
SICS Software-Intensive Cyber-Physical Systems (2020) 35:3–15
https://doi.org/10.1007/s00450-019-00407-8

SPEC IAL ISSUE PAPER

Design principles, architectural smells and refactorings for
microservices: a multivocal review

Davide Neri1 · Jacopo Soldani1 ·Olaf Zimmermann2 · Antonio Brogi1

Published online: 3 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Potential benefits such as agile service delivery have led many companies to deliver their business capabilities through
microservices. Bad smells are however always around the corner, aswitnessed by the considerable body of literature discussing
architectural smells that possibly violate the design principles of microservices. In this paper, we systematically review the
white and grey literature on the topic, in order to identify the most recognised architectural smells for microservices and to
discuss the architectural refactorings allowing to resolve them.

Keywords Microservices · SOA · Architectural principles · Architectural smells · Refactorings

1 Introduction

Microservices architectures, first discussed by Lewis and
Fowler [30], bring various advantages such as ease of deploy-
ment, resilience, and scaling [34]. Many IT companies
deliver their core business through microservice-based solu-
tions nowadays, with Amazon, Facebook, Google, LinkedIn,
Netflix and Spotify being prominent examples. To deliver on
their promises, microservices must be designed in quality
and style, which is unfortunately not always the case [47].

Microservice-based architectures can be seen as peculiar
extensions of service-oriented architectures, characterized by
an extended set of design principles [39,55]. These principles
include shaping services around business concepts, decen-
tralising all development aspects ofmicroservice-based solu-
tions (from governance to data management), adopting a
culture of automation, ensuring the independent deploya-

B Davide Neri
davide.neri@di.unipi.it ; davide.neri@unipi.it

Jacopo Soldani
jacopo.soldani@unipi.it

Olaf Zimmermann
ozimmerm@hsr.ch

Antonio Brogi
antonio.brogi@unipi.it

1 University of Pisa, Pisa, Italy

2 University of Applied Sciences of Eastern Switzerland (HSR
FHO), Rapperswil, Switzerland

bility and high observability of microservices, and isolating
failures [34]. A key research question therefore is:

How can architectural smells affecting design prin-
ciples of microservices be detected and resolved via
refactoring?

Thecurrently available informationonarchitectural smells
indicating possible violations of the design principles of
microservices is scattered over a considerable amount of lit-
erature. Unfortunately, this makes it difficult to consult the
body of knowledge on the topic, both for researchers will-
ing to investigate onmicroservices and for practitioners daily
working with them.

Our objective here is to systematically analyse such liter-
ature, in order to identify the most recognised smells, as well
as architectural refactorings for resolving the smells occur-
ring in an application [54]. In particular, we focus on the
design principles dealing with the dynamic aspects of the
interactions between microservices at runtime, i.e., on the
process viewpoint, as per the 4+1 viewpoint scheme [29].
More precisely, we consider the independent deployability of
microservices, their horizontal scalability, isolation of fail-
ures and decentralisation.

As recommended by Garousi et al. [17], to capture
both the state of the art and the state of practice in
the field, we conducted a multivocal systematic review
of the existing literature, including both white literature
(i.e., peer-reviewed papers) and grey literature (i.e., blog
posts, industrial whitepapers and books). We selected 41

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-019-00407-8&domain=pdf


4 D. Neri et al.

studies, published since 2014 (when the microservice-based
architectural style was first discussed [30]) until the end of
January 2019. Then, following the guidelines for systematic
reviews [17,40], we excerpted a taxonomy of design prin-
ciples, architectural smells and corresponding refactorings.
We then exploited this taxonomy to classify the selected stud-
ies, in order to distill the actual recognition of the identified
smells and the usage of the corresponding refactorings.

In this paper, we illustrate the results of our study. More
precisely, we first present the obtained taxonomy, including
seven architectural smells and 16 refactorings, organised by
design principles. We then discuss each smell, by illustrating
why it can violate the design principle it is associated with,
and by showing how to resolve it bymeans of an architectural
refactoring.

We believe that the results presented in this study can
provide benefits to both researchers and practitioners inter-
ested in microservices. A systematic presentation of the state
of the art and practice on architectural smells and refac-
torings for microservices provides a body of knowledge to
develop new theories and solutions, to analyse and experi-
ment research implications, and to establish future research
directions. At the same time, it can help practitioners to bet-
ter understand the currently most recognised architectural
smells for microservices, and to choose among the architec-
tural refactorings allowing to resolve such smells. This can
have a pragmatic value for practitioners, who can use our
study as a starting point for microservices experimentation
or as a guideline for day-by-day work with microservices.

The rest of the paper is organised as follows. Section 2
defines the research problem and illustrates the research
methodology. Section 3 presents a taxonomy for design prin-
ciples, architectural smells and refactorings, which is retaken
in Sect. 4 to overview the current state of the art and prac-
tice on such smells and refactorings. Sections 5 and 6 discuss
potential threats to the validity of our study and related work,
respectively. Finally, Sect. 7 draws some concluding remarks.

2 Setting the stage

The objective of this survey is to identify architectural smells
indicating possible violations of microservices principles,
as well as the currently available solutions for refactoring
microservice-based architectures in order to resolve these
smells.

2.1 Scope of the survey

This survey focuses on the architectural principles of
microservices that pertain to the process viewpoint, i.e., deal-

ing with the dynamic aspects of microservices interacting at
runtime [29]. We started from the principles proposed by
Newman [34] and Lewis and Fowler [30], also considering
the mapping to tenets proposed by Zimmermann [55]. From
these works, we selected four principles:

1. Themicroservices forming an application should be inde-
pendently deployable.

2. The microservices should be horizontally scalable.
3. Failures should be isolated.
4. Decentralisation should occur in all aspects of micro-

service-based applications, from data management to
governance.

The above selection was based on three criteria:

a. Roots in highly significant design time and runtime qual-
ity attributes and style-defining elements,

b. Consequences of not adhering to a principle in terms of
technical risk and re-engineering cost, and

c. Generality, i.e., if these four principles are met, others
follow or can be achieved with similar means.

For instance, independent deployability is a defining tenet
in most definitions of microservices and enables decentral-
ized continuous delivery, therebymeeting criteria (a) and (c).
Scalability is a quality attribute (a) and horizontal scalability
is hard to retrofit (an aspect of (b)). Failure isolation meets
criteria (a) and (b). Finally, decentralization is mentioned as
crucial (and novel) in many introductions to microservices
and enables independent, autonomous decision making, as
required to achieve (a) and (c).

2.2 Search for studies

With the objective of capturing the state of the art and practice
in the field, we searched for both white literature (i.e., peer-
reviewed journal and conference articles) and grey literature
(i.e., blog posts, industrial whitepapers and books), in line
with what recommended by Garousi et al. [17].

