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Best Possible Approximation Algorithm for MAX SAT
with Cardinality Constraint 1

M. I. Sviridenko2

Abstract. We consider the MAX SAT problem with the additional constraint that at mostP variables have
a true value. We obtain a(1− e−1)-approximation algorithm for this problem. Feige [6] has proved that for
MAX SAT with cardinality constraint with clauses without negations this is the best possible performance
guarantee unlessP = NP.
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1. Introduction. An instance of the Maximum Satisfiability Problem (MAX SAT) is
defined by a collectionC of Boolean clauses, where each clause is a disjunction of literals
drawn from a set of variables{x1, . . . , xn}. A literal is either a variablex or its negation
x̄. In addition, for each clauseCj ∈ C, there is an associated nonnegative weightwj . An
optimal solution to a MAX SAT instance is an assignment of truth values to the variables
x1, . . . , xn that maximizes the sum of the weights of the satisfied clauses (i.e., clauses
with at least one true literal). In this work we consider cardinality constrained MAX SAT
(CC-MAX SAT). An instance of this problem is a pair(C, P) whereC is a collection
of clauses andP is an integer parameter. A feasible solution is a truth assignment that
gives value true to at mostP variables.

MAX SAT is one of the central problems in theoretical computer science and is
well studied, both from a practical viewpoint [9] and a theoretical one. The best known
approximation algorithm for MAX SAT has a performance guarantee slightly better
than 0.77 [3]. In [10] it is shown that the MAX E3SAT, the version of the MAX SAT
problem in which each clause is of length exactly 3, cannot be approximated in poly-
nomial time to within a ratio greater than 7/8, unlessP = NP. For general MAX
3SAT there exists an approximation algorithm with performance guarantee 7/8 [11].
The best known positive and negative results for MAX 2SAT are 0.931 [7] and 21/22
[10], respectively. We can see that there is a gap between positive and negative results
for MAX SAT.

Khanna and Motwani [12] define a class MPSAT of optimization problems and present
an approximation scheme for all problems in this class. Since planar CC-MAX SAT
belongs to MPSAT the existence of an approximation scheme for this planar problem
follows. On the other hand, Feige [6] has proved that the existence of an approximation
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algorithm with a performance guarantee better than 1− e−1 for CC-MAX SAT with
clauses without negations impliesP = NP.

In this work we present an approximation algorithm for CC-MAX SAT with a perfor-
mance guarantee of 1− e−1. We use the method of randomized rounding of an optimal
solution to a linear relaxation. Notice that for satisfiability problems without cardinality
constraint the best known algorithms (sometimes the best possible) are obtained by using
semidefinite programming relaxations (compare [4] and [7], [5], and [11]) but for CC-
MAX SAT the best possible approximation is obtained here via a linear programming
relaxation.

2. Linear Relaxation and Approximation Algorithm. Consider the following mixed
integer program:

max
∑
Cj∈C

wj zj ,(1)

subject to ∑
i∈I +j

yi +
∑
i∈I −j

(1− yi ) ≥ zj for all Cj ∈ C,(2)

n∑
i=1

yi ≤ P,(3)

0≤ zj ≤ 1 for all Cj ∈ C,(4)

yi ∈ {0,1}, i = 1, . . . ,n,(5)

whereI +j (respectivelyI −j ) denotes the set of variables appearing unnegated (respectively
negated) inCj . By associatingyi = 1 with xi set true,yi = 0 with xi false,zj = 1 with
clauseCj satisfied, andzj = 0 with clauseCj not satisfied, the mixed integer program
(1)–(5) is a formulation of CC-MAX SAT. A similar integer program was first used by
Goemans and Williamson [4] for designing an approximation algorithm for MAX SAT.

Let M be an integer constant with 1≤ M ≤ P. We defineM in the next section.
Consider the problem (1)–(5) with the additional constraint

∑n
i=1 yi ≤ M . We can find

an optimal solution(y′, z′) of this problem in polynomial time by complete enumeration.
Now, consider the problem (1)–(5) with the additional constraint

∑n
i=1 yi ≥ M and let

(y′′, z′′) be anα-approximation solution of this problem. Clearly, the better of these two
solutions is anα-approximation solution of CC-MAX SAT. Consequently, without loss
of generality we may consider the problem (1)–(5) with constraint

∑n
i=1 yi ≥ M .

