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Geometry Helpsin Bottleneck Matching
and Related Problems!

A. Efrat,? A. Itai,® and M. J. Katz*

Abstract. Let Aand B betwo setsof n objectsin R, and let Match be a (one-to-one) matching between A
and B. Let min(Match), max(Match), and X (Match) denote the length of the shortest edge, the length of the
longest edge, and the sum of thelengths of the edges of Match, respectively. Bottleneck matching—amatching
that minimizes max(Match)—is suggested as a convenient way for measuring the resemblance between A and
B. Several algorithms for computing, as well as approximating, this resemblance are proposed. The running
time of all the algorithmsinvolving planar objectsisroughly O(n'-®). For instance, if the objects are pointsin
theplane, the running time of the exact algorithmis O(n-> logn). A semidynamic datastructure for answering
containment problems for a set of congruent disks in the plane is developed. This data structure may be of
independent interest.

Next, the problem of finding atrandation of B that maximizes the resemblance to A under the bottleneck
matching criterion is considered. When A and B are point-sets in the plane, an O(n® log n)-time algorithm
for determining whether for some translated copy the resemblance gets below a given p is presented, thus
improving the previous result of Alt, Mehlhorn, Wagener, and Welzl by afactor of aimost n. Thisresultisused
to compute the smallest such p in time O(n® log? n), and an efficient approximation scheme for this problem
isalso given.

Theuniformmatching problem (al so called the balanced assignment problem, or thefair matching problem)
is to find Matchy|, a matching that minimizes max(Match) — min(Match). A minimum deviation matching
Match isamatching that minimizes (1/n) X (Match) — min(Match). Algorithms for computing Matchy; and
Match? in roughly O(n%3) time are presented. These algorithms are more efficient than the previous O(n*)-
time algorithms of Martello, Pulleyblank, Toth, and de Werra, and of Gupta and Punnen, who studied these
problems for general bipartite graphs.

Key Words. Bipartite graph matching, Bottleneck matching, Euclidean distance, Minkowski norm, Trans-
|ation, Approximation.

1. Introduction. Inthefield of pattern recognition it is often required to measure the
resemblance between two sets A and B of objectsin d-dimensional space. This problem
often arises when an input image is given, and we seek, among model images stored in
some library, the one that is most similar to the given image.

Many methods have been suggested for quantifying this similarity. Perhaps the most
common of which is the Hausdorff distance, defined as the maximum distance between
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Fig. 1. A set A of points represented as solid disks, and a set B of points represented as empty disks.

an object in one set and its closest neighbor in the other set. Many algorithms and appli-
cations have been suggested for computing and applying the Hausdorff distance (e.g.,
[12]{14], [33], and [34]). However, measuring the resemblance by the Hausdorff dis-
tance suffers from the following problem which is sometimes a fundamental drawback:
the mapping defined by associating each object in A to its closest neighbor in B is not
necessarily a bijection (one-to-one).

Quite often it is required that each object in an image be matched by one and only
one object in the other image. In such cases the Hausdorff distance is meaningless, see
Figure 1.

Inthispaper we propose adifferent measure of similarity: we assumethat bothimages
Aand B havethe samenumber of objects, aperfect bi partite matchingisabijection Match
from Ato B. Let max(Match) denote the maximal distance between any matched pair of
objects. We seek amatching Match that minimizes max(Match). Werefer to thismeasure
as the bottleneck matching criterion, and define the distance between the two images as
the longest distance between any matched pair. Let Match(A, B) denote this distance.

The disadvantage of bottleneck matching, as well as any distance that relies on one-
to-one matching, isthat it is probably more complicated to compute than the Hausdorff
distance, and the algorithms tend to be less efficient. A partial explanation is that the
known algorithms attack the problem as a purely graph-theoretic one without taking
advantage of its geometric nature.

Furthermore, the problem of minimizing the resemblance under some rigid motion
or other transformation of one image relative to the other, has been investigated mainly
from apractical point of view, and the best known a gorithms are either computationally
inefficient (see[5]) or significantly restrict the inputs (see [6]).

For the case where the sets A and B are pointsin the plane, Vaidya[46] explored the
geometric structure of the problem to obtain an algorithm for finding amatching between
A and B, for which the sum of distances between the matched pointsis minimal (among
all perfect matchings between A and B). (This criterion is different from our bottleneck
criterion.) He obtained an O(n?®°logn)-time algorithm for the Euclidean distance and
an O(n?log® n)-time algorithm for the L, distance. The solution of the Euclidean case
has recently been improved by Agarwal et al. [2] to O(n?*¢).5 However, the resulting
algorithms remain relatively complicated. See also [11] and the recent paper by Indyk
and Venkatasubramanian [35] for fast algorithms for other types of graphs related to
geometric configurations.

For computing Match(A, B) we introduce in Section 3.2 an oracle that determines,
for a parameter r, whether Match(A, B) < r. The exact running times depend on the
norm and the dimension.

5 Throughout the paper, & standsfor apositive constant which canbechosen arbitrarily small with an appropriate
choice of other constants of the algorithms.
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Table 1. Computing Match(A, B) in different settings.

Dim. A B Norm Oracle Theorem Match Theorem
R2  Points Points Lp, VP O(n'®logn) 5.4 O(n'Slogn) 5.10
Additive  O(nl5t¢) 6.7 O(nl5+e) 6.8
weights
Segments Ly, Vp O(nt5+e) 6.7 O(nl5te) 6.8
R3  Points Points L O(ntl/6+e) 6.2 O(n1l/6+e) 6.3
RY  Points Points Loo on*Slog?-1n) 6.4 o5 logd n) 6.5

The oracle is then used to find Match(A, B); that is, the minimal r for which
Match(A, B) < r. Clearly, Match(A, B) must equal a distance between an object of
A and an object in B. Thus our search space is confined to n? such distances. In Sec-
tion 4 we show how to conduct the search efficiently. In some cases (Sections 5.3 and
6.1) the time required for finding the matching is the same as the oracle time.

Sections 5 and 6 discuss the implementation of the data structures needed for the
oracle and for finding the matching itself, for different choices of the dimension of the
space, the sets A and B, and the underlying norm. These results are listed in Table 1.

When A, B C R? are point-sets, and the underlying normis L, (the planar Euclidean
point-sets case) our algorithm runs in time O(n'®logn). For this case, we developed
(Section 5.1) a semidynamic linear-size data structure for aset S of equal-size disksin
the plane, so that finding adisk containing aquery point, and deleting adisk from S, can
both be performed in time O(logn). We believe that this data structure is of interest of
itsown.

In Section 5.2 we show how to conduct the search efficiently, so the running timeis
O(Oracle — Time- logn) = O(n'®log? n). Moreover, for this case we can shortcut the
generic algorithm and find the matching in the same time as the oracle (Section 5.10),
i.e.,intime O(n*®logn) (Theorem 5.10).

Additional settingsarediscussed in Section 6. Assumefirst that A and B are point-sets
inRY. For d = 3 and the L, norm (the three-dimensional Euclidean point-sets case),
we propose an O(n'/6 + ¢)-time algorithm (Theorem 6.3). When the normis L, (the
L« point-sets d-space case), the running timeis O(n**log® n) (Theorem 6.5).

When Aisaset of n pointsin the plane, B isaset of n segmentsin the plane, and the
normisanarbitrary L ,, or when Aand B are setsof pointsinthe planeand the distanceis
additively weighted (i.e., dist, (a, b) = |la — bl|, + w(b) for some nonnegative weight
function w), the running time of the algorithm for computing Match(A, B) is dightly
worse—O(n5+¢), for any ¢ > 0 (Theroem 6.8).

Section 7 presents an approximation scheme that computes an s-approximation for
Match(A, B), in any dimension in time O(n*°logn), where A and B are point-sets
and the constant of proportionality depends on the dimension and on ¢. We believe
that this scheme is relatively easy to implement, with a reasonably small constant of
proportionality, and therefore would do reasonably well in practice.

We also show in Section 8.2 an application of our technique for the trandation
problem: Let A and B be two n-point-setsin the plane, and let o be afixed number. The
problemistofind atranslation B’ of B such that Match(A, B’) isat most o, or determine
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that no such trandation exists. Alt et al. [5] gave an O(n)-time algorithm for this
problem. We improve this bound to O(n®logn), and show how to find in O(n®log? n)
time atrandation B* of B that minimizes Match(A, B’), over al trandations B’. We
also present a scheme to find a translation that approximates Match( A, B*).

In Section 9 we discuss two problems strongly related to the matching problem. The
first is Partial Matching in which we are given A, B (not necessarily of the same cardi-
nality) and aparameter 1 < p < min{|A|, | B|}, and we seek amatching of cardinality p
for which itslongest edge is as short as possible. The second problem is Longest Perfect
Matching in which we are given A, B, and seek Match(A, B), thelargest r for which a
perfect matching exists, such that the length of all itsedgesisr or more. Surprisingly, for
pointsin R3, this problem is easier to tackle than the problem of finding Match(A, B).