The structuring of the search string was done by follow-
ing the guidelines provided by Petersen et al. [40].We indeed
identified the search string guided by the PICO terms of our
resarch problem, and the keywords were taken from each
aspect of our research problem. Differently from Petersen
et al. [40], we did not restrict our focus to specific research
settings. By restricting ourselves to certain types of research
settings, we could have obtained a biased or incomplete anal-
ysis, as some architectural smells or refactorings might have
been over-/under-represented for a certain type of study.

123



Design principles, architectural smells and refactorings for microservices: a multivocal review 5

As a result, our search string was formed by the following
terms:

microservice*
∧

(smell* ∨ antipattern* ∨ badpractice*∨
pitfall* ∨ refactor* ∨ reengineer*)

(where ‘*’ matches lexically related terms). The search
was restricted to studies published since the beginning of
2014 (when microservices were first proposed by Lewis and
Fowler [30]) until the end of January 2019 (when the present
study was initiated).

The search of white literature was carried out in the fol-
lowing indexing databases: ACM Digital Library, DBLP, EI
Compendex, IEEE Xplore, INSPEC, ISI Web of Science,
Science Direct, SpringerLink. Given the recency of the field
and concerns with indexing, Google Scholar played a key
role for the initial selection before the inclusion and exclusion
stage. The search for industrial studies was instead carried
out in renowned blogs in the software engineering commu-
nity (such as DZone, InfoQ and TechBeacon), in the blog of
ThoughtWorks, and in books published by practitioners.

2.3 Sample selection

The above described search criteria were matched by more
than 150 studies, which we carefully screened to keep only
those studies thatwere satisfyingboth the following inclusion
criteria:

– A study is to be selected if it presents at least one
architectural smell pertaining to one of the considered
architectural principles of microservices (i.e., indepen-
dent deployability, horizontal scalability, isolation of
failure, or decentralisation).

– A study is to be selected if it presents at least one refac-
toring for resolving one of the architectural smells it
discusses.

The inclusion criteria were defined with the ultimate goal
of selecting only representative studies, discussing both the
architectural smells (pertaining to the process viewpoint) and
their corresponding refactorings.

As a result, 41 studieswere selected to be analysed further.
The list of references to the selected studies is in Table 1,
which also classifies them by colour.

3 A taxonomy for design principles,
architectural smells and refactorings

Figure 1 illustrates a taxonomy for the architectural smells
pertaining to the considered design principles, and for the
refactorings1 allowing to resolve such smells. We obtained
our taxonomy by following the guidelines for conducting
systematic reviews in software engineering proposed by
Petersen et al. [40]:

1. We established the design principles, by aligning them
with those pertaining to the process viewpoint (as
per [55]).

2. We identified the architectural smells by performing a
first scan of the selected studies.

3. We excerpted the concrete refactorings directly from the
selected studies after additional scans.

The identified design principles, architectural smells and
refactorings were manually organised to obtain a taxon-
omy. The taxonomy underwent various iterations among the
authors of this study, and it was submitted for validation to an
external expert. This resulted in some corrections and amend-
ments to the first version of the taxonomy, which resulted in
the taxonomy displayed in Fig. 1.

4 Architectural smells and refactorings

Table 1 shows the classification of all selected studies based
on the taxonomy introduced in Sect. 3. The table provides a
first overview of the coverage of design principles, archi-
tectural smells and refactorings over the selected studies,
despite (for reasons of readability and space) it only displays
the classifications over the smells listed in the taxonomy.2

Such coverage is also displayed in Fig. 2, fromwhich we can
observe that all architectural smells in the taxonomy are sig-
nificantly recognised by the authors of the selected studies,
hence making it worthy to discuss them in detail.

We hereafter illustrate how (according to the authors of
the selected studies) each design principle can be affected by
each corresponding architectural smell, as well as how each
smell can be resolved by applying a corresponding refac-
toring. When multiple refactorings are applicable to resolve
an architectural smell, to provide a first measurement of

1 For the sake of clarity, in the taxonomy we follow the naming of
integration patterns proposed by Hohpe and Woolf [22].
2 The detailed classification, displaying each occurrence of each
refactoring, is publicly available at https://github.com/di-unipi-socc/
microservices-smells-and-refactorings.

123

https://github.com/di-unipi-socc/microservices-smells-and-refactorings
https://github.com/di-unipi-socc/microservices-smells-and-refactorings


6 D. Neri et al.

Ta
bl
e
1

R
ef
er
en
ce
s
to

th
e
se
le
ct
ed

st
ud

ie
s,
an
d
th
ei
r
cl
as
si
fic

at
io
n
by

co
lo
ur

(i
.e
.,
w
hi
te
or

gr
ey

lit
er
at
ur
e)

an
d
ac
co
rd
in
g
to

th
e
ta
xo
no
m
y
in

Fi
g.

1

C
ol
ou
r

In
de
pe
nd

en
td

ep
lo
ya
b.

H
or
iz
on

ta
ls
ca
la
bi
lit
y

Is
ol
at
io
n
of

fa
ilu

re
s

D
ec
en
tr
al
is
at
io
n

M
ul
ti
pl
e
se
r.
in

on
e
co
nt
.

N
o
A
P
I
ga
te
w
ay

E
nd
po
in
t-
ba
s.
se
r.
in
te
r.

W
ob
bl
y
se
r.
in
te
r.

E
SB

m
is
us
e

Sh
ar
ed

pe
rs
is
te
nc
e

Si
ng
le
-l
ay
er

te
am

s

[1
]

g
�

[2
]

w
�

�
[3
]

w
�

�
�

�
[4
]

w
�

�
�

�
[5
]

g
�

�
�

�
[7
]

g
�

�
�

�
[8
]

g
�

[9
]

g
�

�
�

�
[1
0]

w
�

�
[1
1]

g
�

[1
3]

w
�

�
�

[1
4]

w
�

�
�

[1
5]

w
�

[1
6]

w
�

[1
8]

g
�

[2
0]

g
�

[2
1]

g
�

�
[2
3]

g
�

�
�

�
�

[2
4]

g
�

�
�

�
�

�
[2
5]

w
�

�
[2
6]

w
�

�
�

[2
7]

w
�

�
[2
8]

g
�

�
�

�
[3
0]

g
�

�
�

�
[3
2]

g
�

[3
1]

g
�

�
[3
3]

g
�

�
�

�
�

[3
4]

g
�

�
�

[3
5]

g
�

�
�

�
[4
1]

g
�

�
[4
2]

g
�

�
�

[4
3]

g
�

�
�

[4
4]

g
�

[4
5]

g
�

�
�

123



Design principles, architectural smells and refactorings for microservices: a multivocal review 7

Ta
bl
e
1

co
nt
in
ue
d

C
ol
ou
r

In
de
pe
nd

en
td

ep
lo
ya
b.

