
DOI: 10.1007/s00453-001-0079-6

Algorithmica (2002) 32: 364–395 Algorithmica
© 2002 Springer-Verlag New York Inc.

Lower Bounds for Dynamic Data Structures
on Algebraic RAMs1

A. M. Ben-Amram2 and Z. Galil3

Abstract. In a seminal paper of 1989, Fredman and Saks proved lower bounds for some important data-
structure problems in the cell probe model. This model assumes that data structures are stored in memory with a
known word length. In this paper we consider random access machines (RAMs) that can add, subtract, compare,
multiply and divide integer or real numbers, with no size limitation. These are referred to asalgebraic RAMs.
We prove new lower bounds for two important data-structure problems,union-findanddynamic prefix sums. To
this end we apply thegeneralized Fredman–Saks techniqueintroduced by the authors in a previous paper. The
generalized technique relies on a certain well-defined function,Output Variability, that characterizes in some
sense the power of the computational model. Fredman and Saks’ work implied bounds on output variability
for the cell probe model; in this paper we provide the first bounds for algebraic RAMs, and show that they
suffice for proving tight lower bounds for useful problems.

An important feature of the problems we consider is that in a data structure of sizen, the data stored are
members of{0, . . . , n}. This makes the derivation of lower bounds for such problems on a RAM without
word-size limitations a particular challenge; previous RAM lower bounds we are aware of depend on the fact
that the data for the computation can vary over a large domain.

Key Words. Random access machine, Cell-probe lower bounds, Union-find, Dynamic prefix sum.

1. Introduction. In a seminal paper, Fredman and Saks [17] proved lower bounds
for some important data-structure problems in the cell probe model: a model where the
complexity of a computation is measured by the number of memory cells accessed,
and memory cells have a specific word size (number of bits). A typical word size is
logarithmic in the size of the problem instance. In particular, tight lower bounds were
given on worst-case and amortized operation cost for theunion-findproblem and the
prefix sumproblem.

In a previous paper [5] we showed how their results can be derived from a main
theorem which involves two quantities:Problem Variability(PV), a characteristic of the
difficulty of a dynamic problem; andOutput Variability (OV), a characteristic of the
power of an abstract machine, or computational model. This separation means that by
establishing OV for different computational models we can rather easily make use of

1 A preliminary exposition of this work was presented at the 32nd FOCS conference [3] and most of it
originates from the first author’s Ph.D. thesis [6]. The work by the first author was partially supported by a
Charles Clore fellowship. The second author’s work was partially supported by NSF Grant CCR-90-14605
and CISE Institutional Infrastructure Grant CDA-90-24735.
2 Tel-Aviv Academic College, 4 Antokolski Street, 64044 Tel-Aviv, Israel. amirben@server.mta.ac.il.
3 Computer Science, Room 450, Columbia University, New York, NY 10027, USA. galil@cs.columbia.edu.

Received October 17, 1999; revised April 26, 2000. Communicated by M.-Y. Kao.
Online publication October 12, 2001.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 365

problem analysis done once. In fact, what we actually use is an upper bound on OV. To
clarify this idea, consider the following examples. The number of leaves of a decision tree
of heighth is bounded by 2h; this simple upper bound on the “power” of the tree model is
the key to standard lower bound results such asÄ(n logn) for sorting. A more involved
upper bound is that given by Ben-Or [7] on the number of connected components of a
set recognized by analgebraic computation tree. This too is an upper bound that implies
lower bounds in much the same way as the sorting result. The definition of OV (given in
Section 2) is a little more complicated as it is geared towards the handling of dynamic
problems.

Attempts to extend classical lower bounds from decision or computation trees to
Random Access Machines (RAMs) had to deal with the RAM’s capability ofindirect
addressing, the capability that makes it a “random access” machine. This powerful feature
enables fast solutions to certain problems, for example, sorting integers of a limited range
with bucket sort [1]. A seminal paper that showed how to cope with indirect addressing
and its combination with computational instructions is [27]. The method relies on the
fact that in a large set of possible inputs, there will be some that do not satisfy a given
non-trivial equation. Thus a worst-case input can be chosen that defies non-trivial use
of indirect addressing. This approach has been later used in several works, e.g., [9],
[12], [24], [26], and [6]. The analysis in this paper requires a further refinement of the
technique because the inputs and outputs in our type of problems belong to a small set
(say{1, . . . , n}) and the algorithm might exploit it.

The main result of this paper is an upper bound on OV for the algebraic RAM, an
idealized random access machine with capabilities for computation with real numbers.
This model is strictly stronger than the classical RAM model with unbounded integers
[1], [10], but is incomparable with the cell probe model, since the latter has a bounded
word size but an unrestricted “instruction set.”

Interestingly, we obtain a bound on the RAM’s OV that is quite close to the bound
known for cell probe. Plugging this result into the previous lower-bound arguments,
we obtain the first tight lower bounds for the complexity of the above data-structure
problems on the algebraic RAM. More specifically, we prove anÄ(α(m, n)) lower
bound on the amortized cost ofn − 1 unions andm finds; anÄ(logn/ log logn) worst-
case lower bound for a single union or find; and anÄ(logn/ log logm) amortized lower
bound formprefix sum operations on an array of lengthn. For more details and additional
results, including tradeoff relations between the costs ofunionandfind, see the following
sections.

This paper begins with definitions of PV and OV and the presentation of the Main
Theorem from [5]. We then define our RAM models and state the results on their OV. The
following sections include the lower-bound proofs for the above problems. We include
all the definitions and attempt to make this paper self-contained, except for not repeating
the proof of any statement that we can simply cite from [5]. In fact it is the very merit of
our method that we can re-use much of the earlier work (a large part of that even goes
back to [17], but Fredman and Saks’ presentation was not fitted to our framework, so it
was remolded thus in [5]).

The derivation of bounds on RAMs’ OV, which is the main result in a technical sense,
is given last. Thus, a reader can find out how these bounds are used before delving into
the details of their proof.

366 A. M. Ben-Amram and Z. Galil

2. Output Variability and Problem Variability. Consider aquery programthat is
given an input number in the range 1· · · n and, using a data structure kept in memory,
produces an answer in the range 1· · · m. The significance of these numbers is problem
dependent; in fact, any range ofm consecutive integers may replace the one above, and
any set of sizen can be used as query inputs. For notational convenience, we use the
above simple sets.

The query program can be said to have two sources of input: external (here a single
number) and internal (the data structure stored in memory). We consider the mem-
ory to consist of a (possibly infinite) set ofcells. A memory image Mis a sequence
of integersM(0), M(1), . . . which specifies the contents of the cells. LetQ(i, M) de-
note the result of a query with inputi on the memory imageM . The vector of results
(Q(1, M), . . . , Q(n, M)) will be denoted byQ̄(M).

OV is a characteristic of the efficiency in which a computational model supports
dynamic data structures. The definition involves two different cost measures associated
with programs for data-structure problems on the given model. The first is thedata-
structure costw, which we leave unspecified for the moment. A typical choice would
be the amount of memory it uses. The second is thequery cost q. Query cost is required
to be at least the number of memory cells read during the processing of the query, but
may account for additional processing costs as well.

The OV of a model is the functionOV(w, x, q) defined as follows. LetM be a
memory image that contains a data structure whose cost isw. Let Mx be the set of
memory images obtained fromM by modifying the contents of at mostx cells. LetQ be
a query program such that for all inputsi and memory imagesN ∈ Mx the computation
of Q(i, N) costs at mostq; the definition of query cost is also model dependent, but
is required to be at least the number of memory cells read while processing it. More
generally, we consider aq-truncated program: this is a programQ obtained from a
real query programQ′ by forcing it to halt and output a “dummy” answer (say, 1)
whenever its run would originally cost more thanq. OV(w, x, q) is the supremum, over
all such memory imagesM and programsQ, of the cardinality of the set of vectors
{Q̄(N) | N ∈ Mx}.

For a simple example of how OV can be bounded for a useful model we refer the
reader to [5], where the cell probe model is considered. A slightly more involved, and
more precise, bound on OV for the cell probe model can be found in [2].

We next define PV. This definition involves both queries and updates; we denote by
U the set of possible inputs to an update operation, assumed finite.

An update schemeU is defined as a set of sequences of update operations which are
subdivided intoz roundsof lengthsr1, r2, . . . , rz. Formally,U ⊆ Ur1+···+rz. We denote
by Uj the set obtained by taking the firstj rounds of each sequence inU :

Uj = {σ ∈ Ur1+···+r j | ∃µ: σµ ∈ U}.

ThusU is the same asUz. For obtaining our results, we requireU to obey theequipartition
property: for each member ofUj the number of its continuations (µ above) is the same.
This holds, in particular, if the operations of each round are chosen independently. Here
is an example: letU = {a, b, c}, r1 = r2 = r3 = 2 andr4 = r5 = r6 = 1; thusz ≥ 6.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 367

A possible scheme is represented by the following expression:

U6 =
{

ab

ac

}{
aa

bb

}
{cb}

a
b
c

 {a}
{

b

c

}
.

We have|U3| = 4, |U6| = 24.
Let 0 < i ≤ j be round numbers. For each sequence of operationsσ ∈ Uj defineA(σ)

to be the vector of correct answers to queries oni = 1, . . . , n following the execution of
σ . For eachτ ∈ Ui −1 we defineCi, j (τ) to be the set of continuations ofτ to a sequence
in Uj :

Ci, j (τ) = {µ: τµ ∈ Uj }.
Referring to the above example,

C4,6(abbbcb) =
a

b
c

 {a}
{

b

c

}
.

Note that the equipartition property implies that|Ci, j (τ)| is the same for allτ . For
defining PV we need just one more notation. For an arbitrary vectorv ∈ Zn, let Bd(v)

denote the ball of radiusd (with respect to Hamming distance) centered at the vectorv.
We define

gδ(i, j, τ) = max
v∈Zn

|{µ ∈ Ci, j (τ): A(τµ) ∈ Bδn(v)}|
|Ci, j (τ)| ,

thusgδ(i, j, τ) indicates the fraction of answer vectors that may be “close” to an arbitrary
vectorv. We definePVU ,δ(i, j) by

(PVU ,δ(i, j))−1 = 1

|Ui −1|
∑

τ∈Ui −1

gδ(i, j, τ).

A large value of PV indicates thatgδ is often small; hence the set of answer vectors
following a sequence fromUj is sparse.

