most x memory cells are written subsequent
to epoch eThensd(d — ¢)q is a lower bound on the average cost of a query that follows
an operation sequence chosen randomly flBm

The theorem establishes a tradeoff between the cost of maintaining the data structure
(w andxg) and the cost of querying if}. Such a tradeoff leads in particular to a lower
bound on operation cost, which is obtained as follows. The quantitiasdx. can be
bounded if the total cost of a sequence of operations is known. Hence, every assumption
ofthe form “all operations cost at magtleads to a bound 0®V(w, Xe, q). To derive the
lower bound, we compute a capsuch thatif all operations cost less thp®V(w, Xe, Q)
will be small enough to satisfy the theorem and it will follow that the query must cost at
leastq, a contradiction.

While the cost measures referred to in the theorem are worst-case costs, it can also be
used to prove lower bounds on average and amortized complexity as well as for random-
ized algorithms. A general discussion of how such results are obtained appears in [5].
Since the application of the Main Theorem to the specific problems we consider required
some sophisticated arguments (all due to [17]), we formulated in [5] some lemmas, or
rather corollaries of the Main Theorem, tailored towards the specific applications. We
now restate these corollaries without repeating their proofs.
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The first corollary is used in proving inverse-Ackermann lower bounds, and is used in
Section 5 in conjunction with the Union-Find problem. Fgr 1 andj > 0, we define
the Ackermann functior@, j) by

AGli,0 =2 for i >1;
Al j) =2 for j>0;
Ad, ) = Al —1,Ad,j—1) for i>1 j>1

Let
ak(n) = min{j | AKk, j) > n},

a(m,n) = min{k| A(k, (?D > Iogn}.

COROLLARY 1. Consider models where the cost of a data structure is bounded by the
cost of the operation sequence that created$sume that there are an update schéfme
which includes at most n operations spannirig)g= % logn roundsconstants K§ > 0

and c< 1suchthatforalli< j,

. n
cP > 0OV ([ ngn), ——
Vigs(i, ) = ( g(n). qu,,q>,
where g= a(m, n). Then there are operation sequences made of an update sequence
fromU interspersed with m queries whose total cosRigna(m, n)).
If the inequality holds for a fixed,ghen there are sequences with n queries such that
either the queries cost at least gn or the updates €01 (n))

REMARK. The assumption made in the lemma regarding data-structure cost essentially
expresses the idea that before the operation sequence is begun, there are no data in
memory. This holds for our RAM models by virtue of the assumption that the memory

is initially zero.

The second corollary is used in Section 6 in conjunction with the Prefix Sum problem.

Here we restrict our update scheme to having the same number of update operations
in each round, say, and the same number of possible choices for each operation, say
h. Thus|if,| = h'™2.

We consider “easy” cases concerning PV computation, in which there is a uniform
bound on the fractiong;(i, j, t), in the following sense:

DEFINITION. Update schem# is (V, §)-boundedf V is a function that satisfies, for
alll<i <j<zandr €Yy,

(1) gs(i, j,7) <V( —i+1).

Recall that an epoch scheme spans a given numbérounds, for somg < z. We
defineLe = j — je+ 1, the number of rounds since the beginning of epoc@onsider a
patternuquq ...uq, includingz u’s andz g’s. We denote by, the set of updat@uery
sequences corresponding to this pattern in the usual manner.
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COROLLARY 2. Letl be(V, §)-bounded and consist of z rountiet€ be epoch scheme
forldj, j < z/2,thatincludes g epoch€onsider aconstarli < ¢ < 12 and parameters
w, X such that

for all e < q. Assume that for a random choicewnfe %, the following conditions hold
together with probability at least p- 2¢: (i) throughouts, the cost of the data structure
is bounded byw; (ii) the number of memory writes throughauis bounded by xThen
3(p/4—c/2)zq is alower bound on the average total cost of queries. iim particular,
we obtain a lower bound & (q) on the amortized cost of a query

4. Random Access Machines. The RAM is widely adopted as a model for study-

ing the complexity of algorithms in a quite realistic way. It has been popularized by
textbooks such as [1] and [28]. The former defined the elementary data type to be the
integers; the latter, the real numbers. In addition to these changkedaofype we also

find several variants ahstruction setsIn this section we present a general notation
for RAM models, following [6], and use it to specify the variants under consideration
precisely.

All the RAMs we define share the following structure. The machine consists of a
processing unit and a memory unit. The processing unit runs the program; to this end
it contains a “program counter” that indicates the next instruction to be executed (the
different instructions are described below). It also makes use of a finite speddting
registers g, ..., rx, whose number is fixed for any given program, as they can only be
accessed by being named in an instruction. These registers are used for all arithmetics
and tests, leaving thmemorywith the sole role of data storage.

This description is made specific by the choice of three parameters:

ThedomainD is the set of values that may be manipulated by the machine as “units
of data.” Every memory cell or operating register holds one elemebt of

Theaddress spacd is the set of values that may be used as memory addresses. Thus
the size of memory if4|, and the standard idealized model uges- N. In the
case that is strictly contained irD, a program mayault by attempting to use a
value inD\ A as an address. In this case the program may be considered invalid,
or we may consider its result to hie (undefined).

Theset of primitive functiong defines the basic operations on data values. We call
the RAM algebraicif F consists of the field operatiotys-, —, x, /}.

The instruction set of the RAM contains the following groups. In the notation for
instructionsr;, r;, r¢ are register names;is a constant fron®. The notationr;) refers
to the memory cell whose address is given by the contents of

Direct Assignments

r <« X,

r < rj.
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Memory Access

Flow control instructions

goto label
if ri o< rj gotolabel

e {=,<,<,...}
halt

Arithmetic Instructions

M < rj + Ik,
i < Ij—"rg,

etc., as provided byF.

The initial contents of memory cells, before written into by a program, is assumed in
this paper to be zero.

Our results in this paper are given foreal-number RAMnamely a RAM where
D = . The main application for this model is to study algorithms on real numbers, e.g.,
in computational geometry [28]; but it is conceivable that a problem on integer inputs
will be solved faster using the power of the real-number RAM. Thus, we consider the
real-number RAM also in conjunction with integer-constrained problems. At any rate,
it is obviously valid to use a strong model for a lower-bound proof. In the same spirit,
we also adopt the rather non-standard cholce % (memory cells are addressed with
real numbers).

We consider three RAM variants that differ on the primitive $etThese models
are: RAM(), with F = {+, —}; RAM(x), with 7 = {+, —, x}; and RAM(/), with
F=1{+ - x/}

The following result is proved in Section 8.

THEOREM1. The models RA), RAM x) and RAM/) satisfy
OV(w, X, q) < (29%dnw)*(dn)*
for w, x > 1, where d isl for RAM(%) and 29 for RAM(x) and RAM/).

5. The Union-Find Problem. We consider the union-find problem [30], [19] in the
following framework: we start witm singleton setq1}, ..., {n}, which are named
1,...,n, respectivelyn — 1 union operations anan finds are to be performed is
assumed, without loss of generality, to be an even power of two. Each union operation
specifies the names of the sets to unite and a name for the resulting set, all integers are
in the range 12, ..., 2n. This range allows us to give a new name to each created set:
we always give the name+ i to the result of theéth union. A query (find) specifies an
element and returns the name of the set currently containing it.
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Ourupdate schem# for this problem containgslogn rounds. Round comprises
n/2X operations which pair sets of siz&2 to a set of size'2 Thus, the number of sets
at the beginning of rounkl is n[k] = n/2-1. By our naming convention, the names of
thesen[k] sets will span a pre-determined rangenfif] consecutive integers. Therefore
the union operations of each round can be specified independently of former as well as
of later rounds. The update scheme contains all possible sequences of such operations;
this guarantees the equipartition property.

