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A Divide-and-Conquer Approach
to the Minimum k-Way Cut Problem

Y. Kamidoi! S. WakabayasHiand N. Yoshida

Abstract.  This paper presents algorithms for computing a minimum 3-way cut and a minimum 4-way cut of
an undirected weighted gragh LetG = (V, E) be an undirected graph withverticesm edges, and positive

edge weights. Goldschmidt and Hochbaum presented an algorithm for the mirkirway cut problem with

fixed k, that requiresO(n*) and O(n®) maximum flow computations, respectively, to compute a minimum
3-way cut and a minimum 4-way cut &. In this paper we first show some properties on minimum 3-way cuts
and minimum 4-way cuts, which indicate a recursive structure of the minikaway cut problem whek = 3

and 4. Then, based on those properties, we give divide-and-conquer algorithms for computing a minimum
3-way cut and a minimum 4-way cut &, which requireO(n®) and O(n*) maximum flow computations,
respectively.

KeyWords. Deterministic algorithm, Minimurk-way cut, Maximum flow computation, Undirected weighted
graph, Recursive structure.

1. Introduction. Computing a minimum cut of a graph is one of the important prob-
lems in graph theory [4]. LeG = (V, E) be an undirected graph with nonnegative
edge weights. GiveR(> 2) disjoint nonempty subset§, S, ..., &, of V, an edge
setC C Eisan(S, S, ..., &)-terminal cutof G if G’ = (V, E — C) has no paths
fromanys e Stoanyt € §ifi # j. An edge seC C E is ak-way cutof G if there
arek disjoint vertex subset¥y, Yo, ..., Y-1) andYy, such thaCis a(Ys, Yo, ..., Yi)-
terminal cut ofG. The cost of a cu€ is defined as the total of the edge cost€inA
k-way cutC is calledminimumif it has the smallest cut cost among aayvay cuts of
G. This paper discusses the problem of finding a minimum 3-way cut and a minimum
4-way cut of an undirected grajh.

Dahlhaus et al. [3] showed that theterminal cut problem is NP-hard for arbi-
trary k and even folkk = 3. They also proposed a minimukaterminal cut algorithm
for a planar undirected graph. Gomory and Hu [6] showed @@at) executions of a
minimum 2-terminal cut algorithm is enough to compute a minimum 2-way cut of an
undirected graph. Goldschmidt and Hochbaum [5] showed a polynomial time algorithm
for computing a minimunk-way cut for fixedk. This result showed that tHeway
cut problem is easier than theterminal cut problem for an undirected graph. In their
algorithm the minimum 2-terminal cut algorithm is repeatedly applied. The algorithm
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for the minimumk-way cut problem with fixeck applies O (nk*/2-3/2+4) maximum

flow computations for fixed. This method finds a set of 2-way cuts whose cardinality
is O(n*-3) as a set of 2-way cuts of candidates for constructing a minirkumay

cut. Nagamochi and Ibaraki [11] showed that the minimum 2-way cut problem on a
graph withn vertices andn edges can be solved i@ (nm) computation time. Saran
and Vazirani [14] proposed two approximation algorithms for the mininkeway cut
problem. One algorithm requires— 1 maximum flow computations for finding a set

of twice-optimalk-way cuts, one for each value kbbetween 2 and. Kapoor [9] gave

an algorithm for finding a minimum 3-way cut, which requi®gn®) maximum flow
computations. Kapoor also gave an approximation technique for the multiway cut prob-
lem, and showed an algorithm for the minimuaway cut problem, which requires
O(kn(m + n log n)) steps and gave an approximation ¢12- 1/k). Hochbaum and
Shimoys [7] gave a® (n?) algorithm for finding a minimum 3-way cut of an unweighted
planar graph. Recently, Burlet and Goldschmidt [2] presente@i@m?®) time algorithm

for finding a minimum 3-way cut in an undirected weighted graph. They used the al-
gorithm by Nagamochi et al. [13] that enumerates all cuts of weights lesd tirans

the cost of a minimum 2-way cut without using the maximum flow algorithm, where
| > 1.

All the algorithms shown above are ordinary deterministic algorithms, and thus they
can always find optimal solutions or approximation solutions. On the other hand, Karger
and Stein [10] proposed a randomized Monte Calro algorithm which finds a minimum
2-way cut with high probability irO(n? log® n). They also gave a randomized Monte
Calro algorithm for the minimunk-way cut problem, which solves the problem in
O(n2*Dog®n) time.

Most of the previous algorithms for the minimukaway cut problems adopted the
same approach. L& be a minimumk-way cut inG = (V, E) separatingV into k
component¥;, Vo, ..., Vg, and letw (V;) be the weight of the set of edges that separates
V; from the rest of graph. Assume that(Vy) < w(Vj), i # 1. In most previous
algorithms, a collection of vertex sets that necessarily include¥tbet of a minimum
k-way cut is enumerated, and, for each vertex set, the minigkuail)-problem in both
Vi1 andV — Vi is recursively solved.

