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Geometry Helps in Bottleneck Matching
and Related Problems1

A. Efrat,2 A. Itai,3 and M. J. Katz4

Abstract. Let A and B be two sets of n objects in R
d , and let Match be a (one-to-one) matching between A

and B. Let min(Match), max(Match), and �(Match) denote the length of the shortest edge, the length of the
longest edge, and the sum of the lengths of the edges of Match, respectively. Bottleneck matching—a matching
that minimizes max(Match)—is suggested as a convenient way for measuring the resemblance between A and
B. Several algorithms for computing, as well as approximating, this resemblance are proposed. The running
time of all the algorithms involving planar objects is roughly O(n1.5). For instance, if the objects are points in
the plane, the running time of the exact algorithm is O(n1.5 log n). A semidynamic data structure for answering
containment problems for a set of congruent disks in the plane is developed. This data structure may be of
independent interest.

Next, the problem of finding a translation of B that maximizes the resemblance to A under the bottleneck
matching criterion is considered. When A and B are point-sets in the plane, an O(n5 log n)-time algorithm
for determining whether for some translated copy the resemblance gets below a given ρ is presented, thus
improving the previous result of Alt, Mehlhorn, Wagener, and Welzl by a factor of almost n. This result is used
to compute the smallest such ρ in time O(n5 log2 n), and an efficient approximation scheme for this problem
is also given.

The uniform matching problem (also called the balanced assignment problem, or the fair matching problem)
is to find Match∗U, a matching that minimizes max(Match) − min(Match). A minimum deviation matching
Match∗D is a matching that minimizes (1/n)�(Match)−min(Match). Algorithms for computing Match∗U and
Match∗D in roughly O(n10/3) time are presented. These algorithms are more efficient than the previous O(n4)-
time algorithms of Martello, Pulleyblank, Toth, and de Werra, and of Gupta and Punnen, who studied these
problems for general bipartite graphs.

Key Words. Bipartite graph matching, Bottleneck matching, Euclidean distance, Minkowski norm, Trans-
lation, Approximation.

1. Introduction. In the field of pattern recognition it is often required to measure the
resemblance between two sets A and B of objects in d-dimensional space. This problem
often arises when an input image is given, and we seek, among model images stored in
some library, the one that is most similar to the given image.

Many methods have been suggested for quantifying this similarity. Perhaps the most
common of which is the Hausdorff distance, defined as the maximum distance between
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Fig. 1. A set A of points represented as solid disks, and a set B of points represented as empty disks.

an object in one set and its closest neighbor in the other set. Many algorithms and appli-
cations have been suggested for computing and applying the Hausdorff distance (e.g.,
[12]–[14], [33], and [34]). However, measuring the resemblance by the Hausdorff dis-
tance suffers from the following problem which is sometimes a fundamental drawback:
the mapping defined by associating each object in A to its closest neighbor in B is not
necessarily a bijection (one-to-one).

Quite often it is required that each object in an image be matched by one and only
one object in the other image. In such cases the Hausdorff distance is meaningless, see
Figure 1.

In this paper we propose a different measure of similarity: we assume that both images
A and B have the same number of objects, a perfect bipartite matching is a bijection Match
from A to B. Let max(Match) denote the maximal distance between any matched pair of
objects. We seek a matching Match that minimizes max(Match). We refer to this measure
as the bottleneck matching criterion, and define the distance between the two images as
the longest distance between any matched pair. Let Match(A, B) denote this distance.

The disadvantage of bottleneck matching, as well as any distance that relies on one-
to-one matching, is that it is probably more complicated to compute than the Hausdorff
distance, and the algorithms tend to be less efficient. A partial explanation is that the
known algorithms attack the problem as a purely graph-theoretic one without taking
advantage of its geometric nature.

Furthermore, the problem of minimizing the resemblance under some rigid motion
or other transformation of one image relative to the other, has been investigated mainly
from a practical point of view, and the best known algorithms are either computationally
inefficient (see [5]) or significantly restrict the inputs (see [6]).

For the case where the sets A and B are points in the plane, Vaidya [46] explored the
geometric structure of the problem to obtain an algorithm for finding a matching between
A and B, for which the sum of distances between the matched points is minimal (among
all perfect matchings between A and B). (This criterion is different from our bottleneck
criterion.) He obtained an O(n2.5 log n)-time algorithm for the Euclidean distance and
an O(n2 log3 n)-time algorithm for the L∞ distance. The solution of the Euclidean case
has recently been improved by Agarwal et al. [2] to O(n2+ε).5 However, the resulting
algorithms remain relatively complicated. See also [11] and the recent paper by Indyk
and Venkatasubramanian [35] for fast algorithms for other types of graphs related to
geometric configurations.

For computing Match(A, B) we introduce in Section 3.2 an oracle that determines,
for a parameter r , whether Match(A, B) ≤ r . The exact running times depend on the
norm and the dimension.

5 Throughout the paper, ε stands for a positive constant which can be chosen arbitrarily small with an appropriate
choice of other constants of the algorithms.
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Table 1. Computing Match(A, B) in different settings.

Dim. A B Norm Oracle Theorem Match Theorem

R
2 Points Points L p,∀p O(n1.5 log n) 5.4 O(n1.5 log n) 5.10

Additive O(n1.5+ε) 6.7 O(n1.5+ε) 6.8
weights

Segments L p,∀p O(n1.5+ε) 6.7 O(n1.5+ε) 6.8
R

3 Points Points L2 O(n11/6+ε) 6.2 O(n11/6+ε) 6.3
R

d Points Points L∞ O(n1.5 logd−1 n) 6.4 O(n1.5 logd n) 6.5

The oracle is then used to find Match(A, B); that is, the minimal r for which
Match(A, B) ≤ r . Clearly, Match(A, B) must equal a distance between an object of
A and an object in B. Thus our search space is confined to n2 such distances. In Sec-
tion 4 we show how to conduct the search efficiently. In some cases (Sections 5.3 and
6.1) the time required for finding the matching is the same as the oracle time.

Sections 5 and 6 discuss the implementation of the data structures needed for the
oracle and for finding the matching itself, for different choices of the dimension of the
space, the sets A and B, and the underlying norm. These results are listed in Table 1.

When A, B ⊆ R
2 are point-sets, and the underlying norm is L2 (the planar Euclidean

point-sets case) our algorithm runs in time O(n1.5 log n). For this case, we developed
(Section 5.1) a semidynamic linear-size data structure for a set S of equal-size disks in
the plane, so that finding a disk containing a query point, and deleting a disk from S, can
both be performed in time O(log n). We believe that this data structure is of interest of
its own.

In Section 5.2 we show how to conduct the search efficiently, so the running time is
O(Oracle− Time · log n) = O(n1.5 log2 n). Moreover, for this case we can shortcut the
generic algorithm and find the matching in the same time as the oracle (Section 5.10),
i.e., in time O(n1.5 log n) (Theorem 5.10).

Additional settings are discussed in Section 6. Assume first that A and B are point-sets
in R

d . For d = 3 and the L2 norm (the three-dimensional Euclidean point-sets case),
we propose an O(n11/6 + ε)-time algorithm (Theorem 6.3). When the norm is L∞ (the
L∞ point-sets d-space case), the running time is O(n1.5 logd n) (Theorem 6.5).

When A is a set of n points in the plane, B is a set of n segments in the plane, and the
norm is an arbitrary L p, or when A and B are sets of points in the plane and the distance is
additively weighted (i.e., distw(a, b) = ||a − b||p +w(b) for some nonnegative weight
function w), the running time of the algorithm for computing Match(A, B) is slightly
worse—O(n1.5+ε), for any ε > 0 (Theroem 6.8).

Section 7 presents an approximation scheme that computes an ε-approximation for
Match(A, B), in any dimension in time O(n1.5 log n), where A and B are point-sets
and the constant of proportionality depends on the dimension and on ε. We believe
that this scheme is relatively easy to implement, with a reasonably small constant of
proportionality, and therefore would do reasonably well in practice.

We also show in Section 8.2 an application of our technique for the translation
problem: Let A and B be two n-point-sets in the plane, and let ρ be a fixed number. The
problem is to find a translation B ′ of B such that Match(A, B ′) is at most ρ, or determine
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that no such translation exists. Alt et al. [5] gave an O(n6)-time algorithm for this
problem. We improve this bound to O(n5 log n), and show how to find in O(n5 log2 n)

time a translation B∗ of B that minimizes Match(A, B ′), over all translations B ′. We
also present a scheme to find a translation that approximates Match(A, B∗).

In Section 9 we discuss two problems strongly related to the matching problem. The
first is Partial Matching in which we are given A, B (not necessarily of the same cardi-
nality) and a parameter 1 ≤ p ≤ min{|A|, |B|}, and we seek a matching of cardinality p
for which its longest edge is as short as possible. The second problem is Longest Perfect
Matching in which we are given A, B, and seek Match(A, B), the largest r for which a
perfect matching exists, such that the length of all its edges is r or more. Surprisingly, for
points in R

3, this problem is easier to tackle than the problem of finding Match(A, B).
Finally, we consider the problem of finding a matching Match between A and B which

is as balanced as possible. We consider the (most) uniform matching M∗
U which minimizes

max(Match) − min(Match), where min(Match) is the the minimum distance between
any matched pair. Martello et al. [41] considered this problem (or a balanced assignment,
as they called it) for general bipartite graphs, and presented an O(n4)-time solution. In
Section 9.4 we present an O(n10/3 log n)-time solution for this problem in the geometric
setting. Our solution uses both the technique for computing a bottleneck matching, and a
technique for batched range searching, where the ranges are congruent annuli (see [37]).