Finally, we consider the problem of finding amatching Match between A and B which
isasbal anced as possible. We consider the (most) uniformmatching M which minimizes
max(Match) — min(Match), where min(Match) is the the minimum distance between
any matched pair. Martello et al. [41] considered this problem (or abalanced assignment,
asthey called it) for general bipartite graphs, and presented an O(n%)-time solution. In
Section 9.4 we present an O (n'%2|og n)-time solution for this problem in the geometric
setting. Our solution uses both the technique for computing a bottleneck matching, and a
technique for batched range searching, where the ranges are congruent annuli (see[37]).

Another criterion for balancing matchings is to minimize (1/n)x(Match) — min
(Match), where X (Match) isthe sum of lengths of the edges of Match. A best matching
under this criterion is called aminimum-deviation matching M7 and is discussed in [20]
andin[22].

2. Matchingin General Bipartite Graphs. Wefirst discuss the connection between
our problem and standard graph-matching theory. A graph-matching of abipartite graph
G = (XUY, E)isasetof edgesM C E(G) such that no vertex of G isincident to more
than one edge of M. A graph-matching M isperfect if every vertex of G isincident to an
edge of M. The problem of finding a perfect matching in a bipartite (or arbitrary) graph
has been well studied. See, for example, [39] and [40] for textbooks on this subject. The
best known agorithm for finding a perfect matching in a bipartite graph runs in time
O(m./n) (where n is the number of vertices and m is the number of edges) and is due
to Hopcroft and Karp [32]. When aweight is associated with each edge, and we seek a
perfect matching for which the sum of weights of its edges is minimal, the best known
agorithm runsintime O(n?), using the so-called Hungarian method, and is due to Kuhn
[38].

We define our problem in graph-theoretical terms: The images A and B are each a
set of n vertices of acomplete bipartite graph G = (AU B, E). Theweight of the edge
(a,b) € Eisdist(a, by—thedistance betweena € Aandb € B. Let max(M) denote, as
above, theweight of the heaviest edge of agraph-matching M. The bottleneck matching
isaperfect graph-matching M C E that minimizes max(M).

Let G[r] bethe bipartite graph whose vertex set is AU B, and whose edges consist of
al pairs (a, b), a € A, b € B, for which dist(a, b) < r. Note that Match(A, B) <r if
and only if there exists aperfect graph-matching in G[r]. We therefore focus on finding
amaximum graph-matching in G[r ]—a graph-matching of largest cardinality.
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Given agraph-matching M of abipartitegraph G = (AU B, E), the verticesincident
to edges of M are called matched and the remaining vertices are exposed. The path
w7 = (v, ..., vy) isanalternating pathif v, isan exposed vertex of A, (vzi, vai11) € M
(i=1...,t—1and (va-1,v2) € E\M (i =2,...,1). Note that the odd vertices of
7 belong to A, and the even onesto B. This path is called an augmenting path if vy is
an exposed vertex. If  isan augmenting path, then M’ = M & 7 = (M\7) U (7 \ M)
isagraph-matchingtoo and (M| = 1+ |M]|.

A theorem of Berge [9] states that a matching is maximum if and only if there are
no augmenting paths. Thus one may start with the empty matching and augment it by
augmenting paths found in a greedy fashion.

Edmonds and Karp [18] showed how to compute augmenting paths by order of
increasing length. Instead of finding the augmenting paths one by one, Hopcroft and
Karp [32], and also Karzanov [36] who followed the techniques of Dinitz [16], find all
shortest augmenting paths together. We follow Dinitz's terminology (see also [45]).

To find all shortest augmenting paths, we conduct a breadth-first search to get layers
Ly, ..., L. Thefirst layer, L1, consists of al exposed vertices of A; Ly contains all
vertices of B not appearing in Uj _o Lj and connected (in G) to some vertex of Ly 1.
If Lo contains exposed vertices, then it is the last layer. Otherwise, we define Lo, 1 to
contain all vertices connected (in the matching M) to verticesin Ly . Note that the odd
layers contain only vertices of A and the even layers only vertices of B.

The layered graph £ consists of the vertex set Ui2t=1 L, and edges of M that connect
vertices of L; to vertices of L1, and edges of G that connect vertices of L,;_; to
vertices of Ly;.

Dinitz showed how to compute a maximal set of edge-disoint augmenting paths
by conducting a depth-first search of the layered graph. His algorithm requires O(|E|)
time to construct the layered graph and to find the augmenting paths. For sufficiently
large values of r, G[r] contains © (n?) edges, hence his agorithm applied to our setting
requires O(n?) time per layered graph. We take advantage of the geometric features
of G[r] to improve the efficiency of Dinitz's algorithm. We represent the edges of £
implicitly, and thus our construction enables us to find the augmenting paths in £ in
almost O(n) time.

3. Maximal Matchingin G[r]. Inthissectionwe describean oracleto decidewhether
agivenr islessthan, equal to, or greater than r* = Match(A, B). The oracle searches
for a perfect matching in G[r], using Dinitz's algorithm and taking advantage of the
geometric setting.

3.1. Constructing £ Implicitly. Our goal isto find the set of vertices of each layer L;;
however, we do not explicitly construct al the edges of L. Instead, we use an abstract
datastructure D, (S) for aset of objects S C B and afixed parameter r. The datastructure
supports the following operations:

e neighbor, (D, (S), q): For aquery point g, return an element s € S whose distance
from g isat mostr. If no such s exists, then neighbor, (D (S), q) = @.
o delete (D, (9), s): Delete the object s from S.
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The implementation of D, () depends on the dimension, the objects of S, and the
underlying norm. Various implementations are described in Sections 5-6.3. Let T (|S))
denote an upper bound on the time of performing one of these two operationson D, (S).
We disregard the time needed to construct the data structure, sincein al relevant cases
itisbounded by O(n - T (n)), and does not influence the overall complexity.

We turn now to the algorithm for generating L. Initialy, set D < D, (B). In the
course of the algorithm, some vertices of B will be deleted. Using this data structure,
the layered graph is constructed by the following procedure:

procedure ConstructLayerGraph(G, M)

L, <« exposed vertices of A,
i < 1,D <« D (B);
Repeat forever
L2i <~ @
Foreacha e Ly_; Do
/* Find al b’swhich are neighbors of somea in G[r] */
While neighbor, (D, a) # @
b < neighbor, (D, a);
Addbto Ly;
delete (D, b); /* in order to prevent re-finding b */
End
End
If Lo isempty
Then no augmenting path exists. Stop.
Elself Ly contains exposed vertices,
Then the construction of £ iscomplete;
Output £;
Else L1 < al verticesof A adjacent to L, viaedgesof M.
i <41
End

Each matched vertex of A isreached in O(1) time from its pair in M. Also, each
vertex of B isfound at most once by a query of neighbor, (D, -) and deleted from D at
most once. Thus the construction time of £isO(n - T(n)).

3.2. Finding Augmenting Pathsin £. We now show that the augmenting paths in any
maximal set of edge-digjoint augmenting paths are vertex digoint.

LEmmA 3.1. Let M be a graph-matching of a bipartite graph G = (AU B, E), let IT
be a set of edge-disjoint augmenting paths, and let v be an intermediate vertex of some
path of IT. Then v cannot participate in any other augmenting path of IT.

PrROOF. Since v is neither the first nor the last vertex of the augmenting path, v is not
exposed so it must be incident to exactly one edge (v, v') € M. Suppose v € Lyj. By
our construction, (v, v) connects Lo; and Loj1. Hence, every augmenting path that
contains v must also contain the edge (v, v’). Since the paths of IT are edge digjoint, v
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cannot belong to any other path of 1. A similar argument holds when v belongs to an
odd layer. O

Next we look for augmenting paths from the exposed vertices of L ; to exposed ver-
tices of Ly (the last layer). First we construct Dy = Dy (Ly) for each of the even
layers Ly € B. Then we conduct a depth-first search: We start from an exposed ver-
tex in L, and construct an aternating path. To advance from avertex a € Ly_1, we
perform neighbor, (D, &). If it returns a vertex b € Ly, then we add (a, b) to the
current path and advance to b. Otherwise, it returns ¢ indicating that no neighbors of a
remain in L. Thus a does not lead to an exposed vertex of Ly and we should back-
track.

To advancefromb € Ly (i < t), let (b,a™) € M. We add (b, a™) to the path and
advance to at (b is not exposed sincein (1) L al exposed vertices of B belong to L ).
If b € Ly isan exposed vertex, then we have found an augmenting path. We increase
M and delete al its intermediate vertices from the appropriate Ly;’s. (Thisis justified
by Lemma3.1.)

To backtrack froma € Ly_; (i > 2), let (b™,a) € M and let a— be the vertex
preceding b~ on the path. We remove a and b~ from the path and continue from a. If
a € L; wesimply deleteit from L.

The search for augmenting paths (and the phase) terminates when there remain no
more exposed verticesin L ;.