3. The Main Theorem and Some Corollaries. The Main Theorem of [5] states a
connection between PV, OV and the complexity of solving the given problem in the
given computational model.

The theorem refers to a set of operation sequences which include both updates and
queries. These sequences are obtained by enriching an update scheme (as described in the
last section) with query operations. We further associate with these sequences anepoch
scheme, that defines a subdivision of each sequence into time-intervals called epochs.

LetU be a given update scheme, and letk ≤ z be a round number. Apatternfor Uk is
a stringπk of k + f letters,k u’s and f q’s, for some f ≥ 0. According to the pattern,
|Uk| · n f operation sequences are formed by assigning the update rounds specified byUk

to the positions marked byu, and a single query operation, ranging over then possible

368 A. M. Ben-Amram and Z. Galil

queries, to each position marked byq. We denote the set of operation sequences obtained
by 6k = 6(U, πk).

Let πk be as above and letj ≤ k. The subpatternπj is defined as the prefix ofπk

that extends up to, but not including, the(j + 1)stu (if j = k, thenπj = πk). An epoch
schemeE for Uj is defined by subdividing the pattern string intoepochs. The subdivision
is defined by a set of indices 1= j1 < j2 < · · · ≤ j . Epoche consists of the operations
ranging from thejethu up to (but not including) theje+1st (or the end of the string). Thus
each epoch may contain bothu’s (update rounds) andq’s (queries), but all start with an
update round. This subdivision naturally induces a subdivision on every sequence in6j .
Here is an example (the vertical lines delimit epochs):

π6 = u|uuq |uuquq |, j1 = 1, j2 = 2, j3 = 4, j = 6.

This pattern can be associated with the example forU6 presented in the previous section.
Taking the set of query inputs to be{1, 2} eachq can be assigned two values. We obtain
|66| = 24 · 23 = 192. One particular sequence in66 (in fact, the first in lexicographic
order) isab|aacb1|aa1b1|. The vertical lines delimit epochs, induced by epochs of the
pattern.

MAIN THEOREM. Fix a data-structure problem and a model of computation. Consider
an update schemeU , an epoch schemeE for Uj that includes q epochs, constantsδ > 0
and c< 1 and parameters xe andw such that for all epochs e,

OV(w, xe, q) ≤ cPVU ,δ(je, j).

Assume that there is a constant d, c < d ≤ 1, such that at least a fraction d of the pairs
(σ, e) ∈ 6j × {1, . . . , q} satisfy the following conditions: (i) Throughoutσ , the cost of
the data structure is bounded byw. (ii) At most xe memory cells are written subsequent
to epoch e. Thenδ(d − c)q is a lower bound on the average cost of a query that follows
an operation sequence chosen randomly from6j .

The theorem establishes a tradeoff between the cost of maintaining the data structure
(w andxe) and the cost of querying it (q). Such a tradeoff leads in particular to a lower
bound on operation cost, which is obtained as follows. The quantitiesw andxe can be
bounded if the total cost of a sequence of operations is known. Hence, every assumption
of the form “all operations cost at mostq” leads to a bound onOV(w, xe, q). To derive the
lower bound, we compute a costq such that if all operations cost less thanq,OV(w, xe, q)

will be small enough to satisfy the theorem and it will follow that the query must cost at
leastq, a contradiction.

While the cost measures referred to in the theorem are worst-case costs, it can also be
used to prove lower bounds on average and amortized complexity as well as for random-
ized algorithms. A general discussion of how such results are obtained appears in [5].
Since the application of the Main Theorem to the specific problems we consider required
some sophisticated arguments (all due to [17]), we formulated in [5] some lemmas, or
rather corollaries of the Main Theorem, tailored towards the specific applications. We
now restate these corollaries without repeating their proofs.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 369

The first corollary is used in proving inverse-Ackermann lower bounds, and is used in
Section 5 in conjunction with the Union-Find problem. Fori ≥ 1 and j ≥ 0, we define
the Ackermann functionA(i, j) by

A(i, 0) = 2 for i > 1;
A(1, j) = 2 j for j ≥ 0;
A(i, j) = A(i − 1, A(i, j − 1)) for i > 1, j ≥ 1.

Let

αk(n) = min { j | A(k, j) > n},

α(m, n) = min
{
k | A

(
k,
⌈m

n

⌉)
> logn

}
.

COROLLARY 1. Consider models where the cost of a data structure is bounded by the
cost of the operation sequence that created it. Assume that there are an update schemeU
which includes at most n operations spanning g(n) = 1

2 logn rounds,constants K, δ > 0
and c< 1 such that for all i< j ,

cPVU ,δ(i, j) ≥ OV

(
ng(n),

n

Kq2i
, q

)
,

where q= α(m, n). Then there are operation sequences made of an update sequence
fromU interspersed with m queries whose total cost isÄ(mα(m, n)).

If the inequality holds for a fixed q, then there are sequences with n queries such that
either the queries cost at least qn or the updates costÄ(nαq+1(n))

REMARK. The assumption made in the lemma regarding data-structure cost essentially
expresses the idea that before the operation sequence is begun, there are no data in
memory. This holds for our RAM models by virtue of the assumption that the memory
is initially zero.

The second corollary is used in Section 6 in conjunction with the Prefix Sum problem.
Here we restrict our update scheme to having the same number of update operations

in each round, sayr , and the same number of possible choices for each operation, say
h. Thus|Uz| = hrz.

We consider “easy” cases concerning PV computation, in which there is a uniform
bound on the fractionsgδ(i, j, τ), in the following sense:

DEFINITION. Update schemeU is (V, δ)-boundedif V is a function that satisfies, for
all 1 ≤ i ≤ j ≤ z andτ ∈ Ui −1,

gδ(i, j, τ) ≤ V(j − i + 1).(1)

Recall that an epoch scheme spans a given numberj of rounds, for somej ≤ z. We
defineLe = j − je+1, the number of rounds since the beginning of epoche. Consider a
patternuquq . . . uq, includingz u’s andz q’s. We denote by6z the set of update/query
sequences corresponding to this pattern in the usual manner.

370 A. M. Ben-Amram and Z. Galil

COROLLARY 2. LetU be(V, δ)-bounded and consist of z rounds.LetE be epoch scheme
forUj , j ≤ z/2, that includes q epochs. Consider a constant0 < c < 1/2 and parameters
w, x such that

OV(w, 4x Le+1/z, q) · V(Le) ≤ c

for all e < q. Assume that for a random choice ofσ ∈ 6z, the following conditions hold
together with probability at least p> 2c: (i) throughoutσ , the cost of the data structure
is bounded byw; (ii) the number of memory writes throughoutσ is bounded by x. Then
δ(p/4−c/2)zq is a lower bound on the average total cost of queries inσ . In particular,
we obtain a lower bound ofÄ(q) on the amortized cost of a query.

4. Random Access Machines. The RAM is widely adopted as a model for study-
ing the complexity of algorithms in a quite realistic way. It has been popularized by
textbooks such as [1] and [28]. The former defined the elementary data type to be the
integers; the latter, the real numbers. In addition to these changes ofdata type, we also
find several variants ofinstruction sets. In this section we present a general notation
for RAM models, following [6], and use it to specify the variants under consideration
precisely.

All the RAMs we define share the following structure. The machine consists of a
processing unit and a memory unit. The processing unit runs the program; to this end
it contains a “program counter” that indicates the next instruction to be executed (the
different instructions are described below). It also makes use of a finite set ofoperating
registers r1, . . . , rk, whose number is fixed for any given program, as they can only be
accessed by being named in an instruction. These registers are used for all arithmetics
and tests, leaving thememorywith the sole role of data storage.

This description is made specific by the choice of three parameters:

ThedomainD is the set of values that may be manipulated by the machine as “units
of data.” Every memory cell or operating register holds one element ofD.

Theaddress spaceA is the set of values that may be used as memory addresses. Thus
the size of memory is|A|, and the standard idealized model usesA = N. In the
case thatA is strictly contained inD, a program mayfault by attempting to use a
value inD\A as an address. In this case the program may be considered invalid,
or we may consider its result to be⊥ (undefined).

Theset of primitive functionsF defines the basic operations on data values. We call
the RAMalgebraicif F consists of the field operations{+, −, ×, /}.

The instruction set of the RAM contains the following groups. In the notation for
instructions,ri , r j , rk are register names;x is a constant fromD. The notation〈ri 〉 refers
to the memory cell whose address is given by the contents ofri .

Direct Assignments:

ri ← x,

ri ← r j .

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 371

Memory Access:

〈ri 〉 ← r j ,

r j ← 〈ri 〉.
Flow control instructions:

goto label
if ri FG r j goto label

FG ∈ {=, <,≤, . . .}
halt

Arithmetic Instructions:

ri ← r j + rk,

ri ← r j − rk,

etc., as provided byF .
The initial contents of memory cells, before written into by a program, is assumed in

this paper to be zero.
Our results in this paper are given for areal-number RAM, namely a RAM where

D = <. The main application for this model is to study algorithms on real numbers, e.g.,
in computational geometry [28]; but it is conceivable that a problem on integer inputs
will be solved faster using the power of the real-number RAM. Thus, we consider the
real-number RAM also in conjunction with integer-constrained problems. At any rate,
it is obviously valid to use a strong model for a lower-bound proof. In the same spirit,
we also adopt the rather non-standard choiceA = < (memory cells are addressed with
real numbers).

We consider three RAM variants that differ on the primitive setF . These models
are: RAM(±), with F = {+, −}; RAM(×), with F = {+, −, ×}; and RAM(/), with
F = {+, −, ×, /}.

The following result is proved in Section 8.

THEOREM1. The models RAM(±), RAM(×) and RAM(/) satisfy

OV(w, x, q) ≤ (2qdnw)3x(dn)x

for w, x > 1, where d is1 for RAM(±) and2q for RAM(×) and RAM(/).

5. The Union-Find Problem. We consider the union-find problem [30], [19] in the
following framework: we start withn singleton sets{1}, . . . , {n}, which are named
1, . . . , n, respectively.n − 1 union operations andm finds are to be performed.n is
assumed, without loss of generality, to be an even power of two. Each union operation
specifies the names of the sets to unite and a name for the resulting set, all integers are
in the range 1, 2, . . . , 2n. This range allows us to give a new name to each created set:
we always give the namen + i to the result of thei th union. A query (find) specifies an
element and returns the name of the set currently containing it.