Contrary to this common approach, in this paper we present a new approach, called a
divide-and-conquer method. First, we show several properties on minimum 3-way cuts
and minimum 4-way cuts, which indicate a recursive structure of the minikxuway
cut problem wherk = 3 and 4. Then, based on the recursive properties, we present
a divide-and-conquer strategy for the minimum 3-way and 4-way cut problems, and
propose two polynomial time algorithms, each of which computes a minimum 3-way
cut and a minimum 4-way cut @, respectively. These algorithms requi®&n®) and
O(n* maximum flow computations, respectively. This computation time of the proposed
algorithms compares very favorably with the computation time of the previous methods,
in particular, fork = 4.

The rest of our paper is organized as follows. The terminology is introduced in
Section 2. In Section 3 we show the recursive properties on the minimum 3-way and 4-
way cut problems. Section 4 presents a divide-and-conquer approach to the problems, and
optimal algorithms for the problems are presented in Section 5. Their time complexity
is also analyzed. Finally, in Section 6, we offer some conclusions.
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2. Preliminaries. In the following we give some definitions and terminologies.

DerFINITION 1. LetG = (V, E) be an undirected graph consisting of a vertexsand

an edge seE with an edge cost functioot E — R, whereR is the set of positive real
numbers. Each edgee E is incident to the elements of an unordered pair of vertices
u, v € V, called the end vertices ef and the edge is then denoted bg = (u, v). For
each edge € E, c(e) represents the cost ef Letn = |V| be the number of vertices
and letm = | E| be the number of edges.

DEFINITION 2. LetG = (V, E) be anundirected graph. Foranonempty subset E,
we denote the cost d&’ by c(E”), which is defined a3 ¢, c(e).

DErFINITION 3. LetG = (V, E) be an undirected graph and lgt> 2) be an integer.
Let X;, Xo, ..., Xk bek mutually disjoint nonempty subsets ¥fsuch thatv = X; U
XoU---U Xg. Let (Xg; Xo; ...; Xk) be the set of all those edges®fhaving one end
vertex inX; and the other irXj, wherel # jand1<i, ] < k. These(Xy; Xz;...; Xy)
is called ak-way cut ofG.

DerFINITION 4. Given an undirected grapgh = (V, E) andk mutually disjoint non-
empty subsets of/, called terminal sets, denof|g, T, ..., Tx such thatT; U T, U
---UTx C V, an edge se€ C E is called a(Ty, Ty, ..., Ty)-terminal cut ofG if

the removal ofC from E disconnects each terminal set from all the others. If every
terminal setis a singleton set, i.&.,= {tj}, then we simply represent@;, To, ..., Ty)-
terminal cut as &ty to, . . ., ty)-terminal cut. If there is no edge sét ¢ C such that
C'is a(Ty, Ty, ..., Ty)-terminal cut of G, we call the cutC minimal. For a given
(T1, T, ..., T)-terminal cutC of G, if there is no(Ty, Ty, ..., Ty)-terminal cutC’ of

G such that(C’) < ¢(C), we call the cutC minimum.

DEerFINITION 5. For a giverk-way cutC, C is minimum ifc(C) < ¢(C’) for anyk-way
cutC’.

Given an undirected grapB = (V, E) andk mutually disjoint nonempty subsets
of V, we call the problem of finding a minimur@Ty, T, ..., Ty)-terminal cut ofG
the minimum k-terminal cut problenGiven an undirected grap@ = (V, E) and
an integerk (= 2), we call the problem of finding a minimutk-way cut of G the
minimum k-way cut problenfrrom definitions, any minima(Ty, Ty, ..., Ty)-terminal
cut C can be represented akavay cut(Vy; Vo; ...; Vi) whereT, C Vi, 1 <i <Kk,
andViUVL U---U V= V.

DEFINITION 6. Let G = (V, E) be an undirected graph. Given a nonempty vertex
subsetX, let G(X) = (X, Ex) be an induced subgraph &f by X with the edge cost
functioncy such that for any edgee Ex, cx(e) = c(e).

_ Let X be a subset of vertices @ = (V, E). X is the complement oK, i.e.,
X=V -X.
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DEFINITION 7. For an undirected graph = (V, E), letC = (X; X) andD = (Y;Y)
be 2-way cuts ofs. C is said to be intersected with if the following four equations
hold:

XNY #0, XNY #0, XNY #0, XNY #4.

Itcan be shown that if there exists a minimirterminal cut algorithm fofG, we can
solve the minimunk-way cut problem in polynomial time by applying it i@ (nk—1)
times. For example, ik = 2, the minimumk-terminal problem becomes the famous
minimum(s, t)-terminal cut problem, which can be solved in polynomial time based on
the Ford—Fulkerson min-cut max-flow theorem [1]. Thus, the minimum 2-way cut prob-
lem can be solved by applying the min-cut max-flow algorit@rn) times. Dahlhaus
et al. showed, however, that for even a fixed constant 3), the minimumk-terminal
cut problem for a general graph is NP-hard [3]. So, it is hopeless to devise a minimum
k-way cut algorithm based on a minimugterminal cut problem. For the general min-
imum k-way cut problem, we should adopt another approach. In this paper we present
a divide-and-conquer approach to the minimk+way cut problem whetk = 3 and
k = 4, and propose polynomial time algorithms.

3. Properties. In this section we show several properties on minimum 3-way cuts and
minimum 4-way cuts ofG. In the next section these properties are used to derive a
divide-and-conquer strategy to solve the minimum 3-way and 4-way cut problems. For
anyk-way cutC = (S;; &; ...; &), we denote the cost &, ¢(C) = ) .- c(e), by

(S S ).

