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A Divide-and-Conquer Approach
to the Minimum k-Way Cut Problem

Y. Kamidoi,1 S. Wakabayashi,2 and N. Yoshida1

Abstract. This paper presents algorithms for computing a minimum 3-way cut and a minimum 4-way cut of
an undirected weighted graphG. LetG = (V, E) be an undirected graph withn vertices,medges, and positive
edge weights. Goldschmidt and Hochbaum presented an algorithm for the minimumk-way cut problem with
fixed k, that requiresO(n4) and O(n6) maximum flow computations, respectively, to compute a minimum
3-way cut and a minimum 4-way cut ofG. In this paper we first show some properties on minimum 3-way cuts
and minimum 4-way cuts, which indicate a recursive structure of the minimumk-way cut problem whenk = 3
and 4. Then, based on those properties, we give divide-and-conquer algorithms for computing a minimum
3-way cut and a minimum 4-way cut ofG, which requireO(n3) and O(n4) maximum flow computations,
respectively.

Key Words. Deterministic algorithm, Minimumk-way cut, Maximum flow computation, Undirected weighted
graph, Recursive structure.

1. Introduction. Computing a minimum cut of a graph is one of the important prob-
lems in graph theory [4]. LetG = (V, E) be an undirected graph with nonnegative
edge weights. Givenk(≥ 2) disjoint nonempty subsets,S1, S2, . . . , Sk, of V , an edge
setC ⊆ E is an(S1, S2, . . . , Sk)-terminal cutof G if G′ = (V, E − C) has no paths
from anys ∈ Si to anyt ∈ Sj if i 6= j . An edge setC ⊆ E is ak-way cutof G if there
arek disjoint vertex subsets,Y1,Y2, . . . ,Y(k−1) andYk, such thatC is a(Y1,Y2, . . . ,Yk)-
terminal cut ofG. The cost of a cutC is defined as the total of the edge costs inC. A
k-way cutC is calledminimumif it has the smallest cut cost among anyk-way cuts of
G. This paper discusses the problem of finding a minimum 3-way cut and a minimum
4-way cut of an undirected graphG.

Dahlhaus et al. [3] showed that thek-terminal cut problem is NP-hard for arbi-
trary k and even fork = 3. They also proposed a minimumk-terminal cut algorithm
for a planar undirected graph. Gomory and Hu [6] showed thatO(n) executions of a
minimum 2-terminal cut algorithm is enough to compute a minimum 2-way cut of an
undirected graph. Goldschmidt and Hochbaum [5] showed a polynomial time algorithm
for computing a minimumk-way cut for fixedk. This result showed that thek-way
cut problem is easier than thek-terminal cut problem for an undirected graph. In their
algorithm the minimum 2-terminal cut algorithm is repeatedly applied. The algorithm
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for the minimumk-way cut problem with fixedk appliesO(nk2/2−3k/2+4) maximum
flow computations for fixedk. This method finds a set of 2-way cuts whose cardinality
is O(n2k−3) as a set of 2-way cuts of candidates for constructing a minimumk-way
cut. Nagamochi and Ibaraki [11] showed that the minimum 2-way cut problem on a
graph withn vertices andm edges can be solved inO(nm) computation time. Saran
and Vazirani [14] proposed two approximation algorithms for the minimumk-way cut
problem. One algorithm requiresn − 1 maximum flow computations for finding a set
of twice-optimalk-way cuts, one for each value ofk between 2 andn. Kapoor [9] gave
an algorithm for finding a minimum 3-way cut, which requiresO(n3) maximum flow
computations. Kapoor also gave an approximation technique for the multiway cut prob-
lem, and showed an algorithm for the minimumk-way cut problem, which requires
O(kn(m+ n log n)) steps and gave an approximation of 2(1− 1/k). Hochbaum and
Shimoys [7] gave anO(n2) algorithm for finding a minimum 3-way cut of an unweighted
planar graph. Recently, Burlet and Goldschmidt [2] presented anO(mn3) time algorithm
for finding a minimum 3-way cut in an undirected weighted graph. They used the al-
gorithm by Nagamochi et al. [13] that enumerates all cuts of weights less thanl times
the cost of a minimum 2-way cut without using the maximum flow algorithm, where
l ≥ 1.

All the algorithms shown above are ordinary deterministic algorithms, and thus they
can always find optimal solutions or approximation solutions. On the other hand, Karger
and Stein [10] proposed a randomized Monte Calro algorithm which finds a minimum
2-way cut with high probability inO(n2 log3 n). They also gave a randomized Monte
Calro algorithm for the minimumk-way cut problem, which solves the problem in
O(n2(k−1) log3 n) time.

Most of the previous algorithms for the minimumk-way cut problems adopted the
same approach. LetC be a minimumk-way cut inG = (V, E) separatingV into k
componentsV1,V2, . . . ,Vk, and letω(Vi ) be the weight of the set of edges that separates
Vi from the rest of graph. Assume thatω(V1) ≤ ω(Vi ), i 6= 1. In most previous
algorithms, a collection of vertex sets that necessarily includes theV1 set of a minimum
k-way cut is enumerated, and, for each vertex set, the minimum(k−1)-problem in both
V1 andV − V1 is recursively solved.

Contrary to this common approach, in this paper we present a new approach, called a
divide-and-conquer method. First, we show several properties on minimum 3-way cuts
and minimum 4-way cuts, which indicate a recursive structure of the minimumk-way
cut problem whenk = 3 and 4. Then, based on the recursive properties, we present
a divide-and-conquer strategy for the minimum 3-way and 4-way cut problems, and
propose two polynomial time algorithms, each of which computes a minimum 3-way
cut and a minimum 4-way cut ofG, respectively. These algorithms requireO(n3) and
O(n4)maximum flow computations, respectively. This computation time of the proposed
algorithms compares very favorably with the computation time of the previous methods,
in particular, fork = 4.