372 A. M. Ben-Amram and Z. Galil

Our update schemeU for this problem contains1/2 logn rounds. Roundk comprises
n/2k operations which pair sets of size 2k−1 to a set of size 2k. Thus, the number of sets
at the beginning of roundk is n[k] = n/2k−1. By our naming convention, the names of
thesen[k] sets will span a pre-determined range ofn[k] consecutive integers. Therefore
the union operations of each round can be specified independently of former as well as
of later rounds. The update scheme contains all possible sequences of such operations;
this guarantees the equipartition property.

LEMMA 1 [5]. PVU ,1/4(i, j) ≥ 8−n[i](n[j +1])n[i]/2 ≥ 8−n[i]nn[i]/4.

THEOREM2. If a RAM(/) algorithm for union-find executes each union in cost bounded
by k, 7 ≤ k ≤ n, then there are sequences of union operations such that the cost of a
subsequent find isÄ(logk n). Hence, for every algorithm, at least one of the operations
has a worst-case cost ofÄ(logn/log logn).

PROOF. We use the above update scheme of1
2 logn rounds, dividing it intoq epochs

where

q = logn

6 logk
.

Each epoch containsβ = d(1
2 logn)/qe = d3 logke rounds (except the last which may

be shorter). We add no queries in between since we are only interested in the cost of a
single query following the updates, as given by the Main Theorem. Define

q = logn

6 logk
,

xe = n[je]

k2
,

w = nk,

δ = 1
4, c = 1

2, d = 1.

We will prove that the above epoch scheme and parameter definitions satisfy the
conditions of the Main Theorem. Note thatd = 1 means that all the sequences considered
must respect the boundsw andxe we give. Since we look for a worst-case lower bound,
we assumethat no update operation in the sequences considered writes more thank
cells (otherwise the conclusion of the theorem holds). This implies that the number of
cells written throughout a sequence of updates is bounded byw = nk. To estimate the
number of cells written subsequent to epoche, recall that roundi includesn[i]/2 = n/2i

operations, and that epoche extends from roundje = (e − 1)β + 1 up to roundeβ.
Furthermore, each operation costs at mostq and therefore writes at mostq cells. It
follows that an upper bound on the number of cells written is

(1/2) logn∑
i =eβ+1

n

2i
k <

n

2eβ
k = n[je]

2β
k = n[je]

2d3 logke k ≤ n[je]

k2
= xe.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 373

Theorem 1 yields

OV(w, xe, q) ≤ (22qn2k)3xe(2qn)xe ≤ (2qn)7n[je]/k2
kn[je]/k2

and, using the factsq ≤ logn/6 andk1/k2
< 2,

OV(w, xe, q) < n9n[je]/k2
2n[je] .

Combining with Lemma 1,

OV(w, xe, q)

PVU ,δ(je, j)
< n9n[je]/k2

2n[je]8n[je]n−n[je]/4 = (16n(9/k2)−(1/4))n[je] .

For k ≥ 7, this expression tends to zero asn → ∞, so that forn large enough it
becomes less thanc. We have established all the conditions of the Main Theorem, which
now shows that the average cost of a subsequent query is at leastδ(d − c)q = q/8 =
Ä(logk n).

We remark that theÄ(logn/ log logn) lower bound has been proved, and shown tight,
by Blum [8] for a certain class of pointer algorithms. Smid [29] modified Blum’s pointer
algorithm to match the above tradeoff for any value ofk. Since these pointer algorithms
can be efficiently implemented on an ordinary integer RAM, we conclude that Theorem 2
is optimal.

THEOREM3. Any RAM(/) algorithm for solving the union-find problem requires
Ä(mα(m, n)) time, in the worst case, to execute a sequence of n− 1 unions and m
finds. Moreover, for any fixed q, there are sequences of n− 1 unions and n finds such
that either the unions cost at least qn or the finds costÄ(nαq+1(n)).

PROOF. We apply Corollary 1 (Section 3) as follows:U is the update scheme already
described. We chooseδ = 1

4 so Lemma 1 applies. Further definec = 1
2 andK = 25.

The results follow from Corollary 1 provided

c PVU ,δ(i, j) ≥ OV

(
ng(n),

n

Kq2i
, q

)
.

Substituting the parameters we chose and using Theorem 1,

OV

(
ng(n),

n

Kq2i
, q

)
= OV

(
1
2n logn,

n

50q2i −1
, q

)
≤ 20.14n[i]n0.14n[i]/q(logn)0.06n[i]/q

(recalln[k] = n/2k−1). By Lemma 1,

OV(ng(n), n/Kq2i , q)

PVU ,δ(i, j)
≤ 20.14n[i]n0.14n[i]/q(logn)0.06n[i]/q8n[i]n−0.25n[i]

= (
(logn)0.06/q23.14n(0.14/q−0.25)

)n[i]
,

this tends to zero asn → ∞ and in particular becomes less thanc whenn is large
enough. Lemma 1 thus applies and yields the lower bounds.

374 A. M. Ben-Amram and Z. Galil

Optimality of Theorem 3 is shown by matching upper bounds by Tarjan [30] and La
Poutré [25] (the latter also gives a tradeoff solution). Both papers give pointer algorithms
that can be readily implemented on an integer RAM. Recently, Alstrup et al. [2] have
given algorithms that are at the same time worst-case optimal (matching Theorem 2) and
amortized-time optimal (matching Theorem 3).

We finally remark that both lower bounds still hold if we average on the set of inputs
for each find, and apply to the expected time if the algorithm is randomized. These
observations are common to results proved by the Fredman–Saks technique and are
justified in [5].

6. The Prefix Sum Problem. The prefix sumproblem is a basic and simple data-
structure problem that has been described by Fredman [15] as “a toy problem which is
both tractable and surprisingly interesting.” We define the problem as follows:

PREFIX SUMS mod k. We represent an arrayT [1], . . . , T [n] of integers. Initially all
T [i] are zero. The update operation is add(i, 1) which implementsT [i] ← T [i] + 1,
and the query is sum(j) which returns

∑
i ≤ j T [i](modk).

The above problem is denoted by PS(n, k, M) if 1 in update operations is guaranteed
to be bounded byM . The unrestricted prefix sum problem is PS(n, M, M) whereM is
greater than any number that is ever to be represented. The simplest variant is PS(n, 2, 2),
also calledprefix paritysince in essence we ask for the parity of a prefix of the array.

Not only does the prefix sum problem occur in many applications, a lower bound for
PS(n, 2, 2) is useful for deducing lower bounds for other, seemingly different, problems
[16], [17], [22]. Naturally, the lower bound also applies to PS(n, k, M) with largerk
andM .

Fredman and Saks [17] gave a lower bound ofÄ(logn/ logb) for the amortized cost
of PS(n, 2, 2) in the cell probe model with word sizeb ≥ logn. This bound is re-proved
using our framework in [5]. By a simple extension of an algorithm by Dietz [11], a
matching upper bound (in fact, a worst-case bound) can be given for allb ≥ logn. This
algorithm uses certain functions which on a RAM are implemented via tables; preparing
the tables takesO(2bε

) time for a certain 0< ε < 1. Besides this function, ordinary
arithmetics on words ofb bits are used. Since our RAM can use unbounded integers, we
can choose the value ofb that fits us best. This will depend on the number of operations
to be performed, since we would like the cost of building the tables to amortize over
these operations. Specifically, suppose that the number of operations to be performed
is given asm ≥ n. The program choosesb ≈ logm. Thus the tables can be built in
O(2bε

) = O(m) time. The RAM program builds the tables and then proceeds with
Dietz’s algorithm; we obtain an upper bound ofO(logn/ log logm) amortized time per
operation. The space used is2(2bε · bε + n). If m is not known in advance, we start with
b = logn and increaseb once in a while. Since this is a well-known technique we omit
the details.

What happens if we do not want the space to keep growing as the number of operations
grows? We can impose a bound on the amount of memory that we are going to use and
select the value ofb accordingly. If we bound the memory by 2(logn)κ , for a constantκ,

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 375

the value ofb that we may use becomes polylogarithmic inn. Dietz’s algorithm will
then run inÄ(logn/ log logn) time per operation. The next theorem provides matching
lower bounds:

THEOREM4. Any RAM(/) algorithm for PS(n, 2, 2) requires, in the worst case,
Ä(m logn/ log logm) time for executing a sequence of m≥ n update and query
operations. If the space used by the program is bounded by2(logn)κ , for a constant
κ, thenÄ(m logn/ log logn) time is required for all m≥ n.

As mentioned in the last section, the lower bounds hold even if we average on the
set of inputs for each query and if the algorithm is randomized. Furthermore, the update
scheme used in our proof consists of operations add(i, 1) where the sequence of indices
i is fixed in advance. Thus knowledge of this sequence does not make the problem easier
(on the models we consider).

We remark that form < n, our proof method yields a lower bound ofÄ(logm/

log logn) amortized time. This may be matched on the cell probe model by an algorithm
that makes use of the fact that at mostm distinct indices appear in update operations.
Whether this can be matched on the algebraic RAM is an open problem.

We prove Theorem 4 in the unbounded-space setting. The proof of the claim on
bounded space is almost identical, using the imposed bound for the parameterw.

We use a(V, δ)-bounded update scheme (Section 3, Definition 3). The update scheme
U consists ofz = m/2 rounds, where each round is a single update operation (so that
when adding a single query to each round, we consider sequences ofm operations). For
ϕ = (1 + √

5)/2 (Fibonacci number), letIk = (bnkϕ−1c modn). We define

U = {u1u2 · · · uz | uk is add(Ik, 1k), 1k ∈ {0, 1}}.

Thus there are two alternatives for each update operation inU , which are chosen with
equal probability.

LEMMA 2 [5]. Update schemeU is (V, δ)-bounded withδ = 1
30 and V(`) = 2−0.25̀ .

This lemma allows us to apply Corollary 2. The corollary requires us to consider the
set of update/query sequences6z formed according to the patternuquq . . . uq, including
2z = m operations. For a given prefix sum algorithm, letx be twice the average number
of memory writes throughout an entire operation sequence chosen uniformly from6z.
As a bound on the data-structure cost we choosew = x since all memory cells are
initially zero. The probabilistic condition of the lemma clearly holds withp = 1/2.