3.1. Properties or3-Way Cuts Given an undirected grapgh = (V, E), let co min and
C3 min b€ the costs of a minimum 2-way cut and a minimum 3-way c@ akspectively.
Then the following lemma holds.

LEMMA 1. Let G = (V, E) be an undirected graphFor any minimum3-way cut
(R; S; T) of G, the following holds

Comin < MIN{c(R; R), ¢(S; ), ¢(T; T)} < 5Camin-

Assume that there is a minimum 3-way aR; S; T) of G such thatc(R; R) =
min{c(R; R), c(S; ), c(T; T} Let (X; X) be a 2-way cut of5. Then, depending on
the relation betwee(R; R) and(X; X), the following lemmas hold.

LEMMA 2. Given a graph G= (V, E) and a2-way cut(X; X) of G such that
c(X; X) < Zcgmin, if there is a minimung-way cut(R; S; T) of G such that ¢R; R) <
Zcsminand(R; R is intersected withiX; X), then at least one afX; X N R; X N R) or
(X; XN R; X N R) is a minimunB-way cut of G

PROOF From the assumption,

min{c((RN X); (RN X)), c((RN X); (RN X))} < 3¢(R; R) < 3C3min-
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If c((RN X); (RN X)) < c((RN X); (RN X)), then
c(X; (RN X); (RN X)) = c(X; X) +c((RN X); (RN X))

2 1
5C3min + 5C3min

IA

= C3min-

Thus,(X; (RN X); (RN X)) is a minimum 3-way cut 06.
If c(RNX); (RN X)) < c((RN X); (RN X)), then we have a similar discussion to
show that a 3-way cutX; (RN X); (RN X)) is a minimum 3-way cut 06G. O

LEMMA 3. Given a graph G= (V, E) and a2-way cut(X; X) of G, if there is a
minimum3-way cut of G denoted(R; S; T), such that ¢X; X) < ¢(R; R), R € X,

XNS=@,andXNT @, then(X; Y; Z) is a minimunB-way cut of Gwhere(Y; Z)

is a minimurr2-way cut of G X).

PrOOF
c(X;Y; Z) = c(X; X) +c(Y; 2)
< c(X; X) +c(XN9; (XNT))
< c(RR+c(ST)
=c(R; S T).
Thus, the lemma holds. O

3.2. Properties ord-Way Cuts Let c4min be the cost of a minimum 4-way cut .
Then the following lemma holds.

LEMMA 4. Let G = (V, E) be an undirected graphFor any minimunmé4-way cut
(R; S; T; U) of G, the following holds

Comin < MIN{c(R; R), ¢(S; ), ¢(T; T), ¢(U; U)} < 3Camin.

Assumethat there is a minimum 4-way Gi; S; T; U) of G such that(R; R) =
min{c(R; R), ¢(S; S), ¢(T; T), c(U; U)}. Let (X; X) be a 2-way cut ofs. Then, de-
pending on the relation betweéR; R) and(X; X), Lemmas 5-8 hold.

LEMMA 5. Given a graph G= (V, E) and a2-way cut(X; X) of G such that
c(X; X) < 3Camin, if there is a minimumd-way cut(R; S; T; U) of G such that
¢(R; R) < 1cimin and (R; R) is intersected with X; X), then(X N R; X N R; X N
R; X N R) is a minimumd-way cut of G
PROOF From the assumptioiX N R; X N R; X N R; X N R) is indeed a 4-way cut
of G. We have

CXNRXNR XNR; XNR) < ¢(X; X)+c(R; R)
= %C4min + %C4min
C4 min-
Thus, the lemma holds. O
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LEMMA 6. Given an undirected graph G (V, E) and a2-way cut (X; X), of G, if
there is a minimum-way cut (R; S; T; U), of G such that RZ X, ¢(X; X) < ¢(R; R),
XNS#£P, XNT #@ andX NU # @, then there is a minimur-way cut denoted
(X;Y; Z; W), such that(Y; Z; W) is a minimunB-way cut of G X).

PROOE SinceR C X, we haveX € SUT UU. Thus,

c(X; Y; Z; W) = c(X; X) + c(Y; Z; W)
< cX;X)+c(XNS XNT; XNU)
< c(RR+¢(ST;U)
= c¢(R; S T;U).
Thus, the lemma holds. O

LEMMA 7. Given an undirected graph G= (V, E), let (X; X) be a2-way cut of G
If there is a minimun¥-way cut denoted(R; S; T; U), of G such that X= RU S
then(R’; S; T’; U’) is also a minimurd-way cut of Gwhere(R’; S) and(T’; U’) are
minimum2-way cuts of GX) and G(X), respectively

PrOOF  From the assumption, we hade= RU SandX = T U U. For G(X), we
have
c(R:;S) <c(R; 9.
For G(X), we have
c(T;U) <c(T; U).