H
or
iz
on

ta
ls
ca
la
bi
lit
y

Is
ol
at
io
n
of

fa
ilu

re
s

D
ec
en
tr
al
is
at
io
n

M
ul
ti
pl
e
se
r.
in

on
e
co
nt
.

N
o
A
P
I
ga
te
w
ay

E
nd
po
in
t-
ba
s.
se
r.
in
te
r.

W
ob
bl
y
se
r.
in
te
r.

E
SB

m
is
us
e

Sh
ar
ed

pe
rs
is
te
nc
e

Si
ng
le
-l
ay
er

te
am

s

[4
6]

w
�

[4
7]

w
�

�
�

�
[4
9]

w
�

�
�

�
[5
0]

w
�

�
[5
1]

w
�

�
[5
3]

g
�

�
�

�
[5
5]

w
�

�

how much a refactoring is used to resolve it, we display the
weight3 of each refactoring by exploiting%-based pie charts.

4.1 Independent deployability

Inmicroservice-based applications, eachmicroservice should
be operationally independent from the others, meaning that
it should be possible to deploy and undeploy a microservice
indepedently from the others [34]. This indeed impacts on the
initial deployment of a microservice, which can get started
without waiting for other microservices to be running, as
well as on the possibility of adding/removing replicas of a
microservice at runtime.

We discuss below the Multiple Services in One

Container smell, showing how it violates the above princi-
ple and how it can be resolved.

Multiple services in one container Containers (such as
Docker containers) provide an ideal way to deploy microser-
vices addressing the above requirement, if properly used.
Each microservice can indeed be packaged in a container
image, and different instances of a same microservice can
be launched by spawning different containers from the cor-
responding image. With this view, the orchestration of the
deployment and management of a microservice-based appli-
cation can be performed by exploiting the currently available
support for orchestrating Docker containers [23].

The above is the right way of using containers, at least
according to the authors of 16 of the selected studies.
They indeed highlight how placing multiple services in one
containerwould constitute an architectural smell for the inde-
pendent deployability of microservices. If twomicroservices
would be packaged in the same Docker image, spawning a
container from such image would result in launching both
microservices. Similarly, stopping the container would result
in stopping both microservices. In other words, by plac-
ing two microservices in the same container, these services
would operationally depend one another, as it would not be
possible to launch a new instance of one of such microser-
vices, without also launching an instance of the other.

If the Multiple Services in One Container smell
occurs, the solution is to refactor the application in such away
that each microservice is packaged in a separate container
image.

4.2 Horizontal scalability

The possibility of adding/removing replicas of a microser-
vice is a direct consequence of the independent deployability

3 Wemeasure the weight of a refactoring as the percentage of its occur-
rences among all occurrences of all refactorings for the same smell.
This is analogous to what done by Pahl et al. [37] to measure weights
while classifying studies on cloud container technologies.

123



8 D. Neri et al.

Fig. 1 A taxonomy for a the design principles pertaining to the process viewpoint, b the architectural smells possibly violating such principles,
and c the refactorings resolving such smells

Fig. 2 Coverage of the architectural smells in the selected studies. The
size of each bubble is directly proportional to the number of selected
studies discussing the corresponding smell. This number is also reported
within each bubble

of microservices. To ensure its horizontal scalability, all the
replicas of a microservice m should be reachable by the
microservices invoking m [23].

In the selected studies, two architectural smells emerged
as possibly violating the horizontal scalability of microser-
vices, i.e., Endpoint- based Service Interactions and
No API Gateway, which we discuss hereafter.

Endpoint-based service interactions This smell occurs in
an application when one or more of its microservices invoke
a specific instance of another microservice (e.g., because its

Fig. 3 Weights (w) and occurrences (o) of the refactorings for the
Endpoint- based Service Interactions smell

location is hardcoded in the source code of the microservices
invoking it, or because no load balancer is used). If this is
the case, when scaling out the latter microservice by adding
new replicas, these cannot be reached by the invokers, hence
only resulting in a waste of resources.

From the selected studies, it became evident that the
Endpoint- based Service Interactions smell can be
resolved by applying three different refactorings (Fig. 3).
The most common solution is to introduce a service discov-
ery mechanism. Such mechanism can be implemented as a
service storing the actual locations of all instances of the
microservices in an application [43]. Microservice instances
send their locations to the service registry at startup, and they
are unregistered at shutdown. When willing to interact with
a microservice, a client can then query the service discovery
to retrieve the location of one of its instances.

123



Design principles, architectural smells and refactorings for microservices: a multivocal review 9

The other two possible solutions share the same goal,
i.e., decoupling the interaction between twomicroservices by
introducing an intermediate integration pattern. Nine of the
selected studies indeed suggest to introduce amessage router
(e.g., a load balancer), so that the requests to a microser-
vices are routed towards all its actual instances. Four of the
selected studies instead suggest to exploit message brokers
(e.g., message queues) to decouple the interactions between
two or more microservices.

No API gateway When a microservice-based application
lacks an API gateway, the clients of the application neces-
sarily have to invoke its microservices directly. The result is
a situation similar to that of the Endpoint- based Service

Interactions smell, with the invoker being a client of the
application. The client indeed interacts only with the spe-
cific instances of the microservices it needs. If one of such
microservices is scaled out and the client still keeps invoking
the same instance of the microservice, then we have a waste
of resources.

The authors of all the selected studies discussing the No
API Gateway smell agree that the solution to this smell is
to add one API gateway to the application. The latter act as
single entry points for all clients, and they handle requests
either by routing them or by fanning them out to the instances
of the microservices that must handle them [43].

It is worth noting that, even if the No API Gateway

smell results in a similar situation to that of the Endpoint-
based Service Interactions smell, the refactorings to
resolve them are different. The reason for this resides in the
main difference between the two architectural smells. The
No API Gateway smell occurs at the edge of the architec-
ture of a microservice-based application, with the clients of
the application directly invoking its microservices, while the
Endpoint- based Service Interactions smell occurs in
between its microservices [33]. Given this, the introduction
of an API gateway can be useful not only for facilitating
the horizontal scalability of the microservices forming an
application, but also for various other reasons. For instance,
rather than implementing end-user authentication or throt-
tling in each microservice, these can be implemented once
for the whole application in the API gateway [1].