Another criterion for balancing matchings is to minimize (1/n)�(Match) − min
(Match), where �(Match) is the sum of lengths of the edges of Match. A best matching
under this criterion is called a minimum-deviation matching M∗

D and is discussed in [20]
and in [22].

2. Matching in General Bipartite Graphs. We first discuss the connection between
our problem and standard graph-matching theory. A graph-matching of a bipartite graph
G = (X ∪Y, E) is a set of edges M ⊆ E(G) such that no vertex of G is incident to more
than one edge of M . A graph-matching M is perfect if every vertex of G is incident to an
edge of M . The problem of finding a perfect matching in a bipartite (or arbitrary) graph
has been well studied. See, for example, [39] and [40] for textbooks on this subject. The
best known algorithm for finding a perfect matching in a bipartite graph runs in time
O(m

√
n) (where n is the number of vertices and m is the number of edges) and is due

to Hopcroft and Karp [32]. When a weight is associated with each edge, and we seek a
perfect matching for which the sum of weights of its edges is minimal, the best known
algorithm runs in time O(n3), using the so-called Hungarian method, and is due to Kuhn
[38].

We define our problem in graph-theoretical terms: The images A and B are each a
set of n vertices of a complete bipartite graph G = (A ∪ B, E). The weight of the edge
(a, b) ∈ E is dist(a, b)—the distance between a ∈ A and b ∈ B. Let max(M) denote, as
above, the weight of the heaviest edge of a graph-matching M . The bottleneck matching
is a perfect graph-matching M ⊆ E that minimizes max(M).

Let G[r ] be the bipartite graph whose vertex set is A∪ B, and whose edges consist of
all pairs (a, b), a ∈ A, b ∈ B, for which dist(a, b) ≤ r . Note that Match(A, B) ≤ r if
and only if there exists a perfect graph-matching in G[r ]. We therefore focus on finding
a maximum graph-matching in G[r ]—a graph-matching of largest cardinality.
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Given a graph-matching M of a bipartite graph G = (A∪ B, E), the vertices incident
to edges of M are called matched and the remaining vertices are exposed. The path
π = (v1, . . . , v2t ) is an alternating path if v1 is an exposed vertex of A, (v2i , v2i+1) ∈ M
(i = 1, . . . , t − 1) and (v2i−1, v2i ) ∈ E\M (i = 2, . . . , t). Note that the odd vertices of
π belong to A, and the even ones to B. This path is called an augmenting path if v2t is
an exposed vertex. If π is an augmenting path, then M ′ = M ⊕ π = (M\π) ∪ (π \M)

is a graph-matching too and |M ′| = 1+ |M |.
A theorem of Berge [9] states that a matching is maximum if and only if there are

no augmenting paths. Thus one may start with the empty matching and augment it by
augmenting paths found in a greedy fashion.

Edmonds and Karp [18] showed how to compute augmenting paths by order of
increasing length. Instead of finding the augmenting paths one by one, Hopcroft and
Karp [32], and also Karzanov [36] who followed the techniques of Dinitz [16], find all
shortest augmenting paths together. We follow Dinitz’s terminology (see also [45]).

To find all shortest augmenting paths, we conduct a breadth-first search to get layers
L1, . . . , L2t . The first layer, L1, consists of all exposed vertices of A; L2i contains all
vertices of B not appearing in

⋃
j<2i L j and connected (in G) to some vertex of L2i−1.

If L2i contains exposed vertices, then it is the last layer. Otherwise, we define L2i+1 to
contain all vertices connected (in the matching M) to vertices in L2i . Note that the odd
layers contain only vertices of A and the even layers only vertices of B.

The layered graph L consists of the vertex set
⋃2t

i=1 Li , and edges of M that connect
vertices of L2 j to vertices of L2 j+1, and edges of G that connect vertices of L2 j−1 to
vertices of L2 j .

Dinitz showed how to compute a maximal set of edge-disjoint augmenting paths
by conducting a depth-first search of the layered graph. His algorithm requires O(|E |)
time to construct the layered graph and to find the augmenting paths. For sufficiently
large values of r , G[r ] contains �(n2) edges, hence his algorithm applied to our setting
requires O(n2) time per layered graph. We take advantage of the geometric features
of G[r ] to improve the efficiency of Dinitz’s algorithm. We represent the edges of L
implicitly, and thus our construction enables us to find the augmenting paths in L in
almost O(n) time.

3. Maximal Matching in G[r]. In this section we describe an oracle to decide whether
a given r is less than, equal to, or greater than r∗ = Match(A, B). The oracle searches
for a perfect matching in G[r ], using Dinitz’s algorithm and taking advantage of the
geometric setting.

3.1. Constructing L Implicitly. Our goal is to find the set of vertices of each layer Li ;
however, we do not explicitly construct all the edges of L. Instead, we use an abstract
data structureDr (S) for a set of objects S ⊆ B and a fixed parameter r . The data structure
supports the following operations:

• neighborr (Dr (S), q): For a query point q, return an element s ∈ S whose distance
from q is at most r . If no such s exists, then neighborr (Dr (S), q) = ∅.

• deleter (Dr (S), s): Delete the object s from S.
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The implementation of Dr (·) depends on the dimension, the objects of S, and the
underlying norm. Various implementations are described in Sections 5–6.3. Let T (|S|)
denote an upper bound on the time of performing one of these two operations on Dr (S).
We disregard the time needed to construct the data structure, since in all relevant cases
it is bounded by O(n · T (n)), and does not influence the overall complexity.

We turn now to the algorithm for generating L. Initially, set D ← Dr (B). In the
course of the algorithm, some vertices of B will be deleted. Using this data structure,
the layered graph is constructed by the following procedure:

procedure ConstructLayerGraph(G, M)

L1 ← exposed vertices of A;
i ← 1; D← Dr (B);
Repeat forever

L2i ← ∅;
For each a ∈ L2i−1 Do

/* Find all b’s which are neighbors of some a in G[r ] */
While neighborr (D, a) �= ∅

b ← neighborr (D, a);
Add b to L2i ;
deleter (D, b); /* in order to prevent re-finding b */

End
End
If L2i is empty

Then no augmenting path exists. Stop.
Else If L2i contains exposed vertices,

Then the construction of L is complete;
Output L;

Else L2i+1 ← all vertices of A adjacent to L2i via edges of M .
i ← i + 1;

End

Each matched vertex of A is reached in O(1) time from its pair in M . Also, each
vertex of B is found at most once by a query of neighborr (D, ·) and deleted from D at
most once. Thus the construction time of L is O(n · T (n)).

3.2. Finding Augmenting Paths in L. We now show that the augmenting paths in any
maximal set of edge-disjoint augmenting paths are vertex disjoint.

LEMMA 3.1. Let M be a graph-matching of a bipartite graph G = (A ∪ B, E), let �

be a set of edge-disjoint augmenting paths, and let v be an intermediate vertex of some
path of �. Then v cannot participate in any other augmenting path of �.

PROOF. Since v is neither the first nor the last vertex of the augmenting path, v is not
exposed so it must be incident to exactly one edge (v, v′) ∈ M . Suppose v ∈ L2 j . By
our construction, (v, v′) connects L2 j and L2 j+1. Hence, every augmenting path that
contains v must also contain the edge (v, v′). Since the paths of � are edge disjoint, v
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cannot belong to any other path of �. A similar argument holds when v belongs to an
odd layer.

Next we look for augmenting paths from the exposed vertices of L1 to exposed ver-
tices of L2t (the last layer). First we construct D2i ≡ Dr (L2i ) for each of the even
layers L2i ⊆ B. Then we conduct a depth-first search: We start from an exposed ver-
tex in L1 and construct an alternating path. To advance from a vertex a ∈ L2i−1, we
perform neighborr (D2i , a). If it returns a vertex b ∈ L2i , then we add (a, b) to the
current path and advance to b. Otherwise, it returns ∅ indicating that no neighbors of a
remain in L2i . Thus a does not lead to an exposed vertex of L2t and we should back-
track.

To advance from b ∈ L2i (i < t), let (b, a+) ∈ M . We add (b, a+) to the path and
advance to a+ (b is not exposed since in

⋂
L all exposed vertices of B belong to L2t ).

If b ∈ L2t is an exposed vertex, then we have found an augmenting path. We increase
M and delete all its intermediate vertices from the appropriate L2i ’s. (This is justified
by Lemma 3.1.)

To backtrack from a ∈ L2i−1 (i ≥ 2), let (b−, a) ∈ M and let a− be the vertex
preceding b− on the path. We remove a and b− from the path and continue from a−. If
a ∈ L1 we simply delete it from L1.

The search for augmenting paths (and the phase) terminates when there remain no
more exposed vertices in L1.

If all the vertices are matched, then we conclude that r∗ ≤ r , otherwise, we conclude
that r∗ > r . If during the construction of L one does not reach any exposed vertex of B,
then G[r ] contains no perfect matching. We therefore halt and conclude that r∗ > r .

Note that the time spent on finding all alternating paths in a single layered graph is
again O(n ·T (n)). By a theorem of Hopcroft and Karp [32], Dinitz’s matching algorithm
requires O(

√
n) phases. Hence we have the following theorem:

THEOREM 3.2. Let A and B be two sets of n objects and r > 0. Then the oracle
that determines whether r ≤ Match(A, B) requires time O(n1.5 · T (n)), where T (|S|)
is a (monotonically nondecreasing) upper bound on the time required to perform an
operation on Dr (S).