If all the vertices are matched, then we concludethat r * < r, otherwise, we conclude
that r* > r. If during the construction of £ one does not reach any exposed vertex of B,
then G[r] contains no perfect matching. We therefore halt and conclude that r* > r.

Note that the time spent on finding all alternating paths in a single layered graph is
again O(n-T(n)). By atheorem of Hopcroft and Karp [32], Dinitz’'s matching algorithm
requires O(4/n) phases. Hence we have the following theorem:

THEOREM 3.2. Let A and B be two sets of n objects and r > 0. Then the oracle
that determines whether r < Match(A, B) requires time O(n*® - T(n)), where T(|S))
is a (monotonically nondecreasing) upper bound on the time required to perform an
operation on D, (S).

4. Finding the Optimum Matching. The oracle is now used to find Match(A, B);
that is, the minimal r for which Match(A, B) < r. Clearly, Match(A, B) must equa a
distance between an object of A and an object in B. Thus our search space is confined
to n? such distances.

Rather than calling the oracle for all these distances, we wish to conduct a binary
search. Thus, naively, we would have first to calculate all n? distances, sort them, and
then conduct the binary search, calling the oracle at most 21og n times. However, if the
oracle requirestime o(n?), thetimeto find the distances and sort them will dominate the
total running time.

In order to minimize the number of times the oracle is called, we need to solve the
following variant of thethekth distancesel ection problemefficiently. Fora; € A, b; € B
let dist(a;, bj) denote the distance from & to b;. The kth bichromatic distance selection
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problemistofind dist®, thekth largest valuein the multiset {dist(a;, bj)|1 < i, j < n},
wherek is agiven parameter.

If we can find dist" in time Select-Time = o(n?), then since the time required by
each iteration requires Select-Time+ Oracle-Time, the time to find a minimum matching
will become O((Select-Time+ Oracle-Time) logn). If Select-Time = O(Oracle-Time),
then Select-Time can be ignored.

5. TheEuclidean Planar Case. We start with our most involved example—pointsin
the Euclidean plane—for which we have the strongest results. Let A and B be sets of
n pointsin R? and let the underlying norm be the Euclidean norm—L ,. The same data
structure may also be used for the norms L, forany 1 < p < oo.

5.1. TheOracle. To get the oracle that checks whether r < Match(A, B), we have to
show how to implement neighbor, (D, (S), q) for aquery point g € R?,and S € B, and
delete (D (S), q)—delete the point g from S.

To simplify the notation, we scalethe coordinatessothatr = 1. Let S= {dy, ..., dn}
be a set of unit disks, q € R?, and let the operation member (q, S) return adisk d, € S
containing g, and ¢ if no such disk exists. In order to implement our algorithm, we need
a data structure that supports efficiently membership queries and deletion of disks.

Tothat end, wedividethe planeusing the axis-paralel grid I' consisting of orthogonal
cells of edge length % that passes through the origin. Since the disks have unit radius,
each disk intersects O (1) cells, hence, only O(n) cellshave anonempty intersectionwith
disksof S. We maintain these cellsin abalanced search tree (ordered lexicographically).
For each such cell Q, we maintain alist of disks whose center liesin Q, and a data
structure Dy, which maintains the upper envelope of SDQ—the disks set of disks that
intersect Q, and whose centers lie below the line containing the lower boundary of Q.
(The upper envelope of SOQ consists of all pointspe QN UDesf D such that no point
of this union lies above p.) Similar data structures Dy, Dy, and D, are maintained for
S9. SR, and SR, the set of disks intersecting Q whose centers lie (respectively) to the
left of, to theright of, and above the lines containing the I eft, right, and upper boundaries
of Q. The space needed for Dy, will be shown to be O(|S)Q|), and similarity for the other
data structures. Since each disk intersects O(1) grid cells, the space requirement for all
these data structuresis O(n).

To answer the query member (q, S), we consider the cell Q of I" containing g in its
interior (weignore the degenerate and easy situation that q is on aboundary of acell). If
thecenter of adisk d; liesinside Q, thenq € d;, and can be output asd; = member(q, S).
Otherwise, we use Dy, to find if any disk of SOQ contains q, which happens if and only
if g lies below the upper envel ope of SOQ. We repeat this process (if needed) for Dy, D,
and D,.

Wedescribe Dy. Thedatastructures D, D,, and D, aresimilar. A similar datastructure
was also used by Sharir [44]. Dy issimilar to the segment tree [43] and the one used by
Hershberger and Suri [30]. Order the disks of SDQ from left to right by their centers, and
construct a complete binary tree 7 whose |eaves are these disks. With each nodev € 7
we associate the set S(v) of disks corresponding to the leaves of the subtree rooted at v.
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Fig. 2. The proof of Lemma5.1.

Let UE(v) denote the upper envelope of S(v). Asiseasily seen, not al the disks of S(v)
must participate in UE(v), but those that do, appear along UE(v) (when scanned, from
left to right) in the same order as the order of their centers, from left to right.

LEMMA 5.1. Letv beanodeof 7, and let left(v) and right(v) denoteitsleft and right
children. Then UE(left(v)) and UE(right(v)) have at most one intersecting point.

ProOF. Refer to Figure 2. Assume that two such intersection points exist, say p;
and p,, where p; is to the left of py, and no third intersection point exists between
them. Assume without lost of generality that in the open infinite vertical strip whose
boundaries pass through p; and p,, UE(left(v)) is below UE(right(v)). Consider d
and d,, the disks of S(left(v)) and S(right(v)), respectively, containing p, on their
boundaries. Asis easily seen, the center of d, isto the right of the center of d;, whichis
acontradiction. O

COROLLARY 5.2. Let UE(left(v)) consist of arcs of the (boundary of the) disks ¢, .. .,
£, andlet UE(right(v)) consistsof arcsofry, . . ., rr, wherethecentersof thesedisksare
ordered fromleft toright inthisorder. Thenthereexisti, j (0 <i <L,1<j <R+1)
such that UE(v) consists of the arcs of disks ¢1, ..., ¢, Ij, ..., I'r in this left-to-right
order.

The data structure. Let p(v) be the (single) intersection point of UE(Ieft(v)) and
UE(right(v)). Wecall thispoint the junction point of v. Associated with v wekeep p(v),
¢, rj,and LIST (v)—adoubly linked list of the vertices of UE(v) (with thedisksdefining
them) that do not belong to UE(parent(v)). (If adisk does not intersect any disk toitsleft
(right) we add the | eft (right) intersection of the disk with the bottom line of Q.) Observe
that LIST (v) represents a connected portion of UE(left(v)) concatenated to a connected
portion of UE(right(v)), where p(v) is a common endpoint of these two portions. We
maintain pointers from v to the corresponding “middle” vertices in LIST (Ieft(v)) and
LIST (right(v)).

Construction of the data structure.  The construction is performed bottom-up from the
leaves of 7 up to its root. In each step we are at a node v, and we have computed
UE(left(v)) and UE(right(v)). We merge UE(left(v)) and UE(right(v)), in linear time
using a standard line sweep procedure to find p(v), and we storein LIST (Ieft(v)) (resp.
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LIST (right(v))) the portion of UE(left(v)) (resp. UE(right(v))) which does not appear
in UE(v). Since at each level of the tree we process O(n) disks, the time required for
the entire construction is O(nlogn).

Membership queries. To carry out member (q, S), we consider the tree as a binary
search tree on the values x(p(v))—the x-coordinate of p(v)’'s. Let X(p1) < --- <
X(pn_1) denote these values. Then theith leaf u; corresponds to the interval (x(pi_1),
X(pi)). Wefind aleaf u; suchthat x(pj_1) < X(q) < X(p;j). Thequery point q iscovered
by U SDQ if and only if it belongsto d; . Thetime complexity of thisoperationis O(logn).

Deletions. Thedifficulty with deletionsisthat deleting adisk d might cause disks that
were occluded by d to appear in the upper envelope UE(v). The deletion of d proceeds
bottom up: wefirst mark theleaf corresponding to d asbeing deleted, update LIST (v) =
#, and continue to v's parent. No change takes place in the topology of the treeitself.

In agenera step we are at a node v, and d appears in S(v), say in S(left(v)). The
casethat d € S(right(v)) is symmetric. We obtain the following information from the
previous step:

e Alinkedlist L of al disks presently in UE(left(v)) which were occluded by d. Let uy
and u, be the left and right endpoints of L, respectively.

e Pointers q; and g to the vertices (in the appropriate LIST(-) fields) u; and u,. See
Figure 3 for a demonstration.

Let p’(v) denote p(v) before the deletion of d took place.
Three cases might arise:

Case (i): X(p'(v)) < x(uy) (see Figure 3(i)). Thisimpliesthat d does not appear in
UE(v), that is, p’(v) = p(v). Thisonly requires usto insert L into LIST (Ieft(v)) at the
appropriate place, which is pointed at by g,. This case terminates the deletion process.

Case (ii): X(up) < x(p'(v)) (seeFigure 3(ii)). We conclude again that p(v) = p’(v),
we do not change L, 1, g2, nor the fields within v, and continue to parent(v).