Letχ = x/z. Note thatχ is twice the average number of writes per round; necessarily
χ ≥ 1 since a given round has to modify the data structure at least in every other sequence.
We can also assumeχ ≤ logn (i.e., x ≤ z logn); otherwise the desired lower bound
holds anyway.

We describe an epoch schemeE spanningj = √
n rounds, soj < z/2, as required

by Corollary 2. The division of these rounds into epochs has the form of a geomet-
ric sequence, growing from the last round backwards. Specifically, thei latest epochs
containLq−i +1 = (αχ)i update operations whereα is a parameter to be chosen later.

376 A. M. Ben-Amram and Z. Galil

Accordingly, the number of epochs is

q =
⌊

log
√

n

log(αχ)

⌋
.

Finally, we chooseδ = 1
30 andc = 1

8.
It remains to verify the inequality involving OV andV(Le) and determine the value

of α. We get a bound on OV from Theorem 1 and the inequalitiesq < log
√

n and
w < m

√
n:

OV(w, 4x Le+1/z, q) = OV(w, 4χ Le+1, q)

= OV(w, 4Le/α, q)

≤ (22qnw)12Le/α(2qn)4Le/α

≤ (n5/2m)12Le/α(n3/2)4Le/α

= (n36m12)Le/α

≤ m48Le/α.

Combining the last inequality with Lemma 1 and taking the (base 2) logarithm, we get

log(OV(w, 4x Le+1/z, q) · V(Le)) ≤ (48Le/α)(logm) − 0.25Le

= Le(48 logm/α − 0.25).

To apply Corollary 2, this expression has to be bounded by logc = −3, so we chooseα
large enough to make the above expression negative. SinceLe is a decreasing sequence,
and the inequality is required fore < q, it suffices to ensure that

−3 ≥ Lq−1(48 logm/α − 0.25) = αχ(48 logm/α − 0.25)

= χ(48 logm − 0.25α)

This inequality holds for allα ≥ 192 logm + 12 (givenχ ≥ 1). Hence we letα =
d(192 logm + 12)χe/χ , the smallest number greater than 192 logm + 12 such thatαχ

is an integer.
We have thus established the conditions for Corollary 2. To evaluate the lower bound

that results we substitute the value ofαχ in the definition ofq, obtaining

q =
⌊

log
√

n

log(αχ)

⌋
≥
⌊

1/2 logn

log(192 logm + 12) + logχ

⌋
= Ä

(
logn

logm

)
.

7. An Algebraic Toolbox. This section contains algebraic background for the follow-
ing proof and includes the Counting Theorem, a combinatorial geometry result which
may be interesting in its own right.

7.1. Preliminaries. We recall some definitions and results from algebraic geometry
(for details and proofs see [23]). Anaffine algebraic variety(henceforth variety) inCk is

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 377

defined by a set of algebraic equations in thek coordinate variables: i.e., for polynomials
p1, p2, . . . , pr the set{x ∈ Ck | p1(x) = p2(x) = · · · = pr (x) = 0}.

THEOREM5. Unions and intersections of a finite number of varieties are varieties.

Given a collection of sets, a single set of the collection is calledredundantif it is
contained in the union of the other ones, andirredundantotherwise. A representation
of a given set as a union of subsets is calledirredundant if none of the sets in the
representation is redundant.

THEOREM6. For every variety V, there is a unique decomposition into an irredundant
set of varieties{Vi } such that

⋃
Vi = V and no Vi can be further decomposed this way.

The varieties in the above decomposition are called thecomponentsof V . We denote
the set of components byC(V).

REMARK 1. Since each component ofV is a variety, the union of any proper subset of
the components is also a variety, properly contained inV .

REMARK 2. It is easy to show that for{Vi } to be an irredundant decomposition ofV
(not necessarily into components), eachVi must contain at least onecomponentwhich
is not contained in the union of the other ones.

DEFINITION. A variety of one component is calledirreducible.

LEMMA 3. Let{Vi } be the components of V, and let U be a variety. If K is a component
of U ∩ V , then it is also a component of at least one of the varieties U∩ Vi .

DEFINITION. Thedimensionof an irreducible varietyV in Ck, denoted dimV , is the
largest length of a chainV = V0 ⊃ V1 ⊃ · · · ⊃ Vd 6= ∅ of irreducible varieties.
0 ≤ dim V ≤ k. Thecodimensionof V , codV , is k − dim V .

The dimension of an arbitrary variety is defined as the largest of the dimensions of
its components.

DEFINITION. For any varietyV , Cj (V) is the union of components ofV possessing a
given codimensionj .

Cj (V) is apure-dimensionalvariety—all its components have the same dimension.

THEOREM7. For varieties U, V such that U⊆ V , codU ≥ codV . If V is irreducible,
and U ⊂ V , thencodU > codV .

THEOREM8. Let V1, V2 be pure-dimensional varieties inCk, and suppose V1∩V2 6= ∅.
Then every component of V1 ∩ V2 has codimension at mostcodV1 + codV2.

378 A. M. Ben-Amram and Z. Galil

DEFINITION. For an irreducible varietyV , its degreeis the maximal cardinality of a
finite set obtained by intersectingV with a linear affine subspace.

The degree of a non-empty variety is positive.
Following Heinz and Schnorr [21], we define the degree of an arbitrary variety to be

the sum of the degrees of its components. By this definition we have:

FACT 1. The degree of a union of varieties is bounded by the sum of their own degrees.
The degree of a variety is at least the number of its components.

Heinz and Schnorr give the following variant of B´ezout’s theorem:

THEOREM9 (Bézout Inequality). Let V1, V2 be affine algebraic varieties inCk. Then
deg(V1 ∩ V2) ≤ degV1 · degV2.

Ck itself constitutes an irreducible variety of codimension 0 and degree 1. A set defined
by a single non-degenerate equation (that is, not an identity) is called ahypersurface,
and has codimension 1. The degree of a hypersurface is bounded by the degree of the
polynomials in the defining equation.

7.2. The Counting Theorem. Letx be a positive integer. Suppose we are given a vector
of n rational functions onCx, that is, functions of the formR/T whereR andT are
polynomials. Evaluating them in some point ofCx yields a vector of results, belonging
toCn. Let Sbe a finite set of values and suppose we are only interested in result vectors
within Sn. The Counting Theorem gives a bound for the number of such vectors that can
be achieved. It is interesting that this bound is independent ofn.

COUNTING THEOREM. For i = 1, 2, . . . , n let fi = Ri /Ti , where both Ri and Ti are
polynomials onCx of degree at most d. Let S ⊆ C be finite and let m= |S|. Let
f(x) = (f1(x), . . . , fn(x)). Then the number of distinct values from Sn achieved byf(x)

for x ∈ Cx is bounded by(dm)x.

PROOF. For 0≤ i ≤ n, andv = (v1, v2, . . . , vi) ∈ Si , let

Pi (v1, . . . , vi) = {x ∈ Cx | Rj (x) = vj Tj (x), j = 1, . . . , i }

and let

Pi =
⋃
v∈Si

Pi (v).(*)

Pi (v) andPi are clearly varieties inCx. Finally, let

ϕ(i) =
∑

K∈C(Pi)

(dm)− codK degK .

Let N be the number of distinct values fromSn achieved byf(x). Let v ∈ Sn. Obvi-
ously,Pn(v) includes all pointsx wheref(x) = v. These points must satisfyT1(x), T2(x),

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 379

. . . , Tn(x) 6= 0 (we call such pointsnon-singular). Therefore,N is bounded by the
number of setsPn(v) that contain non-singular points. We call these non-singular sets.
ConsiderPn : we show that in the union(∗) defining it, each non-singularPn(v) is non-
redundant. To see this, letx be a non-singular point such thatRj (x) = vj Tj (x) for all j .
Changing any element ofv will violate the corresponding equation, so noPn(u), with
u 6= v, can containx. It follows, by Remark 2, that the number of non-singular sets is
bounded by the number of components ofPn, and therefore (using both parts of Fact 1)

N ≤
∑

K∈C(Pn)

degK ≤ (dm)xϕ(n).

The number we seek is thus bounded by(dm)xϕ(n).
Consider the following claims:

(1) ϕ(0) = 1.
(2) ϕ(i) is a non-increasing function ofi .

It is easy to see that together they complete the proof of the theorem.

Proof of (1). The setS0 contains only one vector, of zero length; thus there is only one
trivial set P0, the whole space. It contains a single component (itself) of codimension 0
and degree 1, soϕ(0) = 1.

Proof of (2). To show thatϕ(i) is non-increasing, we relate the components ofPi +1 to
those ofPi . Each setPi +1(v) is obtained from a setPi (u), whereu contains the first
i elements ofv, by adding the conditionRi +1(x) = vi +1Ti +1(x). If this equation is an
identity, we havefi +1 = Ri +1(x)/Ti +1(x) identically equal tovi +1; thus we can ignore
this component of the vectors. If this is not the case, the equation defines a hypersurface
of codimension 1 and degree at mostd. Thus

Pi +1(v) = Pi (u) ∩ H,

where H is the hypersurface. Note that a different hypersurface corresponds to each
element ofS.

Let Q be a component ofPi +1(v). By Lemma 3 it is also a component ofK ∩ H for
someK ∈ C(Pi (u)). By Theorem 8,

codQ ≤ codK + codH = codK + 1.

Moreover, by Theorem 7 we have codQ = codK + 1 unlessQ = K , that is, unless
K ⊆ H . We thus divide the components ofPi +1 into two groups. The first includes
components ofPi that are completely contained in one of the hypersurfacesH . Each
component of this kind will contribute the same term toϕ(i + 1) as it did toϕ(i). The
second group includes componentsQ = K ∩ H that are proper subsets of the original
componentK . Such sets can count as components only ifK itself is not inPi +1, that
is, does not belong to the first group. Suppose it does not; then we “gain” a host of
new components, resulting fromK ’s intersection withm hypersurfaces. LetU be the
union of all these components;U is the result of intersectingK with the union ofm
hypersurfaces, each of degree≤ d. By the Bézout inequality,

degU =
∑

Q∈C(U)

degQ ≤ mddegK .

380 A. M. Ben-Amram and Z. Galil

The contribution of all these components toϕ(i + 1) is∑
Q∈C(U)

(dm)− codQ degQ = (dm)− codK−1
∑

Q∈C(U)

degQ ≤ (dm)− codK degK ,

which is the term contributed toϕ(i) by K . We conclude thatϕ(i + 1) ≤ ϕ(i).