4.3 Isolation of failures

Microservices can fail for many reasons (e.g., network
or hardware issues, application-level issues, bugs), hence
becoming unavailable to serve other microservices. Addi-
tionally, communication fails from time to time in any
kind of distributed system, and this is even more likely to
occur in microservice-based systems, simply because of the
amount of messages exchanged among microservices [25].
Microservice-based applications should hence be designed

Fig. 4 Weights (w) and occurrences (o) of the refactorings for the
Wobbly Service Interactions smell

so that each microservice can tolerate the failure of any
invocation to the microservices it depends on [30]. If this
is ensured, then a microservice-based application results to
be much more resilient than a monolithic application, simply
because failures affects only few microservices in an appli-
cation, instead of the whole monolith [34].

The authors of the selected studies identify and discuss an
architectural smell that can possibly violate the isolation of
failures inmicroservice-based solutions. This is theWobbly

Service Interactions smell, which we discuss hereafter.

Wobbly service interactions The interaction of a microser-
vice mi with another microservice m f is “wobbly” when a
failure in m f can result in triggering a failure also in mi .
This typically happens when mi is directly consuming one
ormore functionalities offered bym f , andmi is not provided
with any solution for handling the possibility of m f to fail
and be unresponsive. If this is the case, mi will also fail in
cascade, and (in a worst case scenario) the failure of mi can
result in triggering the failure of other microservices, which
in turn trigger other cascading failures, and so on [25].

To avoid Wobbly Service Interactions (such as the
one between mi and m f described above), the authors of the
selected studies identify four possible solutions (Fig. 4). The
most common solution is the usage of a circuit breaker to
wrap the invocations from a microservice to another. In the
normal “closed” state, the circuit breaker forwards the invo-
cations to the wrapped microservice, and it monitors their
execution to detect and count failing invocations. Once the
frequency of failures reaches a certain (customisable) thresh-
old, the circuit breaker trips and “opens” the circuit. All
further calls to the wrapped microservice will “safely fail”,
as the circuit breaker will immediately return an error mes-
sage to the calling microservices. The latter can then exploit
the error messages returned by the circuit breaker to avoid
failing themselves [30].

Following the same baseline idea of circuit breakers, ten
of the selected studies propose to decouple the interaction
between invoking and invoked microservices by exploiting
a message broker (e.g., a message queue). The usage of a
broker allows the invoker to send its requests to the broker,
and allows the invokedmicroservice to process such requests
when it is available. In this way, there is no direct interaction

123



10 D. Neri et al.

between the two microservices, and the invoker does not fail
when the invoked microservice fails (as the former contin-
ues to send messages to the broker). On the other hand, the
usage of message brokers is more costly compared to circuit
breakers. The reason is that message brokers require to inter-
vene on the interaction protocol between two microservices,
which should start putting and getting messages to/from the
broker. Instead, with circuit breakers the interaction protocol
between two microservices is unaltered, as a circuit breaker
simply wraps the invocation of a microservice. This is the
reason why message brokers are much less discussed than
circuit breakers.

The most discussed alternative to circuit breakers are
however timeouts, which are a simple yet effective mech-
anism allowing a microservice to stop waiting for an answer
from another microservice, when the latter is unresponsive
(e.g., since it failed or due to network issues). Well-placed
timeouts provide fault isolation, as the fact that a microser-
vice is unresponsive does not create any other issue in the
microservices invoking it [34]. However, such a kind of
solution might not likely to be applicable nowadays, as
some of the APIs used to remotely invoke microservices
have few or no explicit timeout settings [34]. Note that
the timeout can be also set in the invoker (e.g., by setting
the timeout on an HTTP request), hence it is not always
requested to have a timeout setting on the invoked ser-
vice.

Finally, another alternative is the usage of bulkheads,
whose ultimate goal is to enforce the principle of dam-
age containments (like bulkheads in ships, which prevent
water to flow across sections). The idea is that, if cas-
cading failures cannot be avoided, they should at least
be limited by exploiting bulkheads. More precisely, the
microservices forming an application should be logically
and/or physically partitioned so as to ensure that the fail-
ure of a microservice can be propagated at most to the
other microservices in the same partition, by preventing
the rest of the system from being affected by such fail-
ure [35].

4.4 Decentralisation

Decentralisation should occur in all aspects of microservice-
based applications [34]. This alsomeans the business logic of
an application should be fully decentralised and distributed
among its microservices, each of which should own its own
domain logic [55].

The authors of the selected studies indentify and discuss
three architectural smells possibly violating the above prin-
ciple, i.e., the ESB Misuse, Shared Persistence and
Single- layer Teams smells. We hereafter discuss them,
by also illustrating the refactorings currently employed to
resolve them.

Fig. 5 Weights (w) and occurrences (o) of the refactorings for the
Shared Persistence smell

ESB misuse The misuse of Enterprise Service Buses (ESB)
products is considered to be an architectural smell by the
microservice community. When positioned as a single cen-
tral hub (with the services as spokes), an ESB may become
a bottleneck both architecturally and organizationally [39].
“Smart endpoints & dumb pipes” has been a recommended
practice since the very beginnings of service-oriented archi-
tectures [55] that regrettably has not always been followed in
all SOA implementations. Such ESB abusemay lead to unde-
sired centralisation of business logic and dumb services [34].
The microservices community therefore (re-)emphasizes the
decoupling of microservices and their cohesiveness [30].

Whenever a central ESB is used for connecting microser-
vices in an application, the topology should be refactored
to remove the dependency on a single middleware compo-
nent instance. Multiple instances should instead be used, and
they should implement queue-based asynchronous messag-
ing. The latter only permits adding and removing messages,
hence forming a “dumbpipe”. The “smart” part should be left
to the microservices, which implement the logic for deciding
when/how to process the messages in the message bro-
ker [49]. Additional infrastructure logic, for instance traffic
management capabilities, may be placed in side cars accom-
panying each service. This repositioning and rectification of
ESB middleware improves the decoupling characteristics of
the services architecture and reestablishes the original “smart
endpoints & dumb pipes” recommendations from the first
wave of service-orientation.

SharedpersistenceTheShared Persistence smell occurs
whenever two microservices access and manage the same
database, possibly violating the decentralisation design prin-
ciple [47].

The three currently available solutions for refactoring
microservices and resolving theShared Persistence smell
are shown in Fig. 5.

Although the ultimate goal of these three solutions is
the same (i.e., having each database accessed by only one
microservice), they are very diverse in spirit. They apply to
different situations, highly depending on the microservices
accessing the same database.

The most discussed solution is to actually split a database
shared by multiple microservices, in such a way that each

123



Design principles, architectural smells and refactorings for microservices: a multivocal review 11

microservice accesses and manages only the data it needs.
This solution is the one requiring less intervention on the
microservices, as they would continue to use the same proto-
col to interact with the databases. At the same time, splitting
a database into a set of independent databases is not always
possible or easy to achieve. Also, if some data is to be
replicated among the databases obtained from the split, then
mechanisms for (eventual) data consistency should be intro-
duced after the refactoring [47]. Given the above, the split
of database is recommended when the microservices access-
ing the same database implement separate business logics
working on disjoint portions of such database [24].