The rest of our paper is organized as follows. The terminology is introduced in
Section 2. In Section 3 we show the recursive properties on the minimum 3-way and 4-
way cut problems. Section 4 presents a divide-and-conquer approach to the problems, and
optimal algorithms for the problems are presented in Section 5. Their time complexity
is also analyzed. Finally, in Section 6, we offer some conclusions.
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2. Preliminaries. In the following we give some definitions and terminologies.

DEFINITION 1. LetG = (V, E) be an undirected graph consisting of a vertex setV and
an edge setE with an edge cost functionc: E→ R, whereR is the set of positive real
numbers. Each edgee ∈ E is incident to the elements of an unordered pair of vertices
u, v ∈ V , called the end vertices ofe, and the edgee is then denoted bye= (u, v). For
each edgee ∈ E, c(e) represents the cost ofe. Let n = |V | be the number of vertices
and letm= |E| be the number of edges.

DEFINITION 2. LetG = (V, E)be an undirected graph. For a nonempty subsetE′ ⊆ E,
we denote the cost ofE′ by c(E′), which is defined as

∑
e∈E′ c(e).

DEFINITION 3. Let G = (V, E) be an undirected graph and letk(≥ 2) be an integer.
Let X1, X2, . . . , Xk bek mutually disjoint nonempty subsets ofV such thatV = X1 ∪
X2 ∪ · · · ∪ Xk. Let (X1; X2; . . . ; Xk) be the set of all those edges ofG having one end
vertex inXi and the other inXj , wherei 6= j and 1≤ i, j ≤ k. The set(X1; X2; . . . ; Xk)

is called ak-way cut ofG.

DEFINITION 4. Given an undirected graphG = (V, E) andk mutually disjoint non-
empty subsets ofV , called terminal sets, denoteT1, T2, . . . , Tk such thatT1 ∪ T2 ∪
· · · ∪ Tk ⊆ V , an edge setC ⊆ E is called a(T1, T2, . . . , Tk)-terminal cut ofG if
the removal ofC from E disconnects each terminal set from all the others. If every
terminal set is a singleton set, i.e.,Ti = {ti }, then we simply represent a(T1, T2, . . . , Tk)-
terminal cut as a(t1, t2, . . . , tk)-terminal cut. If there is no edge setC′ ⊂ C such that
C′ is a (T1, T2, . . . , Tk)-terminal cut ofG, we call the cutC minimal. For a given
(T1, T2, . . . , Tk)-terminal cutC of G, if there is no(T1, T2, . . . , Tk)-terminal cutC′ of
G such thatc(C′) < c(C), we call the cutC minimum.

DEFINITION 5. For a givenk-way cutC, C is minimum ifc(C) ≤ c(C′) for anyk-way
cutC′.

Given an undirected graphG = (V, E) andk mutually disjoint nonempty subsets
of V , we call the problem of finding a minimum(T1, T2, . . . , Tk)-terminal cut ofG
the minimum k-terminal cut problem. Given an undirected graphG = (V, E) and
an integerk (≥ 2), we call the problem of finding a minimumk-way cut of G the
minimum k-way cut problem. From definitions, any minimal(T1, T2, . . . , Tk)-terminal
cut C can be represented as ak-way cut(V1;V2; . . . ;Vk) whereTi ⊆ Vi , 1 ≤ i ≤ k,
andV1 ∪ V2 ∪ · · · ∪ Vk = V .

DEFINITION 6. Let G = (V, E) be an undirected graph. Given a nonempty vertex
subsetX, let G(X) = (X, EX) be an induced subgraph ofG by X with the edge cost
functioncX such that for any edgee∈ EX, cX(e) = c(e).

Let X be a subset of vertices ofG = (V, E). X̄ is the complement ofX, i.e.,
X̄ = V − X.
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DEFINITION 7. For an undirected graphG = (V, E), let C = (X; X̄) andD = (Y; Ȳ)
be 2-way cuts ofG. C is said to be intersected withD if the following four equations
hold:

X̄ ∩ Ȳ 6= ∅, X̄ ∩ Y 6= ∅, X ∩ Ȳ 6= ∅, X ∩ Y 6= ∅.

Itcan be shown that if there exists a minimumk-terminal cut algorithm forG, we can
solve the minimumk-way cut problem in polynomial time by applying it inO(nk−1)

times. For example, ifk = 2, the minimumk-terminal problem becomes the famous
minimum(s, t)-terminal cut problem, which can be solved in polynomial time based on
the Ford–Fulkerson min-cut max-flow theorem [1]. Thus, the minimum 2-way cut prob-
lem can be solved by applying the min-cut max-flow algorithmO(n) times. Dahlhaus
et al. showed, however, that for even a fixed constantk(≥ 3), the minimumk-terminal
cut problem for a general graph is NP-hard [3]. So, it is hopeless to devise a minimum
k-way cut algorithm based on a minimumk-terminal cut problem. For the general min-
imum k-way cut problem, we should adopt another approach. In this paper we present
a divide-and-conquer approach to the minimumk-way cut problem whenk = 3 and
k = 4, and propose polynomial time algorithms.

3. Properties. In this section we show several properties on minimum 3-way cuts and
minimum 4-way cuts ofG. In the next section these properties are used to derive a
divide-and-conquer strategy to solve the minimum 3-way and 4-way cut problems. For
anyk-way cutC = (S1; S2; . . . ; Sk), we denote the cost ofC, c(C) = ∑e∈C c(e), by
c(S1; S2; . . . ; Sk).

3.1. Properties on3-Way Cuts. Given an undirected graphG = (V, E), let c2 min and
c3 min be the costs of a minimum 2-way cut and a minimum 3-way cut ofG, respectively.
Then the following lemma holds.

LEMMA 1. Let G = (V, E) be an undirected graph. For any minimum3-way cut
(R; S; T) of G, the following holds:

c2 min ≤ min{c(R; R̄), c(S; S̄), c(T; T̄)} ≤ 2
3c3 min.