REMARK. It is easy to verify that the theorem holds as well with respect to functions
fi which are polynomials of degree at mostd.

8. Output Variability of Real-Number RAMs. In this section we prove Theorem 1,
giving an upper bound for the OV of three RAM variants, namely, RAM(±), RAM(×)
and RAM(/). The functions that can be computed by a RAM(±) or RAM(×) program
are mathematically simpler than those that involve division as well. However, the proof
of our result is almost the same for all models; so we complete first the proof for the first
two models, and then briefly describe the modifications needed to handle RAM(/).

A program segment which only refers to registers (no memory access instructions)
and does not branch isoblivious in the sense that both program flow and data flow do
not depend on values in memory. Thenon-obliviousinstructions areconditional branch
and the memory access instructions. For RAM(±), we define the cost of a computation
as the number of non-oblivious instructions executed; addition and subtraction are free.
In RAM(×), multiplications are also counted. Note that we do not restrict the number of
registers, and yet we count only accesses to memory cells. This resembles the situation
in typical computers, where register access and instructions of additive type are cheap:
our cost criterion counts instructions that are typically slow.

Recall that the definition of OV (Section 2) involves parametersn, m, w, x andq.
For the rest of this section, these parameters are fixed. We further fixM and Q as in
the definition of OV. Our goal is to bound the number of vectors{Q̄(X)} that can be
obtained by sequences ofx memory writes that updateM to produceX.

Comparing the current case to that of the cell probe model can indicate the source
for difficulty in this proof. In the cell probe model there is a finite number of values to
each word and this induces a finite number of possible computations. On the contrary,
the bounds of the above theorem allow an infinite number of possible computations:
each cell written may contain an arbitrary integer, and since it can be used for indirect
addressing, the set of accessible addresses is also infinite. Thus, in order to bound the
number of achievable result vectors, we partition the memory images inMx into classes
such that in every class, a unique answer vector is obtained. Our aim is to show an upper
bound on the number of these classes. We proceed to build the proof in stages, starting
with an easy case and generalizing as we go.

First, we have to make some definitions for describing the contents of the memory
imageX. We denote byW the set of addresses of non-zero cells inM . Let A be the
set of x addresses updated to produceX (there is no need to consider cases where
|A| < x since one can always rewrite a cell with its old value). The union,W ∪ A,
is the set of addresses that may be non-zero inX. The intersection,W ∩ A, is the set
of addresses re-written. Throughout most of the proof, we assume this set to be fixed.
This means that we concentrate on one of the equivalence classes defined onMx by

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 381

Fig. 8.1.Naming of addresses inX.

the identity of cells re-written. Call this classM. The other addresses inA are called
new. We do not fix these addresses, which have infinitely many possible values. The
variablesX1, . . . , Xx denote thex valueswritten. For definiteness, we relateX1, . . . , Xa

to new cells (a = |A−W|) andXa+1, . . . , Xx to the re-written cells, each group given
in increasing order of address. We denote their respective addresses byy1, . . . , yx. Note
that y1, . . . , ya are variableswhile the other addresses areconstants. We denote the
elements ofW − A by s1, . . . , s|W−A| (see Figure 8.1).

Through the proof we make some formal transformations and annotations of the query
program. We refer the reader to examples accompanying the proof for illustration of the
transformations described.

For a start, we replace the query program byn programs, where programi carries out
the computation ofQ(i, X); thus the query inputi is changed into a program constant.
This means that tests for the value ofi , or computation of functions ofi , can be removed
from the program; as a result, such instructions need not be accounted for in our cost
criterion. Anyway, we now havendifferent programs which depend solely on the contents
of memory. We start our process by writing these programs in a “low-level language,”
namely, an assembly-like language where memory access is made explicit, making use
of registersR1, R2, . . . and where program statements are numbered (we refer to such
statements as “instructions,” although as a matter of convenience such a statement may
include an arithmetic expression and thus represent a group of arithmetic instructions).
See Example 1.

8.1. Resolute Straight-Line Programs. It is easy to see that a value computed by a
straight-line sequence of instructions can be written down as an expression in the values

while 〈〈0〉〉 ≤ i do
〈0〉 ← 2 × 〈〈0〉〉 + 〈i 〉

endwhile
return 〈0〉 + 5

The translation to low-level language fori = 3:

1: R1 ← 〈0〉
2: R2 ← 〈R1〉
3: if R2 > 3 goto 7
4: R3 ← 〈3〉
5: 〈0〉 ← 2 × R2 + R3

6: goto 1
7: return R1 + 5

Example 1.A query program.

382 A. M. Ben-Amram and Z. Galil

1: R1 ← 〈3〉 Y1

2: R2 ← 〈0〉 Y2

3: 〈0〉 ← R1 − 1 g3(Ȳ) = Y1 − 1
4: R3 ← 〈0〉 Y4

5: return R1 × R2 + R3 f5(Ȳ) = Y1Y2 + Y4

Example 2.A straight-line program with annotations.

read from memory throughout the process. This expression is built from the arithmetic
operations available to the machine, and is therefore a polynomial. The values ofd
indicated in the theorem are used as bounds on the largest degree that such a polynomial
may take. In RAM(±), having no multiplication, no nonlinear term may be produced,
henced = 1. For RAM(×), we note that the term of largest degree computable withq
operations isx2q

, henced = 2q. One of the difficulties of the proof is that the values read
from memory may depend in intricate ways on the values of program variables through
use of indirect addressing. The approach we take is to perform as much static analysis
as possible to determine both program flow and data flow. To this end, we associate with
each LOAD instructionI a formal variableYI that represents the value read. Wherever
a value is obtained as the result of a straight-line computation, we can express it as a
polynomial in these variables. Such polynomials will be denoted byf I , gI , etc. For
instance, a STORE instruction uses two values:f I will denote the address andgI the
value stored. At a later stage we will define a consistent naming for these functions.
Such a function may depend, in general, on all theY-variables of preceding instructions.
We thus denote bȳYI the list of all Y-variables appearing before instructionI in the
straight-line program (̄Y is used whenI is understood from the context). See Example 2.

It is important to distinguish between theseformal variablesand the variables of the
program. The former obtain values not by running the program but by analyzing it. We
say theyevaluateto a certain value. This value is not necessarily a number, since it will
describe the result of a certain computation which may involve the inputsX1, . . . , Xx.
So, these values will be polynomials inx = (X1, . . . , Xx).

In the current stage of the proof, we simplify the problem by restricting ourselves
to direct-addressing straight-line programs, i.e., we assume that each access to memory
uses a direct address which belongs toW (the last restriction can be easily removed). For
such programs, we can pick up instruction after instruction and evaluate the associated
formal variable or polynomial. IfI is a LOAD instruction with direct addressα, the
formal variableYI can be evaluated as follows, assuming for the moment that there are
no preceding STORE instructions. Ifα ∈ W − A, it is one of the unchanged cells inX
soYI = M(α) (the contents of cellα in M). If α ∈ A, YI evaluates to the variableXj

such thatyj = α. Once the variables preceding an instruction that uses a functionf (Ȳ)

have been evaluated,f can also be evaluated (symbolically) by simple substitution. This
will determine, for instance, the value written by a STORE instruction. If the LOAD
instruction I is preceded by some STORE instructions, we look backwards fromI
for the last STORE into〈α〉. YI evaluates to the function stored by that instruction.
Finally, we arrive at a polynomial (inx) which represents the output of the program
(Example 3).

Now let fi (x) be the polynomial computed by the queryQ(i, X). Thus the answer
vector is given by(f1(x), f2(x), . . . , fn(x)). Since the query answers must be in the

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 383

Assume the program of Example 2 is run on the following memory image:

Address 0 1 2 3
Value X1 3 X2 2

(hencey1 = 0 and y2 = 2). Analysis of the program yields the following results (a right arrow denotes
“evaluates to”):

Y1 → 2

Y2 → X1

g3 → 1

Y4 → g3 → 1

f5 → 2X1 + 1

Example 3.Symbolic evaluation in a program without indirect addressing.

range 1, . . . , m, the Counting Theorem shows that the number of different answer vectors
obtainable is bounded by(dm)x. We denote this number bynv.

The last result can be extended to programs that use indirect addressing. Indirect
addressing is introduced by allowing the address argument of a memory access instruction
to be an arithmetic expression inȲ. With an instructionI of that sort we will associate, in
addition to the variableYI which represents the value fetched (if it is a LOAD instruction),
a polynomialf I (Ȳ) which represents the address. Whenf I (Ȳ) is a constant, it is possible
to determine by static analysis (i.e., by looking at the program) what is stored in the cell
accessed. To this end, weresolvethe reference (as described above) to determine either
the identity of the STORE operation that gave it its current value, or identify it with one
of the cells inW, or decide it is an unused cell and zero will be read. Whenf I (Ȳ) is not
a constant, this decision may still be possible. Here for identifying the referenced cell as
one that has been modified in a certain STORE instruction, it is required that the function
f I (Ȳ) coincide with the function that represents the address in the STORE instruction. A
resoluteprogram is a query program together with a setA of allowable images such that,
for X ∈ A, it is possible to resolve all memory references in the program. Direct-access
programs treated above are resolute with no limitation onX (except for the identity of
rewritten cells, which we fixed for this discussion). For other programs, a finer analysis
is required.

Consider the program in Example 4. There are three LOAD instructions in the program
with associatedY variablesY1, Y2 andY4. The conditiony1 = 1 implies that the memory
cell of address 1 is identified with the variableX1. Therefore, line 1 setsY1 to X1. Line 2
uses indirect addressing where the function used for the address is exactlyY1, hence
we know it as the variableX1. While we do not know its value, the conditiony2 = X1

implies thatX1 gives the address ofX2: thusY2 evaluates toX2. In line 3 the expression
Y1 − Y2 (which evaluates toX1 − X2) is stored in a cell whose address is given by the

1: R1 ← 〈1〉
2: R2 ← 〈R1〉
3: 〈R2 × R2 × R2 − 7 × R2〉 ← R1 − R2

4: R3 ← 〈6〉
5: return R3

Example 4.A resolute program.A is defined by the conditions:y1 = 1, y2 = X1, X2 ∈ {−1, −2, 3}. The
reader may resolve the references and verify that the return value evaluates toX1 − X2.