For t = M, . . . , P consider now the linear programsL Pt formed by replacingyi ∈
{0,1} constraints with the constraints 0≤ yi ≤ 1 and by replacing (3) with the constraint

n∑
i=1

yi = t.(6)

Let F∗t be the value of an optimal solution ofL Pt . Let k denote an index such that
F∗k = maxM≤t≤P F∗t . Since any optimal solution of the problem (1)–(5) with constraint∑n

i=1 yi ≥ M is a feasible solution ofL Pt for somet , we obtain thatF∗k is an upper
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bound of the optimal value of this problem. We now present a randomized approximation
algorithm for CC-MAX SAT:

1. Solve the linear programsL Pt for all t = M, . . . , P. Let(y∗, z∗)be an op-
timal solution ofL Pk wherek is an index such thatF∗k = maxM≤t≤P F∗t .

2. The second part of the algorithm consists ofk independent steps. At each
step the algorithm chooses an indexi from the set{1, . . . ,n} at random
with probability Pi = y∗i /k. Let S denote the set of the chosen indices.
Notice thatP ≥ k ≥ |S|. We setxi = 1 if i ∈ S andxi = 0, otherwise,
andzj = min{1,∑i∈I +j

xi +
∑

i∈I −j
(1− xi )}.

In the first part of our algorithm we can solve linear programsL Pt for all t = M, . . . , P
by using any known polynomial algorithm for linear programming. The second part is
a derandomization of the randomized part of the algorithm. We show in Section 4 that
derandomization can be done in polynomial time. In the next section we evaluate the
expected value of the rounded solution.

3. Analysis of the Algorithm

3.1. Preliminaries. In this subsection we state some technical lemmas.

LEMMA 1. The probability of realization of at least one among the events A1, . . . , An

is given by

Pr(A1 ∪ · · · ∪ An) =
∑

1≤i≤n

Pr(Ai )−
∑

1≤i1<i2≤n

Pr(Ai1 ∩ Ai2)+ · · ·

+ (−1)t−1
∑

1≤i1<···<i t≤n

Pr(Ai1 ∩ · · · ∩ Ait )+ · · · .

PROOF. See (1.5) in Chapter IV of Volume 1 of [8].

LEMMA 2. The probability of realization of at least one among the events B, A1, . . . , An

is given by

Pr(B ∪ A1 ∪ · · · ∪ An) = Pr(B)+
∑

1≤i≤n

Pr(B̄ ∩ Ai )

−
∑

1≤i1<i2≤n

Pr(B̄ ∩ Ai1 ∩ Ai2)+ · · ·

+ (−1)t−1
∑

1≤i1<···<i t≤n

Pr(B̄ ∩ Ai1 ∩ · · · ∩ Ait )+ · · · .

PROOF. The claim follows from Lemma 1 and the facts

Pr(B ∪ A1 ∪ · · · ∪ An) = Pr(B)+ Pr(B̄ ∩ (A1 ∪ · · · ∪ An))

= Pr(B)+ Pr((B̄ ∩ A1) ∪ · · · ∪ (B̄ ∩ An)).



Best Possible Approximation Algorithm for MAX SAT with Cardinality Constraint 401

LEMMA 3. The inequalities

1− e−y ≤ e−1+y,

1− e−4/ke−y ≤ e−1+y − g(k),

1− e−4/ke−y − e−4/ke−x + e−x−y ≤ e−2+x+y

hold for all y, x ∈ [0,1], k ≥ M , where M is a sufficiently large constant independent
of x and y, and limk→+∞ g(k) = 0.

PROOF. Let t = ey, then the first inequality is equivalent tot2 − et + e ≥ 0. Since
e2 − 4e < 0 we obtain the desired statement. Using the same argument we can prove
the second inequality for sufficiently largek. We now prove the third inequality:

1− e−4/ke−y − e−4/ke−x + e−x−y = (1− e−4/ke−x)(1− e−4/ke−y)+ g1(k),

whereg1(k) = e−xe−y(1−e−8/k). Let g(k) = e· g1(k), sog(k) ≥ 0 and limk→+∞ g(k)
= 0. We continue using the second inequality

≤ (e−1+x − g(k))e−1+y + g1(k) = e−2+x+y − g1(k)e
y + g1(k) ≤ e−2+x+y.

In the proof of the following statements we use the inequalities

e−a ≥
(
1− a

k

)k
≥ e−a−a2/k(7)

for all k ≥ 2a ≥ 0. We can simply derive (7) from the well-known inequalitiese−1 ≥
(1− 1/x)x ≥ e−1−1/x for all x ≥ 2.