4. Finding the Optimum Matching. The oracle is now used to find Match(A, B);
that is, the minimal r for which Match(A, B) ≤ r . Clearly, Match(A, B) must equal a
distance between an object of A and an object in B. Thus our search space is confined
to n2 such distances.

Rather than calling the oracle for all these distances, we wish to conduct a binary
search. Thus, naively, we would have first to calculate all n2 distances, sort them, and
then conduct the binary search, calling the oracle at most 2 log n times. However, if the
oracle requires time o(n2), the time to find the distances and sort them will dominate the
total running time.

In order to minimize the number of times the oracle is called, we need to solve the
following variant of the the kth distance selection problem efficiently. For ai ∈ A, bj ∈ B
let dist(ai , bj ) denote the distance from ai to bj . The kth bichromatic distance selection
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problem is to find dist(k), the kth largest value in the multiset
{
dist(ai , bj )|1 ≤ i, j ≤ n

}
,

where k is a given parameter.
If we can find dist(i) in time Select-Time = o(n2), then since the time required by

each iteration requires Select-Time+Oracle-Time, the time to find a minimum matching
will become O((Select-Time+Oracle-Time) log n). If Select-Time = O(Oracle-Time),
then Select-Time can be ignored.

5. The Euclidean Planar Case. We start with our most involved example—points in
the Euclidean plane—for which we have the strongest results. Let A and B be sets of
n points in R

2 and let the underlying norm be the Euclidean norm—L2. The same data
structure may also be used for the norms L p, for any 1 ≤ p ≤ ∞.

5.1. The Oracle. To get the oracle that checks whether r < Match(A, B), we have to
show how to implement neighborr (Dr (S), q) for a query point q ∈ R

2, and S ⊆ B, and
deleter (Dr (S), q)—delete the point q from S.

To simplify the notation, we scale the coordinates so that r = 1. Let S = {d1, . . . , dn}
be a set of unit disks, q ∈ R

2, and let the operation member(q, S) return a disk di ∈ S
containing q , and ∅ if no such disk exists. In order to implement our algorithm, we need
a data structure that supports efficiently membership queries and deletion of disks.

To that end, we divide the plane using the axis-parallel grid � consisting of orthogonal
cells of edge length 1

2 that passes through the origin. Since the disks have unit radius,
each disk intersects O(1) cells, hence, only O(n) cells have a nonempty intersection with
disks of S. We maintain these cells in a balanced search tree (ordered lexicographically).
For each such cell Q, we maintain a list of disks whose center lies in Q, and a data
structure Db, which maintains the upper envelope of SQ

b —the disks set of disks that
intersect Q, and whose centers lie below the line containing the lower boundary of Q.
(The upper envelope of SQ

b consists of all points p ∈ Q ∩⋃D∈SQ
b

D such that no point
of this union lies above p.) Similar data structures Dl , Dr, and Da are maintained for
SQ

l , SQ
r , and SQ

a , the set of disks intersecting Q whose centers lie (respectively) to the
left of, to the right of, and above the lines containing the left, right, and upper boundaries
of Q. The space needed for Db will be shown to be O(|SQ

b |), and similarity for the other
data structures. Since each disk intersects O(1) grid cells, the space requirement for all
these data structures is O(n).

To answer the query member(q, S), we consider the cell Q of � containing q in its
interior (we ignore the degenerate and easy situation that q is on a boundary of a cell). If
the center of a disk di lies inside Q, then q ∈ di , and can be output as di = member(q, S).
Otherwise, we use Db to find if any disk of SQ

b contains q, which happens if and only
if q lies below the upper envelope of SQ

b . We repeat this process (if needed) for Dl , Dr,
and Da .

We describeDb. The data structuresDl ,Dr, andDa are similar. A similar data structure
was also used by Sharir [44]. Db is similar to the segment tree [43] and the one used by
Hershberger and Suri [30]. Order the disks of SQ

b from left to right by their centers, and
construct a complete binary tree T whose leaves are these disks. With each node v ∈ T
we associate the set S(v) of disks corresponding to the leaves of the subtree rooted at v.
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Fig. 2. The proof of Lemma 5.1.

Let UE(v) denote the upper envelope of S(v). As is easily seen, not all the disks of S(v)

must participate in UE(v), but those that do, appear along UE(v) (when scanned, from
left to right) in the same order as the order of their centers, from left to right.

LEMMA 5.1. Let v be a node of T , and let left(v) and right(v) denote its left and right
children. Then UE(left(v)) and UE(right(v)) have at most one intersecting point.

PROOF. Refer to Figure 2. Assume that two such intersection points exist, say p1

and p2, where p1 is to the left of p2, and no third intersection point exists between
them. Assume without lost of generality that in the open infinite vertical strip whose
boundaries pass through p1 and p2, UE(left(v)) is below UE(right(v)). Consider dl

and dr, the disks of S(left(v)) and S(right(v)), respectively, containing p2 on their
boundaries. As is easily seen, the center of dl is to the right of the center of dr, which is
a contradiction.

COROLLARY 5.2. Let UE(left(v)) consist of arcs of the (boundary of the) disks �1, . . . ,

�L , and let UE(right(v)) consists of arcs of r1, . . . , rR , where the centers of these disks are
ordered from left to right in this order. Then there exist i, j (0 ≤ i ≤ L , 1 ≤ j ≤ R+ 1)
such that UE(v) consists of the arcs of disks �1, . . . , �i , rj , . . . , rR in this left-to-right
order.

The data structure. Let p(v) be the (single) intersection point of UE(left(v)) and
UE(right(v)). We call this point the junction point of v. Associated with v we keep p(v),
�i , rj , and LIST(v)—a doubly linked list of the vertices of UE(v) (with the disks defining
them) that do not belong to UE(parent(v)). (If a disk does not intersect any disk to its left
(right) we add the left (right) intersection of the disk with the bottom line of Q.) Observe
that LIST(v) represents a connected portion of UE(left(v)) concatenated to a connected
portion of UE(right(v)), where p(v) is a common endpoint of these two portions. We
maintain pointers from v to the corresponding “middle” vertices in LIST(left(v)) and
LIST(right(v)).

Construction of the data structure. The construction is performed bottom-up from the
leaves of T up to its root. In each step we are at a node v, and we have computed
UE(left(v)) and UE(right(v)). We merge UE(left(v)) and UE(right(v)), in linear time
using a standard line sweep procedure to find p(v), and we store in LIST(left(v)) (resp.
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LIST(right(v))) the portion of UE(left(v)) (resp. UE(right(v))) which does not appear
in UE(v). Since at each level of the tree we process O(n) disks, the time required for
the entire construction is O(n log n).

Membership queries. To carry out member(q, S), we consider the tree as a binary
search tree on the values x(p(v))—the x-coordinate of p(v)’s. Let x(p1) < · · · <

x(pn−1) denote these values. Then the i th leaf ui corresponds to the interval (x(pi−1),

x(pi )). We find a leaf uj such that x(pj−1) < x(q) < x(pj ). The query point q is covered
by
⋃

SQ
b if and only if it belongs to dj . The time complexity of this operation is O(log n).

Deletions. The difficulty with deletions is that deleting a disk d might cause disks that
were occluded by d to appear in the upper envelope UE(v). The deletion of d proceeds
bottom up: we first mark the leaf corresponding to d as being deleted, update LIST(v) =
∅, and continue to v’s parent. No change takes place in the topology of the tree itself.

In a general step we are at a node v, and d appears in S(v), say in S(left(v)). The
case that d ∈ S(right(v)) is symmetric. We obtain the following information from the
previous step:

• A linked list L of all disks presently in UE(left(v)) which were occluded by d. Let u1

and u2 be the left and right endpoints of L , respectively.
• Pointers q1 and q2 to the vertices (in the appropriate LIST(·) fields) u1 and u2. See

Figure 3 for a demonstration.

Let p′(v) denote p(v) before the deletion of d took place.
Three cases might arise:

Case (i): x(p′(v)) ≤ x(u1) (see Figure 3(i)). This implies that d does not appear in
UE(v), that is, p′(v) = p(v). This only requires us to insert L into LIST(left(v)) at the
appropriate place, which is pointed at by q2. This case terminates the deletion process.

Case (ii): x(u2) ≤ x(p′(v)) (see Figure 3(ii)). We conclude again that p(v) = p′(v),
we do not change L , q1, q2, nor the fields within v, and continue to parent(v).

Case (iii): x(u1) ≤ x(p′(v)) ≤ x(u2) (see Figure 4). This is the most involved case. Let
p(v)p′(v) denote the part of UE(right(v)) from p(v) to p′(v), and let p(v)u2 denote the

Fig. 3. The two cases where d does not contain p(v).
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Fig. 4. Exploring a new junction point p(v), which was occluded by d.

part of UE(left(v)) from p(v) to u2. We can traverse L , since it is organized as a linked
list. Moreover, observe that p(v)p′(v) must be a connected portion of LIST(right(v))

(organized as a linked list), hence we can easily travel along this list as well.

Traversing along the envelopes. Out of the points p′(v) and u2, choose the point which
is furthest to the right (u2 in Figure 4). We roll from this point to the left, along the
corresponding envelope of UE(left(v)), until we arrive at a point w with the same x-
coordinate as the other point (p′(v) in Figure 4). Next we travel simultaneously on both
UE(left(v)) and UE(right(v)) leftwards, maintaining the points we are in on both chains
vertically one below the other, until we reach p(v). The time complexity of this stage is
proportional to the number of disks of p(v)u2 plus that of p(v)p′(v).