LEMMA 1[5]. PV 1/4(i, j) > 8" (n[j+1]"i1/2 > g=nlilpnlil/4,

THEOREMZ2. Ifa RAM(/) algorithm for union-find executes each union in cost bounded
by k, 7 < k < n, then there are sequences of union operations such that the cost of a
subsequent find i€ (log, n). Hence for every algorithmat least one of the operations
has a worst-case cost 6f(logn/loglogn).

PrROOE We use the above update schemc% &g n rounds, dividing it intog epochs
where

logn
q= 6logk

Each epoch containg = {(% logn)/q] = [3logk] rounds (except the last which may
be shorter). We add no queries in between since we are only interested in the cost of a
single query following the updates, as given by the Main Theorem. Define

_logn
~ 6logk’
N[jel
Xe = K2’
w = nk,

§=1 c=1, d=1

FNT

We will prove that the above epoch scheme and parameter definitions satisfy the
conditions of the Main Theorem. Note tlth= 1 means that all the sequences considered
must respect the boundsandx, we give. Since we look for a worst-case lower bound,
we assumethat no update operation in the sequences considered writes mork than
cells (otherwise the conclusion of the theorem holds). This implies that the number of
cells written throughout a sequence of updates is bounded Bynk. To estimate the
number of cells written subsequent to epegtecall that round includesn[i]/2 = n/2'
operations, and that epoehextends from rounde = (e — 1)8 + 1 up to roundes.
Furthermore, each operation costs at nmpstnd therefore writes at most cells. It
follows that an upper bound on the number of cells written is

(1/2)logn . . .
n N[jel n[je] n[jel
iZ;rl 2! 2¢8 28 213 logk] K2
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Theorem 1 yields
OV(w, Xe, §) < (229n2k)¥e(29n)% < (2qn)7ﬂ[je]/k2kﬂ[je]/k2
and, using the factg < logn/6 andk'/¥ < 2,
OV(w, Xe, q) < noNLiel/kpnliel
Combining with Lemma 1,
OV(w, Xe, Q)
—_— <

PVis(ies })

For k > 7, this expression tends to zero ms— oo, so that forn large enough it
becomes less thanWe have established all the conditions of the Main Theorem, which
now shows that the average cost of a subsequent query is af{dastc)q = q/8 =
Q(log, n). O

ngn[je]/kzzn[je] 8n[je] n*n[je]/4 — (16n(9/k2)*(1/4))n[je] .

We remark thatth& (logn/log logn) lower bound has been proved, and shown tight,
by Blum [8] for a certain class of pointer algorithms. Smid [29] modified Blum’s pointer
algorithm to match the above tradeoff for any valué&aBince these pointer algorithms
can be efficiently implemented on an ordinary integer RAM, we conclude that Theorem 2
is optimal.

THEOREM3. Any RAM/) algorithm for solving the union-find problem requires
Q(ma(m, n)) time in the worst caseto execute a sequence of-nl unions and m

finds Moreovery for any fixed qthere are sequences of-n1 unions and n finds such
that either the unions cost at least gn or the finds €@&tog41(Nn)).

PrROOFE  We apply Corollary 1 (Section 3) as followid:is the update scheme already
described. We choose= ;11 so Lemma 1 applies. Further define= % andK = 25.
The results follow from Corollary 1 provided

n
PV, s, j ov ,——,q]).
CcPVys(, ]) > (ng(n) Kq2 Q)
Substituting the parameters we chose and using Theorem 1,

n n
oV (ng(n), Wq) = oV <%nlogn, Wq)

2014011 10.140[11/4 (15 g ) 0061/

IA

(recalln[k] = n/2¢"1). By Lemma 1,

OV(ng(n), n(qui D _ 201401 40.1401/9 5 ) 0.06n(i 1/ gl ~0.25[]
PVi,s(, J) -
— ((log n)O.OG/q23.14n(0,14/q—0,25))n[i]

this tends to zero as — oo and in particular becomes less thamvhenn is large
enough. Lemma 1 thus applies and yields the lower bounds. O
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Optimality of Theorem 3 is shown by matching upper bounds by Tarjan [30] and La
Poute [25] (the latter also gives a tradeoff solution). Both papers give pointer algorithms
that can be readily implemented on an integer RAM. Recently, Alstrup et al. [2] have
given algorithms that are at the same time worst-case optimal (matching Theorem 2) and
amortized-time optimal (matching Theorem 3).

We finally remark that both lower bounds still hold if we average on the set of inputs
for each find, and apply to the expected time if the algorithm is randomized. These
observations are common to results proved by the Fredman—Saks technique and are
justified in [5].

6. The Prefix Sum Problem. The prefix sumproblem is a basic and simple data-
structure problem that has been described by Fredman [15] as “a toy problem which is
both tractable and surprisingly interesting.” We define the problem as follows:

PrReFIx SUMs mod k  We represent an array[1], ..., T[n] of integers. Initially all
T[i] are zero. The update operation is &dd\) which implementsT[i] < T[i] + A,
and the query is suj) which returnsZifj T[i](modk).

The above problem is denoted by@®sk, M) if A in update operations is guaranteed
to be bounded byl. The unrestricted prefix sum problem is@sSM, M) whereM is
greater than any number that is ever to be represented. The simplest variant i3, 25
also calledprefix paritysince in essence we ask for the parity of a prefix of the array.

Not only does the prefix sum problem occur in many applications, a lower bound for
PS(n, 2, 2) is useful for deducing lower bounds for other, seemingly different, problems
[16], [17], [22]. Naturally, the lower bound also applies to(RK, M) with largerk
andM.

Fredman and Saks [17] gave a lower boun@agfogn/logb) for the amortized cost
of PSn, 2, 2) in the cell probe model with word size> logn. This bound is re-proved
using our framework in [5]. By a simple extension of an algorithm by Dietz [11], a
matching upper bound (in fact, a worst-case bound) can be given toralbgn. This
algorithm uses certain functions which on a RAM are implemented via tables; preparing
the tables take®(2”) time for a certain O< ¢ < 1. Besides this function, ordinary
arithmetics on words df bits are used. Since our RAM can use unbounded integers, we
can choose the value bfthat fits us best. This will depend on the number of operations
to be performed, since we would like the cost of building the tables to amortize over
these operations. Specifically, suppose that the number of operations to be performed
is given asm > n. The program choosds ~ logm. Thus the tables can be built in
0(2") = O(m) time. The RAM program builds the tables and then proceeds with
Dietz’s algorithm; we obtain an upper bound®flogn/log logm) amortized time per
operation. The space usedd$2® - b* 4+ n). If mis not known in advance, we start with
b = logn and increasé once in a while. Since this is a well-known technique we omit
the detalils.

What happens if we do not want the space to keep growing as the number of operations
grows? We can impose a bound on the amount of memory that we are going to use and
select the value df accordingly. If we bound the memory by%®@"", for a constank,
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the value ofb that we may use becomes polylogarithmicinDietz’s algorithm will
then run inQ (logn/log logn) time per operation. The next theorem provides matching
lower bounds:

THEOREM4. Any RAM/) algorithm for PSn, 2, 2) requires in the worst casge
Q(mlogn/loglogm) time for executing a sequence of m n update and query
operations If the space used by the program is bounded2t#™", for a constant
k, thenQ (mlogn/loglogn) time is required for all m> n.