LEMMA 4. The inequality

g(x, y, z) =
(

1− x

k

)k

+
(

1− y

k

)k

+
(

1− z

k

)k

−
(

1− x + y

k

)k

−
(

1− y+ z

k

)k

−
(

1− z+ x

k

)k

+
(

1− x + y+ z

k

)k

> 1− e−1

holds for all x, y, z ∈ [0,1] and k ≥ M , where M is a sufficiently large constant
independent of x, y, z.

PROOF. Notice that the following inequalities hold for allx ∈ [0,1]:

e−x −
(
1− x

k

)k
≤ e−x(1− e−x2/k) by (7)

≤ 1− e−1/k.
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Using similar arguments we have

lim
k→+∞

{
e−x + e−y + e−z+ e−x−y−z−

(
1− x

k

)k

−
(
1− y

k

)k
−
(
1− z

k

)k
−
(

1− x + y+ z

k

)k
}
= 0

and therefore for largek we obtain

g(x, y, z) ≥ e−x + e−y + e−z− e−x−y − e−x−z− e−y−z+ e−x−y−z− o(1)

= 1− (1− e−x)(1− e−y)(1− e−z)− o(1)

≥ 1− (1− e−1)3− o(1) > 0.74> 1− e−1.

3.2. Evaluation of Expectation. Let S denote the set of indices produced by the ran-
domized algorithm of Section 2, letf (S) be the value of the solution defined by the set
S, and letE( f (S)) be the expectation off (S). We now prove our main result.

THEOREM1.

F∗k ≥ E( f (S)) ≥ (1− e−1)F∗k .

PROOF. Using linearity of expectation we obtain

E( f (S)) =
∑
Cj∈C

wj Pr(zj = 1).

Fix a clauseCj and letX+ =∑i∈I +j
y∗i . We now consider four cases.

Case1: Assume that I−j = ∅. Since the steps of the algorithm are independent and
X+ ≥ z∗j we have

Pr(zj = 1) = Pr(S∩ I +j 6= ∅) = 1−
(

1− X+

k

)k

≥ 1−
(

1− z∗j
k

)k

≥
(

1−
(

1− 1

k

)k
)

z∗j .

The last inequality follows from the concavity of the functiong′(z) = 1− (1− z/k)k

and the factsg′(0) = 0 andg′(1) = 1− (1− 1/k)k.

Case2: Assume that|I −j | = 1. Let I −j = {i } anda = y∗i . If X+ > 1, then using the
argument of the previous case we obtainPr(zj = 1) ≥ Pr(S∩ I +j 6= ∅) ≥ 1− e−1.
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Assume thatX+ ≤ 1, then

Pr(zj = 1)

= Pr(S∩ I +j 6= ∅ or i 6∈ S) (by Lemma 2)

= Pr(S∩ I +j 6= ∅)+ Pr(S∩ I +j = ∅ andi 6∈ S) (by the independence
of the steps of the ran-
domized algorithm)

= 1−
(

1− X+

k

)k

+
(

1− X+ + a

k

)k

(by inequalities (7))

≥ 1− e−X+ + e−X+−a−(X++a)2/k (by inequalityX+ + a ≤ 2)

≥ 1− e−X+(1− e−4/ke−a) (by Lemma 3)

≥ 1− e−X+e−1+a (by inequality
X+ + (1− a) ≥ z∗j )

≥ 1− e−z∗j (by concavity)

≥ (1− e−1)z∗j .

Case3: Assume that|I −j | = 2. Let I −j = {i1, i2},a = y∗i1, andb = y∗i2. Without loss of
generality assume thatX+ ≤ 1, then

Pr(zj = 1)

= Pr(S∩ I +j 6= ∅ or i1 6∈ Sor i2 6∈ S) (by Lemma 2)

= Pr(S∩ I +j 6= ∅)+ Pr(S∩ I +j = ∅ andi1 6∈ S)

+ Pr(S∩ I +j = ∅ andi2 6∈ S)

− Pr(S∩ I +j = ∅ andi1 6∈ Sandi2 6∈ S) (by the independence
of the steps of the ran-
domized algorithm)

= 1−
(

1− X+

k

)k

+
(

1− X+ + a

k

)k

+
(

1− X+ + b

k

)k

−
(

1− X+ + a+ b

k

)k

(by inequalities (7))

≥ 1− e−X+ + e−4/ke−X+−a + e−4/ke−X+−b − e−X+−a−b (by Lemma 3)