Next we delete p(v)p′(v) from LIST(right(v)), and insert p(v)u2 into LIST(left(v))

just after the vertex u2 pointed at by q2 (and we remove the arc p′(v)u2 of d from this
list). We now need to prepare the output of the procedure. The list L is the portion u1 p(v)

of the “old” L concatenated with the portion p(v)p′(v) just discovered (u1 and q1 are
not changed). Vertex u2 is set to be p′(v), and we update q2 accordingly.

Time analysis for the deletion operation. As is easily seen, at a node v we spend time
O(1+λ), where λ is the length of L plus the length of p(v)p′(v). We need an amortized
argument to bound the sum of these quantities over the course of the algorithm.

From its definition, T is a complete binary tree with at most n leaves. Each disk
corresponds to a leaf, and appears only in the ancestors of that leaf. Hence, a disk d0

might appear in at most O(log n) LIST(·) fields, say LIST(v1), . . . , L I ST (vm). However,
in all but at most one of these fields, ∂d0 must contain the corresponding p(vi ). For
di ∈ S let level(di ) denote the distance from the root of T to a lowest node v for which
∂di contains a vertex of LIST(v). We say that d0 was promoted due to the deletion
of another disk d , if level(d0) decreased due to this operation. Obviously the level of
a disk never increases, and since each disk can be promoted at most log n times (the
height of the tree), the total number of promotions in the course of the algorithm is
O(n log n).
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Consider the disks contained in the list L and in p(v)p′(v), excluding the endpoints
of these lists. The travel along p(v)p′(v) and p(v)u2 can be charged to such promo-
tions: Each disk of UE(right(v)) that we scanned (excluding the endpoints) was in
LIST(right(v)), and will be promoted to LIST(v) or to a higher node. Each disk of
UE(left(v)) that we scanned (excluding the endpoints) was promoted from the LIST(·)
field of some proper descendent of left(v) to LIST(left(v)). Hence the total time dedicated
to traversals, over the entire course of the algorithm, is O(n log n).

Hence we have

LEMMA 5.3. Given a set S of n unit disks in the plane, we can construct in time
O(n log n) a linear size data structure, such that finding a disk containing a query point,
and deleting this disk, requires amortized time O(log n) per operation.

This lemma and Theorem 3.2 yield:

THEOREM 5.4. Let A and B be sets of points in R
2, and r > 0. Then the oracle that

determines whether r < Match(A, B) requires time O(n1.5 log n).

REMARK 5.5. It is easy to show that Lemma 5.1 holds for any Minkowski L p metric.
Once this lemma is established, the rest of the analysis carries through, and we thus
conclude that Theorem 5.4 holds for all L p.

5.2. Finding the Matching. In order to minimize the number of times the oracle is
called, we need to solve the kth bichromatic distance selection problem of Section 4
efficiently.

LEMMA 5.6 [37]. Let A, B ⊆ R
2 be sets of n points, let L2 be the underlying norm and

let 1 ≤ k ≤ n2 be an integer. Then dist(k) can be found in time O(n4/3 log2 n).

Theorem 5.4 and this lemma together with the considerations of Section 4 yield the
following:

THEOREM 5.7. Let A, B be sets of n points in R
2. Then Match(A, B) can be computed

in time O(n1.5 log2 n).

5.3. Accelerating the Algorithm. By combining the oracle phase and the generic part,
the running time of the algorithm can be improved by a log n factor.

Recall that dist(i) is the i th largest distance between a ∈ A and b ∈ B. We maintain a
lower bound, dist(�) (initially � = 1), and an upper bound, dist(u) (initially u = n2), on the
value of r∗. In Section 5.2 we conducted a binary search on the values dist(1), . . . , dist(n

2),
thus introducing a log factor. The purpose of this subsection is to eliminate this factor.

In the course of the algorithm, we maintain a maximum matching M of G[dist(�)],
and use it as an initial matching for G[dist(i)] (� < i < u). If dist(i) < r∗, we fail to find
a perfect matching, and at some stage we even fail to construct L, i.e., we do not reach
any exposed vertex of B. If our first attempt to construct L fails, then M is a maximum
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matching of G[dist(i)]. Otherwise, we update M . Since the size of every matching is
bounded by n, M is updated at most n times, and at all other times only one layered
graph is constructed.

If the new matching is perfect, then we update dist(u) to r . However, we might have
wasted much time in constructing several layered graphs. Therefore, a first step toward
the desired improvement is to constructLonly a constant number of times for dist(i) > r∗.

The key observation is that sometimes we can conclude that G[dist(i)] does not contain
a perfect matching, without even finding the maximum matching. For a partial matching
M ⊆ G let �(M, G) denote the length of the shortest augmenting path for M (�(M, G)

is equal to the number of layers of the layered graph constructed by the procedure
ConstructLayerGraph(G, M) of Section 3.1 starting with the matching M).

LEMMA 5.8. Let M be a partial matching of G. If |M | < n−√n and �(M, G) >
√

n,
then G does not contain a perfect matching.

PROOF. Let Mmax be a maximum matching of G. M⊕Mmax consists of p = |Mmax|−
|M | vertex disjoint augmenting paths P1, . . . , Pp (and some alternating cycles). The
length of each augmenting path Pi satisfies

|Pi | > �(M, G)| > √n.

Since the augmenting paths are vertex disjoint,

n ≥
p∑

i=1

|Pi | > p · √n.

Hence the number of paths satisfies

p <
√

n.

Therefore, Mmax satisfies

∣∣Mmax
∣∣ = |M | + p < (n −√n)+√n = n.

Hence Mmax is not a perfect matching.

Let |L| denote the number of layers in the layer-graph L. The following algorithm finds
a maximum matching:

�← 1; u ← n2; M1 ← empty matching;
While �+ 1 < u Do

step ← �(u − �+ 1)/n1/7�; i ← �+ step;
While i < u Do

Use the bichromatic distance selection algorithm to find dist(i);
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M ← M�;
L← ConstructLayerGraph(M, G[dist(i)]);
While (L contains exposed vertices of B)
and (|L| ≤ √n or |M | ≥ n −√n) Do

Update M by the procedure of Section 3.2;
L← ConstructLayerGraph(M, G[dist(i)]);

End
If |M | = n Then u ← i ;
Else �← i; M� ← M; i ← i + step ;

End
End

LEMMA 5.9. The outermost loop (While �+ 1 < u) is executed at most 14 times.

PROOF. Each time the loop is executed the range, u − � + 1, decreases at least by a
factor of n1/7. Since initially, u − �+ 1 = n2, the number of interactions is at most

logn1/7 n2 = 14.

We argue now that each execution of the outermost loop takes time O(n1.5 log n). Note
first that we solve the bichromatic distance selection problem n1/7 times. Since by [37]
this problem can be solved in time O(n4/3 log2 n), this sums up to time O(n31/21 log2 n) =
O(n1.5). The number of times the layered graph is constructed is bounded by the number
of times that its construction procedure terminates successfully—(O(

√
n), by Hopcroft

and Karp [32], as described in Section 3.2)—plus the number of times that this procedure
fails, which is no more than the number of times we consult the oracle, which is O(n1/7).
The time needed for finding augmenting paths consists of the time spent when the
layered graph is of depth smaller than

√
n, and the time when the layered graph is of

larger depth. In the former case, the time for finding such a path is O(n log n), while in
the latter case there are O(

√
n) paths. Note that there are only 14 phases. This discussion

and Remark 5.5 yield the following theorem:

THEOREM 5.10. Let A and B be sets of points in R
2 and let L p be the underlying norm

for any 1 ≤ p ≤ ∞. Then Match(A, B) can be found in time O(n1.5 log n).

6. Additional Settings

6.1. Points in 3-Space. In a recent paper [23], Efrat et al. obtained results concerning
matching points into fat shapes that contain them in two and three dimensions. These
algorithms use the matching procedure of Section 3.1, but use different data structures
Dr (S) than those used here. The following result will be useful:

THEOREM 6.1 [23]. Let A be a set of n points in R
3, and let B be a set of n balls in

R
3. Then in time O(n11/6+ε) we can either find a matching between A and B, such that
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each point a ∈ A is contained in the object of B matched to a, or determine that no such
matching exists.

An immediate consequence of the theorem above is a result for bottleneck matching
for two point sets in 3-space.

COROLLARY 6.2. Let A and B be two sets of n points in R
3, and r > 0. Then the oracle

that determines whether r < Match(A, B) requires time O(n11/6+ε).

PROOF. For each point b ∈ B let br be a ball of radius r centered at b. ||a − b|| ≤ r if
and only if a ∈ br .

THEOREM 6.3. Let A and B be two sets of n points in R
3. Then Match(A, B) can be

found in time O(n11/6+ε).

PROOF. To select the kth distance we use a three-dimensional bichromatic version of the
planar distance selection algorithm of Aronov et al. [1], that selects the kth bichromatic
distance. The selection requires time O(n7/4+ε) = O(Oracle-time), and hence does not
affect the overall running time.

6.2. Arbitrary Dimension. Here we assume that S ⊆ B is a set of points in R
d , for

fixed d , and the underlying norm is L∞.