As mentioned in the last section, the lower bounds hold even if we average on the
set of inputs for each query and if the algorithm is randomized. Furthermore, the update
scheme used in our proof consists of operationgiadd where the sequence of indices
i is fixed in advance. Thus knowledge of this sequence does not make the problem easier
(on the models we consider).

We remark that fom < n, our proof method yields a lower bound ©f(logm/
log logn) amortized time. This may be matched on the cell probe model by an algorithm
that makes use of the fact that at mostistinct indices appear in update operations.
Whether this can be matched on the algebraic RAM is an open problem.

We prove Theorem 4 in the unbounded-space setting. The proof of the claim on
bounded space is almost identical, using the imposed bound for the parameter

We use gV, §)-bounded update scheme (Section 3, Definition 3). The update scheme
U consists ofz = m/2 rounds, where each round is a single update operation (so that
when adding a single query to each round, we consider sequentespafrations). For
¢ = (1+ +/5)/2 (Fibonacci number), ldi = (|nkg 1| modn). We define

U ={uguz---uz | ugis addly, Ay), Ax € {0, 1}}.

Thus there are two alternatives for each update operatiof) imhich are chosen with
equal probability.

LEMMA 2 [5]. Update schemé is (V, §)-bounded with$ = & and V(¢) = 2792%.

This lemma allows us to apply Corollary 2. The corollary requires us to consider the
set of updatgquery sequences, formed according to the pattenqugq . . . uq, including
2z = moperations. For a given prefix sum algorithm xdie twice the average number
of memory writes throughout an entire operation sequence chosen uniformlyfyom
As a bound on the data-structure cost we chapse: x since all memory cells are
initially zero. The probabilistic condition of the lemma clearly holds with= /.

Let x = x/z. Note thaty is twice the average number of writes per round; necessarily
x > 1since agivenround hasto modify the data structure atleastin every other sequence.
We can also assume < logn (i.e., x < zlogn); otherwise the desired lower bound
holds anyway.

We describe an epoch schefespanningj = ./n rounds, soj < z/2, as required
by Corollary 2. The division of these rounds into epochs has the form of a geomet-
ric sequence, growing from the last round backwards. Specifically, ldiest epochs
containLq_j11 = (ax)' update operations wheteis a parameter to be chosen later.
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Accordingly, the number of epochs is

| ater.
~ Llog(ex) ]

i -1 =1
Finally, we choosé = 35 andc = 3.

It remains to verify the inequality involving OV and(L¢) and determine the value
of a. We get a bound on OV from Theorem 1 and the inequalijies log./n and

w < my/n:

Ov(w’ 4x Le—Fl/Za q) Ov(wv 4X L(‘H—la q)
OV(w, 4Le/a, Q)
(22qnw)12Le/a(2qn)4Le/a

(nS/2m)t2Le/e (n3/2)ALe/a

A1l

IA

— (n¥miR)Le/e
< miLe/o

Combining the last inequality with Lemma 1 and taking the (base 2) logarithm, we get

A

log(OV(w, 4XLey1/2,q) - V(Le)) (48L¢/a)(logm) — 0.25L ¢

Le(48logm/a — 0.25).

To apply Corollary 2, this expression has to be bounded byg leg-3, so we choose
large enough to make the above expression negative. Sinsea decreasing sequence,
and the inequality is required fer< q, it suffices to ensure that

—3 > Lg-1(48logm/a — 0.25) = ax(48logm/«a — 0.25)
= x(48logm — 0.25x)
This inequality holds for all > 192logm + 12 (giveny > 1). Hence we letx =
[(192logm + 12)x 1/ x, the smallest number greater than 192rog 12 such thatr x
is an integer.

We have thus established the conditions for Corollary 2. To evaluate the lower bound
that results we substitute the valuegf in the definition ofg, obtaining

_{Iog\/ﬁJ>{ »logn J_Q<Iogn)
“ log(ex) | ~ [ log(192logm+12) +logyx | = \logm/"

7. An Algebraic Toolbox. This section contains algebraic background for the follow-
ing proof and includes the Counting Theorem, a combinatorial geometry result which
may be interesting in its own right.

7.1. Preliminaries We recall some definitions and results from algebraic geometry
(for details and proofs see [23]). Affine algebraic varietyhenceforth variety) it is
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defined by a set of algebraic equations inkleeordinate variables: i.e., for polynomials
P1, P2, ..., pr the setx € CK | py(X) = pa(X) = --- = pr(X) = O}.

THEOREMS5. Unions and intersections of a finite number of varieties are varieties

Given a collection of sets, a single set of the collection is cakellindantif it is
contained in the union of the other ones, amddundantotherwise. A representation
of a given set as a union of subsets is cali@ddundantif none of the sets in the
representation is redundant.

THEOREMG6. For every variety Vthere is a uniqgue decomposition into an irredundant
set of varietiegV; } such that_J Vi = V and no Y can be further decomposed this way

The varieties in the above decomposition are calleattiieponentsf V. We denote
the set of components (V).

REMARK 1. Since each component ¥fis a variety, the union of any proper subset of
the components is also a variety, properly containéd.in

REMARK 2. It is easy to show that foiV;} to be an irredundant decomposition \éf
(not necessarily into components), ed¢hmust contain at least oremponentvhich
is not contained in the union of the other ones.

DEFINITION. A variety of one component is callédeducible

LEMMA 3. Let{V;} be the components of,¥@nd let U be a varietyf K is a component
of U NV, then itis also a component of at least one of the varieties 4.

DEFINITION.  Thedimensiorof an irreducible variety in CK, denoted dinV, is the
largest length of a chaiv = Vp D Vi D --- D Vy # 0 of irreducible varieties.
0 < dimV < k. Thecodimensiorof V, codV, isk — dimV.

The dimension of an arbitrary variety is defined as the largest of the dimensions of
its components.

DEFINITION.  For any varietyV, G (V) is the union of components & possessing a
given codimensiorj.

G (V) is apure-dimensionabariety—all its components have the same dimension.

THEOREM7. Forvarieties U V such that UC V, codU > codV. If V isirreducible
and U c V, thencodU > codV.

THEOREMS. Let V4, Vs, be pure-dimensional varieties @, and suppose MV, # #.
Then every component of ¥ V, has codimension at mosbdV; + codVs.
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DEFINITION.  For an irreducible variety, its degreeis the maximal cardinality of a
finite set obtained by intersectingwith a linear affine subspace.

The degree of a non-empty variety is positive.
Following Heinz and Schnorr [21], we define the degree of an arbitrary variety to be
the sum of the degrees of its components. By this definition we have:

FACT 1. The degree of a union of varieties is bounded by the sum of their own degrees
The degree of a variety is at least the number of its components

Heinz and Schnorr give the following variant oéBdut’s theorem:

THEOREM9 (Bézout Inequality). Let 4, V, be affine algebraic varieties i%. Then
degVi NV,) < degV; - degVs.

Ckitself constitutes an irreducible variety of codimension 0 and degree 1. A set defined
by a single non-degenerate equation (that is, not an identity) is calggexsurface
and has codimension 1. The degree of a hypersurface is bounded by the degree of the
polynomials in the defining equation.