Then
c(R;S;T;U) = o(X; X) +¢(R; S) + (T U)
< c(RUSTUU)+c(R; S +c(T;U)
= c(R; S T;U).
Thus, the lemma holds. O

LEMMA 8. Given an undirected graph & (V, E), let (X; X) be a2-way cut of G If
there is a minimurd-way cutdenoted R; S; T; U), of G such thatX; X) isintersected
with(S; S)and(T; T), X ¢ SUT,anddX; X) < min{c(R; R), ¢(S; S), c(T; T), c(U;
U)}, then(R’; S; T'; U’) is also a minimurd-way cut of Gwhere(R’; S) and(T’; U’)
are minimum2-way cuts of GX) and G(X), respectively

PrROOF  Without loss of generality, we assume tké§; S) < c(T; T). Since(X; X)
is intersected withiS; S), (SN X; SN X; SN X; SN X) is a 4-way cut ofG:
c(SNX; SN X; SN X; SN X)
<cS 9 +eX: X) <3S +e(T; T}
+ min{c(R; R), ¢(S; S), o(T; T), c(U; U)}
< (RPN +¢(S 9 +¢(T: T) +¢c(U: U}

= Camin-
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Thus,(SNX; SNX; SNX; SNX) is aminimum 4-way cut o6. Since(SN X; SNX)
and(SnN X; SN X) are 2-way cuts of5(X) andG(X), respectively, we have

c(R;S;T;U) = c(X; X) +c(R; S) +¢(T';U)
< c(X; X)+¢(SN X; SN X) +¢c(SN X; SN X)
< ¢(SNX; SN X; SN X; SN X).

Thus, the lemma holds. O

4. ADivide-and-Conquer Approach. Inthis section, first, we show arecursive struc-
ture of minimum 3-way cuts and minimum 4-way cuts of an undirected g&afthen we
present two main theorems, which will be a base to construct algorithms for computing
a minimum 3-way cut and a minimum 4-way cut®f

LEMMA 9. Given an undirected graph G= (V, E), let (X; X) be a2-way cut Let
(Y; Y)and(Z; Z) be minimun2-way cuts of GX) and G(X), respectivelyif there is a
minimunB-way cut(R; S; T) of G suchthat ¢X; X) < min{c(R; R), ¢(S; S), o(T; T)},
then at least one of the following four properties holds

(i) (X;Y;Y)is aminimunB-way cut of G

(i) (X;Z; Z)is a minimunB-way cut of G
(i) There is a minimun3-way cut denoted R’; S’; T’), such that Xc R'.
(iv) There is a minimurB-way cut denoted R”: S’; T”), such thatX c R”.

PROOF  Without loss of generality, we assume tiBéR; R) = min{c(R; R), ¢(S; ),
c(T; T)}. Consider the relation betweg; X) and(R; R). Then there are four cases.
Thatis, (1)(X; X) isintersected witliR; R), (2) X ¢ R, (3)R € X, and (4)XNR = #.

First, consider case (1). From Lemma 2, at lgdst(X N R); (X N R)) or (X; (X N
R); (XNR)) isaminimum 3-way cut o. Consider the case théX; (XNR); (XNR))is
aminimum 3-way cut o6. In this case((XNR); (XNR)) isa 2-way cut of5(X). Then,
since(Y; Y) is a minimum 2-way cut o6 (X), we havec(Y; Y) < c(XNR); (XNR)).
Therefore, we have

c(X;Y;Y) <c(X; (XN R); (XN R)) = Camin-

Thus,(X; Y;Y) is a minimum 3-way cut o6. For the case thaiX; (X N R); (XN R))
is a minimum 3-way cut 06, we have a similar discussion to show thxt Z; Z) is a
minimum 3-way cut ofc. Consequently, for case (1), at least one of properties (i) or (ii)
is satisfied.

Next, consider case (2). In this case it is clear that property (iii) is satisfied.

Next, consider case (3). This case is further classified into the following cases. That
is, (3-1)XNS# PandXNT # @, (3-2) there is @ such thatX = RUP, P € {S, T},
and (3-3) there is ® such thatX ¢ Q, Q € {S, T}.

Consider case (3-1). From Lemma 3, we see that property (i) holds. Consider case
(3-2). In this case it is clear that property (ii) holds. Consider case (3-3). In this case we
see that property (iv) holds.
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Finally, consider case (4). In this case we h&/e X. Let X’ = X. Then this is the
same case as case (3). Thus, the lemma holds. O

LEMMA 10. Given an undirected graph G= (V, E), let (X; X) be a2-way cut Let
(Y: Y)and(Z; Z) be minimun2-way cuts of GX) and G(X), respectivelyLet(R; S; T)

and(R’; S; T’) be minimun8-way cuts of GX) and G(X), respectivelylf there is a min-
imumd-way cut(A; B; C; D) of G suchthat€X; X) < min{c(A; A), ¢(B; B), ¢(C; C),

c(D; D)}, then at least one of the following five properties holds

() (X; R; S T) is a minimumd-way cut of G
(i) (X; R;S; T’ isaminimumd-way cut of G
(i) (Y;Y; Z; Z) is a minimumd-way cut of G
(iv) There is a minimumM-way cut denoted A’; B’; C’; D’), such that Xc A'.
(v) There is a minimumM-way cut denoted A”; B”; C”; D”), such thatX c A”.

PrOOF  Without loss of generality, we assume teé; A) = min{c(A; A), c¢(B; B),
c(C; C), c(D; D)}. Consider the relation betwegiX; X) and (A; A). Then there are
four cases. Thatis, (1)X; X) is intersected witiA; A), (2) X c A, (3)A € X, and (4)
XNA=40.

