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Best Possible Approximation Algorithm for MAX SAT
with Cardinality Constraint *

M. |. Sviridenkd

Abstract. We consider the MAX SAT problem with the additional constraint that at rRogariables have

a true value. We obtain @ — e~1)-approximation algorithm for this problem. Feige [6] has proved that for
MAX SAT with cardinality constraint with clauses without negations this is the best possible performance
guarantee unlesB = NP.
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1. Introduction. An instance of the Maximum Satisfiability Problem (MAX SAT) is
defined by a collectio@ of Boolean clauses, where each clause is a disjunction of literals
drawn from a set of variablgsy, .. ., Xp}. A literal is either a variable or its negation

X. In addition, for each clausg,  C, there is an associated nonnegative weightAn
optimal solution to a MAX SAT instance is an assignment of truth values to the variables
X1, ..., X, that maximizes the sum of the weights of the satisfied clauses (i.e., clauses
with at least one true literal). In this work we consider cardinality constrained MAX SAT
(CC-MAX SAT). An instance of this problem is a pai€, P) whereC is a collection

of clauses andP is an integer parameter. A feasible solution is a truth assignment that
gives value true to at mo$t variables.

MAX SAT is one of the central problems in theoretical computer science and is
well studied, both from a practical viewpoint [9] and a theoretical one. The best known
approximation algorithm for MAX SAT has a performance guarantee slightly better
than 0.77 [3]. In [10] it is shown that the MAX E3SAT, the version of the MAX SAT
problem in which each clause is of length exactly 3, cannot be approximated in poly-
nomial time to within a ratio greater tharyg, unlessP = NP. For general MAX
3SAT there exists an approximation algorithm with performance guaraf&é€lT].

The best known positive and negative results for MAX 2SAT are 0.931 [7] apg21
[10], respectively. We can see that there is a gap between positive and negative results
for MAX SAT.

Khanna and Motwani[12] define a class MPSAT of optimization problems and present
an approximation scheme for all problems in this class. Since planar CC-MAX SAT
belongs to MPSAT the existence of an approximation scheme for this planar problem
follows. On the other hand, Feige [6] has proved that the existence of an approximation
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algorithm with a performance guarantee better than & for CC-MAX SAT with
clauses without negations impli€&s= NP.

In this work we present an approximation algorithm for CC-MAX SAT with a perfor-
mance guarantee of-1 e~1. We use the method of randomized rounding of an optimal
solution to a linear relaxation. Notice that for satisfiability problems without cardinality
constraint the best known algorithms (sometimes the best possible) are obtained by using
semidefinite programming relaxations (compare [4] and [7], [5], and [11]) but for CC-
MAX SAT the best possible approximation is obtained here via a linear programming
relaxation.

2. Linear Relaxation and Approximation Algorithm.  Consider the following mixed
integer program:

(1) maxZ w;z,
CjeC
subject to
(2 Zyi+Z(1—yi)ZZj forall CjeC,
ielj+ el

n
€) Y vi<P,

i1
(4) 0<z <1 foral CjeC,
(5) yi € {0, 1}, i=1,...,n,

wherel ]-+ (respectivelyl;”) denotes the set of variables appearing unnegated (respectively
negated) irC;. By associating; = 1 with x; set truey; = 0 with x; false,z; = 1 with
clauseC; satisfied, and; = 0 with clauseC; not satisfied, the mixed integer program
(1)—(5) is a formulation of CC-MAX SAT. A similar integer program was first used by
Goemans and Williamson [4] for designing an approximation algorithm for MAX SAT.
Let M be an integer constant with& M < P. We defineM in the next section.
Consider the problem (1)—(5) with the additional const@ﬁ‘t:l yi < M. We can find
an optimal solutiorfy’, Z) of this problem in polynomial time by complete enumeration.
Now, consider the problem (1)—(5) with the additional constr@iiit, yi > M and let
(y”, Z") be anx-approximation solution of this problem. Clearly, the better of these two
solutions is ar-approximation solution of CC-MAX SAT. Consequently, without loss
of generality we may consider the problem (1)—(5) with constriifit, yi > M.
Fort = M, ..., P consider now the linear program$>; formed by replacing; €
{0, 1} constraints with the constraints@y; < 1 and by replacing (3) with the constraint

(6) doyvi=t
i=1

Let F;* be the value of an optimal solution &ff;. Let k denote an index such that
F& = maxu<t<p F". Since any optimal solution of the problem (1)—(5) with constraint
>,V > M is a feasible solution of P, for somet, we obtain thatm; is an upper
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bound of the optimal value of this problem. We now present a randomized approximation
algorithm for CC-MAX SAT:

1. Solvethelinear progranis?, forallt = M, ..., P.Let(y*, z*) beanop-
timal solution ofL P wherek is an index such thdt = maxu<<p F*.