7.2. The Counting Theorem Letx be a positive integer. Suppose we are given a vector
of n rational functions orC*, that is, functions of the fornR/T whereR and T are
polynomials. Evaluating them in some point@f yields a vector of results, belonging

to C". Let Sbe a finite set of values and suppose we are only interested in result vectors
within S". The Counting Theorem gives a bound for the number of such vectors that can
be achieved. It is interesting that this bound is independemnt of

COUNTING THEOREM. Fori =1,2,...,nlet f = R /T, where both Rand T are
polynomials onC* of degree at most.dLet S C C be finite and let m= |S. Let
fX) = (f1(X), ..., fa(X)). Then the number of distinct values frofha&hieved by (x)
for x € C* is bounded bydm)*.

PROOF For0O<i <n,andv = (vi,v,...,v) € S, let
Rn....0)=XeC RN =yTx, j=1....i)

and let
*) Pi=JRw.
veS
P, (v) andP; are clearly varieties if©*. Finally, let
p(i)= Y (dm % degK.

KeC(P)

Let N be the number of distinct values fro81 achieved byf(x). Letv € S". Obvi-
ously, P,(v) includes all points wheref(x) = v. These points must satisty (x), T>(x),
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..., Ta(X) # 0 (we call such pointsion-singula). Therefore,N is bounded by the
number of set$,(v) that contain non-singular points. We call these non-singular sets.
ConsiderP,, : we show that in the uniotx) defining it, each non-singuld®, (v) is non-
redundant. To see this, letbe a non-singular point such thaf(x) = v; T; (x) for all j.
Changing any element af will violate the corresponding equation, so Rg(u), with

u # v, can contairx. It follows, by Remark 2, that the number of non-singular sets is
bounded by the number of component§)f and therefore (using both parts of Fact 1)

N< > degK < (dm*p(n).
K eC(Pn)
The number we seek is thus bounded@yn)*p(n).
Consider the following claims:

(1) ¢(0) =1.
(2) ¢(i) is a non-increasing function of

It is easy to see that together they complete the proof of the theorem.

Proof of (1). The sets” contains only one vector, of zero length; thus there is only one
trivial set Py, the whole space. It contains a single component (itself) of codimension 0
and degree 1, sp(0) = 1.

Proof of (2). To show thaty(i) is non-increasing, we relate the component®af; to

those of P;. Each setP, . ;(v) is obtained from a sel, (u), whereu contains the first

i elements ofv, by adding the conditiomR . 1(X) = vj11Ti+1(X). If this equation is an
identity, we havefi,1 = R1(X)/Ti11(X) identically equal taj 1; thus we can ignore

this component of the vectors. If this is not the case, the equation defines a hypersurface
of codimension 1 and degree at mdsfThus

Pii(v) = R NH,

where H is the hypersurface. Note that a different hypersurface corresponds to each
element ofS.

Let Q be a component d? 1 (v). By Lemma 3 it is also a component Kfn H for
someK € C(P,(u)). By Theorem 8,

codQ < codK + codH = codK + 1.

Moreover, by Theorem 7 we have cQd= codK + 1 unlessQ = K, that is, unless

K C H. We thus divide the components Bf,; into two groups. The first includes
components of?; that are completely contained in one of the hypersurfateg&ach
component of this kind will contribute the same termyi@ + 1) as it did tog(i). The
second group includes compones= K N H that are proper subsets of the original
componentk. Such sets can count as components only itself is not in?; 1, that

is, does not belong to the first group. Suppose it does not; then we “gain” a host of
new components, resulting frol’s intersection withm hypersurfaces. Ldil be the
union of all these components); is the result of intersecting with the union ofm
hypersurfaces, each of degreal. By the Bézout inequality,

degU = )  degQ < mddegK.
QeC(U)
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The contribution of all these componentsg6 + 1) is

> dm)=QdegQ = (dm)~ ™t Y " degQ < (dm)~ ! degK,
QeC(U) QeC()

which is the term contributed p(i) by K. We conclude thap(i + 1) < ¢(i). O

REMARK. It is easy to verify that the theorem holds as well with respect to functions
fi which are polynomials of degree at maist

8. Output Variability of Real-Number RAMs.  In this section we prove Theorem 1,
giving an upper bound for the OV of three RAM variants, namely, RAYRAM(x)

and RAM(/). The functions that can be computed by a RAMNEr RAM(x) program

are mathematically simpler than those that involve division as well. However, the proof
of our result is almost the same for all models; so we complete first the proof for the first
two models, and then briefly describe the modifications needed to handle RAM(

A program segment which only refers to registers (no memory access instructions)
and does not branch @bliviousin the sense that both program flow and data flow do
not depend on values in memory. Tim@n-obliviousnstructions areonditional branch
and the memory access instructions. For RAN|(we define the cost of a computation
as the number of non-oblivious instructions executed; addition and subtraction are free.
In RAM( x), multiplications are also counted. Note that we do not restrict the number of
registers, and yet we count only accesses to memory cells. This resembles the situation
in typical computers, where register access and instructions of additive type are cheap:
our cost criterion counts instructions that are typically slow.

Recall that the definition of OV (Section 2) involves parametem), w, X andq.

For the rest of this section, these parameters are fixed. We furthbt find Q as in
the definition of OV. Our goal is to bound the number of vectd@$X)} that can be
obtained by sequences»imemory writes that updatel to produceX.

Comparing the current case to that of the cell probe model can indicate the source
for difficulty in this proof. In the cell probe model there is a finite number of values to
each word and this induces a finite number of possible computations. On the contrary,
the bounds of the above theorem allow an infinite humber of possible computations:
each cell written may contain an arbitrary integer, and since it can be used for indirect
addressing, the set of accessible addresses is also infinite. Thus, in order to bound the
number of achievable result vectors, we partition the memory imagds into classes
such that in every class, a unique answer vector is obtained. Our aim is to show an upper
bound on the number of these classes. We proceed to build the proof in stages, starting
with an easy case and generalizing as we go.

First, we have to make some definitions for describing the contents of the memory
image X. We denote byw the set of addresses of non-zero celldvin Let A be the
set of x addresses updated to produ¥e(there is no need to consider cases where
|A] < x since one can always rewrite a cell with its old value). The unitviny A,
is the set of addresses that may be non-zer4.iiThe intersectionW N A, is the set
of addresses re-written. Throughout most of the proof, we assume this set to be fixed.
This means that we concentrate on one of the equivalence classes defivedyn
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old structure
| W |
# A |

unchanged rewritten new

<’9?$“‘>“-”?1‘V~AU (?!arﬂyﬂ-f@’m) (yzwwya.)

Fig. 8.1.Naming of addresses X.

the identity of cells re-written. Call this classtl. The other addresses i are called

new We do not fix these addresses, which have infinitely many possible values. The
variablesXq, ..., Xy denote thex valueswritten. For definiteness, werelaxg, . .., Xa

to new cells § = |A—W]) and X,.1, . .., Xx to the re-written cells, each group given

in increasing order of address. We denote their respective addresggs hy yy. Note
thatys, ..., Yo arevariableswhile the other addresses arenstants We denote the
elements otV — Aby sy, ..., Sw_a (see Figure 8.1).

Through the proof we make some formal transformations and annotations of the query
program. We refer the reader to examples accompanying the proof for illustration of the
transformations described.