First, consider case (1). From Lemma &N A; XN A; XN A; XN A) is a minimum
4-way cut ofG. Since(X N A; X N A) and(X N A; X N A) are 2-way cuts o6 (X) and
G(X), respectively, we have

c(Y; V; Z; Z)

c(X; X) +¢(Y; Y) +¢(Z; 2)
c(X; X)+c(XNA XNA +c(XNA XNA)
cXNAXNA XNA XNA)

C4 min.

1A

Thus, property (iii) holds.

Next, consider case (2). For this case, property (iv) holds.

Next, consider case (3). This case is further classified into the following four cases.
Thatis, B-1)XNB # @, XNC # @, andX N D # ¢, (3-2) there ard., M, N €
(B,C,D},L % M, M # N, L # N,suchthaX € AULUM, X € MUN, (3-3) there
areL,M,N € {B,C,D},L # M, M # N, L # N, suchthatX c AULUM U N,

X c MU N, (X; X) is intersected withM; M) and (N; N), and (3-4) there it €
(B, C, D} such thatX c L.

Consider case (3-1). From Lemma 6, property (i) holds. Consider case (3} If
AUL andX = M U N, then from Lemma 7, property (iii) holds. Consider otherwise.
Thenwe haveX N A # ¥, XN'L # @, andX N M # @. From the assumption, we have
c(X; X) < ¢(N; N). Let X’ = X. Then we see from Lemma 6 that property (ii) holds.
Next, consider case (3-3). L&t = X. Then, from Lemma 8, we see that property (iii)
holds. Consider case (3-4). For this case, it is obvious that property (iv) holds.
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Finally, consider case (4). Sinéén A = ¢, we haveA C X. Let X’ = X. Then this
is the same as case (3). Thus, the lemma holds. O

Lemmas 9 and 10 tell us that a minimum 3-way cut and a minimum 4-way cut can
be computed recursively.

DEFINITION 8. Letu andv be distinct vertices of agragh = (V, E). We can construct

a new graphG’ by fusing the two vertices, namely, by replacing them by a single new
vertexx such that every edge that was incident witlor v in G is now incident with

X in G’. Given a subseX of V, let Shrink G, X) be a graph obtained by fusing all the
vertices inX, and removing all the self-loop edges from the resulting graph.

From Lemmas 9 and 10, and the definitioisbfink G, X), we can show the following
main theorems.

THEOREM1. LetG = (V, E)beagraphandlet(X; X) be a2-way cutof GLet(Y; Y)
and(Z; Z) be minimun®-way cuts of GX) and G(X), respectivelyLet(R’; S; T') be
a minimum3-way cut of ShrinkG, X), and let(R”; S’; T”) be a minimun8-way cut
of Shrink G, X). If there is a minimun8-way cut(R; S; T) of G such that €X; X) <
min{c(R; R), ¢(S; S), ¢(T; T)}, then at least one of the followingway cuts of G
(X;Y;Y),(X;Z; 2),(R;S; T"),and(R"; S’; T"), is a minimunB-way cut of G

THEOREM2. Let G = (V, E) be a graph and let (X; X) be a2-way cut of G
Let (Y;Y) and (Z; Z) be minimun2-way cuts of GX) and G(X), respectivelyLet
(R;S; T) and (R; S; T') be minimum3-way cuts of GX) and G(X), respectively
Let(A; B’; C’; D’) and(A”; B”; C”; D”) be minimumd-way cuts of GX) and G(X),
respectively|f there is a minimumd-way cut(A; B; C; D) of G such that ¢X; X)
< min{c(A; A), ¢(B; B), c(C; C), c(D; D)}, then at least one of the followingyway
cuts of G (X; R: S T), (X; R;S; T, (Y;Y; Z; X), (A; B;C; D)) and (A”; B”;
C”; D), is a minimum4-way cut of G

5. Algorithms. Basedon Theorems1and 2, we can present simple divide-and-conquer
algorithms for computing a minimum 3-way cut and a minimum 4-way cut of an undi-
rected graph. From Theorems 1 and 2, we find a recursive structure of the minimum
3-way and 4-way cut problems. For example, consider the minimum 3-way cut problem.
Then, given a grapls = (V, E), we can find a minimum 3-way cut & by computing

some combinations of minimum 2-way cuts, or by computing minimum 3-way cuts of
Shrink G, X) andShrink G, X) for some 2-way cutX; X) of G. If both Shrink G, X)

and Shrink G, X) are smaller tharG in the number of vertices, then we see that the
minimum 3-way cut problem can be solved in a divide-and-conquer manner. For some
minimum 3-way and 4-way cuts, denotél; S; T) and(R’; S; T’; U'), letcz_omin =
min{c(R; R), ¢(S; S), ¢(T; T)}andcs_smin = Min{c(R; R), c(S; S), c(T': T'), c(U’;

U")}. Then the problem we should consider is thus the following: How do we find a 2-
way cut(X; X) of G such that (i)c(X; X) < Cz_2min OF ¢(X; X) < C4_2min, and (ii)

[X| > 2 and|X| > 2?
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In the following we show a method for finding a 2-way cut satisfying the above
condition.