Case(iii): x(up) < X(p'(v)) < X(uy) (seeFigured). Thisisthemostinvolved case. Let
p(v) p’(v) denote the part of UE(right(v)) from p(v) to p'(v), and let p(v)u, denotethe

UL(right (v)) UE(right(v))

Fig. 3. The two cases where d does not contain p(v).
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UE(le ft(v))

UE(right(v))

Fig. 4. Exploring a new junction point p(v), which was occluded by d.

part of UE(left(v)) from p(v) to u,. We can traverse L, sinceit is organized as alinked
list. Moreover, observe that p(v) p’(v) must be a connected portion of LIST (right(v))
(organized as alinked list), hence we can easily travel aong thislist aswell.

Traversing along theenvelopes.  Out of the points p’(v) and u,, choose the point which
is furthest to the right (u, in Figure 4). We roll from this point to the left, along the
corresponding envelope of UE(left(v)), until we arrive at a point w with the same x-
coordinate as the other point (p’(v) in Figure 4). Next we travel simultaneously on both
UE(left(v)) and UE(right(v)) leftwards, maintaining the pointswe arein on both chains
vertically one below the other, until wereach p(v). Thetime complexity of this stageis
proportional to the number of disks of p(v)u, plusthat of p(v)p’(v).

Next we delete p(v) p’(v) from LIST (right(v)), and insert p(v)u into LIST (left(v))
just after the vertex u, pointed at by g, (and we remove the arc p’(v)u, of d from this
list). We now need to prepare the output of the procedure. Thelist L isthe portion u; p(v)
of the “old” L concatenated with the portion p(v) p’(v) just discovered (u; and q; are
not changed). Vertex us is set to be p’(v), and we update g, accordingly.

Time analysis for the deletion operation. Asiseasily seen, at anode v we spend time
O(1+ 1), where A isthelength of L plusthelength of p(v) p’(v). We need an amortized
argument to bound the sum of these quantities over the course of the algorithm.

From its definition, 7 is a complete binary tree with at most n leaves. Each disk
corresponds to a leaf, and appears only in the ancestors of that leaf. Hence, a disk dgy
might appear inat most O(logn) LIST (-) fields, say LIST (v1), . . ., L1 ST (vm). However,
in al but at most one of these fields, ddy; must contain the corresponding p(v;). For
d € Sletlevel(d,) denote the distance from the root of 7 to alowest node v for which
ad; contains a vertex of LIST (v). We say that dy was promoted due to the deletion
of another disk d, if level(dy) decreased due to this operation. Obviously the level of
a disk never increases, and since each disk can be promoted at most logn times (the
height of the tree), the total number of promotions in the course of the algorithm is
O(nlogn).
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Consider the disks contained in thelist L and in p(v) p’(v), excluding the endpoints
of these lists. The travel along p(v) p’(v) and p(v)u, can be charged to such promo-
tions: Each disk of UE(right(v)) that we scanned (excluding the endpoints) was in
LIST (right(v)), and will be promoted to LIST (v) or to a higher node. Each disk of
UE(l€eft(v)) that we scanned (excluding the endpoints) was promoted from the LIST (-)
field of some proper descendent of left(v) to LIST (Ieft(v)). Hencethetotal timededicated
to traversals, over the entire course of the algorithm, is O(nlogn).

Hence we have

LEMMA 5.3. Given a set S of n unit disks in the plane, we can construct in time
O(nlogn) alinear size data structure, such that finding a disk containing a query point,
and deleting this disk, requires amortized time O(logn) per operation.

Thislemma and Theorem 3.2 yield:

THEOREM 5.4. Let A and B be sets of pointsin R?, andr > 0. Then the oracle that
determines whether r < Match(A, B) requirestime O(n*®logn).

REMARK 5.5. It iseasy to show that Lemma 5.1 holds for any Minkowski L, metric.
Once this lemma is established, the rest of the analysis carries through, and we thus
conclude that Theorem 5.4 holds for all L.

5.2. Finding the Matching. In order to minimize the number of times the oracle is
called, we need to solve the kth bichromatic distance selection problem of Section 4
efficiently.

LEMMA 5.6 [37]. Let A, B € R? besetsof n points, let L, bethe underlying normand
let 1 < k < n? bean integer. Then dist® can be found in time O(n*3log® n).

Theorem 5.4 and this lemma together with the considerations of Section 4 yield the
following:

THEOREM 5.7. Let A, B be sets of n pointsin R?. Then Match(A, B) can be computed
intime O(n*®log? n).

5.3. Accderating the Algorithm. By combining the oracle phase and the generic part,
the running time of the algorithm can be improved by alogn factor.

Recall that dist") istheith largest distance betweena € Aandb € B. Wemaintaina
lower bound, dist® (initially ¢ = 1), and an upper bound, dist™ (initially u = n?), onthe
valueof r *. In Section 5.2 we conducted abinary searchonthevaluesdist®, . . ., dist™,
thus introducing alog factor. The purpose of this subsection is to eliminate this factor.

In the course of the algorithm, we maintain a maximum matching M of G[dist“],
and useit asan initial matching for G[dist"] (¢ < i < u). If dist") < r*, wefail to find
a perfect matching, and at some stage we even fail to construct £, i.e., we do not reach
any exposed vertex of B. If our first attempt to construct £ fails, then M is amaximum
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matching of G[dist"]. Otherwise, we update M. Since the size of every matching is
bounded by n, M is updated at most n times, and at al other times only one layered
graph is constructed.

If the new matching is perfect, then we update dist™ to r. However, we might have
wasted much time in constructing several layered graphs. Therefore, afirst step toward
thedesiredimprovementisto construct £ only aconstant number of timesfor dist” > r*,

Thekey observationisthat sometimeswe can concludethat G[dist"’] doesnot contain
aperfect matching, without even finding the maximum matching. For apartial matching
M C G let £(M, G) denote the length of the shortest augmenting path for M (¢(M, G)
is equal to the number of layers of the layered graph constructed by the procedure
ConstructLayerGraph(G, M) of Section 3.1 starting with the matching M).

LEMMA 5.8. Let M beapartial matching of G. If [M| < n—,/nand ¢(M, G) > /n,
then G does not contain a perfect matching.

PrOOF. Let M™* be amaximum matching of G. M & M™ consistsof p = |[M™&| —
M| vertex digoint augmenting paths Py, ..., P, (and some aternating cycles). The
length of each augmenting path P, satisfies

IR > £(M, G)| > /n.

Since the augmenting paths are vertex digjoint,
P
n>Y IRl>p-vh
i=1

Hence the number of paths satisfies

p < +/N.

Therefore, MM satisfies

IM™| = M|+ p < (n— /M) + /N =n.

Hence M™ s not a perfect matching. O

Let |£| denote the number of layersin the layer-graph £. The following algorithm finds
a maximum matching:

<1, u<n% M! <« empty matching;
While¢ + 1 < uDo
step « [(u—£+1)/nY"]; i « £+ step;
Whilei < u Do
Use the bichromatic distance selection algorithm to find dist®;
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M <« M¢:

L <« ConstructLayerGraph(M, G[dist"]);

While (£ contains exposed vertices of B)

and (L] < A or [M| >n— /f) Do
Update M by the procedure of Section 3.2;
L <« ConstructLayerGraph(M, G[dist"]);

End

If IM{=n Thenu «i;

Elsel < i; M <« M; i < i +step;

End
End

LEMMA 5.9. The outermost loop (While ¢ + 1 < u) is executed at most 14 times.

ProOOF. Each time the loop is executed the range, u — ¢ + 1, decreases at least by a
factor of n'/7. Sinceinitialy, u — £ + 1 = n?, the number of interactions is at most

|Ogn1/7 n? = 14. O

Weargue now that each execution of the outermost |oop takestime O (n° log n). Note
first that we solve the bichromatic distance selection problem nt/7 times. Since by [37]
thisproblem can besolvedintime O(n*2log? n), thissumsuptotime O (n®Y log? n) =
O(n*®). The number of timesthe layered graph is constructed is bounded by the number
of timesthat its construction procedure terminates successfully—(O (y/n), by Hopcroft
and Karp[32], asdescribed in Section 3.2)—plusthe number of timesthat this procedure
fails, which is no more than the number of timeswe consult the oracle, whichis O (nt/7).
The time needed for finding augmenting paths consists of the time spent when the
layered graph is of depth smaller than /n, and the time when the layered graph is of
larger depth. In the former case, the time for finding such a path is O(nlogn), whilein
thelatter casethereare O(,/n) paths. Notethat there are only 14 phases. Thisdiscussion
and Remark 5.5 yield the following theorem:

THEOREM 5.10. Let A and B be setsof pointsin R? and let L , be the underlying norm
for any 1 < p < oo. Then Match(A, B) can be found in time O(n*°logn).