For a start, we replace the query progranmlgrograms, where prograntarries out
the computation of)(i, X); thus the query inputis changed into a program constant.
This means that tests for the valua pbr computation of functions af can be removed
from the program; as a result, such instructions need not be accounted for in our cost
criterion. Anyway, we now havedifferent programs which depend solely on the contents
of memory. We start our process by writing these programs in a “low-level language,”
namely, an assembly-like language where memory access is made explicit, making use
of registersRy, Ry, ... and where program statements are numbered (we refer to such
statements as “instructions,” although as a matter of convenience such a statement may
include an arithmetic expression and thus represent a group of arithmetic instructions).
See Example 1.

8.1. Resolute Straight-Line Programslt is easy to see that a value computed by a
straight-line sequence of instructions can be written down as an expression in the values

while ((0)) <i do

(0) <= 2x ((0)) + (i)
endwhile
return (0) +5

The translation to low-level language fioe= 3:

1. Ry < (0)
2: Ry < (Ry)

3: if R >3goto7

4: Rz« (3)

5 (0)«2xR+Rs
6: gotol

7: return Ry +5

Example 1.A query program.
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1. Ry « (3) Y1
2: Ry« (0) Y
3 (0)«< R -1 gY)=Y—1
4: Rz < (0) Yy

5. return Ry x Rp + R3 f5(?) =Y1Y2+ VY

Example 2.A straight-line program with annotations.

read from memory throughout the process. This expression is built from the arithmetic
operations available to the machine, and is therefore a polynomial. The valgkes of
indicated in the theorem are used as bounds on the largest degree that such a polynomial
may take. In RAM{), having no multiplication, no nonlinear term may be produced,
henced = 1. For RAM(x), we note that the term of largest degree computable gvith
operations is?', hencad = 29. One of the difficulties of the proof is that the values read
from memory may depend in intricate ways on the values of program variables through
use of indirect addressing. The approach we take is to perform as much static analysis
as possible to determine both program flow and data flow. To this end, we associate with
each LOAD instruction a formal variableY, that represents the value read. Wherever

a value is obtained as the result of a straight-line computation, we can express it as a
polynomial in these variables. Such polynomials will be denotedfhyg,, etc. For
instance, a STORE instruction uses two valugswill denote the address arg the

value stored. At a later stage we will define a consistent naming for these functions.
Such a function may depend, in general, on alltheariables of preceding instructions.

We thus denote by, the list of all Y-variables appearing before instructibrin the
straight-line programY( is used when is understood from the context). See Example 2.

It is important to distinguish between thefeemal variablesand the variables of the
program. The former obtain values not by running the program but by analyzing it. We
say theyevaluateto a certain value. This value is not necessarily a number, since it will
describe the result of a certain computation which may involve the inguts. ., Xy.

So, these values will be polynomialsyin= (X, ..., Xy).

In the current stage of the proof, we simplify the problem by restricting ourselves
to direct-addressing straight-line programs, i.e., we assume that each access to memory
uses a direct address which belong®\tdthe last restriction can be easily removed). For
such programs, we can pick up instruction after instruction and evaluate the associated
formal variable or polynomial. i is a LOAD instruction with direct address the
formal variableY, can be evaluated as follows, assuming for the moment that there are
no preceding STORE instructions.dfe W — A, it is one of the unchanged cells ¥
soY, = M(w) (the contents of celk in M). If « € A, Y| evaluates to the variabD¥;
such thaty; = «. Once the variables preceding an instruction that uses a funttén
have been evaluatedl,can also be evaluated (symbolically) by simple substitution. This
will determine, for instance, the value written by a STORE instruction. If the LOAD
instruction | is preceded by some STORE instructions, we look backwards from
for the last STORE intde). Y, evaluates to the function stored by that instruction.
Finally, we arrive at a polynomial (ix) which represents the output of the program
(Example 3).

Now let fj (X) be the polynomial computed by the que®y(i, X). Thus the answer
vector is given by( f1(x), f2(X), ..., f,(X)). Since the query answers must be in the
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Assume the program of Example 2 is run on the following memory image:

| Address| 0 | 1| 2 | 3]
[ Value | X1 |3 Xz2|2]

(hencey; = 0 andy, = 2). Analysis of the program yields the following results (a right arrow denotes
“evaluates t0”):

2
X1

Y1
Y2
93 1

Ya gz —>1
fs — 2X1+1

bl

Example 3.Symbolic evaluation in a program without indirect addressing.

rangel..., m, the Counting Theorem shows that the number of different answer vectors
obtainable is bounded g m)*. We denote this number byy,.

The last result can be extended to programs that use indirect addressing. Indirect
addressingisintroduced by allowing the address argument of amemory access instruction
to be an arithmetic expressionYh With an instructiorl of that sort we will associate, in
addition to the variabl¥, which represents the value fetched (if itis a LOAD instruction),
apolynomialf; (Y) which represents the address. WHe(Y ) is a constant, itis possible
to determine by static analysis (i.e., by looking at the program) what is stored in the cell
accessed. To this end, wesolvethe reference (as described above) to determine either
the identity of the STORE operation that gave it its current value, or identify it with one
of the cells inW, or decide it is an unused cell and zero will be read. Whel) is not
a constant, this decision may still be possible. Here for identifying the referenced cell as
one that has been modified in a certain STORE instruction, it is required that the function

f| (Y) coincide with the function that represents the address in the STORE instruction. A
resoluteprogram is a query program together with a.4etf allowable images such that,

for X € A, itis possible to resolve all memory references in the program. Direct-access
programs treated above are resolute with no limitatiorKof@xcept for the identity of
rewritten cells, which we fixed for this discussion). For other programs, a finer analysis
is required.

Consider the program in Example 4. There are three LOAD instructions in the program
with associated variablesyy, Y, andY,4. The conditiony; = 1 implies that the memory
cell of address 1 is identified with the varialXe. Therefore, line 1 setg, to X;. Line 2
uses indirect addressing where the function used for the address is exadtignce
we know it as the variablX;. While we do not know its value, the conditigh = X;
implies thatX; gives the address of;: thusY; evaluates tdX». In line 3 the expression
Y1 — Y, (Which evaluates t&X; — X5) is stored in a cell whose address is given by the

Ri1 < (1)

Ry < (Ry1)

(RRxXRoxR—7xR) <« R — R
Rs < (6)

return Rs

Example 4.A resolute programA is defined by the conditiongy = 1, y» = X1, X2 € {—1, -2, 3}. The
reader may resolve the references and verify that the return value evaluXtes-tX..
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function (Y2)3 — 7Y,. The next instruction accesses address 6. Therefore, we need to
know whether the cell just written happens to{Be By substitutingX, for Y, we obtain

the equatior(X,)® — 7X, = 6 whose solutions arg-1, —2, 3}. Therefore, on this set,

Y3 obtains the valu&X; — X, and line 5 makes it the result of the query. Note thahay
happen to equal 6, and in this caXe will be re-written; but this does not affect what
comes next. Note also that¥, does not satisfy our equation, cell 6 will retain its prior
value; in this case it will be important to know whether= 6. We see that resolving

a program with indirect addressing involves algebraic equations that induce a partition
into cases; those may have to be broken into subcases (by means of other equations) and
so forth. We will later formalize this process, in order to estimate the cardinality of the
partition obtained at its completion.

So,n, = (dm)* actually bounds the number of different answers that can be given
by a straight-line resolute progranGiven a set of straight-line programs, e.g., the paths
of a computation tree, we will be interested in sdtsuch that all these programs can
be simultaneously resolved for memory images4inin such a case we say that the
computation tree is resolute.