LEMMA 11. Given an undirected graph G= (V, E), let xg, X2, X3, X4 be four dis-
tinct vertices in V such that af{x1, Xo}, {X3, X4})-terminal cut of G is minimum in its
cost among all thos€{u, v}, {w, x})-terminal cuts of G for any four distinct vertices
u, v, w, X, in V. We denote thig{x1, X2}, {X3, X4})-terminal cut by(X; X). If there is a
minimum3-way cut(R; S; T) of G satisfyindR|, |S], | T| > 2,then dX; X) < C3_2min,
where ¢ omin = min{c(R; R), c(S; S), ¢(T; T)}. If there is a minimumd-way cut
(R;S; T;U") of G satisfyingR'[, | S|, |T’|, [U’| > 2,then dX; X) < C4_2min, Where
Ca_zmin = MIN{C(R’; R), ¢(S; ), ¢(T’; T'), c(U’; U")}.

ProOOF Consider the case of finding a minimum 3-way cut. For the case of finding
a minimum 4-way cut, we can prove the lemma by giving a similar discussion to that
shown below. Without loss of generalityR; R) = C3_»min. From the assumption of
(X; X), there are four distinct vertices, X, X3, X4 suchthaky, x, € X, X3, x4 € X, and

(X; X) is a minimum({xy, X2}, {Xa, X4})-terminal cut ofG. Since|R| > 2 and|R| > 2,

we can choose two distinct vertices, segndv, from R and two distinct vertices, say
andx, from R. Let(Y; Y) be a minimum({u, v}, {w, x})-terminal cut ofG. Then, from

the assumption, it is always true theiX; X) < c(Y; Y) holds for anyu, v € R, u # v,
andw, X € R, w # x. Thus, the lemma holds. O

Based on Lemma 11, given a graBh= (V, E), we present a procedure to find a 2-
way cut,(X; X), of G, which satisfies (i)X| > 2and X| > 2, and (i))c(X; X) < Cz_2min
andc(X; X) < cs_ominfor any 3-way, and 4-way cuts 6. A straightforward way to find
(X; X)would be as follows. We enumerate all the combinations of four distinct vertices of
G, sayu, v, w, andx, and for each set of vertices, we find a minimgfu, v}, {w, X})-
terminal cut ofG. Among all the combinations of four vertices, we select one set of
vertices, sayu’, v/, w’, X'}, such that the cost of a minimu¢fu’, v'}, {w’, x'})-terminal
cut of G is minimum among all the other combinations of the four vertices. Then let
(X; X) be the minimun{{u’, v'}, {w’, X'})-terminal cut ofG. Note that, for given distinct
four vertices ofG, finding a minimum({u, v}, {w, x})-terminal cut ofG is easy. First, we
add two new vertices andt to G, and then we add new edge&su), (s, v), (t, w), and
(t, X). We define the cost of the new edgesasThen we find a minimungs, t)-terminal
cut of G by applying a minimum 2-terminal cut algorithm.

The procedure shown above, however, would regqDife*) min-cut max-flow compu-
tations. In the following we show an efficient method to comgeX), which requires
0O(n?) min-cut max-flow computations. First, we pay attention to the following fact.

FacT 1. Given an undirected graph G= (V, E), let (X; X) be a2-way cut of G
Let S= {u, v, w, x} be four distinct vertices in VLet nx and ny be the numbers of
vertices in Swhich are contained in X ani, respectivelyThen one of the following
conditions holds (i) nx = ng = 2. (i) max{nx, ng} = 3 and min{nx, ng} = 1.
(iii) max{nx, ng} = 4 andmin{nx, ng} = 0.

This Fact gives the base of our algorithm for computiXg X). Assume that a fixed
set of four distinct vertices, s& = {uo, vo, wo, X0}, iS givenin advance. For any distinct
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four vertices ofG, say{u, v, w, X}, consider a minimunt{u, v}, {w, x})-terminal cut of
G, denotedY; Y). Then, from Fact 1, one of the following cases holds:

Casel. S is partitioned into two subsets, s@iyandU, each of which consists of two
elements, respectively, so that; Y) is a minimum(T, U)-terminal cut ofG.

Case2. & is partitioned into two subsets, sdy andU’, each of which consists of
three and one elements, respectively, sotWal) is a minimum(T’, U’ U{y})-terminal
cut of G, wherey is a vertex inG.

Case3. S is not partitioned so thaty; Y) is a minimum(S, {y, z})-terminal cut of
G, wherey andz are vertices irG.

From those results mentioned above, we present a procedure tO<fin¢), which
satisfies the conditions given previously. We call this procedure, proc&ivide(G).
A description of procedurBivide(G) is given below.

In the descriptionMinCut(T, U) is a function to find a minimungT, U)-terminal
cut of G, which invokes a min-cut max-flow algorithm in one computation.