384 A. M. Ben-Amram and Z. Galil

function (Y2)
3 − 7Y2. The next instruction accesses address 6. Therefore, we need to

know whether the cell just written happens to be〈6〉. By substitutingX2 for Y2 we obtain
the equation(X2)

3 − 7X2 = 6 whose solutions are{−1, −2, 3}. Therefore, on this set,
Y3 obtains the valueX1− X2, and line 5 makes it the result of the query. Note thaty2 may
happen to equal 6, and in this caseX2 will be re-written; but this does not affect what
comes next. Note also that ifX2 does not satisfy our equation, cell 6 will retain its prior
value; in this case it will be important to know whethery2 = 6. We see that resolving
a program with indirect addressing involves algebraic equations that induce a partition
into cases; those may have to be broken into subcases (by means of other equations) and
so forth. We will later formalize this process, in order to estimate the cardinality of the
partition obtained at its completion.

So,nv = (dm)x actually bounds the number of different answers that can be given
by a straight-line resolute program. Given a set of straight-line programs, e.g., the paths
of a computation tree, we will be interested in setsA such that all these programs can
be simultaneously resolved for memory images inA. In such a case we say that the
computation tree is resolute.

8.2. Branching Programs. We now turn our attention to programs that include branch-
ing. The program computingQ(i, X) can be represented in a standard way as a treeTi .
In this tree, internal nodes represent the non-oblivious instructions, while the leaves cor-
respond toreturn statements and specify the query output. The height of this tree will
be bounded byq.

The path from the root to a given node describes a straight-line sequence of instruc-
tions, and can be treated as a straight-line program. Thus the operands of the instruction
in nodeν can be written down as polynomials inY-variables associated with ancestors
of ν representing LOAD instructions.

More precisely, each nodeν has one of these types:

(i) LOAD (memory read). A variableYν is associated with this node to represent the
value read. The address accessed is determined by a polynomial in the results of
preceding LOAD instructions,fν(Ȳ). A LOAD node has one child representing the
next instruction.

(ii) STORE (memory write). Two functions are associated with such a node:fν(Ȳ)

determines the address andgν(Ȳ) the value written.
(iii) TEST (comparison), which has two children, and the computation proceeds to one

of them depending on the conditionalfν(Ȳ) > 0.
(iv) OUTPUT, which is a leaf, wherefν(Ȳ) describes the query result.

We call these treesthe computation trees(Example 5).
We assume that we have restricted the inputs to a setA so thatevery path in the

program treesis resolute. Then all the functionsfν in the trees evaluate to polynomials
in x = (X1, . . . , Xx); it is convenient to regard them as polynomials on<x. The paths
taken by the programs for a certain input is determined by the outcome of the comparisons
in the test nodes of the trees. Therefore, we now partition<x according to comparison
results to obtain subsets which determine unique computation paths. For estimating the
size of this partition, we make use of Warren’s lemma on sign sequences of polynomials.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 385

1
LOAD, Y1, f1 = 0y

2
LOAD, Y2, f2 = Y1y
3
TEST, f3 = Y2 − 3

≤ 0

���
���

�� XXXXXXX
> 0

j
5
LOAD, Y5, f5 = 3

4
OUTPUT, f4 = Y1 + 5y

6
STORE, f6 = 0, g6 = 2Y2 + Y4y

·
·
·

Example 5.The treeT3 for the program of Example 1. The tree is obtained by unwinding the while-loop, and
is truncated at heightq.

For any real numberx, we define

sgn(x) =
−1, x < 0,

0, x = 0,

+1, x > 0.

LEMMA 4. Let f1, . . . , fr be real polynomials in x variables, each of degree at most
d ≥ 1. If r ≥ x, the number of sign sequencessgnf(x) = (sgn f1(x), . . . , sgn fr (x))

that consist of terms+1, −1 only does not exceed(4edr/x)x, where e is the base of the
natural logarithm.

PROOF. See [31].

LEMMA 5. LetA ⊆M be a set of inputs(memory images) on which all computation
trees resolve. The size of the partition induced onA by the results of all comparisons
performed in all the computation trees is bounded by(d2q+2n)x.

PROOF. Consider a listf1, . . . , fr of all the functions associated with comparison nodes
in the treesT1, . . . , Tn; since the height of each computation tree is bounded byq, and
each path of interest must contain one output node and one memory read node, we have
r < 2q−2n. Since the trees are resolute, eachfi evaluates to a polynomial (which we
consider to be defined on<x), and, as argued before, the degree of each polynomial
is at mostd. We can assume that none of these polynomials is a constant, since such
comparison would be redundant and can be ignored. We denote by snfi (x) the result of

386 A. M. Ben-Amram and Z. Galil

the comparisonfi (x) > 0?, that is,

sn fi (x) =
{

1 sgn fi (x) = 1,

−1 sgn fi (x) < 1.

The size of the partition in question is bounded by the number of different values taken
by the vector snf(x) = (sn f1(x), . . . , sn fr (x)) asx ranges over<x. Assume that there
areγ such values; let0 ⊆ <x be a set such that|0| = γ and each possible value of
snf(x) is achieved on0. Let

ε = min{ fi (x) | 0 < i ≤ r, x ∈ 0 and fi (x) > 0}

and definegi (x) = fi (x) − ε/2 for all i . Thus at all the points of0, gi (x) is different
from zero, and snf coincides with sgng. Moreover, at these points sgng consists of
terms+1, −1 only (as required for Lemma 4 to give a correct bound). The degree of
the polynomialsgi is the same as offi . Thus if r ≥ x, the result follows by Lemma 4.
Otherwise,(d2q+2n)x > (d2q+2n)r > 2r , which is a trivial bound on the number of
such sequences.

We conclude thatA can be broken into at mostnt = (d2q+2n)x classes, such that for
each class one output node can be singled out for every computation tree, and these nodes
will be reached for all the inputs in the class. Thus, in each class the trees degenerate
into n straight-line programs; the number of answer vectors that can be obtained in this
case is thus bounded bynv. We obtain

COROLLARY 3. Let A ⊆ M be a set of inputs on which all computation trees are
resolute. The size of the partition induced onA by the identity of answer vectors is
bounded by ntnv = (d2q+2n)xmx.

8.3. The Meta Tree. Our next goal is to partition the set of memory imagesM into
classes such that on each class, all computation trees are (simultaneously) resolute. To
this end, we pick the memory access nodes in the computation trees one at at time.
For each node, we find conditions on the variablesX1, . . . , Xx; y1, . . . , ya that yield
a resolution of the memory reference, namely force the value used for an address to
coincide either with a “known” address or be distinct from all of them (in this case it hits
a zero cell). For the sake of analysis we embed the possible vectors(x; y) in the vector
spaceCx+a. We obtain a partition ofCx+a into subsets such that for all values of(x; y)

in a given subset the resolution of the reference is fixed. Note that it is possible that
such a subset will include no valid input, for example becausey must consist of natural
numbers to be valid. However, we are only looking for an upper bound on the size of the
partition obtained, and the size of the partition onCx+a will do.

To deal with a particular memory access node, it is necessary to resolve its ancestors
(in the computation tree) first so that we know how the memory looks when the node
is reached. Therefore, we arrange all the memory access nodes in then trees in a list
ν0, ν1, . . . , νL−1 which follows pre-order for each tree. Note that the height of the trees
is bounded byq and the nodes of interest are internal nodes; thereforeL < 2q−1n.
Starting with a trivial partition in whichCx+a is a single class, we proceed through

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 387

L steps in which the partition is repeatedly refined, i.e., each class is subdivided into
smaller classes. This process naturally defines a tree which we call themeta tree: a level
of this tree corresponds to a memory access node (leveli for nodeνi), so there areL
levels. Each node of the meta tree corresponds to one class of its level, and has children
in the next level for all the subclasses of that class. We remark that this tree is an abstract
structure which exists only in the analysis.

To proceed with the analysis, we introduce some additional formal variables which
help in tracing the usage of memory addresses. First, we represent the contents of memory
by a set of formal variables which bear names of the formc(u) (for “contents of address
u”). u may be either a number or the name of another formal variable. Initially, we have

c(u) =
{

M(u) for u ∈ W − A (hereu accepts integer values),

Xl for u = yl , l = 1, . . . , x (hereu takes formal values).
(2)

Next, with each nodeν that represents a memory write, we associate a formal variable
Zν to represent the address written to. The expressionc(Zν) naturally denotes the value
written.

So, a nodeλ of level i in the meta tree defines:

(i) A subsetPλ of Cx+a which limits the values ofX1, . . . , Xx; y1, . . . , ya.
(ii) An assignmentAλ which assigns to eachY, Z andc-variable defined before this

node a value from the polynomial ringC[X1, . . . , Xx].

The construction of the tree is designed to satisfy the following claim; recall thatȲ(ν)

is the list ofY-variables associated with ancestors of nodeν.

CLAIM 1. The subsets{Pλ} associated with the nodes of level i in the meta tree form
a partition ofCx+a. For each vector(X1, . . . , Xx; y1, . . . , ya) ∈ Pλ, if a computation
of a query using these values reachesνi , the values of formal variables associated with
ancestors ofνi and the contents of memory whenνi is reached are given by Aλ.

This invariant leads immediately to the following corollary, regarding the finest par-
tition obtained.

COROLLARY 4. Each subset associated with a leaf of the meta tree determines the
values of all formal variables associated with the computation trees.

The structure of the tree will be now defined inductively in order to establish Claim 1.
Let E be an expression, and letA be anassignment. The notationE[A] is used for the
result of replacing each variable in the expressionE by the value assigned to it inA.

(i) The rootr of the meta tree hasPr = Cx+a andAr only includes the values forc(u)

given in (2). These assignments correctly represent the situation when nodeν0 is
reached because there are no memory access nodes preceding it.

(ii) Let λ be a node of leveli , and assume the construction has been correctly carried
out up to this level. Recall thatfνi is defined in terms of̄Yνi . SinceAλ has to resolve
all the variables inȲνi , fνi [Aλ] is a function ofX1, . . . , Xx. Let Z1, . . . , Zt be the
Z-variables along the path fromνi to the root of its computation tree. Consider the

388 A. M. Ben-Amram and Z. Galil

list of “address expressions”

Z1, . . . , Zt ; y1, . . . , yx; s1, . . . , s|W−A|.