6.2.1. The Oracle. Our goal is to obtain a data structure Dr (S) supporting the opera-
tions neighborr (Dr (S), q) and deleter (Dr (S), s), defined in Section 3.1. We maintain
a set S of d-dimensional cubes of edge-length 2r , centered at the points of S. Dr (S)

consists of a (d − 2)-level segment-tree (on the projection of the cubes on the first d − 2
axes) [8, pp. 221–225], and the two-dimensional data structure of Section 5.1 built on
the projection of the cubes on the last two axes. It is easy to show how to perform both
operations neighborr and deleter in this data structure in time O(logd−1 n) each. The
preprocessing of the structure is easily shown to be O(n logd−1 n), and does not affect
the overall running time of the algorithm. Hence T (n) = O(logd−1 n).

The space requirements are as follows: A segment tree on n segments requires space
O(n log n), therefore the d − 2 level segment tree requires space O(n logd−2 n). Since
the two-dimensional structure requires linear space, the entire space requirements are
O(n logd−2 n). (This data structure is reminiscent of the orthogonal range trees described
in [46].) We summarize with the following theorem:

THEOREM 6.4. Let A and B be two sets of n points in R
d , for fixed d, and let the

underlying norm be L∞. Then there is an oracle that determines whether Match(A, B) <

r in time O(n1.5 · logd−1 n). The space requirements are O(n logd−2 n).

6.2.2. Finding the matching. As a method to generate critical distances, we use the
approach taken by Chew and Kedem [14]. Note that when L∞ is the underlying norm, r∗

is the distance between the projection of some a ∈ A and b ∈ B on one of the axes Xm .
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That is, let (q)m be the projection of point q on axis m, then dist(ai , bj ) =
∣∣(ai )m − (bj )m

∣∣
for some m ∈ {1, . . . , d}.

While previously we used the oracle to perform a binary search on the distances,
here we conduct the search on a superset of size 2dn2. For dimension m rearrange A
so that (a1)m < (a2)m < · · · < (an)m , and likewise for B. Now consider the ma-
trix Dm defined as (Dm)i, j = (ai )m − (bj )m . Each row and column of this matrix is
monotonically increasing. However, some of the entries are negative. Let (D̄m)i, j =
(bj )m − (ai )m . Thus each distance dist(ai , bj ) =

∣∣(ai )m − (bj )m

∣∣ appears as an entry
in D = {D1, . . . , Dd , D̄1, . . . , D̄d}. We now use Frederickson and Johnson’s [25] algo-
rithm to select the kth value of D in time O(dn).

We now discuss the time complexity of the method. The preprocessing consists of
sorting {(ai )m}ni=1 and {(bj )m}nj=1 for each dimension. Thus the preprocessing requires
time O(dn log n). After this we need t = log 2 dn2 = O(log d + log n) selections each
requiring time O(dn), and t oracle calls. Since the time for the oracle calls dominates
the preprocessing of the selections, we have:

THEOREM 6.5. Let A, B be sets of n points in R
d (d ≥ 2 a constant), with L∞ as

the underlying norm. Then finding Match(A, B) requires time O(n1.5 logd n) and space
O(n logd−2 n).

REMARK 6.6. Naturally, for d = 2 and the L∞-norm, we can use the shortcut of
Section 5.10 on this data structure to get a slightly faster method that runs in time
O(n1.5 log n).

6.3. Other Objects in the Plane. We next extend our techniques to find a matching
between a set A of n points and a set B ⊆ R

2 of n objects, which may be one of the
following:

(i) A set of disjoint segments, where the distance from a point q ∈ R
2 to a segment

b ∈ B is defined as the distance from q to its closest point of b.
(ii) A set of points, and each bi ∈ B is associated with a nonnegative weight wi , so that

for a point q ∈ R
2, we have dist(q, bi ) = wi + ‖q − bi‖.

In both cases the underlying norm may be any L p-norm. The two cases are handled
similarly. To implement the oracle of Theorem 3.2 we only need to implement the
data structure Dr (S). For this purpose, we use the dynamic nearest-neighbor scheme of
Agarwal et al. [2] who presented such data structures for both these problems. The data
structure can be constructed in time O(n1+ε). These data structures enable us to find and
delete the closest object of B (either a segment or a point) to the query point q in time
O(nε), and hence to implement neighborr (Dr (B), q), by checking if the distance of the
closest object of S to q is at most r . These data structures support deletions of objects
in time O(nε) as well. Hence T (n) = O(nε), for any ε > 0, leading to the following
result.

THEOREM 6.7. For A and B as defined above, the oracle for testing whether r <

Match(A, B) requires time O(n1.5+ε) for any ε > 0.
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Thus, to find the optimal matching, we need to implement efficiently the kth bichromatic
distance problem. This may be done in time O(n1.5 log3 n) by a straightforward extension
of the kth distance selection problem of Agarwal et al. [1]. We summarize:

THEOREM 6.8. Let A ⊆ R
2 be a set of n points, and let B ⊆ R

2 be a set of either
(i) n disjoint segments or (ii) n points, where each point bi ∈ B is associated with a
nonnegative weight wi , and the distance from a point q ∈ R

2 to bi is ‖q − bi‖ + wi .
Then in both cases Match(A, B) can be found in time O(n1.5+ε).

7. Approximating the Matching. In this section we present an approximation scheme
for r∗ = Match(A, B) in any dimension. Heffernan and Schirra [29] and Heffernan [28],
gave an approximation technique whose running time depends on r∗. We describe an
improved technique for finding an approximation to Match(A, B) for A, B point sets in
R

d where the underlying norm is any Minkowski norm L p.

DEFINITION 7.1. Let A and B be sets of n objects in R
d , and let ε > 0 be a parameter.

A perfect matching Mε between A and B is an ε-approximating matching if

r∗ ≤ max(Mε(A, B)) ≤ r∗(1+ ε),

where r∗ = Match(A, B).

We use the data structure of Arya et al. [7] who described a data structure for a set of
points S ⊆ R

d , that can report in time O( f (d, ε) log n) (for f (d, ε) = d(1+ 1/ε)d ) an
approximated nearest-neighbor of a query point q ∈ R

d . That is, a point s ∈ S for which
‖q− s‖p ≤ (1+ ε) · ‖q− s ′‖p, where s ′ is the closest point of S to q. This data structure
can also be dynamized so that a deletion takes time O( f (d, ε) log n)—see [10].

Let Dr (·) denote this data structure. To implement neighborr (Dr (B), q), we consult
Dr (B) to find b (the approximated nearest neighbor) and if ‖b − q‖p ≤ r · (1+ ε), we
report that neighborr (Dr (B), q) is b. Otherwise, report that neighborr (Dr (B), q) = ∅.
Our approximation scheme consists of applying the procedure of Theorem 3.2, with the
approximating data-structure replacing the exact one. We refer to this procedure as the
approximating oracle.

LEMMA 7.2. If for parameter r the approximating oracle returns a positive answer
then r(1+ ε) ≥ r∗. Otherwise, r < r∗.

PROOF. Note that if H ⊇ G, then any matching in G is also a matching of H . Moreover,
if M is a matching of G which can be increased by an augmenting path, then for any
matching of size |M | of H there exists an augmenting path in H .

When applying the approximate distance query, we use a graph G A ⊇ G[r ] instead
of the graph G[r ]. The graph G A contains all the edges of length ≤ r and some of the
edges whose length is between r and (1+ ε)r , but no longer edges, i.e., G[r ] ⊆ G A ⊆
G[(1 + ε)r ]. Thus if G[r ] has a perfect matching, so does G A. Since all the edges of
G A have length ≤ (1+ ε)r , if the approximating oracle returns a negative answer, then
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G[r ] does not have a perfect matching and thus r < r∗. In the case of a positive answer,
since all the edges of G A have length ≤ (1 + ε)r , the length of the maximum edge in
the matching is bounded by (1+ ε)r .

To find an approximate matching, we have to search among the n2 distances. Even
though we do not know how to solve the kth bichromatic distance selection problem
efficiently for all dimensions and every norm, in Theorem 6.5 we showed an O(n logd n)

solution for L∞ in R
d . We now use this solution to find an approximation for the L p-norm

for all p.

THEOREM 7.3. Let A and B be sets of n points in R
d , and let ε > 0 be a parameter.

Let r∗p = Match(A, B) where L p (1 ≤ p ≤ ∞) is the underlying norm. We can find in
time O( f (d, ε) · n1.5 log n) a matching Mε

p between A and B satisfying

r∗p ≤ Mε
p(A, B) ≤ (1+ ε)r∗p ,

where f (d, ε) = d(1+ 1/ε)d .

PROOF. We first prove the theorem for the L∞-norm. In this case, we use the techniques
of Theorem 6.5 with Lemma 7.2 instead of the exact oracle of Theorem 6.4 to find a
matching Mε

∞(A, B) that satisfies

r∗∞ ≤ Mε
∞(A, B) ≤ (1+ ε)r∗∞.

Now we use the relationship between Minkowski norms:

d ||x ||∞ ≥ ||x ||1 ≥ ||x ||2 ≥ · · · ≥ ||x ||∞ ,

where ||x ||p denotes the length of the vector x using the L p-norm. Thus dr∗∞ is an upper
bound on r∗p = Mε

p(A, B), and d(1+ε)r ε
∞ is an upper bound on r ε

p . Likewise, r ε
∞/(1+ε)

is a lower bound on r ε
p . Thus r ε

p belongs to the interval [r ε
∞/(1+ ε), d(1+ ε)r ε

∞].
We now conduct a binary search on this interval, using the approximating oracle for

L p with ε/2. After 2+ log d + log ε−1 iterations, the length of the remaining interval is
less than r∗pε/2. Choosing r ε

p as the left boundary of this interval satisfies the requirement
of the theorem.