Assume that there is a minimum 3-way cut(R; S; T) of G such thatc(R; R̄) =
min{c(R; R̄), c(S; S̄), c(T; T̄)}. Let (X; X̄) be a 2-way cut ofG. Then, depending on
the relation between(R; R̄) and(X; X̄), the following lemmas hold.

LEMMA 2. Given a graph G= (V, E) and a 2-way cut (X; X̄) of G such that
c(X; X̄) ≤ 2

3c3 min, if there is a minimum3-way cut(R; S; T) of G such that c(R; R̄) ≤
2
3c3 min and(R; R̄) is intersected with(X; X̄), then at least one of(X; X̄ ∩ R; X̄ ∩ R̄) or
(X̄; X ∩ R; X ∩ R̄) is a minimum3-way cut of G.

PROOF. From the assumption,

min{c((R∩ X); (R̄∩ X)), c((R∩ X̄); (R̄∩ X̄))} ≤ 1
2c(R; R̄) ≤ 1

3c3 min.
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If c((R∩ X); (R̄∩ X)) ≤ c((R∩ X̄); (R̄∩ X̄)), then

c(X̄; (R∩ X); (R̄∩ X)) = c(X; X̄)+ c((R∩ X); (R̄∩ X))

≤ 2
3c3 min+ 1

3c3 min

= c3 min.

Thus,(X̄; (R∩ X); (R̄∩ X)) is a minimum 3-way cut ofG.
If c((R∩ X̄); (R̄∩ X̄)) ≤ c((R∩ X); (R̄∩ X)), then we have a similar discussion to

show that a 3-way cut(X; (R∩ X̄); (R̄∩ X̄)) is a minimum 3-way cut ofG.

LEMMA 3. Given a graph G= (V, E) and a2-way cut(X; X̄) of G, if there is a
minimum3-way cut of G, denoted(R; S; T), such that c(X; X̄) ≤ c(R; R̄), R ⊆ X,
X̄ ∩ S 6= ∅, andX̄ ∩ T 6= ∅, then(X;Y; Z) is a minimum3-way cut of G, where(Y; Z)
is a minimum2-way cut of G(X̄).

PROOF.

c(X;Y; Z) = c(X; X̄)+ c(Y; Z)
≤ c(X; X̄)+ c((X̄ ∩ S); (X̄ ∩ T))

≤ c(R; R̄)+ c(S; T)
= c(R; S; T).

Thus, the lemma holds.

3.2. Properties on4-Way Cuts. Let c4 min be the cost of a minimum 4-way cut ofG.
Then the following lemma holds.

LEMMA 4. Let G = (V, E) be an undirected graph. For any minimum4-way cut
(R; S; T;U ) of G, the following holds:

c2 min ≤ min{c(R; R̄), c(S; S̄), c(T; T̄), c(U ; Ū )} ≤ 1
2c4 min.

Assumethat there is a minimum 4-way cut(R; S; T;U ) of G such thatc(R; R̄) =
min{c(R; R̄), c(S; S̄), c(T; T̄), c(U ; Ū )}. Let (X; X̄) be a 2-way cut ofG. Then, de-
pending on the relation between(R; R̄) and(X; X̄), Lemmas 5–8 hold.

LEMMA 5. Given a graph G= (V, E) and a 2-way cut (X; X̄) of G such that
c(X; X̄) ≤ 1

2c4 min, if there is a minimum4-way cut (R; S; T;U ) of G such that
c(R; R̄) ≤ 1

2c4 min and (R; R̄) is intersected with(X; X̄), then (X ∩ R; X ∩ R̄; X̄ ∩
R; X̄ ∩ R̄) is a minimum4-way cut of G.

PROOF. From the assumption,(X ∩ R; X ∩ R̄; X̄ ∩ R; X̄ ∩ R̄) is indeed a 4-way cut
of G. We have

c(X ∩ R; X ∩ R̄; X̄ ∩ R; X̄ ∩ R̄) ≤ c(X; X̄)+ c(R; R̄)
≤ 1

2c4 min+ 1
2c4 min

= c4 min.

Thus, the lemma holds.
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LEMMA 6. Given an undirected graph G= (V, E) and a2-way cut, (X; X̄), of G, if
there is a minimum4-way cut, (R; S; T;U ), of G such that R⊆ X, c(X; X̄) ≤ c(R; R̄),
X̄ ∩ S 6= ∅, X̄ ∩ T 6= ∅, and X̄ ∩ U 6= ∅, then there is a minimum4-way cut, denoted
(X;Y; Z;W), such that(Y; Z;W) is a minimum3-way cut of G(X̄).

PROOF. SinceR⊆ X, we haveX̄ ⊆ S∪ T ∪U . Thus,

c(X;Y; Z;W) = c(X; X̄)+ c(Y; Z;W)

≤ c(X; X̄)+ c(X̄ ∩ S; X̄ ∩ T; X̄ ∩U )

≤ c(R; R̄)+ c(S; T;U )
= c(R; S; T;U ).

Thus, the lemma holds.

LEMMA 7. Given an undirected graph G= (V, E), let (X; X̄) be a2-way cut of G.
If there is a minimum4-way cut, denoted(R; S; T;U ), of G such that X= R ∪ S,
then(R′; S′; T ′;U ′) is also a minimum4-way cut of G, where(R′; S′) and(T ′;U ′) are
minimum2-way cuts of G(X) and G(X̄), respectively.

PROOF. From the assumption, we haveX = R∪ S and X̄ = T ∪ U . For G(X), we
have

c(R′; S′) ≤ c(R; S).
For G(X̄), we have

c(T ′;U ′) ≤ c(T;U ).
Then

c(R′; S′; T ′;U ′) = c(X; X̄)+ c(R′; S′)+ c(T ′;U ′)
≤ c(R∪ S; T ∪U )+ c(R; S)+ c(T;U )
= c(R; S; T;U ).