6. Additional Settings

6.1. Pointsin 3-Space. Inarecent paper [23], Efrat et a. obtained results concerning
matching points into fat shapes that contain them in two and three dimensions. These
algorithms use the matching procedure of Section 3.1, but use different data structures
D, (S) than those used here. The following result will be useful:

THEOREM 6.1[23]. Let A be a set of n pointsin R2, and let B be a set of n ballsin
R3. Then in time O(n*Y/6+¢) we can either find a matching between A and B, such that
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each pointa € Aiscontained in the object of B matched to a, or determine that no such
matching exists.

An immediate consequence of the theorem above is aresult for bottleneck matching
for two point setsin 3-space.

COROLLARY 6.2. Let Aand B betwo setsof n pointsinR3, andr > 0. Thentheoracle
that determines whether r < Match(A, B) requirestime O (nY/6+¢).

ProOOF. For each pointb € B let b" beaball of radiusr centered at b. [|a — b|| < r if
andonlyifaeb’. O

THEOREM 6.3. Let A and B be two sets of n pointsin R3. Then Match(A, B) can be
found in time O (n'Y/6+¢),

ProoF. Toselect thekth distancewe use athree-dimensional bichromatic version of the
planar distance selection algorithm of Aronov et al. [1], that selects the kth bichromatic
distance. The selection requirestime O(n’/4+¢) = O(Oracle-time), and hence does not
affect the overall running time. O

6.2. Arbitrary Dimension. Here we assume that S € B is a set of pointsin RY, for
fixed d, and the underlying normis L .

6.2.1. TheOracle. Our goal isto obtain a data structure D, (S) supporting the opera-
tions neighbor, (D (S), q) and delete; (D; (S), s), defined in Section 3.1. We maintain
aset S of d-dimensiona cubes of edge-length 2r, centered at the points of S. D, (S)
consists of a (d — 2)-level segment-tree (on the projection of the cubeson thefirstd — 2
axes) [8, pp. 221-225], and the two-dimensional data structure of Section 5.1 built on
the projection of the cubes on the last two axes. It is easy to show how to perform both
operations neighbor, and delete in this data structure in time O(log?~1 n) each. The
preprocessing of the structure is easily shown to be O(nlog®~* n), and does not affect
the overall running time of the algorithm. Hence T (n) = O(log®* n).

The space requirements are as follows: A segment tree on n segments requires space
O(nlogn), therefore the d — 2 level segment tree requires space O(nlog®~2n). Since
the two-dimensional structure requires linear space, the entire space requirements are
O(nlog®—2 n). (Thisdatastructureisreminiscent of the orthogonal range trees described
in [46].) We summarize with the following theorem:

THEOREM 6.4. Let A and B be two sets of n points in RY, for fixed d, and let the
underlying normbe L .. Thenthereisan oraclethat determineswhether Match(A, B) <
r intime O(n'® - log®~! n). The space requirements are O(nlog®=2n).

6.2.2. Finding the matching. As a method to generate critical distances, we use the
approach taken by Chew and Kedem [14]. Notethat when L o, isthe underlying norm, r *
is the distance between the projection of somea € A and b € B on one of the axes Xp,.
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Thatis, let (q)m betheprojection of point g onaxism, thendist(a;, by) = |(@)m — (b))m|
forsomeme {1,...,d}.

While previously we used the oracle to perform a binary search on the distances,
here we conduct the search on a superset of size 2dn?. For dimension m rearrange A
so0 that (a1))m < (@2)m < -+ < (@n)m, and likewise for B. Now consider the ma-
trix Dy defined as (Dm)i,j; = (&)m — (bj)m. Each row and column of this matrix is
monotonically increasing. However, some of the entries are negative. Let (Dm)i, i =
(b))m — (&)m. Thus each distance dist(a, b)) = |(&)m — (b))m| appears as an entry
inD = {Dx, ..., Dg, D1, ..., Dg}. We now use Frederickson and Johnson’s [25] algo-
rithm to select the kth value of D intime O(dn).

We now discuss the time complexity of the method. The preprocessing consists of
sorting {(& )m}i, and {(b )m}J“=l for each dimension. Thus the preprocessing requires
time O(dnlogn). After thiswe need t = log2dn? = O(logd + logn) selections each
requiring time O(dn), and t oracle calls. Since the time for the oracle calls dominates
the preprocessing of the selections, we have:

THEOREM 6.5. Let A, B be sets of n pointsin RY (d > 2 a constant), with L., as
the underlying norm. Then finding Match(A, B) requirestime O(n*®log® n) and space
O(nlog®~2n).

REMARK 6.6. Naturaly, for d = 2 and the L.,-norm, we can use the shortcut of
Section 5.10 on this data structure to get a slightly faster method that runs in time
o(n*®logn).

6.3. Other Objects in the Plane. We next extend our techniques to find a matching
between aset A of n points and aset B € R? of n objects, which may be one of the
following:

(i) A set of digoint segments, where the distance from a point g € R? to a segment
b € B is defined as the distance from g to its closest point of b.

(if) A set of points, and each by € B is associated with a nonnegative weight w;, so that
for apoint q € R?, we havedist(g, b)) = w; + ||q — bj].

In both cases the underlying norm may be any L p-norm. The two cases are handled
similarly. To implement the oracle of Theorem 3.2 we only need to implement the
data structure D, (S). For this purpose, we use the dynamic nearest-neighbor scheme of
Agarwal et al. [2] who presented such data structures for both these problems. The data
structure can be constructed in time O (n1*¢). These data structures enable usto find and
delete the closest object of B (either a segment or a point) to the query point g in time
O(n®), and hence to implement neighbor, (D; (B), q), by checking if the distance of the
closest object of Sto q isat most r. These data structures support deletions of objects
in time O(n®) aswell. Hence T(n) = O(n®), for any ¢ > 0, leading to the following
result.

THEOREM 6.7. For A and B as defined above, the oracle for testing whether r <
Match(A, B) requirestime O(n*5+¢) for any ¢ > 0.



Geometry Helpsin Bottleneck Matching and Related Problems 17

Thus, to find the optimal matching, we need to implement efficiently the kth bichromatic
distance problem. Thismay bedoneintime O(n*®log® n) by astraightforward extension
of the kth distance selection problem of Agarwal et a. [1]. We summarize:

THEOREM 6.8. Let A C R? be a set of n points, and let B € R? be a set of either
(i) n digoint segments or (ii) n points, where each point b; € B is associated with a
nonnegative weight w;, and the distance from a point q € R? to by is g — by|| + w;.
Then in both cases Match(A, B) can be found in time O (n-5t¢).

7. ApproximatingtheMatching. Inthissectionwe present an approximation scheme
forr* = Match(A, B) inany dimension. Heffernan and Schirra[29] and Heffernan [28],
gave an approximation technique whose running time depends on r*. We describe an
improved technique for finding an approximation to Match(A, B) for A, B point setsin
RY where the underlying norm is any Minkowski norm L.

DEFINITION 7.1.  Let A and B be setsof n objectsin RY, and let ¢ > 0 be a parameter.
A perfect matching M¢ between A and B is an e-approximating matching if

r  <max(M®(A, B)) <r*(1+e¢),
wherer* = Match(A, B).

We use the data structure of Aryaet al. [7] who described adata structure for a set of
points S € RY, that can report in time O( f (d, €) logn) (for f(d, &) = d(1+ 1/¢)%) an
approximated nearest-neighbor of aquery pointq € RY. That is, apoint s € Sfor which
la—slp < (1+¢)-llg—9'lp, wheres' istheclosest point of Sto q. Thisdatastructure
can also be dynamized so that a deletion takestime O( f (d, &) logn)—see [10].

Let D (-) denote this data structure. To implement neighbor, (D; (B), q), we consult
D, (B) tofind b (the approximated nearest neighbor) and if |b —qllp <1 - (1+¢), we
report that neighbor, (D (B), q) isb. Otherwise, report that neighbor, (D, (B), q) = 9.
Our approximation scheme consists of applying the procedure of Theorem 3.2, with the
approximating data-structure replacing the exact one. We refer to this procedure as the
approximating oracle.

LEMMA 7.2. If for parameter r the approximating oracle returns a positive answer
thenr (1 + ¢) > r*. Otherwise, r < r*,

Proor. Notethatif H 2 G, thenany matchingin G isalsoamatching of H. Moreover,
if M isamatching of G which can be increased by an augmenting path, then for any
matching of size |M| of H there exists an augmenting path in H.

When applying the approximate distance query, we use agraph G” 2 G[r] instead
of the graph GJ[r]. The graph G* contains all the edges of length < r and some of the
edges whose length is between r and (1 + &)r, but no longer edges, i.e., G[r] € GA C
G[(1 + &)r]. Thusif G[r] has a perfect matching, so does GA. Since all the edges of
G” havelength < (1 + e)r, if the approximating oracle returns a negative answer, then
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G[r] does not have a perfect matching and thusr < r*. Inthe case of apositive answer,
since all the edges of G* have length < (1 + ¢)r, the length of the maximum edge in
the matching is bounded by (1 + &)r. O

To find an approximate matching, we have to search among the n? distances. Even
though we do not know how to solve the kth bichromatic distance selection problem
efficiently for all dimensionsand every norm, in Theorem 6.5 we showed an O(nlog® n)
solutionfor L, inRRY. Wenow usethis ol ution to find an approximationfor the L ,-norm
for al p.