Function Divide(G)
Input an undirected grap& = (V, E).

begin
choose four distinct vertices from, and let them b& = {u, v, w, x};
Crmin := @; Cnin 1= 00;
/* Case (1) */
C1 := MinCut{u, v}, {w, X});
if Cmin > €(C1) then Cumin := C1; Cmin := C(C1);
Co := MinCut({u, w}, {v, X});
if Cmin > €(C2) then Crin := C2; Cmin = ¢(C2);
C3 := MinCut({u, x}, {v, w});
if Cmin > €(C3) then Cmin 1= C3; Cmin = ¢(C3);
/* Case (2) */
For eachy € V — Sdo
Cy := MinCut({u, v, w}, {X, y});
if Cmin > ¢(C1) then Cimin := C1; Cmin := ¢(C1);
Cz '= MinCut({u, v, X}, {w, ¥});
if Cmin = ¢(Co) then Cin := Co; Cmin := ¢(C2);
Cz := MinCut({u, w, x}, {v, ¥});
if Cmin > €(C3) then Cmin 1= C3; Cmin = ¢(C3);
C4 := MinCut({v, w, X}, {u, y});
if Cmin > €(C4) then Cmin = C4; Cmin = ¢(Ca);
/* Case (3) */
Foreachy,zeV — S y#zdo
C1 = MinCut({u, v, w, x}, {Y, z});
if Cmin > ¢(C1) then Cmin 1= C1; Cmin 1= ¢(C1);
/* End of function */
Return (Cmin)
end
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For this procedure we can show the following theorem.

THEOREM3. The function DividéG) finds a smallest cost cut in all minimufju, v},
{w, x})-terminal cuts for any four distinct vertices in,®y applying at most @?)
min-cut max-flow computations

PrROOF The correctness of the function was derived from Fact 1, as we discussed
previously. Since there are doubly nested loops on verticds, iit is clear that the
functionMinCut, which executes the min-cut max-flow computation once, was invoked
O(n?) times in total. O

5.1. The3-Way Cut Algorithm In this subsection we present an algorithm for com-
puting a minimum 3-way cut of a given grah The proposed algorithm is based on
Theorem 1. Note that there is a special case in which, for a given @aftere is no
minimum 3-way cut{R; S; T) suchthatR| > 2,|S| > 2,and T| > 2. Insuch a case we
cannot compute a minimum 3-way cut by applying the funcidivide, and we should
treat this case separately.

The following are functions which are used in the proposed algorithm. Note that,
given a graphG = (V, E), a minimum 2-way cut of5 can be computed i©(|V|)
min-cut max-flow computations.

(i) MIN-ONE-TERM-3WAY(G) computes a smallest cost 3-way cut, whose structure
is given as({x}; Y; Y), wherex is a vertex inG and(Y; Y) is a minimum 2-way
cut of G(V — {x}). [O(n?) maximum flow computations.]

(i) Divide(G) is a function to compute a 2-way c(X; X) of G such that (i) X| > 2
and|X| > 2, and (ii))c(X; X) < Ca_amin andc(X; X) < Ca_zmin fOr any minimum
3-way and 4-way cuts db. [O(n?) maximum flow computations.]

(i) CONST-3WAY-CUT(X) constructs a 3-way c of G by combining(X; X) and
a minimum 2-way cut irG(X). [O(n) maximum flow computations.]

(iv) ENUMERATE-ALL-3CUTS(G) enumerates all 3-way cuts &, and returns the
one with the smallest cost.

Algorithm MIN-TRI-PARTITION(G)

Input an undirected grap6é = (V, E).

begin
Co = MIN-ONE-TERM-3WAY (G); C; = MIN-3WAY-CUT(G);
return MIN(Co, C1)

end.

Recursive ProcedureMIN-3WAY-CUT(G)
Input an undirected grap@ = (V, E).

begin
if V| < 6thenreturn ENUMERATE-ALL-3CUTSG);
else begin
(X; X) < Divide(G);
Gx <« Shrink G, X); Gy <« Shrink G, X);
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Co <— CONST-3WAY-CUT(X); C; < CONST-3WAY-CUT(X);
Cy < MIN-3WAY-CUT(Gx); C3 < MIN-3WAY-CUT(Gg);
return MIN(Co, C1, C2, C3)
end
end

5.2. The4-Way Cut Algorithm In this subsection we present an algorithm for com-
puting a minimum 4-way cut of a given grag@ The proposed algorithm is based on
Theorem 2. Note that there is a special case in which, for gi&eghere is no minimum
4-way cut(R; S; T; U) such thaiR| > 2, S| > 2,|T| > 2, and|U| > 2. In such a
case we cannot compute a minimum 4-way cut by applying the funBlidide, and we
should treat this case separately.

The following are functions, which are used in the proposed algorithm:

(i) MIN-ONE-TERM-4WAY (G) computes a smallest cost 4-way ¢#}; Y; Z; W)
in all 4-way cuts constructed by a minimum 3-way cu@V — {x}) and a 2-way
cut ({x}; V — {x}), wherex e V. [O(n* maximum flow computations.]

(i) CONST-4WAY-CUT(X) constructs a 4-way catof G by using the combination of
(X; X) and a minimum 3-way cut it (X). [O(n®) maximum flow computations.]

(i) OTHER-4WAY-CUT(X) constructs a 4-way cut of G by using the combination
of (X; X), a minimum 2-way cut irG(X) and a minimum two-way cut i (X).
[O(n) maximum flow computations.]

(iv) ENUMERATE-ALL-4CUTS(G) enumerates all 4-way cuts &, and returns the
one with the smallest cost.