Thus, the lemma holds.

LEMMA 8. Given an undirected graph G= (V, E), let (X; X̄) be a2-way cut of G. If
there is a minimum4-way cut, denoted(R; S; T;U ), of G such that(X; X̄) is intersected
with(S; S̄)and(T; T̄), X ⊂ S∪T ,and c(X; X̄) ≤ min{c(R; R̄), c(S; S̄), c(T; T̄), c(U ;
Ū )}, then(R′; S′; T ′;U ′) is also a minimum4-way cut of G, where(R′; S′) and(T ′;U ′)
are minimum2-way cuts of G(X) and G(X̄), respectively.

PROOF. Without loss of generality, we assume thatc(S; S̄) ≤ c(T; T̄). Since(X; X̄)
is intersected with(S; S̄), (S∩ X; S∩ X̄; S̄∩ X; S̄∩ X̄) is a 4-way cut ofG:

c(S∩ X; S∩ X̄; S̄∩ X; S̄∩ X̄)

≤ c(S; S̄)+ c(X; X̄) ≤ 1
2{c(S; S̄)+ c(T; T̄)}

+min{c(R; R̄), c(S; S̄), c(T; T̄), c(U ; Ū )}
≤ 1

2{c(R; R̄)+ c(S; S̄)+ c(T; T̄)+ c(U ; Ū )}
= c4 min.
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Thus,(S∩X; S∩ X̄; S̄∩X; S̄∩ X̄) is a minimum 4-way cut ofG. Since(S∩X; S̄∩X)
and(S∩ X̄; S̄∩ X̄) are 2-way cuts ofG(X) andG(X̄), respectively, we have

c(R′; S′; T ′;U ′) = c(X; X̄)+ c(R′; S′)+ c(T ′;U ′)
≤ c(X; X̄)+ c(S∩ X; S̄∩ X)+ c(S∩ X̄; S̄∩ X̄)

≤ c(S∩ X; S∩ X̄; S̄∩ X; S̄∩ X̄).

Thus, the lemma holds.

4. A Divide-and-Conquer Approach. In this section, first, we show a recursive struc-
ture of minimum 3-way cuts and minimum 4-way cuts of an undirected graphG. Then we
present two main theorems, which will be a base to construct algorithms for computing
a minimum 3-way cut and a minimum 4-way cut ofG.

LEMMA 9. Given an undirected graph G= (V, E), let (X; X̄) be a2-way cut. Let
(Y; Ȳ) and(Z; Z̄) be minimum2-way cuts of G(X̄) and G(X), respectively. If there is a
minimum3-way cut(R; S; T)of G such that c(X; X̄) ≤ min{c(R; R̄), c(S; S̄), c(T; T̄)},
then at least one of the following four properties holds:

(i) (X;Y; Ȳ) is a minimum3-way cut of G.
(ii) (X̄; Z; Z̄) is a minimum3-way cut of G.

(iii) There is a minimum3-way cut, denoted(R′; S′; T ′), such that X⊂ R′.
(iv) There is a minimum3-way cut, denoted(R′′; S′′; T ′′), such thatX̄ ⊂ R′′.

PROOF. Without loss of generality, we assume thatc(R; R̄) = min{c(R; R̄), c(S; S̄),
c(T; T̄)}. Consider the relation between(X; X̄) and(R; R̄). Then there are four cases.
That is, (1)(X; X̄) is intersected with(R; R̄), (2) X ⊂ R, (3) R⊆ X, and (4)X∩R= ∅.

First, consider case (1). From Lemma 2, at least(X; (X̄ ∩ R); (X̄ ∩ R̄)) or (X̄; (X ∩
R); (X∩R̄)) is a minimum 3-way cut ofG. Consider the case that(X; (X̄∩R); (X̄∩R̄)) is
a minimum 3-way cut ofG. In this case,((X̄∩R); (X̄∩ R̄)) is a 2-way cut ofG(X̄). Then,
since(Y; Ȳ) is a minimum 2-way cut ofG(X̄), we havec(Y; Ȳ) ≤ c((X̄∩R); (X̄∩ R̄)).
Therefore, we have

c(X;Y; Ȳ) ≤ c(X; (X̄ ∩ R); (X̄ ∩ R̄)) = c3 min.

Thus,(X;Y; Ȳ) is a minimum 3-way cut ofG. For the case that(X̄; (X ∩ R); (X ∩ R̄))
is a minimum 3-way cut ofG, we have a similar discussion to show that(X̄; Z; Z̄) is a
minimum 3-way cut ofG. Consequently, for case (1), at least one of properties (i) or (ii)
is satisfied.

Next, consider case (2). In this case it is clear that property (iii) is satisfied.
Next, consider case (3). This case is further classified into the following cases. That

is, (3-1)X̄∩S 6= ∅ andX̄∩T 6= ∅, (3-2) there is aP such thatX = R∪ P, P ∈ {S, T},
and (3-3) there is aQ such thatX̄ ⊂ Q, Q ∈ {S, T}.

Consider case (3-1). From Lemma 3, we see that property (i) holds. Consider case
(3-2). In this case it is clear that property (ii) holds. Consider case (3-3). In this case we
see that property (iv) holds.
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Finally, consider case (4). In this case we haveR⊆ X̄. Let X′ = X̄. Then this is the
same case as case (3). Thus, the lemma holds.

LEMMA 10. Given an undirected graph G= (V, E), let (X; X̄) be a2-way cut. Let
(Y; Ȳ)and(Z; Z̄)be minimum2-way cuts of G(X̄)and G(X), respectively.Let(R; S; T)
and(R′; S′; T ′)be minimum3-way cuts of G(X̄)and G(X), respectively. If there is a min-
imum4-way cut(A; B;C; D)of G such that c(X; X̄) ≤ min{c(A; Ā), c(B; B̄), c(C; C̄),
c(D; D̄)}, then at least one of the following five properties holds:

(i) (X; R; S; T) is a minimum4-way cut of G.
(ii) (X̄; R′; S′; T ′) is a minimum4-way cut of G.