8.2. Branching Programs We now turn our attention to programs that include branch-
ing. The program computin@(i, X) can be represented in a standard way as aliree

In this tree, internal nodes represent the non-oblivious instructions, while the leaves cor-
respond taeturn statements and specify the query output. The height of this tree will
be bounded by.

The path from the root to a given node describes a straight-line sequence of instruc-
tions, and can be treated as a straight-line program. Thus the operands of the instruction
in nodev can be written down as polynomials Yrvariables associated with ancestors
of v representing LOAD instructions.

More precisely, each nodehas one of these types:

(i) LOAD (memory read). A variablé, is associated with this node to represent the
value read. The address accessed is determined by a polynomial in the results of
preceding LOAD instructionsf, (Y). A LOAD node has one child representing the
next instruction.

(i) STORE (memory write). Two functions are associated with such a nfd&:)
determines the address apdY) the value written.

(i) TEST (comparison), which has two children, and the computation proceeds to one
of them depending on the conditiongl(Y) > 0.

(iv) OUTPUT, which is a leaf, wherd, (Y) describes the query result.

We call these treethe computation treeExample 5).

We assume that we have restricted the inputs to adsst thatevery path in the
program treess resolute. Then all the functiorfs in the trees evaluate to polynomials
inx = (X, ..., Xy); itis convenient to regard them as polynomialsioh The paths
taken by the programs for a certain input is determined by the outcome of the comparisons
in the test nodes of the trees. Therefore, we now partiibmccording to comparison
results to obtain subsets which determine unique computation paths. For estimating the
size of this partition, we make use of Warren’s lemma on sign sequences of polynomials.
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1
LOAD, Yy, f1 =0

2
LOAD, Ys, f =VY1

3
TEST,fz3=Y,—3
<0 N
A
5 4
LOAD, Ys, fs = 3 |[OUTPUT, f4 = Y1 +5
6
[STORE, fg = 0,96 = 2Y2 + Y4

!

Example 5.The treeT; for the program of Example 1. The tree is obtained by unwinding the while-loop, and
is truncated at heighg.

For any real numbex, we define

-1, X < 0,
sgnx) = 0, X =0,
+1, x> 0.
LEMMA 4. Let fi, ..., f; be real polynomials in x variablegach of degree at most

d > 1.Ifr > x, the number of sign sequencggnf(x) = (sgnfi(x), ..., sgnf; (x))
that consist of terms-1, —1 only does not excegdedr/x)*, where e is the base of the
natural logarithm

PROOF See [31]. O

LEMMA 5. Let A C M be a set of inputémemory imaggson which all computation
trees resolveThe size of the partition induced ot by the results of all comparisons
performed in all the computation trees is bounded ®8A*2n)*.

ProOOF Consideralisffy, ..., f; ofallthe functions associated with comparison nodes

in the treesTy, ..., Ty; since the height of each computation tree is bounded, tand

each path of interest must contain one output node and one memory read node, we have
r < 2972n. Since the trees are resolute, ed¢levaluates to a polynomial (which we
consider to be defined di*), and, as argued before, the degree of each polynomial

is at mostd. We can assume that none of these polynomials is a constant, since such
comparison would be redundant and can be ignored. We denotefbgsthe result of
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the comparisorf; (x) > 072, that is,

. _ 1 sgnfi(x) =1,
snfi(x) = {—1 sgnfi(x) < 1.

The size of the partition in question is bounded by the number of different values taken
by the vector sif(x) = (snfi1(x), ..., snf (X)) asx ranges ovei*. Assume that there
arey such values; lefl’ C %* be a set such thaf'| = y and each possible value of
snf(x) is achieved ol Let

e=min{fix) |0<i <r, xeandf;(x) > 0}

and defineg; (x) = fi(x) — ¢/2 for all'i. Thus at all the points of', g; (x) is different
from zero, and sh coincides with sgg. Moreover, at these points sgrconsists of
terms+1, —1 only (as required for Lemma 4 to give a correct bound). The degree of
the polynomialgy; is the same as of;. Thus ifr > x, the result follows by Lemma 4.
Otherwise,(d292n)* > (d29t2n)" > 2", which is a trivial bound on the number of
such sequences. O

We conclude thatl can be broken into at most = (d29+2n)* classes, such that for
each class one output node can be singled out for every computation tree, and these nodes
will be reached for all the inputs in the class. Thus, in each class the trees degenerate
into n straight-line programs; the number of answer vectors that can be obtained in this
case is thus bounded Ioy. We obtain

COROLLARY 3. Let A € M be a set of inputs on which all computation trees are
resolute The size of the partition induced o# by the identity of answer vectors is
bounded by m, = (d29+2n)*mX.

8.3. The Meta Tree Our next goal is to partition the set of memory imagesinto
classes such that on each class, all computation trees are (simultaneously) resolute. To
this end, we pick the memory access nodes in the computation trees one at at time.
For each node, we find conditions on the variab¥gs. .., Xx; v1, ..., Ya that yield

a resolution of the memory reference, namely force the value used for an address to
coincide either with a “known” address or be distinct from all of them (in this case it hits

a zero cell). For the sake of analysis we embed the possible végtgrsin the vector
spaceC**2, We obtain a partition of*™2 into subsets such that for all values(&f y)

in a given subset the resolution of the reference is fixed. Note that it is possible that
such a subset will include no valid input, for example becauseist consist of natural
numbers to be valid. However, we are only looking for an upper bound on the size of the
partition obtained, and the size of the partition@f will do.

To deal with a particular memory access node, it is necessary to resolve its ancestors
(in the computation tree) first so that we know how the memory looks when the node
is reached. Therefore, we arrange all the memory access nodesrirtrées in a list
vo, V1, ..., v__1 Which follows pre-order for each tree. Note that the height of the trees
is bounded byg and the nodes of interest are internal nodes; therdfore 29-1n.
Starting with a trivial partition in whichC**? is a single class, we proceed through
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L steps in which the partition is repeatedly refined, i.e., each class is subdivided into
smaller classes. This process naturally defines a tree which we caiktiagtreea level

of this tree corresponds to a memory access node (iefieglnodev;), so there ard

levels. Each node of the meta tree corresponds to one class of its level, and has children
in the next level for all the subclasses of that class. We remark that this tree is an abstract
structure which exists only in the analysis.

To proceed with the analysis, we introduce some additional formal variables which
helpin tracing the usage of memory addresses. First, we represent the contents of memory
by a set of formal variables which bear names of the fofm (for “contents of address
u”). u may be either a number or the name of another formal variable. Initially, we have

@) o) = M (u) for ue W — A (hereu accepts integer valugs
X for u=y, |=1,...,x (hereutakes formal values

Next, with each node that represents a memory write, we associate a formal variable
Z, to represent the address written to. The expressidn) naturally denotes the value
written.

So, a node. of leveli in the meta tree defines:

(i) A subsetP, of C**2 which limits the values oKy, ..., Xx; V1, ..., Ya.
(i) An assignmentA; which assigns to eac¥, Z andc-variable defined before this
node a value from the polynomial rirfgf X, ..., X«].

