
Comput Sci Res Dev (2018) 33:291–303
https://doi.org/10.1007/s00450-017-0384-1

SPECIAL ISSUE PAPER

API governance support through the structural analysis of REST
APIs

Florian Haupt1 · Frank Leymann1 · Karolina Vukojevic-Haupt1

Published online: 22 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Today, REST APIs have established as a means
for realizing distributed systems and are supposed to gain
even more importance in the context of Cloud Computing,
Internet of Things, and Microservices. Nevertheless, many
existing REST APIs are known to be not well designed,
resulting in the absence of desirable non-functional prop-
erties that truly RESTful systems entail. Although existing
analysis show, that many REST APIs are not fully REST
compliant, it is still an open issue how to improve this deficit
and where to start. In this work, we apply structural analysis
of REST APIs in order to support API governance, resulting
in a set of basic and aggregated metrics that characterize an
API set and also guide further governance tasks. We apply
the structural analysis on a set of 286 real world APIs and
thendemonstrate how toderive suitablemetrics that represent
the perceived complexity of an API, complemented and val-
idated by a survey of developers following the AHP process.
As a result, we provide effective support for API governance,
helping to identify and remedy problems in APIs.

Keywords REST · Interface description language ·
Analysis · API governance

1 Introduction

Thearchitectural styleRepresentational StateTransfer (REST)
has become a popular choice for the realization of service-
oriented architectures. Based on the core technologies of
the World Wide Web (WWW), mainly the Hypertext Trans-

B Florian Haupt
florian.haupt@iaas.uni-stuttgart.de

1 Institute of Architecture of Application Systems, University
of Stuttgart, Stuttgart, Germany

fer Protocol (HTTP) together with URIs and MIME types,
it promises simplicity, standards-based interoperability and
ubiquitous availability on all kind of platforms [1]. Even
more important are the implications of the REST style on
the non-functional properties of a REST-compliant software
system. Distributed software systems that follow the REST
style are assumed to support inter alia software longevity,
independent evolution of its components, scalability, and
extensibility [2]. Themain challenge in achieving these desir-
able non-functional properties is the REST-compliant design
and realization of services.

It has been shown that many APIs that claim to follow
the REST style are not REST compliant at all [3–5]. A first
step towards a REST compliant API is the correct usage
of the HTTP protocol, respecting its syntactical as well as
semantic specification [6]. However, being REST compliant
typically requires more effort than this [7]. One of RESTs
core constraints is called Hypertext as the Engine of Appli-
cation State (HATEOAS). It demands that clients of a REST
API are guided by the responses they receive from the API.
Each response contains metadata like hyperlinks or forms
that tell the client where it can go next and what actions are
possible in the current state of its conversation with the API.
Fulfilling this constraint has a major impact on the structure
of a RESTAPI, as it typically results in a graph-like structure
of resources connected by hyperlinks.

In order to improve the state of the art in the design and
realization of RESTAPIs, it is crucial to be aware of this state
of the art. In this context, the goal of this work is to utilize
the structural analysis of REST APIs in order to provide API
governance support. For that, a framework for the structural
analysis of REST APIs [8] is used to derive a set of metrics
as well as graphical representations for a given set of APIs.
These data then provides an overview and characterization of
the set ofAPIs under investigation.We envision that knowing

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-017-0384-1&domain=pdf


292 F. Haupt et al.

and analyzing these data can effectively be applied for sup-
porting API governance tasks. Advantages of our approach
are that it can already be applied at design-time (as it requires
only API models but no implementations) and that it is eas-
ily applicable to huge sets of APIs (as it can be executed
automatically).

The rest of the paper is structured as follows. In Sect. 2
we give an overview about existing works on the analysis of
RESTAPIs, including an identification and categorization of
different analysis approaches as well as a classification of our
work. As we intend to analyze real-world APIs, Sect. 3 gives
an overview about commonRESTAPI description languages
and their spread. Our analysis is based on a metamodel for
RESTAPIs thatwe have developed in previouswork [22,23].
This metamodel is introduced in Sect. 4, followed by Sect. 5
describing the transformation of the Swagger and RAML
description languages into this metamodel. The core con-
tribution of this paper, the application of structural analysis
of REST APIs for supporting API governance, is presented
in Sect. 6, comprising a metrics-based API analysis as well
as metrics for calculating user-perceived API complexity. In
Sect. 7 we discuss threats to the validity of our work and
describe how we minimized them. Section 8 concludes the
paperwith a discussion of themain results and a short outlook
to future work.