(iii) (Y; Ȳ; Z; Z̄) is a minimum4-way cut of G.
(iv) There is a minimum4-way cut, denoted(A′; B′;C′; D′), such that X⊂ A′.
(v) There is a minimum4-way cut, denoted(A′′; B′′;C′′; D′′), such thatX̄ ⊂ A′′.

PROOF. Without loss of generality, we assume thatc(A; Ā) = min{c(A; Ā), c(B; B̄),
c(C; C̄), c(D; D̄)}. Consider the relation between(X; X̄) and(A; Ā). Then there are
four cases. That is, (1)(X; X̄) is intersected with(A; Ā), (2) X ⊂ A, (3)A ⊆ X, and (4)
X ∩ A = ∅.

First, consider case (1). From Lemma 5,(X∩ A; X∩ Ā; X̄∩ A; X̄∩ Ā) is a minimum
4-way cut ofG. Since(X ∩ A; X ∩ Ā) and(X̄ ∩ A; X̄ ∩ Ā) are 2-way cuts ofG(X) and
G(X̄), respectively, we have

c(Y; Ȳ; Z; Z̄) = c(X; X̄)+ c(Y; Ȳ)+ c(Z; Z̄)
≤ c(X; X̄)+ c(X̄ ∩ A; X̄ ∩ Ā)+ c(X ∩ A; X ∩ Ā)

= c(X ∩ A; X ∩ Ā; X̄ ∩ A; X̄ ∩ Ā)

= c4 min.

Thus, property (iii) holds.
Next, consider case (2). For this case, property (iv) holds.
Next, consider case (3). This case is further classified into the following four cases.

That is, (3-1)X̄ ∩ B 6= ∅, X̄ ∩ C 6= ∅, and X̄ ∩ D 6= ∅, (3-2) there areL ,M, N ∈
{B,C, D}, L 6= M,M 6= N, L 6= N, such thatX ⊆ A∪L∪M , X̄ ⊆ M∪N, (3-3) there
areL ,M, N ∈ {B,C, D}, L 6= M,M 6= N, L 6= N, such thatX ⊂ A ∪ L ∪ M ∪ N,
X̄ ⊂ M ∪ N, (X; X̄) is intersected with(M; M̄) and(N; N̄), and (3-4) there isL ∈
{B,C, D} such thatX̄ ⊂ L.

Consider case (3-1). From Lemma 6, property (i) holds. Consider case (3-2). IfX =
A∪ L and X̄ = M ∪ N, then from Lemma 7, property (iii) holds. Consider otherwise.
Then we haveX ∩ A 6= ∅, X ∩ L 6= ∅, andX ∩ M 6= ∅. From the assumption, we have
c(X; X̄) ≤ c(N; N̄). Let X′ = X̄. Then we see from Lemma 6 that property (ii) holds.
Next, consider case (3-3). LetX′ = X̄. Then, from Lemma 8, we see that property (iii)
holds. Consider case (3-4). For this case, it is obvious that property (iv) holds.
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Finally, consider case (4). SinceX ∩ A = ∅, we haveA ⊆ X̄. Let X′ = X̄. Then this
is the same as case (3). Thus, the lemma holds.

Lemmas 9 and 10 tell us that a minimum 3-way cut and a minimum 4-way cut can
be computed recursively.

DEFINITION 8. Letu andv be distinct vertices of a graphG = (V, E). We can construct
a new graphG′ by fusing the two vertices, namely, by replacing them by a single new
vertexx such that every edge that was incident withu or v in G is now incident with
x in G′. Given a subsetX of V , let Shrink(G, X) be a graph obtained by fusing all the
vertices inX, and removing all the self-loop edges from the resulting graph.

From Lemmas 9 and 10, and the definition ofShrink(G, X), we can show the following
main theorems.

THEOREM1. Let G= (V, E)be a graph,and let(X; X̄)be a2-way cut of G.Let(Y; Ȳ)
and(Z; Z̄) be minimum2-way cuts of G(X̄) and G(X), respectively. Let(R′; S′; T ′) be
a minimum3-way cut of Shrink(G, X), and let(R′′; S′′; T ′′) be a minimum3-way cut
of Shrink(G, X̄). If there is a minimum3-way cut(R; S; T) of G such that c(X; X̄) ≤
min{c(R; R̄), c(S; S̄), c(T; T̄)}, then at least one of the following3-way cuts of G,
(X;Y; Ȳ), (X̄; Z; Z̄), (R′; S′; T ′), and(R′′; S′′; T ′′), is a minimum3-way cut of G.

THEOREM2. Let G = (V, E) be a graph, and let (X; X̄) be a 2-way cut of G.
Let (Y; Ȳ) and (Z; Z̄) be minimum2-way cuts of G(X̄) and G(X), respectively. Let
(R; S; T) and (R′; S′; T ′) be minimum3-way cuts of G(X̄) and G(X), respectively.
Let (A′; B′;C′; D′) and(A′′; B′′;C′′; D′′) be minimum4-way cuts of G(X̄) and G(X),
respectively. If there is a minimum4-way cut(A; B;C; D) of G such that c(X; X̄)
≤ min{c(A; Ā), c(B; B̄), c(C; C̄), c(D; D̄)}, then at least one of the following4-way
cuts of G, (X; R; S; T), (X̄; R′; S′; T ′), (Y; Ȳ; Z; X̄), (A′; B′;C′; D′) and (A′′; B′′;
C′′; D′′), is a minimum4-way cut of G.