THEOREM 7.3. Let A and B be sets of n pointsin RY, and let ¢ > 0 be a parameter.
Letr; = Match(A, B) where L (1 < p < o0) isthe underlying norm. We can find in
time O(f (d, &) - n*>logn) a matching M? between A and B satisfying

rp < Mg(A,B) < (1+eo)rg,

where f(d, &) = d(1+ 1/¢)".

ProoF. Wefirst provethetheoremfor the L .-norm. Inthiscase, we use thetechniques
of Theorem 6.5 with Lemma 7.2 instead of the exact oracle of Theorem 6.4 to find a
matching M, (A, B) that satisfies

re < ML(AB) < (1+er.

o0

Now we use the relationship between Minkowski norms:

diiXllo = [IXll2 = 1IXllz = -+ = [[Xlleo »

where ||X||, denotes the length of the vector x using the L ,-norm. Thusdr 3 isan upper
bound on re = Mp(A, B), andd(1+¢)rZ, isanupper bound on Mo Likewise rs, /(1+¢)
isalower bound onrg. Thusrg belongsto theinterval [r /(1 + ), d(1+e)rg].

We now conduct a binary search on thisinterval, using the approximating oracle for
Lp With e/2. After 2+ logd + loge 1 iterations, the length of the remaining interval is
lessthanr Je /2. Choosingr; astheleft boundary of thisinterval satisfiesthe requirement
of the theorem. O

8. The Trandation Problem

8.1. The Trandation Oracle. Let A and B be two setsof n pointsin R? and r € R?.
Lett+B = {r+b | b € B} denotetheset B translated by t. Thetrandlation problemis
tofind ¢*, atrandation t that minimizesMatch(A, T + B). Let p* = Match(A, t* + B).
The trandation oracle receives p > 0 as input and determines whether there exists a
trandation = for which Match(A, ¢ + B) < p. In other words, the trandation oracle
determines whether p* < p. Alt et al. [5] presented an O(n®)-time algorithm for the
trandation oracle. Using our technique we improve the running time of their algorithm
to O(n®logn). In Section 8.2 we use this oracle to solve the translation problem.
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We briefly describe the algorithm of [5], and refer the reader to that paper for further
details: If, for atrandation T, Match(A, T + B) < p, then there also exists atranslation
7/ and apair of pointsa € A, b € B such that Match(A, " + B) = p and the distance
fromato r + bisexactly p. Hencewe can limit our attention to translations z that bring
some point of A to distance p (exactly) from some point b € B.

Fora € A, let a” denote the disk of radius p (in the underlying norm) centered at a,
and let A” denotetheset {a” |a € A}. Fora € A, b € B, let circ[a, b, p] denote the
set of trandations that bring a to distance p from b; thisisacircle of radius p centered
at b — a. The agorithm checks for each paira € A, b € B if Match(A,t + B) < p
for some trandlation ¢ € circ[a, b, p]. That is, if there exists a perfect matching in the
graph G.[p] determined by A and  + B. Let 7o be afixed trandation in circ[a, b, p].
We first construct Match(A, 7o + B). If its value is less than or equal to p, then we
are done. Otherwise, we trandate B rigidly by al trandlations of circ[a, b, p]. During
this process, images of points of B are moved into or out of disks of A?, implying that
edges are inserted into or deleted from the graph G.[p]. While the image of b revolves
around a, each image of a point b’ € B travels aong a circle of radius p, and enters
and exits each disk (a')? € A’ a most once. Hence, each edge is born (inserted to
G:[p]) and dies (deleted from G.[p]) at most once. The birth/death events are called
critical events. Therefore, circla, b, p] contains at most 2n? such critical events. After
each critical event, we might need to recompute Match(A, ¢ + B). Each critical event
adds or deletes a single edge: In the case of a birth, the matching increases by at most
one edge. Therefore, we look for an augmenting path which contains the new edge. If
an edge of the matching dies, we need to search for a single augmenting path. Thusin
order to update the matching, we need to find a single augmenting path in G.[p], for
which we need only one layered graph.

Alt et a. [5] use standard graph-theoretical techniques to find the path, and hence
spend O(n?) time for each critical event. Summed over all pairsa € A, b € B, thetotal
number of critical events encountered in the course of the agorithm is O(n*), so the
total time spent by the algorithm of Alt et al. is O(n*) x O(n?) = O(n%).

Instead, we use the procedure of Section 3.1 and Section 5.1 to construct the layered
graph. This procedure requires only O(nlogn) time for each augmenting path. Taken
over all O(n*) critical events, thetotal time sumsto O(n®logn). Hence we have proved:

THEOREM 8.1. Given A, B, and p asabove, we can decidein time O (n®log n) whether
there exists a trandation = for which Match(A, t + B) < p.

8.2. Finding the Optimal Trandation. Alt et a. [5] found the trandation itself in time
O(n®logn). For pedagogical reasons, we first develop an inefficient polynomial algo-
rithm to find an optimal trandlation. Then we examine several parallel versions of the
algorithm, to which we apply the parametric search paradigm of Megiddo [42] to im-
prove thetimeto O(n°log? n), i.e., the complexity of our final algorithmisonly alogn
factor more than that of the translation

We start by introducing a polynomial-sized set of critical radii which contains p*.
Givena e A,be B,p > 0,and0 < 6 < 27, let Gg[p, 6] denote the graph G[p]
when b istrandated to a + (p cosé, p sinf). Asb revolves around a, 6 increases from
0to 2w and Ggp[p, 6] evolves: At someangled avertex b’ € B enters (a')? € A? and
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the edge (&, b’) is born. At some other angle b’ leaves (a’)” and the edge (a’, b’) dies.
The optimal translation t* occurs when some edge (', b’) isbornin Ggp[ p*, 6].

We examine more closely the birth angle of an edgee = (@, b') as p grows. It is
easy to see that the birth occurs when b’ lies on the perpendicular bisector of a’ and
B = b — b+ a. Also, the life arc of € = (&', b’)—the circular arc between the birth
and death of €—islessthan half thecircle (i.e., less than 180°).

A critical radius of the first type occurs when the life arc degenerates to apoint, i.e.,
when the circles of radius p centered at &’ and at 8’ are tangent to each other, i.e., when
b’ is midway between @’ and 8’. This occurs when the value of p equals dist(a’, 8’)/2,
which we denote by pa,(€). Let R}ib = {pan(€) | € € A x B} denotethe set of all such
critical radii.

Next we examine another type of critical radii, that might occur for a pair of edges
¢, ¢’ Atsomevaue o' (¢, €') thebirth angle of € coincideswith the death angleof €.

Given €, €', the values of pay(€/, €”) and of pS;) (€', €”) are solutions of a quadratic
equation which has at most two solutions. These solutions can be computed in constant
time. Let R2, = (p®an(€, €")|€, €’ € Ax B}.

The optimal translation occurs at an angle 6 at which the graph Gap[p*, 6] changes,
i.e., either some edge is added (in which case p* € RL,), or two edges that did not
coexist for smaller p now belong to the same graph (in which case p* € R32,). Let
R = Uap RE,UUap R, bethe set of critical radii. From the above discussion p* € R.
Since |RY,| < n?and |RZ)| < n*, |R| = O(n®).

Ouir first a gorithm constructs R, sortsit, and then usesthetransl ation oracleto conduct
abinary searchtofind p*. Finding R requirestime O(n®), sortingit O(n®logn), andthe
binary search requires O(logn) oracle calls, each of which requires O(n®logn) time.
Thus the entire algorithm requires O(n®logn) time.

Our second algorithm does not construct R explicitly. Instead, for each A, B we sort
the birth and death angles of edges at p*. For that purpose we need to know which edges
existat p*, and, for all pairse/, € that exist at p*, check whether the death of € precedes
the birth of € or vice versa. The difficulty isthat we do not yet know p*. However, we
may use the translation oracle.

To check whether € = (&', b') exists at p*, we note that if € exists at r, then it
exists for adl r’ > r. We, therefore, compute pap(€) and ask the trandation oracle if
pab(€) < p*. If itis, then € exists at p*.

To check whether the death of € precedes the birth of €', we apply the trandation
oracleat pap(€, €”). If itanswersthat p* < pap(€, €),thenat p* theedge € died before
€’ was born. Otherwise, a p* the edge € died after €’ was born, i.e., their life arcs are
not disjoint. We call thistest the overlap oracle.

Since for each A, B there are at most 2n? birth/death events, there could be a total
of about n* such events, and sorting them might require ® (n*logn) comparisons, i.e.,
Q(n*logn) oracle calls—far too many.