Algorithm MIN-QUADRI-PARTITION(G)
Input an undirected grap8 = (V, E).

begin
Co = MIN-ONE-TERM-4WAY (G); C1 = MIN-4WAY-CUT(G);
return MIN(Co, C1)

end.

Recursive ProcedureMIN-4WAY-CUT(G)
Input an undirected grapt = (V, E).

begin
if V| < 6thenreturn ENUMERATE-ALL-4CUTSG);
else begin
(X; X) < Divide(G);
Gx < Shrink G, X); Gy <« Shrink G, X);
Co < CONST-4WAY-CUT(X); C; <~ CONST-4WAY-CUT(X);
Co < OTHER-4WAY-CUT(X);
C3 < MIN-4WAY-CUT(Gx); Cs4 < MIN-4WAY-CUT(Gy);
return MIN(Co, C1, Co, C3, Cs)
end
end
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5.3. Computation Time The correctness of the proposed algorithms can be easily
shown from Theorems 1 and 2. For the time complexity of the algorithms, we show the
following theorem.

THEOREM4. For an undirected graph G= (V, E), the algorithmMIN-TRI-PARTI-
TION(G) and the algorithnMIN-QUADRI-PARTITION(G) compute a minimuid-way
cutand a minimurd-way cut by applying @) and O(n*) maximum flow computations
respectively

ProOOF Inthe following we consider the computation time of the algorithm MIN-TRI-
PARTITION(G). The computation time of the algorithm MIN-QUADRI-PARTITION
(G) can be discussed similarly.

Given agraplc = (V, E), letK be the total number of invocations of the procedure
MIN-3WAY-CUT in the algorithm. Then, from the description of the algorithm, it is
easy to show that the algorithm invokes the min-cut max-flow proce@gken?) times.
Thus, in the following, we derive an upper boundkof

First, we define a rooted tree calledmputation tree T= (N, A) as follows. Each
vertex,v, of T has aweight, denotad(v). Each vertex ifT corresponds to an invocation
of MIN-3WAY-CUT in the algorithm. The root of corresponds to the first invocation of
MIN-3WAY-CUT, whose actual parameter@ itself. Assume tha@’ is an input graph
of MIN-3WAY-CUT, and applyingDivideto G’, two new graphsGx = Shrink G’, X)
andGy = ShrinkG’, X), are produced. Then, ifi, there are three vertices, v, and
w, which correspond t&’, Gx, andGy, respectively, and there are edgesv) and
(u, w). The weights olu, v, andw are the number of vertices @', Gx, andGy. For
simplicity, we assume that in the algorithm, if a given graph has more than three vertices,
then MIN-3WAY-CUT will be applied to continue the recursive calls of MIN-3WAY-
CUT, although, in the actual algorithm, if a given graph has less than six vertices, the
recursive calls will terminate. Then the weight of a vertex has the following properties:
() Letr be the root ofT. Thenw(r) = |V| = n. (ii) For each internal vertex, letu
andw be its left and right sons, respectively. Thetv) > 4, w(u) > 3, w(w) > 3, and
w) + 2 = w) + w(w). (i) For each leafv, w(v) = 3.

Now, it is clear thafl is a full binary tree, i.e., a binary tree whose any internal vertex
has left and right sons. Lé{(T) andL (T) be the numbers of internal vertices and leafs,
respectively. Then we can easily show th&aT) = | (T) + 1. LetSUM be the total of
weights of all leafs. Then, from the properties of the weights of vertices, we can show that
SUM= w(r)+ 1 (T) x 2. On the other hand, it is obvious tH&it/M = L (T) x 3. Since
w(r) = n,wehaven+1 (T)x2 = L(T) x 3. Substituting the equatidn(T) = 1 (T)+1,
we finally getn + 1 (T) x 2= (I(T)+ 1) x 3.

Thus, we have—3 =1 (T)andL(T) = I (T) + 1 = n— 2. Consequently, the total
number of invocation of MIN-3WAY-CUT id (T) + L(T) = 2n — 5. This shows that
the algorithm MIN-TRI-PARTITION invokes the min-cut max-flow procedudgn?®)
times. O

Note that there have been a number of min-cut max-flow algorithms [1]. The time com-
plexity of finding a minimum(s, t)-terminal cut of a general undirected weighted graph
G is bounded byO(n3).
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6. Conclusion. We have presented divide-and-conquer algorithms for computing a
minimum 3-way cut and a minimum 4-way cut of an undirected weighted graph, which
requireO(n®) and O(n*) maximum flow computations, respectively.

As future work, we will consider an extension of the proposed algorithms for the
minimumk-way cut problem fok > 5. Recently, after submitting the manuscript of this
paper to this journal, Nagamochi and Ibaraki [12] proposed an algorithm for the minimum
k-way cut algorithm fork = 3,4, whose computation time i®(n-2(nF(n, m) +
C,(n, m) + n?)), whereF (n, m) andC,(n, m) denote respectively the time complexity
required to solve the maximum flow problem and the minimum 2-way cut problem in
G, indicating that this algorithm runs faster than ours. This method uses the algorithm
[15] that finds all the 2-way cuts i@ in the order of nondecreasing weights. Note that a
preliminary version of this paper first appeared in [8]. Thus, the reduction of computation
time of the proposed algorithm is another of our concerns for future work.
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