5. Algorithms. Based on Theorems 1 and 2, we can present simple divide-and-conquer
algorithms for computing a minimum 3-way cut and a minimum 4-way cut of an undi-
rected graph. From Theorems 1 and 2, we find a recursive structure of the minimum
3-way and 4-way cut problems. For example, consider the minimum 3-way cut problem.
Then, given a graphG = (V, E), we can find a minimum 3-way cut ofG by computing
some combinations of minimum 2-way cuts, or by computing minimum 3-way cuts of
Shrink(G, X) andShrink(G, X̄) for some 2-way cut(X; X̄) of G. If both Shrink(G, X)
andShrink(G, X̄) are smaller thanG in the number of vertices, then we see that the
minimum 3-way cut problem can be solved in a divide-and-conquer manner. For some
minimum 3-way and 4-way cuts, denoted(R; S; T) and(R′; S′; T ′;U ′), let c3−2 min =
min{c(R; R̄), c(S; S̄), c(T; T̄)}andc4−2 min = min{c(R′; R̄′), c(S′; S̄′), c(T ′; T̄ ′), c(U ′;
Ū ′)}. Then the problem we should consider is thus the following: How do we find a 2-
way cut(X; X̄) of G such that (i)c(X; X̄) ≤ c3−2 min or c(X; X̄) ≤ c4−2 min, and (ii)
|X| ≥ 2 and|X̄| ≥ 2?
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In the following we show a method for finding a 2-way cut satisfying the above
condition.

LEMMA 11. Given an undirected graph G= (V, E), let x1, x2, x3, x4 be four dis-
tinct vertices in V such that an({x1, x2}, {x3, x4})-terminal cut of G is minimum in its
cost among all those({u, v}, {w, x})-terminal cuts of G for any four distinct vertices,
u, v, w, x, in V . We denote this({x1, x2}, {x3, x4})-terminal cut by(X; X̄). If there is a
minimum3-way cut(R; S; T) of G satisfying|R|, |S|, |T | ≥ 2, then c(X; X̄) ≤ c3−2 min,
where c3−2 min = min{c(R; R̄), c(S; S̄), c(T; T̄)}. If there is a minimum4-way cut
(R′; S′; T ′;U ′) of G satisfying|R′|, |S′|, |T ′|, |U ′| ≥ 2, then c(X; X̄) ≤ c4−2 min, where
c4−2 min = min{c(R′; R̄′), c(S′; S̄′), c(T ′; T̄ ′), c(U ′; Ū ′)}.

PROOF. Consider the case of finding a minimum 3-way cut. For the case of finding
a minimum 4-way cut, we can prove the lemma by giving a similar discussion to that
shown below. Without loss of generality,c(R; R̄) = c3−2 min. From the assumption of
(X; X̄), there are four distinct verticesx1, x2, x3, x4 such thatx1, x2 ∈ X, x3, x4 ∈ X̄, and
(X; X̄) is a minimum({x1, x2}, {x3, x4})-terminal cut ofG. Since|R| ≥ 2 and|R̄| ≥ 2,
we can choose two distinct vertices, sayu andv, from R and two distinct vertices, sayw
andx, from R̄. Let (Y; Ȳ) be a minimum({u, v}, {w, x})-terminal cut ofG. Then, from
the assumption, it is always true thatc(X; X̄) ≤ c(Y; Ȳ) holds for anyu, v ∈ R,u 6= v,
andw, x ∈ R̄, w 6= x. Thus, the lemma holds.

Based on Lemma 11, given a graphG = (V, E), we present a procedure to find a 2-
way cut,(X; X̄), ofG, which satisfies (i)|X| ≥ 2 and|X̄| ≥ 2, and (ii)c(X; X̄) ≤ c3−2 min

andc(X; X̄) ≤ c4−2 min for any 3-way, and 4-way cuts ofG. A straightforward way to find
(X; X̄)would be as follows. We enumerate all the combinations of four distinct vertices of
G, sayu, v, w, andx, and for each set of vertices, we find a minimum({u, v}, {w, x})-
terminal cut ofG. Among all the combinations of four vertices, we select one set of
vertices, say{u′, v′, w′, x′}, such that the cost of a minimum({u′, v′}, {w′, x′})-terminal
cut of G is minimum among all the other combinations of the four vertices. Then let
(X; X̄) be the minimum({u′, v′}, {w′, x′})-terminal cut ofG. Note that, for given distinct
four vertices ofG, finding a minimum({u, v}, {w, x})-terminal cut ofG is easy. First, we
add two new verticess andt to G, and then we add new edges(s,u), (s, v), (t, w), and
(t, x). We define the cost of the new edges as∞. Then we find a minimum(s, t)-terminal
cut of G by applying a minimum 2-terminal cut algorithm.

The procedure shown above, however, would requireO(n4)min-cut max-flow compu-
tations. In the following we show an efficient method to compute(X; X̄), which requires
O(n2) min-cut max-flow computations. First, we pay attention to the following fact.

FACT 1. Given an undirected graph G= (V, E), let (X; X̄) be a 2-way cut of G.
Let S= {u, v, w, x} be four distinct vertices in V. Let nX and nX̄ be the numbers of
vertices in S, which are contained in X and̄X, respectively. Then one of the following
conditions holds: (i) nX = nX̄ = 2. (ii) max{nX,nX̄} = 3 and min{nX,nX̄} = 1.
(iii) max{nX,nX̄} = 4 andmin{nX,nX̄} = 0.

This Fact gives the base of our algorithm for computing(X; X̄). Assume that a fixed
set of four distinct vertices, sayS0 = {u0, v0, w0, x0}, is given in advance. For any distinct
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four vertices ofG, say{u, v, w, x}, consider a minimum({u, v}, {w, x})-terminal cut of
G, denoted(Y; Ȳ). Then, from Fact 1, one of the following cases holds:

Case1. S0 is partitioned into two subsets, sayT andU , each of which consists of two
elements, respectively, so that(Y; Ȳ) is a minimum(T,U )-terminal cut ofG.

Case2. S0 is partitioned into two subsets, sayT ′ andU ′, each of which consists of
three and one elements, respectively, so that(Y; Ȳ) is a minimum(T ′,U ′ ∪{y})-terminal
cut of G, wherey is a vertex inG.