2. The second part of the algorithm consistk ofdependent steps. At each
step the algorithm chooses an indefxom the sef{1, ..., n} at random
with probability P, = y;*/k. Let S denote the set of the chosen indices.
Notice thatP > k > |S]. We setx; = 1if i € Sandx; = 0, otherwise,
andz; = min{1, Zie,j+ Xi + Zie,f (1—x)}.

In the first part of our algorithm we can solve linear progrdnig forallt =M, ..., P

by using any known polynomial algorithm for linear programming. The second part is
a derandomization of the randomized part of the algorithm. We show in Section 4 that
derandomization can be done in polynomial time. In the next section we evaluate the
expected value of the rounded solution.

3. Analysis of the Algorithm
3.1. Preliminaries In this subsection we state some technical lemmas.

LEMMA 1. The probability of realization of at least one among the events A, A,
is given by

Pr(AyU--UA) = > Pr(A)— Y  Pr(A,NA)+:-
1<i<n 1<iy<ip<n

+ DT DT PrALN N A+

1<i;<--<it<n
PrROOF See (1.5) in Chapter IV of Volume 1 of [8]. O

LEMMA 2. The probability of realization of atleastone amongthe event&B. . ., A,
is given by

Pr(BUAU---UA,) = Pr(B)+ Z Pr(Bn A)

1<i<n

- > Pr(BNA,NA)+: -

1<ii<ir<n

+E=DT YT PrBNA N NA) A+

1<ij<--<it<n

ProOF The claim follows from Lemma 1 and the facts

Pr(BUAIU---UA,) = Pr(B)+ Pr(BN(AjU---UA)

= Pr(B)4+ Pr(BNA)U---U (BN AY). O
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LEMMA 3. The inequalities

1—eY < ey,
1—e¥keV < eV _g(k),
1— e—4/ke—y _ e—4/ke—x 4 e Xy < e—2+x+y

hold for all y, x € [0, 1], k = M, where M is a sufficiently large constant independent
of x and y andlimy_, ;- 9(k) = 0.

PrROOF Lett = e, then the first inequality is equivalent té — et + e > 0. Since

€’ — 4e < 0 we obtain the desired statement. Using the same argument we can prove

the second inequality for sufficiently larggee We now prove the third inequality:
1—e¥keV —e¥ke™X XV = (1— e ¥ e )1 —e¥eY) + qu(K),

whereg; (k) = e *e Y(1— e ¥%). Letg(k) = e- g1(k), sog(k) > 0 and lim_, o g(K)
= 0. We continue using the second inequality

<@ —gkye M + ok = —gie’ + qi(k) <e Y. O
In the proof of the following statements we use the inequalities

(7) e > (1 _ E)k > e—a—az/k

for all k > 2a > 0. We can simply derive (7) from the well-known inequalitess >
(1-1/x)* > e " V*forall x > 2.

LEMMA 4. The inequality
k k k k
_(1-*% _y _Z) (XY
ooy = (1) + (1) + (15) - (-5
k k
y+z Z+X
(1--55) - (-57)

k
+(1—7X+i’+z> >1-et

holds for all x y,z € [0,1] and k > M, where M is a sufficiently large constant
independent of xy, z.

ProOF Notice that the following inequalities hold for ale [0, 1]:

e - (l - E)k eX(1—e/ by (7)

IA

< 1-—eVk
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Using similar arguments we have

k—+00 k
) () o

and therefore for largk we obtain

. X\ K
lim {e‘X +eVt+et+e Y Eo (1 — —)

gx,y,2) > e*+eV+ei—e¥ YV —eX eV 2+e Y %001
=1-1-eHl-eHA-e?%-0Q1)
>1-1-e1H*—01) >074>1—¢eL. O

3.2. Evaluation of Expectatian Let S denote the set of indices produced by the ran-
domized algorithm of Section 2, Idt(S) be the value of the solution defined by the set
S, and letE( f (S)) be the expectation of (S). We now prove our main result.

THEOREM 1.

Fe>E(f(9) > (1—-eHF.

PrOOF  Using linearity of expectation we obtain

E(f(S)= ) w; Pr(z =1).

CjeC

Fix a clauseC; and letX* = )", |+ yi*. We now consider four cases.
J

Casel: Assume that;T = @. Since the steps of the algorithm are independent and
X* >z we have

PF(Z]' =1

X\ ¥
Pr(SNI"#2) =1~ (1_T>

D))

The last inequality follows from the concavity of the functighiz) = 1 — (1 — z/k)*
and the factg/(0) = 0 andg'(1) = 1 — (1 — 1/k)X.

v

Case2: Assume thatlj‘| =1 Letly = {i} anda = y. If X* > 1, then using the
argument of the previous case we obt&in(z; = 1) > Pr(SnN Ij+ £@)>1—¢el
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Assume thalX* < 1, then

Pr(zy =1

= Pr(Sni #gori¢s) (by Lemma 2)

= Pr(SNnI"#2)+Pr(Snij" =zandi ¢ 9 (by the independence
of the steps of the ran-
domized algorithm)

X+ k

_ (1 ) (1 - k+ a) (by inequalities (7))
> 1—e X f g X ra Xk (by inequalityX ™ + a < 2)
> 1-— e‘X (1 e Vked) (by Lemma 3)
> 1—e X'glta (by inequality

Ttl-a=7)
>1-¢e4 (by concavity)
> (1-ehz.