This list goes backwards in time: theZ-variables are listed from our node back to
the root which designates the start of our program,yi denotes addresses modified in
the epochs preceding this query, andsj are addresses in use prior to these updates.
Each element of this list is either a constant, or must be included inAλ. An element
u in the list will be calleda duplicateif there exists an elementv precedingu in
the list (i.e., newer), such that the functionsu[Aλ] andv[Aλ] coincide overPλ. Pick
elements from this list from left to right, skipping duplicates. Call the elements so
chosenu1, u2, . . . (their number will be considered later). This process finds out the
memory cells that are in use (not zero), for the following reason. Addresses eligible
to be non-zero are those in the initial data structure (si), those modified during
updates (yj) and those modified in the execution of this query (Zk). If a memory cell
is written twice, the last writer leaves its mark, so we remove the older appearance
of a duplicate address. Now forj = 1, 2, . . . let

Pj = {(x; y) ∈ Pλ | fνi [Aλ](x) = uj [Aλ](x; y)},(3)

this is the set on which the address accessed by our node coincides withuj . Let

P0 = Pλ −
k⋃

j =1

Pj ;

this is the set on which the address selects an unused cell.

The nodeλ has a childλj for eachj such thatPj is not empty. With this node we associate
the setPj and the assignmentAλ augmented according to the type of nodeνi :

(i) νi is a read node. Then we add an assignment forYλ, which should reflect the result
of the memory read. Thus inλ0 the value zero is assigned. The value ofc(uj) is
assigned inλj .

(ii) νi is a write node. Then we add assignments forZλ andc(Zλ). Regardless ofj , these
are Zλ ← fνi [Aλ] and c(Zλ) ← gνi [Aλ]. We still have a different child for each
Pj ; this will ensure that in subsequent nodes,duplicate removalworks properly, as
address expressions will either coincide or differ on the whole of each class.

Recall thatw bounds the number of cells in use; hence there are at mostw childrenλj

with j > 0. We proceed to estimate the cardinality of the finest partition (equivalently,
the number of leaves).

LEMMA 6. The partition ofCx+a induced by leaves of the meta tree is of cardinality
≤ (2q−1dwn)x+a.

The rest of this subsection is devoted to the proof of Lemma 6. The central idea is arguing
about the dimension of the classes associated withPλ. We will show that if the number
of these sets increases, their dimension must decrease, whereby the desired bound will
follow.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 389

Recall thatd is a bound on the degree of any polynomial computed by our query
program.

LEMMA 7. Let 0 ≤ i < L. Let Pi be the partition ofCx+a defined by level i of the
meta tree. We can define, for each P ∈ Pi , a variety P, such thatP ⊇ P and the
following property holds. For all 0 ≤ j ≤ x + a, let Ni, j = ∑

P∈Pi
degCj (P). Then

Ni, j ≤ (i
j

)
(wd) j .

PROOF. We proceed by induction oni . For i = 0, the level contains a single node, the
root r . Pr = Cx+a so we definePr to be the same. Note thatCj (Cx+a) isCx+a itself for
j = 0 and is empty forj > 0. degCx+a = 1, soN0,0 = 1 = (0

0

)
(wd)0, while for j > 0

we haveN0, j = 0.
We next assume the sets have been defined and the lemma holds for leveli and

consider leveli + 1.
Let λ be any node in leveli . Consider the setsP0, . . . , Pk associated with its children

(we renumber the children consecutively sok ≤ w). For l ≥ 1, Pl is defined (by (3)) as
the set of points inPλ that satisfy a certain equation inx+a variables; hencePl = Pλ∩Sl ,
whereSl is either a hypersurface inCx+a or the whole space (if the equation is an identity).
Recall thatPj must be non-empty forλj to exist; hencePλ ∩ Sl is non-empty as well. We
tentatively definePl to be Pλ ∩ Sl . Obviously this definition satisfies the requirement
Pl ⊇ Pl , andPl is clearly a variety. Our goal now is to relate the components of the sets
Pl to those ofPλ.

If there is anl such thatPλ ⊆ Sl , then Pl = Pλ andλl must be the only child of
λ: this is due to the fact thatPi +1 is a partition. In this case the components ofPl are
simply those ofPλ.

Assume now that noSl contains the whole ofPλ; then noSl can be the whole space.
EachSl must be a hypersurface, of codimension 1 and degree at mostd. Obviously

Pl =
⋃

k

⋃
K∈ Ck(Pλ)

K ∩ Sl .

Lemma 3 shows that in order to study the components ofPl it suffices to look at the
components of each intersectionK ∩ Sl . Let K ∈ Ck(Pλ). By Theorem 8,K ∩ Sl is a
variety of codimension bounded byk+1. LetQ be one of its components. SinceQ ⊆ K ,
by Theorem 7 codQ ≥ k; and codQ = k if and only if Q = K , that is, if and only if
K ∩ Sl ⊇ K , i.e, K ⊆ Sl .

The last argument shows that all components ofCj (Pl) belong to one of the following
types: (i) components ofCj (Pλ) which pass on toCj (Pl) unchanged; (ii) components
created by the intersection ofCj −1(Pλ) with Sl .

We next considerλ0. Provided thatP0 is not empty, we defineP0 = Pλ. It thus
inherits all the components unchanged.

For our counting arguments we want each component ofPλ which is repeated in the
next level to appear only once, that is, only in a singlePl . We achieve this by deleting
redundant appearances of components; however, we must preserve the property that
P ⊇ P for all setsP involved. Suppose that a component ofPλ is contained in two
different hypersurfacesSl andSm. Then it is contained in their intersection. However,
by looking at (3) we see that a point ofSl ∩ Sm is a point whereul [Aλ] = um[Aλ]; such

390 A. M. Ben-Amram and Z. Galil

equality cannot hold withinPλ by virtue of theduplicate removalprocess. It follows that
we can safelydeletethis component from bothPl andPm. Next, if a component ofPλ

is contained in a singleSl , it may be deleted fromP0. This is safe becauseP0 excludes
Sl . Recall that deleting whole components of a variety produces a variety (Remark 1).

To sum up, we ensure that each component ofCj (Pλ) is repeated at most once in
the next level, while additional components of same codimension may emerge from the
intersection ofCj −1(Pλ) with the (≤ w) hypersurfaces. The degree of components of
the first kind remains what it was inPλ; for the second kind, we use B´ezout’s inequality:

deg(Cj −1(Pl) ∩ Sl) ≤ d · degCj −1(Pl).

Summing the bounds we have on the degrees of these two kinds of components, we
obtain

Ni +1, j ≤ Ni, j + wd Ni, j −1

≤
(

i

j

)
(wd) j + wd

(
i

j − 1

)
(wd) j −1

=
((

i

j

)
+
(

i

j − 1

))
(wd) j

=
(

i + 1

j

)
(wd) j .

We now estimate the cardinality of the finest partition,PL . EachP ∈ PL is a non-
empty set and is therefore contained in a non-emptyP. Let j = dim P. ThenP con-
tributes at least 1 toNL , j . Therefore the cardinality of the finest partition is bounded
by

x+a∑
j =0

NL , j ≤
x+a∑
j =0

(
L

j

)
(wd) j ≤ (wd)x+a

x+a∑
j =0

(
L

j

)
≤ (wdL)x+a ≤ (2q−1wdn)x+a.

The last inequality follows from the following claim, completing the proof of Lemma 6.

CLAIM 2. For all 1 < m ≤ n,
∑m

k=0

(n
k

) ≤ nm.

PROOF. Form = 2,

m∑
k=0

(
n

k

)
= 1 + n +

(
n

2

)
= n2 + n + 2

2
≤ n2.

For m > 2, we assume the lemma holds form − 1 and use induction:

m∑
k=0

(
n

k

)
=

m−1∑
k=0

(
n

k

)
+
(

n

m

)
≤ nm−1 +

(
n

m

)
< nm−1 + nm−1(n − 1) = nm.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 391

8.4. Wrapping up the Proof. Letnad be the number of choices forW ∩ A. For a single
choice of these addresses we have computed the sizenp of the partition induced by leaves
of the meta tree. Concentrating on one of these parts, we obtain resolute programs. By
Corollary 3, the number of answer vectors that can be obtained for memory images in
this part is bounded byntnv. Therefore the number of different query answer vectors
that can be obtained when both the addresses and values of modified cells vary freely is
bounded by

nadnpntnv.

As |W| ≤ w, we havenad ≤ ∑
j ≤x

(
w

j

)
; and Claim 2 givesnad ≤ wx. By Lemmas 6 and

5 we deduce

OV(w, x, q) ≤ wx(2q−1dwn)2x(2q+2dn)x(dm)x ≤ (2qdwn)3x(dm)x.

8.5. Output Variability of RAM(/). Regarding RAM(/), Theorem 1 claims that

OV(w, x, q) ≤ (22qnw)3x(2qn)x.

The proof follows the same lines as for the previous models.nad, np, nt andnv are
defined in the same way. In the last section we used the fact that a function built with the
operators+, − and× is a polynomial in the variables used. When division is allowed,
the class of functions obtained is the class ofrational functions. This is a result of the
identities:

P

Q
± R

T
= PT ± RQ

QT
,

P

Q
· R

T
= PR

QT
,

P

Q

/
R

T
= PT

QR
,

whereby it also follows that ifP/Q is obtained with less thanq algebraic operations, then
both degP and degQ are bounded by 2q−1. This bound will hold for all the functions
computed throughout a query program whose total length is bounded byq.

Consider firstnp. We note that the equation in rational functionsP/Q = R/T is
equivalent to the polynomial equationPT = QR. In the equations (2) that determine
the meta-tree partition, the degree of each ofP, Q, R andT is bounded by 2q−1; hence
the degree of the equation is bounded by 2q. We can apply Lemma 6 to obtainnp ≤
(2q−12qwn)x+a ≤ (22q−1nw)2x.

We now turn tont . This partition is defined by inequalities which now have the form
P/Q > 0. This inequality can be rewritten asPQ > 0 with the same result.PQ is a
polynomial of degree bounded by 2q. This is the case considered in Lemma 5, so again
nt = (22q+2n)x.