Case3. S0 is not partitioned so that(Y; Ȳ) is a minimum(S0, {y, z})-terminal cut of
G, wherey andz are vertices inG.

From those results mentioned above, we present a procedure to find(X; X̄), which
satisfies the conditions given previously. We call this procedure, procedureDivide(G).
A description of procedureDivide(G) is given below.

In the description,MinCut(T,U ) is a function to find a minimum(T,U )-terminal
cut of G, which invokes a min-cut max-flow algorithm in one computation.

Function Divide(G)

Input: an undirected graphG = (V, E).

begin
choose four distinct vertices fromV , and let them beS= {u, v, w, x};
Cmin := ∅; cmin := ∞;
/* Case (1) */
C1 := MinCut({u, v}, {w, x});
if cmin ≥ c(C1) then Cmin := C1; cmin := c(C1);
C2 := MinCut({u, w}, {v, x});
if cmin ≥ c(C2) then Cmin := C2; cmin := c(C2);
C3 := MinCut({u, x}, {v,w});
if cmin ≥ c(C3) then Cmin := C3; cmin := c(C3);

/* Case (2) */
For each y ∈ V − Sdo
C1 := MinCut({u, v, w}, {x, y});
if cmin ≥ c(C1) then Cmin := C1; cmin := c(C1);
C2 := MinCut({u, v, x}, {w, y});
if cmin ≥ c(C2) then Cmin := C2; cmin := c(C2);
C3 := MinCut({u, w, x}, {v, y});
if cmin ≥ c(C3) then Cmin := C3; cmin := c(C3);
C4 := MinCut({v,w, x}, {u, y});
if cmin ≥ c(C4) then Cmin := C4; cmin := c(C4);

/* Case (3) */
For each y, z ∈ V − S, y 6= z do
C1 := MinCut({u, v, w, x}, {y, z});
if cmin ≥ c(C1) then Cmin := C1; cmin := c(C1);

/* End of function */
Return(Cmin)

end
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For this procedure we can show the following theorem.

THEOREM3. The function Divide(G) finds a smallest cost cut in all minimum({u, v},
{w, x})-terminal cuts for any four distinct vertices in G, by applying at most O(n2)

min-cut max-flow computations.

PROOF. The correctness of the function was derived from Fact 1, as we discussed
previously. Since there are doubly nested loops on vertices inG, it is clear that the
functionMinCut, which executes the min-cut max-flow computation once, was invoked
O(n2) times in total.

5.1. The3-Way Cut Algorithm. In this subsection we present an algorithm for com-
puting a minimum 3-way cut of a given graphG. The proposed algorithm is based on
Theorem 1. Note that there is a special case in which, for a given graphG, there is no
minimum 3-way cut(R; S; T) such that|R| ≥ 2, |S| ≥ 2, and|T | ≥ 2. In such a case we
cannot compute a minimum 3-way cut by applying the functionDivide, and we should
treat this case separately.

The following are functions which are used in the proposed algorithm. Note that,
given a graphG = (V, E), a minimum 2-way cut ofG can be computed inO(|V |)
min-cut max-flow computations.

(i) MIN-ONE-TERM-3WAY(G) computes a smallest cost 3-way cut, whose structure
is given as({x};Y; Ȳ), wherex is a vertex inG and(Y; Ȳ) is a minimum 2-way
cut of G(V − {x}). [O(n2) maximum flow computations.]

(ii) Divide(G) is a function to compute a 2-way cut(X; X̄) of G such that (i)|X| ≥ 2
and|X̄| ≥ 2, and (ii)c(X; X̄) ≤ c3−2 min andc(X; X̄) ≤ c4−2 min for any minimum
3-way and 4-way cuts ofG. [O(n2) maximum flow computations.]

(iii) CONST-3WAY-CUT(X) constructs a 3-way cutC of G by combining(X; X̄) and
a minimum 2-way cut inG(X̄). [O(n) maximum flow computations.]

(iv) ENUMERATE-ALL-3CUTS(G) enumerates all 3-way cuts ofG, and returns the
one with the smallest cost.

Algorithm MIN-TRI-PARTITION(G)

Input: an undirected graphG = (V, E).

begin
C0 = MIN-ONE-TERM-3WAY(G); C1 = MIN-3WAY-CUT(G);
return MIN(C0, C1)

end.

Recursive ProcedureMIN-3WAY-CUT(G)

Input: an undirected graphG = (V, E).

begin
if |V | < 6 then return ENUMERATE-ALL-3CUTS(G);

else begin
(X; X̄)← Divide(G);
GX ← Shrink(G, X); GX̄ ← Shrink(G, X̄);
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C0← CONST-3WAY-CUT(X); C1← CONST-3WAY-CUT(X̄);
C2← MIN-3WAY-CUT(GX); C3← MIN-3WAY-CUT(GX̄);
return MIN(C0, C1, C2, C3)

end
end

5.2. The4-Way Cut Algorithm. In this subsection we present an algorithm for com-
puting a minimum 4-way cut of a given graphG. The proposed algorithm is based on
Theorem 2. Note that there is a special case in which, for givenG, there is no minimum
4-way cut(R; S; T;U ) such that|R| ≥ 2, |S| ≥ 2, |T | ≥ 2, and|U | ≥ 2. In such a
case we cannot compute a minimum 4-way cut by applying the functionDivide, and we
should treat this case separately.

The following are functions, which are used in the proposed algorithm:

(i) MIN-ONE-TERM-4WAY(G) computes a smallest cost 4-way cut({x};Y; Z;W)

in all 4-way cuts constructed by a minimum 3-way cut inG(V − {x}) and a 2-way
cut ({x};V − {x}), wherex ∈ V . [O(n4) maximum flow computations.]