≥ 1− e−X+e−2+a+b (by inequality

X+ + (1− a)
+ (1− b) ≥ z∗j )

≥ 1− e−z∗j (by concavity)

≥ (1− e−1)z∗j .
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Case4: Assume that|I −j | ≥ 3. Let i1, i2, i3 be arbitrary indices from the setI −j . Then

Pr(zj = 1)

≥ Pr(i1 6∈ Sor i2 6∈ Sor i3 6∈ S) (by Lemma 1)

= Pr(i1 6∈ S)+ Pr(i2 6∈ S)+ Pr(i3 6∈ S)

− Pr(i1 6∈ Sandi2 6∈ S)− Pr(i2 6∈ Sandi3 6∈ S)

− Pr(i1 6∈ Sandi3 6∈ S)

+ Pr(i1 6∈ Sandi2 6∈ Sandi3 6∈ S) (by the independence
of the steps of the ran-
domized algorithm)

=
(

1− y∗i1
k

)k

+
(

1− y∗i2
k

)k

+
(

1− y∗i3
k

)k

−
(

1− y∗i1 + y∗i2
k

)k

−
(

1− y∗i2 + y∗i3
k

)k

−
(

1− y∗i3 + y∗i1
k

)k

+
(

1− y∗i1 + y∗i2 + y∗i3
k

)k

(by Lemma 4)

> 1− e−1.

4. Derandomization. In this section we apply the method of conditional expectations
[2] to find an approximate truth assignment in polynomial time. The straightforward
use of this method does not give a polynomial-time algorithm since if an instance of
CC-MAX SAT contains a clause with a nonconstant number of negations we cannot
directly calculate (by using Lemma 2) the conditional expectations in polynomial time.

Let I P1 be an instance of CC-MAX SAT given by a set of clausesC = {Cj : j =
1, . . . ,m} and a set of variables{x1, . . . , xn}. Let F∗k be the value of an optimal solution
of the relaxationL Pk for I P1. We define an instanceI P2 of CC-MAX SAT by replacing
each clauseCj in which|I −j | ≥ 3 with the clauseC′j = x̄i1∨ x̄i2∨ x̄i3 wherei1, i2, i3 ∈ I −j .

We apply our randomized approximation algorithm using probabilities defined by the
optimal solution ofL Pk. Let Sbe a solution obtained by randomized rounding, letf1(S)
be the value ofS for the problemI P1, and let f2(S) be the value ofS for the problem
I P2. Then using the fact thatPr(zj = 1) > 1−e−1 for all clausesCj with |I −j | ≥ 3, we
haveE( f2(S)) ≥ (1− e−1)F∗k .We can derandomize this algorithm using the following
procedure:

DESCRIPTION OF THEDERANDOMIZATION. The derandomized algorithm consists ofk
steps indexed bys = 1, . . . , k. In steps we choose an indexi s which maximizes the
conditional expectation, i.e.,

E( f2(S)|i1 ∈ S, . . . , i s−1 ∈ S, i s ∈ S) = max
j∈{1,...,n}

E( f2(S)|i1 ∈ S, . . . , i s−1 ∈ S, j ∈ S).

Since

max
j∈{1,...,n}

E( f2(S)|i1 ∈ S, . . . , i s−1 ∈ S, j ∈ S) ≥ E( f2(S)|i1 ∈ S, . . . , i s−1 ∈ S)
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at the end of the derandomization we obtain a solutionS̃such thatf2(S̃) ≥ E( f2(S)) ≥
(1− e−1)F∗k . SinceF∗k ≥ f1(S̃) ≥ f2(S̃) this solution is a(1− e−1)-approximation
solution forI P1. We can calculate the conditional expectations in polynomial time using
their linearity, Lemma 2, and the fact that|I −j | ≤ 3 in the instanceI P2.

5. Discussion. In this paper we have presented a polynomial-time approximation al-
gorithm for CC-MAX SAT with a worst-case performance guarantee of 1− e−1. Feige
[6] proved that this is a best possible performance guarantee unlessP = NP. Ageev
and Sviridenko [1] obtained an approximation algorithm with performance guarantee
1− (1− 1/k)k for the class of CC-MAX SAT instances with clauses of the following
two types:x1 ∨ · · · ∨ xt , x̄1 ∨ · · · ∨ x̄t and with at mostk literals per clause. A major
open problem consists in finding a better approximation algorithm for CC-MAX SAT
with clauses of bounded length (for example, for CC-MAX 2SAT).
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