Next we consider the numbernv of answer vectors that can be obtained once the
identity of cells accessed and branches taken has been fixed. The results are now produced
by a vector ofn real-valued rational functionsf1, f2, . . . , fn (fi represents the output of
Q(i)), andnv is at most the number of vectors from{1, 2, . . . , m}n that can be obtained

392 A. M. Ben-Amram and Z. Galil

by (f1(x), . . . , fn(x)) for x ∈ Cx. Using the Counting Theorem withd = 2q yields
nv ≤ (2qm)x.

nad is the same as in the last subsection; so

OV(w, x, q) ≤ nadnpnr nv ≤ wx(22q−1nw)2x(22q+2n)x(2qm)x = (22qnw)3x(2qm)x,

completing the proof of Theorem 1.

9. Other RAM Models. The general definition of the RAM family in Section 4 devel-
oped as a direct result of the fact that so many variants have been used in the literature.
One group of variants consists of those that manipulate integer numbers with instruc-
tions that are not algebraic. Examples includeinteger divisionandbit operations. Such
additions invalidate the considerations on which our bounds on OV hinge. An indication
of the possible consequences of such enhancement has been given by Paul and Simon
[27]. They prove a lower bound ofÄ(n logn) for sortingn integers in the arithmetic
model; on the other hand, they show that the instructions ofinteger divisionandbitwise
AND can be used to break the lower bound and in fact to sort in linear time.

Let RAM(∧) (resp. RAM(÷)) be obtained from RAM(×) by adding a primitive of
bitwise AND (resp. integer division). We next show that both machines solveunion-
find in constant time per operation. Thus our lower bounds are broken too. Note that
these instructions do not contribute to the creation of larger integers, but they do allow
a program to make use of information which is encoded as part of a large number.

We describe the union-find algorithm for RAM(∧). For convenience, we adopt the
following version of the problem: the elements are named 0, . . . , n − 1, which are also
the names of the singleton sets initially containing them. Eachunionoperation specifies
the names of two sets and one of these becomes the name of the union. We also assume
thatn is a power of two.

The pivot of the algorithm is a single integerU that describes the current sets. At
any moment, letFi be the result of afind on i , i.e., the name of the set containing the
elementi . Then

U =
n−1∑
i =0

Fi · ni .

In addition, for each setSj we have an integerUj which describes the current contents
of these sets:

Uj =
∑
i ∈Sj

ni .

The initial contents of these variables should therefore be

U =
n−1∑
i =0

i · ni ,

Uj = nj .

These values can be set by a linear-time initialization phase; if desired, this work can be
divided among union operations to avoid the setup phase.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 393

It is easy to see that the following operations implement correctly the operation
union(i, j), which adjoinsSi to Sj :

Uj ← Uj + Ui ,

U ← U − iUi + jUi .

We now explain the implementation offind, which uses three more tables that can be
built beforehand or on-line as discussed above. For eachi = 0, . . . , n − 1 we need

Mi = (n − 1)ni ,

Ni = nn−i

and an arrayT whereT [j · nn] = j (only these array items must be set). The reader
may verify that the following expression yields the name of the set containingi :

T [Ni · (U ∧ Mi)].

The solution for RAM(÷) is similar.

10. Conclusion. The generalized Fredman–Saks technique presented in [5] was de-
signed to be applicable to other models or computation in addition to the cell probe model
originally used by Fredman and Saks. Lower-bound proofs using this framework can
be easily transferred to a different model if a good bound on its OV is found. The main
contribution of this paper was the derivation of such a bound on the OV of real-number
algebraic RAMs. This means, in essence, that every lower bound obtained in the cell
probe model using that technique can now be transferred to a RAM lower bound.

We have applied the result to obtain tight lower bounds for two central data-structure
problems in algebraic real-number RAMs. So far, work on the complexity of these
problems has concentrated on different computational models and the reader is invited
to find more references and comparison with previous work in [5].

It is interesting to notice that the complexity of the computational problems considered
in this work is the same for an integer RAM with additive instructions only and for a
real-number RAM with multiplication and division. We suggest that these problems have
some essential simplicity, related to the fact that their character is more one of managing
data structures than one of calculating with data, and that for problems of this kind there
is no advantage to using the stronger algebraic operations. Making this informal notion
more precise is an issue for further research. Note that multiplicationcanbe of advantage
when combined with non-algebraic operations such as integer division or bit fiddling, a
fact well known in data-structure research.

Since the theory of lower bounds in the cell probe model has developed faster than
the theory for RAMs, it seems natural to try to extend lower-bound techniques from the
former model to the latter. In addition to our work, such extensions can be found in [13]
and [14]. The latter is the only other work, known to us, that proves RAM lower bounds
for dynamic problems.

Another natural direction for further research is to consider RAM models with strong,
non-algebraic instructions, but limitations on the word length. These “word RAMs”

394 A. M. Ben-Amram and Z. Galil

stand halfway between the cell probe model and the algebraic RAM. Of course, the
model is only significant for lower bounds if the cell probe model does not yield a
satisfactory result for the given word length. Hagerup [20] surveys the interesting recent
developments regarding this model.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] S. Alstrup, A. M. Ben-Amram and T. Rauhe, Worst-case and amortised optimality in union-find,Proc.
31st ACM Symp. on Theory of Computing(STOC), 1999, pp. 499–506.

[3] A. M. Ben-Amram, On the Power of Random Access Machines, Thesis, Tel-Aviv University, 1995.
[4] A. M. Ben-Amram and Z. Galil, Lower bounds for data structure problems in RAMs,Proc. 32nd Annual

IEEE Symp. on Foundations of Computer Science(FOCS), San Juan, PR, 1991, pp. 622–631.
[5] A. M. Ben-Amram and Z. Galil, A generalization of a lower bound technique due to Fredman and Saks,

Algorithmica30:1 (2001), 34–66.
[6] A. M. Ben-Amram and Z. Galil, Topological lower bounds for algebraic random access machines,SIAM

J. Comput., to appear.
[7] M. Ben-Or, Lower bounds on algebraic computation trees,Proc. 15th Annual ACM Symp. on Theory

of Computing(STOC), 1983, pp. 80–86.
[8] N. Blum, On the single-operation worst-case time complexity of the disjoint set union problem,SIAM

J. Comput. 15:4 (1986), 1021–1024.
[9] N. H. Bshouty, Lower bounds for the complexity of functions in random access machines,J. Assoc.

Comput. Mach. 40:2 (1993), 211–223.
[10] S. A. Cook and R. A. Reckhow, Time bounded random access machines,J. Comput. System Sci. 7:4

(1973), 354–375.
[11] P. F. Dietz, Optimal algorithms for list indexing and subset rank,Proc. Workshop on Algorithms and

Data Structures(WADS), 1989, pp. 39–46.
[12] E. Dittert and M. J. O’Donnell, Lower bounds for sorting with realistic instruction sets,IEEE Trans.

Comput. C-34:4 (1985), 311–317.
[13] F. E. Fich and P. B. Miltersen, Tables should be sorted (on Random Access Machines),Proc. 4th

International Workshop on Algorithms and Data Structures(WADS), 1995, Lecture Notes in Computer
Science 955, Springer-Verlag, Berlin, pp. 482–494.

[14] G. S. Frandsen, J. P. Hansen and P. B. Miltersen, Lower bounds for dynamic algebraic problems,Proc.
16th Symp. on Theoretical Aspects of Computer Science(STACS), 1999, Lecture Notes in Computer
Science 1563, Springer-Verlag, Berlin, pp. 362–372.

[15] M. L. Fredman, The complexity of maintaining an array and computing its partial sums,J. Assoc.
Comput. Mach. 29:1 (1982), 250–260.

[16] M. L. Fredman and M. Rauch Henzinger, Lower bounds for fully dynamic connectivity problems in
graphs,Algorithmica22:3 (1998), 351–362.

[17] M. L. Fredman and M. E. Saks, On the cell probe complexity of dynamic data structures,Proc. 21st
Annual ACM Symp. on Theory of Computing, Seattle, WA, 1989, pp. 345–354.

[18] H. N. Gabow, Data structures for weighted matching and nearest common ancestors with linking,Proc.
1st Symp. on Discrete Algorithms(SODA), 1990, pp. 434–443.

[19] Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union problems,ACM Comput.
Surveys23:3 (1991), pp. 319–344.

[20] T. Hagerup, Sorting and searching on the word RAM,Proc. 15th Symp. on Theoretical Aspects of
Computer Science(STACS), 1998, Lecture Notes in Computer Science 1373, Springer-Verlag, Berlin,
pp. 366–398.

[21] J. Heinz and C. P. Schnorr, Testing polynomials which are easy to compute,Proc. 12th Annual ACM
Symp. on Theory of Computing(STOC), Los Angeles, CA, 1980, pp. 262–272.

[22] T. Husfeldt, T. Rauhe and S. Skyum, Lower bounds for dynamic transitive closure, planar point location,
and parentheses matching,Nordic J. Comput. 3 (1996), 323–336.

Lower Bounds for Dynamic Data Structures on Algebraic RAMs 395

[23] K. Kendig,Elementary Algebraic Geometry, Springer-Verlag, New York, 1977.
[24] P. Klein and F. Meyer auf der Heide, A lower time bound for the knapsack problem on random access

machines,Acta Inform. 19 (1983), 385–395.
[25] J. A. La Poutré, New techniques for the union-find problem,Proc. First Annual ACM–SIAM Symp. on

Discrete Algorithms(1990), pp. 54–63. Full version: Technical Report RUU-CS-89-19, Department of
Computer Science, Utrecht University, 1989.

[26] F. Meyer auf der Heide, Lower bounds for solving linear diophantine equations on random access
machines,J. Assoc. Comput. Mach. 32:4 (1985), 929–937.

[27] W. Paul and J. Simon, Decision trees and random access machines, inLogic and Algorithmic, mono-
graphie no 30 de l’enseignement math´ematique, Universit´e de Gen`eve, 1982; see also K. Mehlhorn,
Sorting and Searching, volume 1 ofData Structures and Algorithms, Springer-Verlag, New York, 1984,
pp. 85–94.

[28] F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, 2nd printing, Springer-
Verlag, 1985/1988.

[29] M. H. M. Smid, A data structure for the Union-Find problem having good single-operation complexity,
in ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Research Actions Program Project
no. 3075 (ALCOM), 1990.

[30] R. E. Tarjan,Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1983.

[31] H. E. Warren, Lower bounds for approximation by nonlinear manifolds,Trans. Amer. Math. Soc. 133:1
(1968), 167–178.