(ii) CONST-4WAY-CUT(X) constructs a 4-way cutC of G by using the combination of
(X; X̄) and a minimum 3-way cut inG(X̄). [O(n3)maximum flow computations.]

(iii) OTHER-4WAY-CUT(X) constructs a 4-way cutC of G by using the combination
of (X; X̄), a minimum 2-way cut inG(X̄) and a minimum two-way cut inG(X).
[O(n) maximum flow computations.]

(iv) ENUMERATE-ALL-4CUTS(G) enumerates all 4-way cuts ofG, and returns the
one with the smallest cost.

Algorithm MIN-QUADRI-PARTITION(G)

Input: an undirected graphG = (V, E).

begin
C0 = MIN-ONE-TERM-4WAY(G); C1 = MIN-4WAY-CUT(G);
return MIN(C0, C1)

end.

Recursive ProcedureMIN-4WAY-CUT(G)

Input: an undirected graphG = (V, E).

begin
if |V | < 6 then return ENUMERATE-ALL-4CUTS(G);

else begin
(X; X̄)← Divide(G);
GX ← Shrink(G, X); GX̄ ← Shrink(G, X̄);
C0← CONST-4WAY-CUT(X); C1← CONST-4WAY-CUT(X̄);
C2← OTHER-4WAY-CUT(X);
C3← MIN-4WAY-CUT(GX); C4← MIN-4WAY-CUT(GX̄);
return MIN(C0, C1, C2, C3, C4)

end
end
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5.3. Computation Time. The correctness of the proposed algorithms can be easily
shown from Theorems 1 and 2. For the time complexity of the algorithms, we show the
following theorem.

THEOREM4. For an undirected graph G= (V, E), the algorithmMIN-TRI-PARTI-
TION(G) and the algorithmMIN-QUADRI-PARTITION(G) compute a minimum3-way
cut and a minimum4-way cut by applying O(n3)and O(n4)maximum flow computations,
respectively.

PROOF. In the following we consider the computation time of the algorithm MIN-TRI-
PARTITION(G). The computation time of the algorithm MIN-QUADRI-PARTITION
(G) can be discussed similarly.

Given a graphG = (V, E), let K be the total number of invocations of the procedure
MIN-3WAY-CUT in the algorithm. Then, from the description of the algorithm, it is
easy to show that the algorithm invokes the min-cut max-flow procedureO(Kn2) times.
Thus, in the following, we derive an upper bound ofK .

First, we define a rooted tree calledcomputation tree T= (N, A) as follows. Each
vertex,v, of T has a weight, denotedw(v). Each vertex inT corresponds to an invocation
of MIN-3WAY-CUT in the algorithm. The root ofT corresponds to the first invocation of
MIN-3WAY-CUT, whose actual parameter isG itself. Assume thatG′ is an input graph
of MIN-3WAY-CUT, and applyingDivide to G′, two new graphs,GX = Shrink(G′, X)
andGX̄ = Shrink(G′, X̄), are produced. Then, inT , there are three vertices,u, v, and
w, which correspond toG′, GX, andGX̄, respectively, and there are edges(u, v) and
(u, w). The weights ofu, v, andw are the number of vertices inG′, GX, andGX̄. For
simplicity, we assume that in the algorithm, if a given graph has more than three vertices,
then MIN-3WAY-CUT will be applied to continue the recursive calls of MIN-3WAY-
CUT, although, in the actual algorithm, if a given graph has less than six vertices, the
recursive calls will terminate. Then the weight of a vertex has the following properties:
(i) Let r be the root ofT . Thenw(r ) = |V | = n. (ii) For each internal vertexv, let u
andw be its left and right sons, respectively. Thenw(v) ≥ 4,w(u) ≥ 3,w(w) ≥ 3, and
w(v)+ 2= w(u)+ w(w). (iii) For each leafv, w(v) = 3.

Now, it is clear thatT is a full binary tree, i.e., a binary tree whose any internal vertex
has left and right sons. LetI (T) andL(T) be the numbers of internal vertices and leafs,
respectively. Then we can easily show thatL(T) = I (T) + 1. LetSUM be the total of
weights of all leafs. Then, from the properties of the weights of vertices, we can show that
SUM= w(r )+ I (T)×2. On the other hand, it is obvious thatSUM= L(T)×3. Since
w(r ) = n, we haven+ I (T)×2= L(T)×3. Substituting the equationL(T) = I (T)+1,
we finally getn+ I (T)× 2= (I (T)+ 1)× 3.

Thus, we haven−3= I (T) andL(T) = I (T)+1= n−2. Consequently, the total
number of invocation of MIN-3WAY-CUT isI (T) + L(T) = 2n− 5. This shows that
the algorithm MIN-TRI-PARTITION invokes the min-cut max-flow procedureO(n3)

times.

Note that there have been a number of min-cut max-flow algorithms [1]. The time com-
plexity of finding a minimum(s, t)-terminal cut of a general undirected weighted graph
G is bounded byO(n3).
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6. Conclusion. We have presented divide-and-conquer algorithms for computing a
minimum 3-way cut and a minimum 4-way cut of an undirected weighted graph, which
requireO(n3) andO(n4) maximum flow computations, respectively.

As future work, we will consider an extension of the proposed algorithms for the
minimumk-way cut problem fork ≥ 5. Recently, after submitting the manuscript of this
paper to this journal, Nagamochi and Ibaraki [12] proposed an algorithm for the minimum
k-way cut algorithm fork = 3,4, whose computation time isO(nk−2(nF(n,m) +
C2(n,m)+ n2)), whereF(n,m) andC2(n,m) denote respectively the time complexity
required to solve the maximum flow problem and the minimum 2-way cut problem in
G, indicating that this algorithm runs faster than ours. This method uses the algorithm
[15] that finds all the 2-way cuts inG in the order of nondecreasing weights. Note that a
preliminary version of this paper first appeared in [8]. Thus, the reduction of computation
time of the proposed algorithm is another of our concerns for future work.
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