Case3: Assume thamj‘| = 2. Letlj‘ = {i1,i2},a =y, andb = y;. Without loss of
generality assume that™ < 1, then

Pr(zy =1

= Pr(SNI;" # @oriy ¢ Soriz ¢ 9 (by Lemma 2)
= Pr(Sn Ij+ £ @)+ Pr(Sn IJ-+ =gandi; &9
+Pr(Snlj" =zandi; ¢ 9

— Pr(SNI* =@ andi; ¢ Sandi, ¢ S) (by the independence
j
of the steps of the ran-
domized algorithm)

X\ ¥ Xt +a\k
—1-(1-2 1-
(1-%) + (-5
X +b)\* X+ b\*
+ (1 - k+ ) - (1— %) (by inequalities (7))
> 1-—e X fe¥keg X2y g¥keg X' -b_gX'-ab  (hy| emma 3)
> 1—e X g2tath (by inequality
XtT+1-a
+(1-b)>Z7)
>1-¢34 (by concavity)
> (1-ehHz.
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Case4: Assume thatl = 3. Letiy, iy, i3 be arbitrary indices from the sqf. Then
Pr(zy =1
Pr(i, ¢ Sori, & Soriz ¢ S (by Lemma 1)
= Pr(i:€9+Pr(@i, ¢S+ Pr(izg9
— Pr(i, ¢ Sandi, ¢ S) — Pr(i, ¢ Sandiz € S)
— Pr(i; ¢ Sandizg ¢ S)
+ Pr(i; € Sandi, ¢ Sandiz ¢ S (by the independence

of the steps of the ran-
%\ K %\ K %\ K
(1% % %
‘( k) +( k) +< k>

domized algorithm)
AR AL AN AN
k k

'*+'*k *+*+*k

> 1-el O

v

4. Derandomization. Inthis section we apply the method of conditional expectations
[2] to find an approximate truth assignment in polynomial time. The straightforward
use of this method does not give a polynomial-time algorithm since if an instance of
CC-MAX SAT contains a clause with a nonconstant number of negations we cannot
directly calculate (by using Lemma 2) the conditional expectations in polynomial time.
Let I P, be an instance of CC-MAX SAT given by a set of clauses- {C; : | =
1,...,m}and a set of variabley, . . ., Xn}. Let K be the value of an optimal solution
of the relaxatiorL P for | P;. We define an instandeP, of CC-MAX SAT by replacing
each claus€; in Which|lj*| > 3withthe cIause:j’ = Xi, VX, VX, Whereiy, iz, i3 € I
We apply our randomized approximation algorithm using probabilities defined by the
optimal solution ofL P. Let Sbe a solution obtained by randomized rounding fi€6)
be the value ofs for the probleml P,, and let f,(S) be the value ofs for the problem
| P,. Then using the fact thd&r(z; = 1) > 1—elforall clause<C; with 7] >3, we
haveE(f,(S) > (1—e™b) F:. We can derandomize this algorithm using the following
procedure:

DESCRIPTION OF THEDERANDOMIZATION. The derandomized algorithm consistskof
steps indexed bg = 1, ..., k. In steps we choose an inded which maximizes the
conditional expectation, i.e.,

E(fz(S)HlE S,...,is_le S,ise S) = ?ilaX} E(fz(S)“l € S,...,is_l € S,j S S)
jefa,..., n

Since

) I;?aX}E(fz(S)“l €S, ...,is_1 € S,j €S > E(f2(8)||1 €S, ...,is_1 € S
jeld,..., n
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at the end of the derandomization we obtain a soluBsnch thatf,(S) > E(f,(S)) >

(1 — e HF: SinceF > (S > f2(S) this solution is a1 — e~ Y)-approximation
solution forl P;. We can calculate the conditional expectations in polynomial time using
their linearity, Lemma 2, and the fact thm‘ﬂ < 3inthe instance P,.

5. Discussion. In this paper we have presented a polynomial-time approximation al-
gorithm for CC-MAX SAT with a worst-case performance guarantee efet . Feige

[6] proved that this is a best possible performance guarantee uRlessNP. Ageev

and Sviridenko [1] obtained an approximation algorithm with performance guarantee
1 — (1 — 1/k)k for the class of CC-MAX SAT instances with clauses of the following
two typesixy vV - V X, X1 V - -+ V X and with at mosk literals per clause. A major
open problem consists in finding a better approximation algorithm for CC-MAX SAT
with clauses of bounded length (for example, for CC-MAX 2SAT).
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