The most discussed alternative is to introduce an addi-
tional microservice, acting as “data manager”. The data
manager becomes the only microservice interacting with
and managing the database, and the microservices that were
accessing the database now have to interact with the data
manager to ask for accessing and updating the data. While
this solution introduces some additional communication
overhead, it is considered as always applicable, and the data
manager can also be enriched with additional logic for pro-
cessing the data it manages [24].

Finally, it is worth commenting on the refactoring dis-
cussed in three of the selected studies, i.e., merging the
microservices accessing the same database. The idea is that,
when multiple microservices access the same database, this
may be a signal of the fact that the application has been split
too much, by obtaining too fine-grained microservices pro-
cessing the same data. If this is the case, then the possibility
of merging such microservices is a concrete option to be
evaluated [49].

Single-layer teams To maximize the autonomy that
microservices make possible, the governance of microser-
vices should be decentralised and delegated to the teams
that own the microservices themselves. As pointed out by
Zimmermann [55], even if this is not a technical concern,
it is related to the process viewpoint due to its cross-cutting
nature. Themicroservice community indeed strongly empha-
sizes the connection between architecture and organisation,
especially concerning the integration of the microservices in
an application [18,21,30].

The classical approach of splitting teams by technology
layers (e.g., user interface teams, and middleware teams, and
database teams) is hence considered an architectural smell,
as any change to a microservice may result in a cross-team
project having take time and budgetary approval [30]. This
may be the case for the refactorings discussed so far.

The microservice approach to team splitting is orthogonal
to the above, as each microservice should be assigned to a
full-stack team whose members span across all technology
layers. In this way, the interactions for updating a microser-
vice (e.g., to apply one of the refactorings discussed in this

section) are limited to the teammanaging such microservice,
which can independently decide how to proceed and imple-
ment the updates [10].

In short, if the governance of a microservice-based is
organised by Single- layer Teams, this is an architectural
smell. The solution is to split teams by microservice, rather
than by technology layer [30].

5 Threats to validity

Following the taxonomydeveloped byWohlin et al. [52], four
potential theats may affect the validity of our study. These
are the threats to external validity, the threats to internal and
construct validity, and the threats to conclusions validity,
which we discuss hereafter.

External validity As per Wohlin et al. [52], the external
validity concerns the applicability of a set of results in a more
general context. Since we selected the primary studies from
a very large extent of online sources, the identified architec-
tural smells and refactorings may only be partly applicable to
the broad area of disciplines and practices on microservices,
hence threatening external validity.

To reinforce the external validity of ourfindings,weorgan-
ised two feedback sessions during our analysis of the existing
literature. We analysed the discussion following-up from the
feedback session, and we exploited this qualitative data to
fine-tune both our research methods and the applicability of
our findings. We also prepared a GitHub repository,4 where
we placed the artifacts produced during our analysis, so as
to make it available to all who wish to deepen their under-
standing on the data we produced. We believe that this can
help in making our results and observations more explicit
and applicable in practice.

Additionally, one may argue that our selection criteria
are too restrictive. The rationale behind such criteria is that
we aim focusing only on representative studies, by requir-
ing selected studies to discuss at least an architectural smell
and a refactoring for resolving it. There is however a risk of
having missed some relevant literature, as a study might not
explicitly mention the architectural smells and refactorings
in our taxonomy (Fig. 1). To mitigate this threat, we care-
fully checked both selection criteria against each candidate
study, by verifying whether a study was discussing the prob-
lems characterised by an architectural smell, and whether
it was discussing the architectural changes characterising a
refactoring. Even if a study was not explicitly referring to
a smell/refactoring, but it was reporting on the correspond-
ing problems/changes, the study was included in the selected
literature.

4 http://github.com/di-unipi-socc/microservices-smells-and-
refactorings.

123

http://github.com/di-unipi-socc/microservices-smells-and-refactorings
http://github.com/di-unipi-socc/microservices-smells-and-refactorings


12 D. Neri et al.

Finally, there is a risk of having missed relevant grey
literature, since industrial studies may exploit a different
terminology than ours (e.g., a blog post discussing some
architectural smells and refactorings may not employ the
term “smell” or “refactor”). Tomitigate this threat to validity,
we included relevant synonyms in the search string, and we
exploited the features offered by search engines, which natu-
rally support including related terms in string-based searches.

Construct and internal validity The internal validity con-
cerns the validity of the method employed to study and
analyse data (e.g., the potential types of bias involved), while
the construct validity concerns the generalisability of the con-
structs under study [52].

To mitigate the corresponding potential threats, the
obtained taxonomy underwent various iterations among the
authors of this study to avoid bias by triangulation, and it was
submitted for validation to an external expert. The same pro-
cess was applied to the classification of the selected studies,
and to the results of the analysis.

Conclusions validity The conclusions validity concerns the
degree to which the conclusions of a study are reasonably
based on the available data [52].

In this perspective, andwith the aim of performing a sound
analysis of the datawe retrieved, we exploited inter-rater reli-
ability assessment to limit potential biases in our observations
and interpretations. Additionally, the observations and con-
clusions discussed in this paper were independently drawn,
and they were then double-checked against the selected stud-
ies and related studies in a joint discussion session.

6 Related work

There exist various studies on microservices, aimed at
analysing and classifying the state of the art and prac-
tice on microservices. Pahl and Jamshidi [38] and Taibi
et al. [51] present two first systematic mapping studies
on microservices. Pahl and Jamshidi [38] discuss agreed
and emerging concerns on microservices, position microser-
vices with respect to current cloud and container tech-
nologies, and elicit potential research directions. Taibi et
al. [51] instead report on architectural patterns common to
microservice-based solutions, by discussing the advantages,
disadvantages and lessons learned of each pattern. However,
neither Pahl and Jamshidi [38] nor Taibi et al. [51] pro-
vide an overview both on the architectural smells applicable
to microservices and on the refactorings for resolving such
smells.

Two other examples are the industrial surveys by
Di Francesco et al. [12] and by Ghofrani and Lübke [19],
which both discuss the current state of practice on microser-
vices in the IT industry. Both report on empirical studies

conducted in the form of surveys for practictioners work-
ing everyday with microservices, to elicit the challenges and
advantages on employing microservices. This differs from
our study, as we aim at distilling the architectural smells
that can affect the architecture of a microservice-based solu-
tion, as well as the refactorings allowing to resolve such
smells.