8. The Translation Problem

8.1. The Translation Oracle. Let A and B be two sets of n points in R
2 and τ ∈ R

2.
Let τ + B = {τ +b | b ∈ B} denote the set B translated by τ . The translation problem is
to find τ ∗, a translation τ that minimizes Match(A, τ + B). Let ρ∗ = Match(A, τ ∗ + B).
The translation oracle receives ρ > 0 as input and determines whether there exists a
translation τ for which Match(A, τ + B) ≤ ρ. In other words, the translation oracle
determines whether ρ∗ ≤ ρ. Alt et al. [5] presented an O(n6)-time algorithm for the
translation oracle. Using our technique we improve the running time of their algorithm
to O(n5 log n). In Section 8.2 we use this oracle to solve the translation problem.
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We briefly describe the algorithm of [5], and refer the reader to that paper for further
details: If, for a translation τ , Match(A, τ + B) ≤ ρ, then there also exists a translation
τ ′ and a pair of points a ∈ A, b ∈ B such that Match(A, τ ′ + B) = ρ and the distance
from a to τ +b is exactly ρ. Hence we can limit our attention to translations τ that bring
some point of A to distance ρ (exactly) from some point b ∈ B.

For a ∈ A, let aρ denote the disk of radius ρ (in the underlying norm) centered at a,
and let Aρ denote the set {aρ | a ∈ A}. For a ∈ A, b ∈ B, let circ[a, b, ρ] denote the
set of translations that bring a to distance ρ from b; this is a circle of radius ρ centered
at b − a. The algorithm checks for each pair a ∈ A, b ∈ B if Match(A, τ + B) ≤ ρ

for some translation τ ∈ circ[a, b, ρ]. That is, if there exists a perfect matching in the
graph Gτ [ρ] determined by A and τ + B. Let τ0 be a fixed translation in circ[a, b, ρ].
We first construct Match(A, τ0 + B). If its value is less than or equal to ρ, then we
are done. Otherwise, we translate B rigidly by all translations of circ[a, b, ρ]. During
this process, images of points of B are moved into or out of disks of Aρ , implying that
edges are inserted into or deleted from the graph Gτ [ρ]. While the image of b revolves
around a, each image of a point b′ ∈ B travels along a circle of radius ρ, and enters
and exits each disk (a′)ρ ∈ Aρ at most once. Hence, each edge is born (inserted to
Gτ [ρ]) and dies (deleted from Gτ [ρ]) at most once. The birth/death events are called
critical events. Therefore, circ[a, b, ρ] contains at most 2n2 such critical events. After
each critical event, we might need to recompute Match(A, τ + B). Each critical event
adds or deletes a single edge: In the case of a birth, the matching increases by at most
one edge. Therefore, we look for an augmenting path which contains the new edge. If
an edge of the matching dies, we need to search for a single augmenting path. Thus in
order to update the matching, we need to find a single augmenting path in Gτ [ρ], for
which we need only one layered graph.

Alt et al. [5] use standard graph-theoretical techniques to find the path, and hence
spend O(n2) time for each critical event. Summed over all pairs a ∈ A, b ∈ B, the total
number of critical events encountered in the course of the algorithm is O(n4), so the
total time spent by the algorithm of Alt et al. is O(n4)× O(n2) = O(n6).

Instead, we use the procedure of Section 3.1 and Section 5.1 to construct the layered
graph. This procedure requires only O(n log n) time for each augmenting path. Taken
over all O(n4) critical events, the total time sums to O(n5 log n). Hence we have proved:

THEOREM 8.1. Given A, B, and ρ as above, we can decide in time O(n5 log n) whether
there exists a translation τ for which Match(A, τ + B) ≤ ρ.

8.2. Finding the Optimal Translation. Alt et al. [5] found the translation itself in time
O(n6 log n). For pedagogical reasons, we first develop an inefficient polynomial algo-
rithm to find an optimal translation. Then we examine several parallel versions of the
algorithm, to which we apply the parametric search paradigm of Megiddo [42] to im-
prove the time to O(n5 log2 n), i.e., the complexity of our final algorithm is only a log n
factor more than that of the translation

We start by introducing a polynomial-sized set of critical radii which contains ρ∗.
Given a ∈ A, b ∈ B, ρ > 0, and 0 ≤ θ < 2π , let Gab[ρ, θ ] denote the graph G[ρ]
when b is translated to a + (ρ cos θ, ρ sin θ). As b revolves around a, θ increases from
0 to 2π and Gab[ρ, θ ] evolves: At some angle θ a vertex b′ ∈ B enters (a′)ρ ∈ Aρ and
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the edge (a′, b′) is born. At some other angle b′ leaves (a′)ρ and the edge (a′, b′) dies.
The optimal translation τ ∗ occurs when some edge (a′, b′) is born in Gab[ρ∗, θ ].

We examine more closely the birth angle of an edge e = (a′, b′) as ρ grows. It is
easy to see that the birth occurs when b′ lies on the perpendicular bisector of a′ and
β ′ = b′ − b + a. Also, the life arc of e′ = (a′, b′)—the circular arc between the birth
and death of e′—is less than half the circle (i.e., less than 180◦).

A critical radius of the first type occurs when the life arc degenerates to a point, i.e.,
when the circles of radius ρ centered at a′ and at β ′ are tangent to each other, i.e., when
b′ is midway between a′ and β ′. This occurs when the value of ρ equals dist(a′, β ′)/2,
which we denote by ρab(e′). Let R1

ab = {ρab(e′) | e′ ∈ A× B} denote the set of all such
critical radii.

Next we examine another type of critical radii, that might occur for a pair of edges
e′, e′′. At some value ρ

(s)
ab (e′, e′′) the birth angle of e′ coincides with the death angle of e′′.

Given e′, e′′, the values of ρab(e′, e′′) and of ρ
(s)
ab (e′, e′′) are solutions of a quadratic

equation which has at most two solutions. These solutions can be computed in constant
time. Let R2

ab = {ρ(s)
ab(e′, e′′)|e′, e′′ ∈ A × B}.

The optimal translation occurs at an angle θ at which the graph Gab[ρ∗, θ ] changes,
i.e., either some edge is added (in which case ρ∗ ∈ R1

ab), or two edges that did not
coexist for smaller ρ now belong to the same graph (in which case ρ∗ ∈ R2

ab). Let
R =⋃ab R1

ab∪
⋃

ab R2
ab be the set of critical radii. From the above discussion ρ∗ ∈ R.

Since
∣∣R1

ab

∣∣ < n2 and
∣∣R2

ab

∣∣ < n4, |R| = O(n6).
Our first algorithm constructsR, sorts it, and then uses the translation oracle to conduct

a binary search to find ρ∗. Finding R requires time O(n6), sorting it O(n6 log n), and the
binary search requires O(log n) oracle calls, each of which requires O(n5 log n) time.
Thus the entire algorithm requires O(n6 log n) time.

Our second algorithm does not construct R explicitly. Instead, for each A, B we sort
the birth and death angles of edges at ρ∗. For that purpose we need to know which edges
exist at ρ∗, and, for all pairs e′, e′′ that exist at ρ∗, check whether the death of e′ precedes
the birth of e′′ or vice versa. The difficulty is that we do not yet know ρ∗. However, we
may use the translation oracle.

To check whether e′ = (a′, b′) exists at ρ∗, we note that if e′ exists at r , then it
exists for all r ′ > r . We, therefore, compute ρab(e′) and ask the translation oracle if
ρab(e′) ≤ ρ∗. If it is, then e′ exists at ρ∗.

To check whether the death of e′ precedes the birth of e′′, we apply the translation
oracle at ρab(e′, e′′). If it answers that ρ∗ < ρab(e′, e′′), then at ρ∗ the edge e′ died before
e′′ was born. Otherwise, at ρ∗ the edge e′ died after e′′ was born, i.e., their life arcs are
not disjoint. We call this test the overlap oracle.

Since for each A, B there are at most 2n2 birth/death events, there could be a total
of about n4 such events, and sorting them might require �(n4 log n) comparisons, i.e.,
�(n4 log n) oracle calls—far too many.

We use the parametric search paradigm of Megiddo [42] to reduce the number of calls
to the overlap oracle. Again, we assume that the reader is familiar with this technique,
and refer to [24] for a similar application. To this end, we consider a parallel algorithm
in which for each pair A, B the sorting is performed by a separate processor. We now
describe an efficient sequential simulation. We consider each processor’s first call to the
overlap oracle. The parallel algorithm performs all these calls in parallel. The sequential
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simulation answers all the comparisons by first sorting the radii ρ(e′1, e′′1), . . . , ρ(e′n2 , e′′n2)

and then performing a binary search to find the smallest ρ(e′i , e′′i ) that satisfies the
translation oracle. We need therefore time O(n2 log n) for the sort and O(log n) calls to
the translation oracle—a total of O(n5 log2 n) time for each parallel comparison step.
However, the entire algorithm involves n2 log n such steps, i.e., a total of O(n7 log3 n)—
again far too much.

To get a good algorithm, we increase the degree of parallelism. Each pair A, B
conducts its sort in parallel using the depth O(log n) parallel AKS sorting network of
Ajtai et al. [3] that sorts O(n2) critical radii with O(n2 log n) comparisons.