The construction of the tree is designed to satisfy the following claim; recalvhat
is the list of Y-variables associated with ancestors of node

CLaM 1. The subset§P,} associated with the nodes of level i in the meta tree form
a partition of C**2, For each vecton( Xy, ..., Xx; Y1,..., Ya) € P,, if a computation

of a query using these values reachgghe values of formal variables associated with
ancestors of; and the contents of memory wheris reached are given by;A

This invariant leads immediately to the following corollary, regarding the finest par-
tition obtained.

COROLLARY 4. Each subset associated with a leaf of the meta tree determines the
values of all formal variables associated with the computation trees

The structure of the tree will be now defined inductively in order to establish Claim 1.
Let E be an expression, and I&tbe anassignmentThe notationE[ A] is used for the
result of replacing each variable in the expresdioby the value assigned to it iA.

(i) The rootr of the meta tree haB = C**2 and A, only includes the values farqu)
given in (2). These assignments correctly represent the situation whengéle
reached because there are no memory access nodes preceding it.

(i) Let A be a node of level, and assume the construction has been correctly carried
out up to this level. Recall th&ft, is defined in terms oY_’Ui . SinceA, has to resolve
all the variables in?vi, f,[Au] is a function of Xy, ..., Xx. LetZy, ..., Z; be the
Z-variables along the path from to the root of its computation tree. Consider the
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list of “address expressions”

Zi, o s Zes Y1, oo Y S - - SW—A-

This list goes backwards in time: tt#variables are listed from our node back to
the root which designates the start of our progrgnalenotes addresses modified in
the epochs preceding this query, aa@re addresses in use prior to these updates.
Each element of this list is either a constant, or must be includéd.idn element

u in the list will be calleda duplicateif there exists an element precedingu in

the list (i.e., newer), such that the functiafi#\; ] andv[ A;] coincide overP, . Pick
elements from this list from left to right, skipping duplicates. Call the elements so
choserus, Uy, ... (their number will be considered later). This process finds out the
memory cells that are in use (not zero), for the following reason. Addresses eligible
to be non-zero are those in the initial data structw® (hose modified during
updatesy;) and those modified in the execution of this quey)( If a memory cell

is written twice, the last writer leaves its mark, so we remove the older appearance
of a duplicate address. Now for=1, 2, ... let

3 B ={xy € Pu| fi,[AJO) = ui[A (X 9}

this is the set on which the address accessed by our node coincides witt

k
Po=P.—JPs
j=1

this is the set on which the address selects an unused cell.

The nodex has a child,; for eachj such tha®; is not empty. With this node we associate
the setP; and the assignmem, augmented according to the type of nagle

(i) v is aread node. Then we add an assignmenYfpwhich should reflect the result
of the memory read. Thus iR the value zero is assigned. The valuec@i;) is
assigned in,;.

(ii) v isawrite node. Then we add assignmentsApandc(Z; ). Regardless of, these
areZ, < f,[AJandc(Z,) < g,[A.]. We still have a different child for each
P;; this will ensure that in subsequent nodésplicate removaworks properly, as
address expressions will either coincide or differ on the whole of each class.

Recall thatw bounds the number of cells in use; hence there are atuncisildrena;
with j > 0. We proceed to estimate the cardinality of the finest partition (equivalently,
the number of leaves).

LEMMA 6. The partition ofC**2 induced by leaves of the meta tree is of cardinality
< (29~ Ydwn)*+a,

The rest of this subsection is devoted to the proof of Lemma 6. The central idea is arguing
about the dimension of the classes associated RitWe will show that if the number

of these sets increases, their dimension must decrease, whereby the desired bound will
follow.
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Recall thatd is a bound on the degree of any polynomial computed by our query
program.

LEMMA 7. LetO <i < L. LetP; be the partition ofC**2 defined by level i of the
meta tree We can definefor each P € P;, a variety P, such thatP 2 P_and the
following property holdsForall 0 < j < x4+ a,let N ; = Zpepi degG(P). Then

Nij < (§)wd)l.

PROOF We proceed by induction dn Fori = 0, the level contains a single node, the
rootr. P, = C*t2 so we definéP, to be the same. Note th@t(C**2) is C**2 itself for

j = 0andis empty fofj > 0. degC**@ = 1, 0Ny = 1 = (J)(wd)®, while for j > 0
we haveNg ; = 0.

We next assume the sets have been defined and the lemma holds far éeckl
consider level + 1.

Let A be any node in level Consider the setR,, . .., P« associated with its children
(we renumber the children consecutivelylsg w). Forl > 1, B is defined (by (3)) as
the set of points ifP,, that satisfy a certain equationxn-a variables; henc® = P, NS,
where§ is either a hypersurface & or the whole space (if the equation is an identity).
Recall thatP; must be non-empty fox; to exist; hencé; N § is non-empty as well. We
tentatively defineP; to be P, N S. Obviously this definition satisfies the requirement
P, 2 R, andP, is clearly a variety. Our goal now is to relate the components of the sets
P, to those ofP;.

If there is anl such thatP, € S, thenP, = P, andx, must be the only child of
A: this is due to the fact thg® ,; is a partition. In this case the componentsRyfare
simply those ofP,.

Assume now that n& contains the whole o, ; then no§ can be the whole space.
EachS must be a hypersurface, of codimension 1 and degree atdnGdiviously

ﬁ:U U KNS.

kK KeG(Py

Lemma 3 shows that in order to study the componentBat suffices to look at the
components of each intersectishn §. Let K € G(P,). By Theorem 8K N S is a
variety of codimension bounded ky- 1. LetQ be one of its components. SinQeC K,
by Theorem 7 co® > k; and codQ = k if and only if Q = K, that is, if and only if
KNnsg2K,i.e,K CS.

The last argument shows that all component§; OP)) belong to one of the following
types: (i) components dt;j (P;) which pass on t&; (P,) unchanged; (ii) components
created by the intersection @f_l(ﬁ,\) with §.

We next consideig. Provided thatP, is not empty, we defin®, = P,. It thus
inherits all the components unchanged.

For our counting arguments we want each componem,aihich is repeated in the
next level to appear only once, that is, only in a sinBle We achieve this by deleting
redundant appearances of components; however, we must preserve the property that
P D P for all setsP involved. Suppose that a componentRf is contained in two
different hypersurface§ and S,,. Then it is contained in their intersection. However,
by looking at (3) we see that a point §fN S, is a point wheray [ A;] = um[ Ay]; such
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equality cannot hold withirP;, by virtue of theduplicate removaprocess. It follows that

we can safelyleletethis component from botP; and P,,. Next, if a component oP;,

is contained in a singl§, it may be deleted fron®,. This is safe becaud®, excludes

S. Recall that deleting whole components of a variety produces a variety (Remark 1).
To sum up, we ensure that each componentoP;) is repeated at most once in

the next level, while additional components of same codimension may emerge from the

intersection ofC;_1(P;) with the (< w) hypersurfaces. The degree of components of

the first kind remains what it was i, ; for the second kind, we usesBout’s inequality:

degCj_1(P)) N'S) < d - degC;_1(P)).

Summing the bounds we have on the degrees of these two kinds of components, we
obtain

IA

Ni,j + wd Nij-1

(1Yot wa Yo
<<IJ) * (,- |_1>) (wd)!

(' erl)(wd)l'. O

We now estimate the cardinality of the finest partitieh, EachP € P is a non-
empty set and is therefore contained in a non-enttyet j = dimP. ThenP con-
tributes at least 1 tdN, j. Therefore the cardinality of the finest partition is bounded

by

x+a xta /| . xta /|
Z NL,j < Z <] >(wd)J < (wd)x+a2 (J) < (wdL)**a < (2q—1wdn)x+a.
=0 j=0

j=0

Niy1j

IA

The last inequality follows from the following claim, completing the proof of Lemma 6.