Similar considerations apply to the systematic review
by Soldani et al. [47], who provide an overview on the
state of practice on microservices. Soldani et al. sys-
tematically analyse the grey literature on microservices,
in order to identify the technical/operational advantages
and disadvantages of the microservice-based architectural
style. The objective of Soldani et al. hence differs from
ours, as we aim at discussing concrete architectural smells
and refactorings for the microservice-based architectural
style.

In this perspective, the objective of the studies by Taibi
and Lenarduzzi [49], by Bogner et al. [6], and by Carrasco
et al. [10] is much closer to ours. Taibi and Lenarduzzi [49]
report on a survey submitted to practictioners experienced
withmicroservices. The survey allowedTaibi andLenarduzzi
to identify 11 microservice-specific architectural smells,
each with a refactoring solution allowing to resolve it. Of
such smells and refactorings, only four can be related to
the design principles of microservices pertaining to the pro-
cess viewpoint (see Table 1). By integrating the work by
Taibi andLenarduzziwith other carefully selectedwhite/grey
literature, we managed to extend the set of architectural
smells and refactorings pertaining to the process viewpoint
with three additional smells and ten additional refactor-
ings.

Bogner et al. [6] present a systematic literature review
identifying and documenting architectural smells in SOA-
based architectural styles, including microservices. Altough
the main focus of their review is on the broader SOA,
several smells apply also to microservices. However, the
review by Bogner et al. [6] differs from ours, as it focuses
only on white literature, and since it does not discuss the
architectural refactorings allowing to resolve the identified
smells.

Carrasco et al. [10] systematically analyses the white
and grey literature on architectural smells that can occur
while migrating from monoliths to microservice-based solu-
tions. They present nine common smells with their potential
solutions, which all pertain to the actual development and
operation of microservice-based applications (i.e., develop-
ment and physical viewpoints). The study by Carrasco et
al. [10] hence differs from ours, as we focus on the dynamic
aspects of microservices that interact at runtime (i.e., process
viewpoint).

Similar considerations apply to the study by Furda et
al. [16], which focuses on multitenancy, statefulness, and

123



Design principles, architectural smells and refactorings for microservices: a multivocal review 13

data consistency. Their objective is indeed supporting the
migration of enterprise legacy source code to microser-
vices. Finally, the Microservices API Pattern (MAP) lan-
guage suggests design improvements in the form of an
informal cheat sheet. The first MAP patterns have been
published by Stocker et al. [48] and by Zimmermann et
al. [56].

In summary, to the best of our knowledge, there is cur-
rently no study classifying the architectural smells possibly
violating the design principles of microservices pertain-
ing to the process viewpoint, together with the refactorings
that permit resolving such smells. The latter is precisely
the scope of our study, which we have presented in this
paper.

7 Conclusions

We presented the results of a multivocal review focused
on identifying architectural smells indicating possible vio-
lations of the independent deployability, horizontal scal-
ability, fault isolation and decentralisation of microser-
vices, as well as the refactorings allowing to resolve such
smells. More precisely, we presented a taxonomy organ-
ising seven architectural smells and 16 refactorings, by
associating each smell with the design principle(s) it vio-
lates, and each refactoring with the smell it resolves.
We then provided an overview of the actual recogni-
tion of such smells and refactorings in the selected lit-
erature. We also discussed why each architectural smell
violates the design principle it pertains to, and how each
architectural refactoring allows resolving its corresponding
smell.

Webelieve that our study can be of help to both researchers
and practitioners interested in microservices. Together with
the review byCarrasco et al. [10], our results can help them to
understand thewell-known architectural smells formicroser-
vices, and to choose among the refactorings allowing to
resolve such smells. This can have a pragmatic value for
practitioners, who can exploit the results of our study in their
daily work with microservices. It can also help researchers
to shape new solutions and to establish future research direc-
tions.

Weplan to exploit our results to develop a design-time sup-
port for eliminating architectural smells from microservice-
based applications. Our idea is to exploit existing lan-
guages for the specification of microservice-based appli-
cations (such as TOSCA [36], for instance). We then
plan to develop a tool for processing the specification of
a microservice-based application, to automatically detect
the architectural smells occurring in such application, and
to suggest the architectural refactorings resolving such
smells.

Acknowledgements This work was partly funded by the POR-FSE
project AMaCA (Regione Toscana), and by the project DECLware
(PRA_2018_66, University of Pisa).

References

1. Alagarasan V (2015) Seven microservices anti-patterns. InfoQ.
https://www.infoq.com/articles/seven-uservices-antipatterns.
Accessed 5 June 2019

2. AlshuqayranN,AliN, EvansR (2016)A systematicmapping study
in microservice architecture. In: 2016 IEEE 9th international con-
ference on service-oriented computing and applications (SOCA),
pp 44–51. https://doi.org/10.1109/SOCA.2016.15

3. BalalaieA,HeydarnooriA, Jamshidi P (2016)Microservices archi-
tecture enables devops: migration to a cloud-native architecture.
IEEE Softw 33(3):42–52. https://doi.org/10.1109/MS.2016.64

4. Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn
T (2018) Microservices migration patterns. Softw Pract Exp
48(11):2019–2042. https://doi.org/10.1002/spe.2608

5. Bhojwani R (2018) Design patterns for microservices. DZone.
https://dzone.com/articles/design-patterns-for-microservices.
Accessed 5 June 2019

6. Bogner J, Boceck T, Popp M, Tschechlov D, Wagner S, Zim-
mermann A (2019) Towards a collaborative repository for the
documentation of service-based antipatterns and bad smells. In:
2019 IEEE international conference on software architecturework-
shops (ICSAW) (in press)

7. Bonér J (2016) Reactive microservice architecture: design princi-
ples for distributed systems. O’Reilly, Newton

8. Carneiro C, Schmelmer T (2016) Microservices from day one:
build robust and scalable software from the start, 1st edn. Apress,
Berkeley

9. Carnell J (2017) Spring microservices in action, 1st edn. Manning
Publications Co., New York

10. Carrasco A, Bladel B, Demeyer S (2018) Migrating towards
microservices: migration and architecture smells. In: Proceedings
of the 2nd international workshop on refactoring, IWoR 2018.
ACM, pp 1–6. https://doi.org/10.1145/3242163.3242164

11. Dall R (2016) Performance patterns in microservices-based
integrations. DZone. https://dzone.com/articles/performance-
patterns-in-microservices-based-integr-1. Accessed 5 June 2019

12. Di Francesco P, Lago P, Malavolta I (2018) Migrating towards
microservice architectures: an industrial survey. In: 2018 IEEE
international conference on software architecture (ICSA), pp 29–
38. https://doi.org/10.1109/ICSA.2018.00012