In each parallel step each of the n2 networks performs n2 comparisons, thus a total of
O(n4) comparisons are conducted in parallel. The sequential simulation sorts all these
n4 radii, then performs a binary search calling the translation oracle O(log n) times.
Now we may deduce in constant time whether a critical radius is smaller than ρ∗—thus
answering all the overlap oracles in time O(n4 log n + n5 log2 n). Since the combined
network has depth log n, the total number of oracle calls is O(log2 n). Thus in time
O(n5 log3 n) we have ordered all the critical events at ρ∗. Since a critical event happens
at ρ∗, the value of ρ∗ is the minimal translation oracle call that returned a positive answer.

Cole [15] studied parallel sorts on sorting networks and showed how to reorder the
comparisons, so as to save a log n factor. His technique is applicable in any setting where
one uses the AKS sorting network as a generic algorithm. Using this technique, the
number of calls to the translation oracle is reduced from log2 n to log n. See [15] for
more details. We summarize these results:

THEOREM 8.2. Given A, B as above, the translation problem can be solved in time
O(n5 log2 n).

8.3. Approximating the Optimal Translation. We next note that while finding a trans-
lation τ ∗ which minimizes Match(A, τ + B) is a nontrivial problem for which only high
degree polynomial algorithms are known, and only in the plane, it is easy to find a trans-
lation that brings Match(A, τ + B) within a factor of 1 + diam(p, d) of the optimum,
where diam(p, d) = ||(1, . . . , 1)||p is the diameter of the d-dimensional unit cube in
the underlying norm, norm L p (1 ≤ p ≤ ∞), i.e., for finite p, diam(p, d) = p

√
d and

diam(∞, d) = 1.
For a point s ∈ R

d let si denote the i th coordinate of s. For a set of points S ⊆ R
d

let LL(S) denote the point in R
d whose i th coordinate is equal to the minimum among

the values of the i th coordinate of all the points of S for each i = 1, . . . , d. In the plane,
LL(S) is the lower-left corner of the smallest axis-parallel rectangle that encloses S, and
analogously in higher dimensions. Henceforth, we assume, with no loss of generality,
that LL(A) coincides with the origin. Thereby, for all a ∈ A and i = 1, . . . , d, we have
ai ≥ 0.

We can identify a translation τ of B with the image of LL(B). Let τ 0 be the translation
that maps LL(B) to the origin and let δ = τ ∗ − τ 0.

LEMMA 8.3. For i = 1, . . . , d,

|δi | ≤ ρ∗.
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PROOF. Let M∗ be the optimum matching for (A, B + τ ∗).

Case 1: δi < 0. Consider the point b′ ∈ B for which (b′)i is minimal. Since (b′)i =
(LL(B))i we have (b′ + τ 0)i = 0. Let a′ be the point matched to b′ in M∗, i.e., (a′, b′) ∈
M∗. Since we chose the origin to be LL(A), (a′)i ≥ 0,

ρ∗ ≥ dist(a′, b′ + τ ∗) = dist(a′, b′ + τ 0 + δ) ≥ |(a′)i − (b′ + τ 0 + δ)i |
= ∣∣(a′)i − δi

∣∣ = (a′)i + |δi | ≥ |δi | .
Case 2: δi > 0. Choose a′′ ∈ A to be a point such that (a′′)i = 0 (this is possible since
the origin was chosen to be LL(A)). Now choose b′′ ∈ B such that (a′′, b′′) ∈ M∗. Since
(a′′)i = 0 and (b′′ + τ 0)i ≥ 0,

ρ∗ ≥ dist(a′′, b′′ + τ ∗) = dist(a′′, b′′ + τ 0 + δ) ≥ |(a′′)i − (b′′ + τ 0 + δ)i |
≥ |(b′′ + τ 0)i + δi | = (b′′ + τ 0)i + δi ≥ δi = |δi | .

The following theorem is reminiscent of a similar result of Alt et al. [4].

THEOREM 8.4. Let 1 ≤ p ≤ ∞ and diam(p, d) be as above. Then τ 0 satisfies

Match(A, B + τ 0) ≤ (1+ diam(p, d)) Match(A, τ ∗ + B).

PROOF. Let (a, b) ∈ M∗ be a pair for which dist(a, b+ τ 0) is maximum. Consider the
matching M∗ for A and B + τ 0. Since Match(A, B + τ 0) is the minimum value over all
matchings for A and B + τ 0, ρ0 ≤ dist(a, b + τ 0). Therefore,

ρ0 ≤ dist(a, b + τ 0) = dist(a, b + τ ∗ + δ) ≤ ‖a − (b + τ ∗ + δ)‖
≤ ‖a − (b + τ ∗)‖ + ‖δ‖ = ρ∗

+ ‖(±ρ∗, . . . ,±ρ∗)‖ = (1+ diam(p, d)) ρ∗.

If we care for a better approximation for ρ∗ = Match(A, τ ∗ + B), we use the follow-
ing approach, borrowing some ideas from Efrat [19]. Let cube[r ] denote the axis-parallel
cube of edge lengths 2r centered at the origin. Lemma 8.3 states that the optimal trans-
lation τ ∗ brings LL(B) to a point in cube[ρ∗].

Let 0 < ε < 1, let τ 0 be the translation of Theorem 8.4, and ρ0 = Match(A, τ 0+ B).
Consider a grid � centered at the origin with cell size γ = ερ0/(2 diam(p, d)). The
distance of any point of cube[ρ0] to its closest grid point of � is at most γ diam(p, d) =
(ε/2)ρ0. Let T (�) be the set of all translations that bring LL(B) to some grid point of
� in cube[ρ0]. Since this cube properly contains cube[ρ∗], Lemma 8.3 implies that the
distance of the optimal translation τ ∗ to some grid point of � is at most (ε/2)ρ0.

For each translation τ ∈ T (�) we approximately evaluate Match(A, τ + B) using
the procedure of Theorem 7.3, and choose τ ε to be the best one.

Consider any two points a ∈ A, b ∈ B. Then

dist(a, τ ε + b) ≤ dist(a, τ ∗ + b)+ dist(τ ∗ + b, τ ε + b)

= dist(a, τ ∗ + b)+ dist(τ ∗, τ ε)

≤ dist(a, τ ∗ + b)+ ε

2
ρ0.
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Thus, ifρ∗ = dist(a∗, τ ∗+b∗), then for any two points A, B matched by the approximated
match at τ ε, we have

dist(a, τ ε + b) ≤ dist(a, τ ∗ + b)+ ε

2
ρ0 ≤ dist(a∗, τ ∗ + b∗)+ ε

2
2ρ∗ = ρ∗(1+ ε).

The number of grid points of � is

|�| =
(

1+ 2ρ0

γ

)d

=
(

1+ 2ρ0

ερ0/(2 diam(p, d))

)d

=
(

1+ 4

ε
diam(p, d)

)d

.

By Theorem 7.3, finding the approximate matching for each grid point requires time
O(d(1+ 1/ε)d · n1.5 log n log ε−1). Hence we have:

THEOREM 8.5. Let A and B be sets of n points in R
d and let L p (1 ≤ p ≤ ∞) be the

underlying norm. Then there exists an algorithm that for all ε > 0 finds in time

O

(
d

(
1+ 1

ε

)d (
1+ 4

ε
diam(p, d)

)d

· n1.5 log n log ε−1

)

a translation τ ε such that

ρε = Match(A, B + τ ε) ≤ (1+ ε)ρ∗,

where ρ∗ is the value of the matching at the optimal translation.
For constant d the time is O(ε−2d · n1.5 log n log ε−1).

9. Related Problems to the Bottleneck Matching. Several related problems are
easily tackled by our method.

9.1. Partial Matching. Let A and B be sets of objects (not necessarily with the same
cardinality), and let 1 ≤ p ≤ min{|A|, |B|} be an integer. The problem is to find r p,
the smallest r for which a matching of cardinality p exists in G[r ]. This problem might
arise in pattern matching, when we suspect that some of the points are superfluous, or
we seek the appearance of a relatively small pattern A inside a large picture B.

To find whether r < r p we use the methods of Section 3.2. There we increased the
matching incrementally, so after matching p pairs, we can answer whether r < r p. The
time spent by this procedure is O(|A|1.5 · T (|B|)), where T (|S|) is the time required to
perform an operation on Dr (S).

To find r p, we need to be able to solve the k-bichromatic distance selection problem
efficiently. Here too the methods of Section 4 can be applied.

9.2. Finding a Batch of Partial Matchings. When the number of points is not known
in advance, we can further modify the algorithm, so for every 1 ≤ m ≤ n in time
O(n1.5+ε+ηn1+ε) we find a batch of values r∗m, r∗m+1, . . . , r∗m+η. The proposed procedure
is faster than separately finding for each i = m, . . . , m + η the value of Match∗i —the
best partial match on i points. This is achieved as follows: We first find Match∗m using the
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procedure described in Section 9.1 above. Next we find η augmenting paths, such that
each such path augments Match∗m+i to Match∗m+i+1, for i = 0, . . . , η−1. An augmenting
path is found as follows. Let A0 ⊆ A and B0 ⊆ B be the exposed vertices of A and B in
Match∗m+i . We maintain a forest of augmenting trees containing A0. Let A1 ⊆ A be all
nodes reachable from A0 via an augmenting path of one of the trees in the forest, and let
B̄ ⊆ B be all nodes not in any tree of the forest. At each step of the algorithm we add
to the forest the edge (a, b) such that

dist(a, b) = min{dist(a, b) | a ∈ A1, b ∈ B̄}.
If b is an exposed vertex (b ∈ B0), then an augmenting path has been found. Otherwise,
(b, a′) ∈ Match∗m+i for some a′ /∈ A1. We add (a, b) and (b, a′) to the forest.