We usethe parametric search paradigm of Megiddo [42] to reduce the number of calls
to the overlap oracle. Again, we assume that the reader is familiar with this technique,
and refer to [24] for asimilar application. To this end, we consider a parallel algorithm
in which for each pair A, B the sorting is performed by a separate processor. We now
describe an efficient sequential simulation. We consider each processor’sfirst call to the
overlap oracle. The parallel algorithm performsall these callsin parallel. The sequential
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simulationanswersall thecomparisonshby first sorting theradii o (€}, €), ..., p (€., €,)
and then performing a binary search to find the smallest p (€, &) that satisfies the
translation oracle. We need therefore time O(n? log n) for the sort and O(logn) callsto
the translation oracle—a total of O(n®log? n) time for each parallel comparison step.
However, the entire algorithm involves n? log n such steps, i.e., atotal of O(n” log® n)—
again far too much.

To get a good algorithm, we increase the degree of paralelism. Each pair A, B
conducts its sort in parallel using the depth O(logn) paralel AKS sorting network of
Ajtai et al. [3] that sorts O(n?) critical radii with O(n?logn) comparisons.

In each parallel step each of the n? networks performs n? comparisons, thus atotal of
O(n*) comparisons are conducted in parallel. The sequential simulation sorts all these
n* radii, then performs a binary search calling the translation oracle O(logn) times.
Now we may deduce in constant time whether a critical radiusis smaller than p*—thus
answering all the overlap oracles in time O(n*logn + n®log? n). Since the combined
network has depth logn, the total number of oracle calls is O(log®n). Thus in time
O(n®log® n) we have ordered all the critical eventsat p*. Since acritical event happens
at p*, thevalueof p* istheminimal translation oracle call that returned apositive answer.

Cole [15] studied parallel sorts on sorting networks and showed how to reorder the
comparisons, so asto save alog n factor. Histechniqueisapplicablein any setting where
one uses the AKS sorting network as a generic algorithm. Using this technique, the
number of calls to the translation oracle is reduced from log? n to logn. See [15] for
more details. We summarize these results:

THEOREM 8.2. Given A, B as above, the trandation problem can be solved in time
O(n°log? n).

8.3. Approximating the Optimal Translation. We next note that while finding atrans-
lation T* which minimizes Match(A, t + B) isanontrivia problem for which only high
degree polynomial algorithms are known, and only in the plane, it iseasy to find atrans-
lation that brings Match(A, T + B) within afactor of 1 + diam(p, d) of the optimum,
where diam(p, d) = |[(1,..., 1)]|, is the diameter of the d-dimensional unit cube in
the underlying norm, norm L, (1 < p < o0), i.e, for finite p, diam(p, d) = %/d and
diam(oo, d) = 1.

For apoint s € RY let s denote the i th coordinate of s. For a set of points S € RY
let LL(S) denote the point in RY whose i th coordinate is equal to the minimum among
the values of theith coordinate of all the pointsof Sforeachi =1, ..., d. Intheplane,
LL(S) isthe lower-left corner of the smallest axis-parallel rectangle that encloses S, and
analogoudly in higher dimensions. Henceforth, we assume, with no loss of generality,
that LL(A) coincides with the origin. Thereby, foralla € Aandi =1, ..., d, wehave
a >0.

We can identify atranslation r of B withtheimageof LL(B). Let t° bethetranslation
that maps LL(B) to the originand let § = t* — 7°.

LEMMA 8.3. Fori=1,...,d,

16i] < p*.
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PrOOF. Let M* be the optimum matching for (A, B + t*).

Casel: § < 0. Consider the point b’ € B for which (b'); isminimal. Since (b'); =
(LL(B)); we have (b’ + 7°); = 0. Let a’ bethe point matchedto b’ in M*, i.e., (@', b') €
M*. Since we chose the origintobe LL(A), (&'); > 0,

p* > dist@, b + ) = dist@, b’ + 1%+ 8) > @) — (0 + 7%+ 8)i]
= |@)i —&| = @) + 18| > [8].

Case2: i > 0. Choosea” € Atobeapoint suchthat (a”); = O (thisispossiblesince
the origin was chosen to be LL(A)). Now chooseb” € B suchthat (a”, b”) € M*. Since
@i =0and (b” +°%; >0,

p* > dist@’, b’ + ) =dist@”, b’ + t° +8) > |@")i — (b’ + % + 8)i|
> [0+ 1% + 8| = 0"+ 1% +8 > & =5]. O

The following theorem is reminiscent of asimilar result of Alt et al. [4].

THEOREM 8.4. Let 1 < p < oo and diam(p, d) be as above. Then ° satisfies

Match(A, B + %) < (1 + diam(p, d)) Match(A, * + B).

PROOF. Let (a, b) € M* beapair for which dist(a, b + %) is maximum. Consider the
matching M* for A and B + t°. Since Match(A, B + °) isthe minimum value over all
matchings for Aand B + 70, p° < dist(a, b + t°). Therefore,

o° < dist(a, b+ 7% =dist(a,b+ " +8) < |la— (b+ % + 9)|
< la=®+)I+ 8] = p*

+ (0", ..., £p) | = (L +diam(p, d)) p*. O

If we care for abetter approximation for p* = Match(A, * + B), we use the follow-
ing approach, borrowing someideasfrom Efrat [19]. Let cuber ] denotethe axis-parallel
cube of edge lengths 2r centered at the origin. Lemma 8.3 states that the optimal trans-
lation * brings LL(B) to a point in cube[ p*].

LetO < ¢ < 1, let 70 bethetranslation of Theorem 8.4, and p® = Match(A, °+ B).
Consider a grid I' centered at the origin with cell size y = ¢p% (2 diam(p, d)). The
distance of any point of cube[ p°] to its closest grid point of T isat most y diam(p, d) =
(e/2)p°. Let T(I") be the set of all trandations that bring LL(B) to some grid point of
I" in cube] p°]. Since this cube properly contains cube] p*], Lemma 8.3 implies that the
distance of the optimal translation r* to some grid point of I" is at most (¢/2) p°.

For each trandation t € T(I') we approximately evaluate Match(A, T + B) using
the procedure of Theorem 7.3, and choose ¢ to be the best one.

Consider any two pointsa € A, b € B. Then

dist(a, t° +b) < dist(a, t* + b) +dist(z* + b, t° + b)

= dist(a, t* + b) + dist(z*, %)
dist(a, * + b) + %po.

IA



Geometry Helpsin Bottleneck Matching and Related Problems 23

Thus,if p* = dist(a*, T*+b*), thenfor any two points A, B matched by theapproximated
match at ¢, we have

dista, 7° + b) < dist(a, v* + b) + %,00 < dist@@*, * + b*) + %2p* = p*(1+2).

The number of grid pointsof I is

=1+ — =1 -
Tl ( i 50072 diam(p, d))

By Theorem 7.3, finding the approximate matching for each grid point requires time
O(d(1+ 1/¢)? - n*Slognloge~1). Hence we have:

d

4 d
= (1+ - diam(p, d)) .

THEOREM 8.5. Let A and B be sets of n pointsin RY and let Lp (1 < p < o0) bethe
underlying norm. Then there exists an algorithmthat for all ¢ > O findsin time

1 d 4 d
0 (d <1+ —) (1+ — diam(p, d)) : n1-5lognloge‘1>
& I

atrandation t¢ such that
p° = Match(A,B+1°) < (1+¢)p",

where p* isthe value of the matching at the optimal translation.
For constant d thetimeis O(¢=% - n®lognloge1).

9. Related Problems to the Bottleneck Matching. Several related problems are
easily tackled by our method.

9.1. Partial Matching. Let A and B be sets of objects (not necessarily with the same
cardinality), and let 1 < p < min{|A|, |B|} be an integer. The problem is to find r P,
the smallest r for which amatching of cardinality p existsin G[r]. This problem might
arise in pattern matching, when we suspect that some of the points are superfluous, or
we seek the appearance of arelatively small pattern A inside alarge picture B.

To find whether r < r P we use the methods of Section 3.2. There we increased the
matching incrementally, so after matching p pairs, we can answer whetherr < rP. The
time spent by this procedureis O(|AI*® - T(|B|)), where T(|S]) isthe time required to
perform an operation on D; (S).

To find r P, we need to be able to solve the k-bichromatic distance selection problem
efficiently. Here too the methods of Section 4 can be applied.

9.2. Finding a Batch of Partial Matchings. When the number of pointsis not known
in advance, we can further modify the algorithm, so for every 1 < m < n intime
O(n1>*+¢ + nnl*¢) wefind abatch of valuesr Mi1s -+ Ty Theproposed procedure
is faster than separately finding for eachi = m, ..., m + 7 the value of Match—the

best partial match oni points. Thisisachieved asfollows: Wefirst find Matchy,, using the
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procedure described in Section 9.1 above. Next we find  augmenting paths, such that
each such path augments Matchy,,,; toMatchy, ,; ,,,fori =0, ..., n—1. Anaugmenting
pathisfound asfollows. Let Ag € Aand By C B bethe exposed verticesof Aand Bin
Matchy, ;. We maintain a forest of augmenting trees containing Ao. Let Ay € A beall
nodes reachable from Ag viaan augmenting path of one of the treesin the forest, and let
B C B beall nodes not in any tree of the forest. At each step of the algorithm we add

to the forest the edge (a, b) such that
dist(a,b) = min{dist(a,b) | a € A;, b € B}.