13. Di Francesco P, Lago P, Malavolta I (2019) Architecting with
microservices: a systematic mapping study. J Syst Softw 150:77–
97. https://doi.org/10.1016/j.jss.2019.01.001

14. Di Francesco P, Malavolta I, Lago P (2017) Research on architect-
ing microservices: trends, focus, and potential for industrial adop-
tion. In: 2017 IEEE international conference on software architec-
ture (ICSA), pp 21–30. https://doi.org/10.1109/ICSA.2017.24

15. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F,
Mustafin R, Safina L (2017) Microservices: yesterday, today, and
tomorrow. Springer, Berlin, pp 195–216. https://doi.org/10.1007/
978-3-319-67425-4_12

16. Furda A, Fidge C, Zimmermann O, Kelly W, Barros A (2018)
Migrating enterprise legacy source code to microservices: on mul-
titenancy, statefulness, and data consistency. IEEESoftw 35(3):63–
72. https://doi.org/10.1109/MS.2017.440134612

17. Garousi V, Felderer M, Mäntylä MV (2016) The need for multi-
vocal literature reviews in software engineering: complementing
systematic literature reviews with grey literature. In: Proceedings
of the 20th international conference on evaluation and assessment

123

https://www.infoq.com/articles/seven-uservices-antipatterns
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1002/spe.2608
https://dzone.com/articles/design-patterns-for-microservices
https://doi.org/10.1145/3242163.3242164
https://dzone.com/articles/performance-patterns-in-microservices-based-integr-1
https://dzone.com/articles/performance-patterns-in-microservices-based-integr-1
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MS.2017.440134612


14 D. Neri et al.

in software engineering (EASE’16). ACM, pp 26:1–26:6. https://
doi.org/10.1145/2915970.2916008

18. Gehani N (2018) Want to develop great microservices? Reorga-
nize your team. TechBeacon. https://techbeacon.com/app-dev-
testing/want-develop-great-microservices-reorganize-your-team.
Accessed 5 June 2019

19. Ghofrani J, Lübke D (2018) Challenges of microservices architec-
ture: a survey on the state of the practice. In: Proceedings of the
10th workshop on services and their composition (ZEUS 2018).
CEUR-WS.org, pp 1–8

20. Golden B (2017) 5 fundamentals to a successful microservice
design. TechBeacon. https://techbeacon.com/app-dev-testing/5-
fundamentals-successful-microservice-design. Accessed 5 June
2019

21. Golden B (2018) Creating a microservice: design first,
code later. TechBeacon. https://techbeacon.com/app-dev-testing/
creating-microservice-design-first-code-later. Accessed 5 June
2019

22. Hohpe G, Woolf B (2003) Enterprise integration patterns: design-
ing, building, anddeployingmessaging solutions.Addison-Wesley,
Longman, London

23. Indrasiri K (2016) Microservices in practice: from architecture to
deployment. DZone. https://dzone.com/articles/microservices-in-
practice-1. Accessed 5 June 2019

24. Indrasiri K, Siriwardena P (2018) Microservices for the enterprise:
designing, developing, and deploying, 1st edn. Apress, Berkeley

25. Jamshidi P, Pahl C, Mendonca N, Lewis J, Tilkov S (2018)
Microservices: the journey so far and challenges ahead. IEEESoftw
35(3):24–35. https://doi.org/10.1109/MS.2018.2141039

26. KalskeM,Mäkitalo N,Mikkonen T (2018) Challenges when mov-
ing from monolith to microservice architecture. In: Garrigós I,
Wimmer M (eds) Current trends in web engineering. Springer,
Berlin, pp 32–47

27. Knoche H, Hasselbring W (2018) Using microservices for legacy
software modernization. IEEE Softw 35(3):44–49. https://doi.org/
10.1109/MS.2018.2141035

28. Krause L (2015) Microservices: patterns and applications, 1st edn.
Microservicesbook.io

29. KruchtenP (1995)The4+1viewmodel of architecture. IEEESoftw
12(6):42–50. https://doi.org/10.1109/52.469759

30. Lewis J, Fowler M (2014) Microservices: a definition of this
new architectural term. ThoughtWorks. https://www.martinfowler.
com/articles/microservices.html. Accessed 5 June 2019

31. Long J (2015) The power, patterns, and pains of microservices.
DZone. https://dzone.com/articles/the-power-patterns-and-pains-
of-microservices. Accessed 5 June 2019

32. Meléndez C (2018) 7 container design patterns you need
to know. TechBeacon. https://techbeacon.com/enterprise-it/7-
container-design-patterns-you-need-know. Accessed 5 June 2019

33. Nadareishvili I, Mitra R, McLarty M, Amundsen M (2016)
Microservice architecture: aligning principles, practices, and cul-
ture, 1st edn. O’Reilly, Newton

34. Newman S (2015) Buildingmicroservices, 1st edn. O’Reilly, New-
ton

35. NygardM (2018) Release it!: Design and deploy production-ready
software, 2nd edn. Pragmatic Bookshelf

36. OASIS: TOSCASimple Profile in YAML (2014) http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-
Simple-Profile-YAML-v1.0.pdf. Accessed 5 June 2019

37. Pahl C, Brogi A, Soldani J, Jamshidi P (2017) Cloud container
technologies: a state-of-the-art review. IEEE Trans Cloud Comput.
https://doi.org/10.1109/TCC.2017.2702586

38. Pahl C, Jamshidi P (2016) Microservices: A systematic map-
ping study. In: Proceedings of the 6th international conference
on cloud computing and services science, Volume 1 and 2

(CLOSER 2016). SCITEPRESS, pp 137–146. https://doi.org/10.
5220/0005785501370146

39. Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis NM
(2017) Microservices in practice, part 1: reality check and ser-
vice design. IEEESoftw 34(1):91–98. https://doi.org/10.1109/MS.
2017.24

40. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic
mapping studies in software engineering. In: Proceedings of the
12th international conference on evaluation and assessment in soft-
ware engineering (EASE’08). BCS Learning & Development Ltd,
pp 68–77

41. RichardsM (2016)Microservices antipatterns and pitfalls, 1st edn.
O’Reilly Media, Inc., Newton

42. Richardson C (2014) Microservices: decomposing applications
for deployability and scalability. InfoQ. https://www.infoq.com/
articles/microservices-intro. Accessed 5 June 2019

43. Richardson C (2018) Microservices patterns, 1st edn. Manning
Publications, New York

44. Ruecker B (2018) 3 common pitfalls of microservices integration
and how to avoid them. InfoWorld. https://www.infoworld.
com/article/3254777/3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html. Accessed 5 June 2019

45. Saleh T (2016) Microservices antipatterns. InfoQ. https://www.
infoq.com/presentations/cloud-anti-patterns. Accessed 5 June
2019