Adding an edge to the forest is done in O(nε) time by inserting the vertex a′ to A1

and deleting b from B̄, using the procedure of Agarwal et al. [2] for maintaining the
closest bichromatic pair.

Since each vertex can be added to the forest only once, updating Match∗m+i to
Match∗m+i+1 requires O(n) update operations, i.e., a total of O(n1+ε) time. To update the
forest we need to delete the tree whose root a0 ∈ A0 was matched. This also involves
at most 2n update operations per augmenting path. Thus the time required for the entire
batch Match∗m, . . . , Match∗m+η is O(n1.5 log n + ηn1+ε).

9.3. Finding the Longest Perfect Matching. We describe briefly another set of prob-
lems. Let A and B be two sets of n points, let r > 0, and let Ḡ[r ] denote that graph
on A ∪ B whose edges are pairs of points of distance at least r . The problem is to find
Match(A, B), the largest r for which a perfect matching exists in Ḡ[r ] (in this scenario,
this problem is the dual of finding Match(A, B)). Surely, our basic scheme will do here
as well, provided we obtain a data structure Dr (B) that allows:

(i) finding a point of B whose distance from a query point q is at least r ,
(ii) deleting a point from B.

Fortunately, these operations can be done efficiently in the Euclidean planar case by
maintaining the Circular Hull of B—namely, the region consisting of the intersection
of all disks of radius r containing B. Hershberger and Suri [31] showed how both these
operations can be handled in (amortized) time O(log n). Hence Match(A, B) can be
found in this scenario in time O(n1.5 log n).

Recall that finding Match(A, B), when A and B are point-sets in R
3 can be done in

time O(n11/6+ε) (Theorem 6.3). It is surprising, in our opinion, that Match(A, B) can be
found in this setting much faster; we describe only the data structure and use the same
oracle and generic algorithms used in the proof of Theorem 6.3.

Let S ⊆ B, and fix a parameter r . Trivially, if some point b ∈ S can be matched in
Ḡ[r ] to a point a ∈ A, then a /∈ ⋂bi∈S br

i , where br is the three-dimensional ball of
radius r centered at b. Agarwal et al. [2] proposed a data structure �(S) for a set of
congruent three-dimensional balls. This data structure enables us to determine whether
a point is in

⋂
s∈S sr , and to delete a ball in time O(nε). The data structure may be

constructed in time O(n1+ε). To use this structure, we build a balanced binary tree T ,
whose leaves are the points of S, and each internal node v is associated with Sv , the set
of balls whose centers are associated with the leaves of v’s subtree. We also associate
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with v the data structure �v = �(Sv). To perform neighborr (Dr (S), q) (that is, to
find s ∈ S such that q does not lie in sr ), we use �v where v = root(T ), to find if
q /∈⋂s∈Sv

sr , we recursively check each of its two children to find (at least) one v′, such
that q /∈⋂s∈Sv′

sr . We repeat this process until v′ is a leaf, and then return the singleton
v′. Deletion is carried out in a trivial fashion. Note that both these operations are done
in time O(nε), so, by plugging this data structure into the oracle of Section 3.2 we get
the following theorem:

THEOREM 9.1. Let A and B be two sets of n points in R
3. Then Match(A, B), the

longest perfect matching, can be found in time O(n1.5+ε) for any ε > 0.

9.4. Computing a Most Uniform Matching. The following problem has applications
in pattern matching [21]. Let A and B be two sets of n points in the plane. We seek
Match∗U, a matching Match that minimizes the difference max(Match) − min(Match).
Let G[r, r ′] denote the bipartite graph whose set of vertices is A ∪ B, and there is an
edge between a ∈ A and b ∈ B iff r ≤ ‖a − b‖ ≤ r ′, where ‖a − b‖ is the Eu-
clidean distance between a and b. Recall that dist(1), . . . , dist(n

2) denote the n2 distances
between points of A and points of B, in increasing order. We refer to them as critical
distances, and we assume, for simplicity of exposition, that they are all distinct. We seek
1 ≤ i < j ≤ n2 such that G[dist(i), dist( j)] contains a perfect matching Match, and
the difference dist( j)− dist(i) is as small as possible; Match is then the desired match-
ing. Our algorithm maintains a maximum matching in G[dist(i), dist( j)]. We start with
G[dist(i), dist( j)] for i = j = 1, and with the matching consisting of the single edge
whose corresponding distance is dist(1). The top level of the algorithm consists of the
following loop. If there is no perfect matching in G[dist(i), dist( j)] we increase j by one,
else we increase i by one; in either case we compute a maximum matching in the new
graph, and repeat. Increasing j adds a single edge to the graph, and we check whether
the size of the maximum matching increases by one. Increasing i deletes a single edge
from the graph, and, if this edge was in the current maximum matching, we must check
whether the size of the maximum matching remains as before (or decreases by one).
Both these checks are done by trying to compute an augmenting path for the current
matching using a slightly simpler version of the procedure of Section 3.1, as we did
in Section 8.2. (In the latter check, we do this after deleting the edge corresponding
to the distance dist(i) from the current matching.) If such a path exists, then the an-
swer is positive and we update the current maximum matching; otherwise, the answer is
negative. If a perfect matching was found, then we compare the appropriate difference,
i.e., either dist( j+1)− dist(i) or dist( j)− dist(i+1), with the difference corresponding to
the best perfect matching found so far. Clearly, the most uniform matching will be dis-
covered in this way, and the number of times we need to compute an augmenting path
is O(n2).

As in Section 3.1 we need a data structure Dr,r ′(P) over a set of points P ⊆ B,
supporting the following operations, in amortized time O(n1/3 log n):

• neighborr,r ′(Dr,r ′(P), q): For a query point q, return a point p ∈ P whose distance
from q is between r and r ′. If no such p exists, then neighborr,r ′(Dr,r ′(P), q) = ∅.

• deleter,r ′(Dr,r ′(P), p): Delete the point p from P .
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We show below that such a data structure can be constructed in time O(n4/3 log n),
and that an augmenting path can be computed within the same time bound. Since
we repeat this process O(n2) times, we obtain an O(n10/3 log n)-time algorithm for
computing a most uniform matching. The data structure is based on the following
theorem.

THEOREM 9.2 [37]. Let M be a set of m congruent annuli and let A be a set of n points
in the plane. One can compute the set of pairs

Z = {(c, a) | c ∈M, a ∈ A, and a lies in c}

as a collection {Mu× Au}u of complete edge-disjoint bipartite graphs, in time and space
O((m2/3n2/3 + m + n) log m). (That is, for each annulus-point pair (c, a) ∈ Z , there
exists a single graph Mu × Au such that c ∈ Mu and a ∈ Au , and for each graph
Mu × Au and for each c ∈Mu , a ∈ Au , the pair (c, a) is in Z .) The number of graphs
is O(m2/3n2/3 + m + n), and

∑
u |Au |,

∑
u |Mu | = O((m2/3n2/3 + m + n) log m).

For each point b ∈ B we draw the annulus of radii r and r ′ that is centered at b. Let
M be the set of these annuli. Clearly, r ≤ ‖q − b‖ ≤ r ′ for a point q iff q lies inside
the annulus associated with b. We apply Theorem 9.2 to the sets A and M and obtain
in time O(n4/3 log n) a collection of O(n4/3) bipartite graphs Hu =Mu ×Au such that∑

u |Au |,
∑

u |Mu | = O(n4/3 log n).
The operations are implemented as follows:

neighborr,r ′(Dr,r ′(B), a): Find any bipartite graph Hu such that a ∈ Au , and return any
b ∈Mu .

deleter,r ′(Dr,r ′(B), b): For each graph Hu such that b ∈Mu , remove b from Mu , and,
if after the removal Mu = ∅, remove the entire graph Hu (i.e., remove the points
in Au).

Each graph Hu is represented by two lists Au and Mu . In addition, for each a ∈ A we
maintain a list La of the occurrences of a in the lists Au . All lists are doubly linked to
enable deletions, and there is a pointer from the occurrence of a in a list Au back to the
entry in La which points to this occurrence. Similar lists Lb (b ∈ B) are constructed
according to the Mu lists. Once the complete bipartite graphs have been constructed,
the implementation of neighborr,r ′ and deleter,r ′ is a matter of list processing.

Since each occurrence of a or b in {Hu} is removed only once, the time needed for n
neighborr,r ′ and deleter,r ′ operations is O(n4/3 log n), as asserted.

REMARK 9.3. Note that if the underlying norm is L∞, we can find a most uniform
matching in time O(n3 logd n), for any fixed d ≥ 2.

This is done by constructing a d-level orthogonal range tree for the set B. The points
of B lying at distance between r and r ′ of a query point q, lie in a region that is defined as
the difference between two concentric cubes; namely, the cube centered at q with edge
length 2r ′ and the cube centered at q with edge length 2r . This region can be partitioned
into 2d disjoint axis-aligned boxes, on each of which a query can be performed. Details
are standard and hence omitted.
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Summarizing, we have:

THEOREM 9.4. Let A and B be two sets of n points. It is possible to compute a most
uniform matching in time O(n10/3 log n) when the points are in R

2 and the underlying
norm is L2, or in time O(n3 logd n) when the points are in R

d , d ≥ 2, and the underlying
norm is L∞.
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