If bisan exposed vertex (b € Byp), then an augmenting path has been found. Otherwise,
(b, @) € Matchy ,; for somea’ ¢ A;. Weadd (a, b) and (b, &) to the forest.

Adding an edge to the forest is done in O(n®) time by inserting the vertex a’ to A;
and deleting b from B, using the procedure of Agarwal et al. [2] for maintaining the
closest bichromatic pair.

Since each vertex can be added to the forest only once, updating Matchy,,; to

Matchy,,; ,, requires O(n) update operations, i.e., atotal of O(n**+¢) time. To update the
forest we need to delete the tree whose root ag € Ag was matched. This also involves
at most 2n update operations per augmenting path. Thus the time required for the entire
batch Matchy,, . .., Match} ., is O(n*®logn + pn**).
9.3. Finding the Longest Perfect Matching. We describe briefly another set of prob-
lems. Let A and B be two sets of n points, letr > 0, and let G[r] denote that graph
on A U B whose edges are pairs of points of distance at least r. The problem isto find
Match(A, B), thelargest r for which aperfect matching existsin G[r] (in this scenario,
this problem isthe dual of finding Match(A, B)). Surely, our basic scheme will do here
aswell, provided we obtain a data structure D, (B) that allows:

(i) finding apoint of B whose distance from a query point q isat least r,
(ii) deleting apoint from B.

Fortunately, these operations can be done efficiently in the Euclidean planar case by
maintaining the Circular Hull of B—namely, the region consisting of the intersection
of al disksof radiusr containing B. Hershberger and Suri [31] showed how both these
operations can be handled in (amortized) time O(logn). Hence Match(A, B) can be
found in this scenario in time O(n'®logn).

Recall that finding Match(A, B), when A and B are point-sets in R3 can be done in
time O(nY/6+#) (Theorem 6.3). It issurprising, in our opinion, that Match(A, B) can be
found in this setting much faster; we describe only the data structure and use the same
oracle and generic algorithms used in the proof of Theorem 6.3.

Let S € B, and fix a parameter r. Trivially, if some point b € S can be matched in
G[r]toapointa € A thena ¢ [, .shf, where b" is the three-dimensional ball of
radius r centered at b. Agarwal et a. [2] proposed a data structure E(S) for a set of
congruent three-dimensional balls. This data structure enables us to determine whether
apoint isin (s.sS", and to delete a ball in time O(n®). The data structure may be
constructed in time O(n**#). To use this structure, we build a balanced binary tree 7,
whose leaves are the points of S, and each internal node v is associated with S,, the set
of balls whose centers are associated with the leaves of v's subtree. We also associate
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with v the data structure E, = E(S,). To perform neighbor, (D, (S), q) (that is, to
find s € Ssuch that q does not liein s), we use E, where v = root(7), to find if
d ¢ [Nses, S werecursively check each of itstwo children tofind (at least) one v’, such
that q ¢ ﬂSESy s". We repeat this process until v’ is aleaf, and then return the singleton
v’. Deletion is carried out in atrivial fashion. Note that both these operations are done
in time O(n%), so, by plugging this data structure into the oracle of Section 3.2 we get
the following theorem:

THEOREM 9.1. Let A and B be two sets of n points in R3. Then Match(A, B), the
longest perfect matching, can be found in time O(n!>+¢) for any ¢ > 0.

9.4. Computing a Most Uniform Matching. The following problem has applications
in pattern matching [21]. Let A and B be two sets of n points in the plane. We seek
Matchy;, a matching Match that minimizes the difference max(Match) — min(Match).
Let GI[r, r'] denote the bipartite graph whose set of verticesis AU B, and there is an
edge betweena € Aandb € Biffr < |la — b|| < r’, where |Ja — b] is the Eu-
clidean distance between a and b. Recall that dist™, . . ., dist™ denote the n? distances
between points of A and points of B, in increasing order. We refer to them as critical
distances, and we assume, for simplicity of exposition, that they are all distinct. We seek
1 <i < j =< n?such that G[dist", dist"’] contains a perfect matching Match, and
the difference dist')’ — dist" is as small as possible; Match is then the desired match-
ing. Our agorithm maintains a maximum matching in G[dist", dist""’]. We start with
Gldist", distV)] fori = j = 1, and with the matching consisting of the single edge
whose corresponding distance is dist'¥. The top level of the agorithm consists of the
following loop. If thereis no perfect matching in G[dist"", dist"!’] weincrease j by one,
elseweincreasei by one; in either case we compute a maximum matching in the new
graph, and repeat. Increasing j adds a single edge to the graph, and we check whether
the size of the maximum matching increases by one. Increasing i deletes a single edge
from the graph, and, if this edge was in the current maximum matching, we must check
whether the size of the maximum matching remains as before (or decreases by one).
Both these checks are done by trying to compute an augmenting path for the current
matching using a slightly simpler version of the procedure of Section 3.1, as we did
in Section 8.2. (In the latter check, we do this after deleting the edge corresponding
to the distance dist"’ from the current matching.) If such a path exists, then the an-
swer is positive and we update the current maximum matching; otherwise, the answer is
negative. If a perfect matching was found, then we compare the appropriate difference,
i.e., ether dist*Y —dist® or dist” — dist!*?, with the difference corresponding to
the best perfect matching found so far. Clearly, the most uniform matching will be dis-
covered in this way, and the number of times we need to compute an augmenting path
is O(n?).

As in Section 3.1 we need a data structure D, - (P) over a set of points P € B,
supporting the following operations, in amortized time O(n%3 log n):

e neighbor, (D (P), q): For aquery point g, return apoint p € P whose distance
from q isbetweenr andr’. If no such p exists, then neighbor, .. (D (P), q) = 9.
e delete /(D (P), p): Delete the point p from P.
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We show below that such a data structure can be constructed in time O(n*23logn),
and that an augmenting path can be computed within the same time bound. Since
we repeat this process O(n?) times, we obtain an O(n'%2logn)-time algorithm for
computing a most uniform matching. The data structure is based on the following
theorem.

THEOREM 9.2 [37]. Let M bea set of m congruent annuli and let A bea set of n points
in the plane. One can compute the set of pairs

Z={(Cc,a|ceM,aec A andaliesinc}

asacoallection { M x Ay}, of complete edge-disjoint bipartite graphs, intime and space
O((m?3n?2 4 m 4 n)logm). (That is, for each annulus-point pair (c,a) € Z, there
exists a single graph M, x A, such that c € M, and a € A,, and for each graph
My x Ay andfor eachc e My, a € Ay, thepair (c, a) isin Z.) The number of graphs
isO(M?3n?3 + m+n),and Y}, [Aul, X, IMul = O((M?3n?3 + m + n) logm).

For each point b € B we draw the annulus of radii r andr’ that is centered at b. Let
M be the set of these annuli. Clearly, r < ||q — b|| < r’ for apoint q iff q liesinside
the annulus associated with b. We apply Theorem 9.2 to the sets A and M and obtain
intime O(n*2logn) acollection of O(n*?) bipartite graphs H, = M, x A, such that
Su Al X IMyl = O(n*2logn).

The operations are implemented as follows:

neighbor, . (Dr;(B), a): Find any bipartite graph Hy suchthat a € Ay, and return any
b e M,.

delete ; (Dy(B), b): For each graph Hy such that b € M,, remove b from M, and,
if after the removal M, = @, remove the entire graph H, (i.e., remove the points
inAy).

Each graph H, isrepresented by two lists A, and M,,. In addition, for eacha € Awe
maintain alist L, of the occurrences of a in the lists A,. All lists are doubly linked to
enable deletions, and there is a pointer from the occurrence of ainalist A, back to the
entry in L, which points to this occurrence. Similar lists L, (b € B) are constructed
according to the M, lists. Once the complete bipartite graphs have been constructed,
the implementation of neighbor, ,, and delete; ; isamatter of list processing.

Since each occurrence of a or bin {H} isremoved only once, the time needed for n
neighbor, . and delete; - operationsis O(n*3logn), as asserted.

REMARK 9.3. Note that if the underlying norm is L, we can find a most uniform
matching in time O(n3log® n), for any fixed d > 2.

Thisisdone by constructing ad-level orthogonal range tree for the set B. The points
of B lying at distance betweenr andr’ of aquery point g, liein aregion that isdefined as
the difference between two concentric cubes; namely, the cube centered at q with edge
length 2r’ and the cube centered at g with edge length 2r . Thisregion can be partitioned
into 2d digjoint axis-aligned boxes, on each of which aquery can be performed. Details
are standard and hence omitted.



Geometry Helpsin Bottleneck Matching and Related Problems 27

Summarizing, we have:

THEOREM 9.4. Let A and B be two sets of n points. It is possible to compute a most
uniform matching in time O(n*%3logn) when the points are in R? and the underlying
normis L., or intime O(n3log® n) whenthepointsareinRY, d > 2, and theunderlying
normis L .
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