46. Savchenko D, Radchenko G, Taipale O (2015) Microservices val-
idation: Mjolnirr platform case study. In: 2015 38th International
convention on information and communication technology, elec-
tronics and microelectronics (MIPRO), pp 235–240. https://doi.
org/10.1109/MIPRO.2015.7160271

47. Soldani J, Tamburri DA, Van Den HeuvelWJ (2018) The pains and
gains of microservices: a systematic grey literature review. J Syst
Softw 146:215–232. https://doi.org/10.1016/j.jss.2018.09.082

48. Stocker M, Zimmermann O, Lübke D, Zdun U, Pautasso C
(2018) Interface quality patterns—communicating and improving
the quality of microservices APIs. In: 23rd European conference
on pattern languages of programs 2018

49. Taibi D, Lenarduzzi V (2018) On the definition of microservice
bad smells. IEEE Softw 35(3):56–62. https://doi.org/10.1109/MS.
2018.2141031

50. Taibi D, Lenarduzzi V, Pahl C (2017) Processes, motivations, and
issues for migrating to microservices architectures: an empirical
investigation. IEEE Cloud Comput 4(5):22–32. https://doi.org/10.
1109/MCC.2017.4250931

51. Taibi D, Lenarduzzi V, Pahl C (2018) Architectural patterns for
microservices: a systematic mapping study. In: Proceedings of
the 8th international conference on cloud computing and services
science—volume 1: CLOSER. SciTePress, pp 221–232. https://
doi.org/10.5220/0006798302210232

52. Wohlin C, Runeson P, Höst M, OhlssonMC, Regnell B,Wesslén A
(2000) Experimentation in software engineering: an introduction.
Kluwer, Dordrecht

53. Wolff E (2016) Microservices: flexible software architecture, 1st
edn. Addison-Wesley, Reading

54. Zimmermann O (2017) Architectural refactoring for the cloud: a
decision-centric view on cloud migration. Computing 99(2):129–
145. https://doi.org/10.1007/s00607-016-0520-y

55. Zimmermann O (2017) Microservices tenets. Comput Sci Res Dev
32(3–4):301–310. https://doi.org/10.1007/s00450-016-0337-0

56. Zimmermann O, Stocker M, Lübke D, Zdun U (2017) Interface
representation patterns—crafting and consuming message-based
remote APIs. In: 22nd European conference on pattern languages
of programs (EuroPLoP 2017), pp 1–36. https://doi.org/10.1145/
3147704.3147734

123

https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1145/2915970.2916008
https://techbeacon.com/app-dev-testing/want-develop-great-microservices-reorganize-your-team
https://techbeacon.com/app-dev-testing/want-develop-great-microservices-reorganize-your-team
https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://techbeacon.com/app-dev-testing/creating-microservice-design-first-code-later
https://techbeacon.com/app-dev-testing/creating-microservice-design-first-code-later
https://dzone.com/articles/microservices-in-practice-1
https://dzone.com/articles/microservices-in-practice-1
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141035
https://doi.org/10.1109/MS.2018.2141035
https://doi.org/10.1109/52.469759
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://dzone.com/articles/the-power-patterns-and-pains-of-microservices
https://dzone.com/articles/the-power-patterns-and-pains-of-microservices
https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know
https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.24
https://www.infoq.com/articles/microservices-intro
https://www.infoq.com/articles/microservices-intro
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.infoworld.com/article/3254777/3-common-pitfalls-of-microservices-integrationand-how-to-avoid-them.html
https://www.infoq.com/presentations/cloud-anti-patterns
https://www.infoq.com/presentations/cloud-anti-patterns
https://doi.org/10.1109/MIPRO.2015.7160271
https://doi.org/10.1109/MIPRO.2015.7160271
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.5220/0006798302210232
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1007/s00607-016-0520-y
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/3147704.3147734


Design principles, architectural smells and refactorings for microservices: a multivocal review 15

Davide Neri is a Ph.D. can-
didate at the University of Pisa
(Italy), where he is member of
the Service Oriented, Cloud and
Fog Computing research group.
He holds a MSc in Computer Sci-
ence (2016, University of Pisa).
His research interests include, but
are not limited to, microservices
and containerization. In particu-
lar, he is working on models for
supporting the design of microser-
vices and on tools for automati-
cally deploying them by exploit-
ing container-based virtualization.

Jacopo Soldani is a post-doc
researcher at the University of Pisa
(Italy). He holds a Ph.D. in Com-
puter Science (2017, University
of Pisa). His research interests
include, but are not limited to,
service-oriented and cloud com-
puting, adaptation, coordination,
and integration of software ele-
ments, and formal methods. He
is member of the IFIP Working
Group on Service-Oriented Sys-
tems (IFIP WG 2.14/6.12/8.10)
and of the OASIS TOSCA tech-
nical committee, and he has also

been involved in several research projects on service, cloud and fog
computing both at local and EU level.

Olaf Zimmermann is a professor
of software architecture and an
institute partner at the University
of Applied Sciences of Eastern
Switzerland, Rapperswil who lec-
tures and provides industry con-
sulting and training. His research
areas include service-oriented
computing and architectural
knowledge management. In pre-
vious roles, Zimmermann was a
Senior Principal Scientist at ABB
Corporate Research and a
Research Staff Member and Exec-
utive IT Architect at IBM. He

received his PhD in Computer Science in 2009 from Stuttgart Univer-
sity (Germany). As solution architect on professional services projects,
Zimmermann has helped international clients in multiple industries
build, integrate, and modernize enterprise applications and other infor-
mation systems. The Open Group has awarded him a Distinguished IT
Architect (Chief/Lead) Certification. He is a book author, an editor of
the Insights column in IEEE Software, and the leader of the Microser-
vices API Patterns (MAP) initiative.

Antonio Brogi is full profes-
sor at the Department of Com-
puter Science, University of Pisa
(Italy) since 2004. His research
interests include service-oriented,
cloud-based and fog computing,
coordination and adaptation of
software elements, and formal
methods. He has published the
results of his research in over 180
papers in international journals and
conferences. He is member of the
editorial board of the journals
IEEE Transactions on Cloud Com-
puting and Elservier Journal of

Computer Languages.

123


	Design principles, architectural smells and refactorings for microservices: a multivocal review
	Abstract
	1 Introduction
	2 Setting the stage
	2.1 Scope of the survey
	2.2 Search for studies
	2.3 Sample selection

	3 A taxonomy for design principles, architectural smells and refactorings
	4 Architectural smells and refactorings
	4.1 Independent deployability
	4.2 Horizontal scalability
	4.3 Isolation of failures
	4.4 Decentralisation

	5 Threats to validity
	6 Related work
	7 Conclusions
	Acknowledgements
	References