Clam 2. Foralll<m=<n, Y/ () <n™

PrOOF Form =2,
i <n> <n) n+n+2
Z =14+n+ = " <n?
= k 2 2
Form > 2, we assume the lemma holds for— 1 and use induction:

m m—1
Z (E) = Z (E) + (;) <n™l4 <rr;) <n™lyn™tn—1=n" O
k=0

k=0
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8.4. Wrapping up the Proof Letn,q be the number of choices fo¥ N A. For a single
choice of these addresses we have computed tha,sifehe partition induced by leaves

of the meta tree. Concentrating on one of these parts, we obtain resolute programs. By
Corollary 3, the number of answer vectors that can be obtained for memory images in
this part is bounded byin,. Therefore the number of different query answer vectors
that can be obtained when both the addresses and values of modified cells vary freely is
bounded by

nadnpnt nv.

As |W| < w, we havengg < Y
5 we deduce

(‘f) and Claim 2 give$i,q < w*. By Lemmas 6 and

j=<x

OV(w, X, @) < w29 1dwn)®(29*2dn)*(dm)* < (2%dwn)>*(dm)*.
8.5. Output Variability of RAM/). Regarding RAM(), Theorem 1 claims that
OV(w, X, q) < (2%%nw)>(29n)*.

The proof follows the same lines as for the previous modwls. n,, n¢ andn, are
defined in the same way. In the last section we used the fact that a function built with the
operatorst, — and x is a polynomial in the variables used. When division is allowed,
the class of functions obtained is the classaifonal functions This is a result of the
identities:

P_ R _PT%RQ
Q T QT
P R PR
QT ar
P /R PT
/T~ R

whereby it also follows that iP / Q is obtained with less thamalgebraic operations, then
both degP and degQ are bounded by%*. This bound will hold for all the functions
computed throughout a query program whose total length is bounded by

Consider firstn,. We note that the equation in rational functioRgQ = R/T is
equivalent to the polynomial equatid®T = QR In the equations (2) that determine
the meta-tree partition, the degree of eaclPo, R andT is bounded by 2-1; hence
the degree of the equation is bounded By /e can apply Lemma 6 to obtai, <
(2q712qwn)x+a < (22qflnw)2x_

We now turn tan;. This partition is defined by inequalities which now have the form
P/Q > 0. This inequality can be rewritten &Q > 0 with the same resulPQ s a
polynomial of degree bounded b§.2This is the case considered in Lemma 5, so again
ng = (22q+2n)x_

Next we consider the number, of answer vectors that can be obtained once the
identity of cells accessed and branches taken has been fixed. The results are now produced
by a vector oh real-valued rational functionf, fo, ..., f, (fj represents the output of
Q(i)), andn, is at most the number of vectors froih 2, ..., m}" that can be obtained
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by (fi(x), ..., fa(x)) for x € C*. Using the Counting Theorem witth = 29 yields
n, < (29m)*.
Naq is the same as in the last subsection; so

OV(w, X, @) < NagNpny N, < w* (229~ 1nw)?*(2%972n)* (29m)* = (229nw)*(29m)*,

completing the proof of Theorem 1.

9. Other RAM Models. The general definition of the RAM family in Section 4 devel-
oped as a direct result of the fact that so many variants have been used in the literature.
One group of variants consists of those that manipulate integer numbers with instruc-
tions that are not algebraic. Examples inclumteger divisionandbit operations Such
additions invalidate the considerations on which our bounds on OV hinge. An indication
of the possible consequences of such enhancement has been given by Paul and Simon
[27]. They prove a lower bound &&(nlogn) for sortingn integers in the arithmetic
model; on the other hand, they show that the instructionstefier divisionrandbitwise
AND can be used to break the lower bound and in fact to sort in linear time.

Let RAM(A) (resp. RAM(-)) be obtained from RAM) by adding a primitive of
bitwise AND (resp. integer division). We next show that both machines soti@n-
find in constant time per operation. Thus our lower bounds are broken too. Note that
these instructions do not contribute to the creation of larger integers, but they do allow
a program to make use of information which is encoded as part of a large number.

We describe the union-find algorithm for RAKY). For convenience, we adopt the
following version of the problem: the elements are named Q n — 1, which are also
the names of the singleton sets initially containing them. Eedbnoperation specifies
the names of two sets and one of these becomes the name of the union. We also assume
thatn is a power of two.

The pivot of the algorithm is a single integer that describes the current sets. At
any moment, leF; be the result of dind oni, i.e., the name of the set containing the
elementi. Then

n—1 _
U=>Fn'.
i=0
In addition, for each sef we have an integed; which describes the current contents

of these sets:
Uj = Z ﬂi .
i€§
The initial contents of these variables should therefore be

U = i-n',

Uj = nj.

These values can be set by a linear-time initialization phase; if desired, this work can be
divided among union operations to avoid the setup phase.
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It is easy to see that the following operations implement correctly the operation
union(i, j), which adjoinsS to §:

Uj <~ Uj~|—Ui,
U < U—iU;+jUi.

We now explain the implementation fifid, which uses three more tables that can be

built beforehand or on-line as discussed above. For ea€h, ..., n — 1 we need
M = (n—Dn',
N, = n"
and an arrayl whereT[j - n"] = j (only these array items must be set). The reader

may verify that the following expression yields the name of the set contaiining
TIN; - (U A M.

The solution for RAM{-) is similar.

10. Conclusion. The generalized Fredman—Saks technique presented in [5] was de-
signed to be applicable to other models or computation in addition to the cell probe model
originally used by Fredman and Saks. Lower-bound proofs using this framework can
be easily transferred to a different model if a good bound on its OV is found. The main
contribution of this paper was the derivation of such a bound on the OV of real-number
algebraic RAMs. This means, in essence, that every lower bound obtained in the cell
probe model using that technique can now be transferred to a RAM lower bound.

We have applied the result to obtain tight lower bounds for two central data-structure
problems in algebraic real-number RAMs. So far, work on the complexity of these
problems has concentrated on different computational models and the reader is invited
to find more references and comparison with previous work in [5].

Itis interesting to notice that the complexity of the computational problems considered
in this work is the same for an integer RAM with additive instructions only and for a
real-number RAM with multiplication and division. We suggest that these problems have
some essential simplicity, related to the fact that their character is more one of managing
data structures than one of calculating with data, and that for problems of this kind there
is no advantage to using the stronger algebraic operations. Making this informal notion
more precise is an issue for further research. Note that multiplicediobe of advantage
when combined with non-algebraic operations such as integer division or bit fiddling, a
fact well known in data-structure research.

Since the theory of lower bounds in the cell probe model has developed faster than
the theory for RAMSs, it seems natural to try to extend lower-bound techniques from the
former model to the latter. In addition to our work, such extensions can be found in [13]
and [14]. The latter is the only other work, known to us, that proves RAM lower bounds
for dynamic problems.

Another natural direction for further research is to consider RAM models with strong,
non-algebraic instructions, but limitations on the word length. These “word RAMs”
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stand halfway between the cell probe model and the algebraic RAM. Of course, the
model is only significant for lower bounds if the cell probe model does not yield a
satisfactory result for the given word length. Hagerup [20] surveys the interesting recent
developments regarding this model.
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