2 Related work

Several works already target the analysis of REST APIs. In
this section, we first give an overview about relevant related
work. Then, we categorize the existing approaches and posi-
tion our work with respect to them.

2.1 Literature overview

A first analysis of REST APIs has been conducted in [4].
The authors investigated a set of 222 Web APIs taken
from ProgrammableWeb.com, a popular Web API directory.
Web APIs are further distinguished in RPC-Style, REST-
ful, and Hybrid. The analysis has been conducted manually
and focuses on technical aspects of the selected APIs. The
authors present amongst other things statistics about sup-
ported representation types, authentication mechanisms, and
the availability of API documentation.

The work presented in [9] analyzes a set of 12 REST
APIs with respect to a set of five patterns and eight anti-
patterns. For each of these (anti-) patterns the authors define
a corresponding heuristics and detection algorithm. These
heuristics and detection algorithms are based on the obser-
vation and investigation of request and response messages
exchanged with an API. For the analysis, a REST API is first
called several times and all request- and response-messages

are gathered and stored. Then, the gathered messages are
processed by the (anti-) pattern detection algorithms.

The work of [9] is continued and extended in [10]. Here,
the authors focus on the analysis of the URI structure of
REST APIs using a set of five linguistic patterns and anti-
patterns that are applied to a set of 15 REST APIs. Although
the naming of URIs should not matter to the client at all (as
it is supposed to follow RESTs HATEOAS constraint, i.e.
to navigate through an API by following hyperlinks), it is
still important for the realization, operation and maintenance
of REST APIs. The general analysis approach is the same
as in [9]. Each (anti-) pattern has a corresponding heuristics
and detection algorithm, which are then applied to a set of
previously gathered request messages.

In [11] a set of three REST APIs from three well-known
cloud providers is analyzed with respect to a set of 73 best
practices compiled from literature. The analysis is based on
available API documentation and has been conducted man-
ually, followed by a detailed analysis of the results.

In [12] a dataset of 78GB of HTTP traffic from an Italian
mobile internet provider is analyzed with respect to REST
principles and guidelines. First, all requests targeting APIs
formachine consumption (in contrast towebpages consumed
by humans) are identified and extracted. Then, the authors
define a set of five best practices for REST APIs and a corre-
sponding set of 18 heuristics for the compliance with these
best practices. These heuristics are then implemented and
applied to a representative sample of the whole dataset. In
addition, the same heuristics are used to calculate the matu-
rity level of the investigated REST APIs with respect to the
maturity model by Richardson [13].

2.2 Summary and categorization

The existing works on the analysis of REST APIs follow dif-
ferent approaches that can be summarized and categorized as
shown in Fig. 1. The analyzes presented in [4,11] are based
on human-readable API documentation and have been con-
ducted manually (type 1). In contrast, the analyzes presented
in [9,10,13] are based on the automated analysis of request
and response messages (type 2). Both analysis types have
their advantages and disadvantages.

The first analysis type, the manual analysis of human-
readable documentation, can in general cover more and
detailed aspects than any automated analysis. In addition,
only the documentation of an API is required, i.e. the analy-
sis may even be conducted during design time when an API
is not yet implemented. On the other hand, being conducted
manually, this type of analysis cannot be applied meaning-
fully to arbitrary large sets of REST APIs. In addition, the
quality of the results strongly depends on the qualification of
the humans conducting the analysis as well as on the quality,
completeness, and correctness of the API documentation.

123



API governance support through the structural analysis of REST APIs 293

REST API

re
qu

es
t/

re
sp

on
se

provides

Automated
Analysis

12 3

Manual
Analysis

4
Human-Readable
API Descrip�on

Machine-Readable
API Descrip�on

Client

Fig. 1 Analysis approaches

The second analysis type, the automated analysis of
request and response messages, can be easily applied to huge
sets of APIs in a repeatable and traceable manner. However,
it requires that the API under analysis is implemented and
accessible. Another challenge is that the analysis only covers
those parts of an API that are covered by the set of messages
under investigation.

What has not been covered so far, to the best of our
knowledge, is the analysis of REST APIs based on machine-
readable API descriptions and its application for API gover-
nance. REST API description languages like Swagger [14]
and RAML [15] gain more and more importance, which
amongst other things recently resulted in theOpenAPI Initia-
tive [16] as a standardization approach for API descriptions.
We use this potential to allow for new approaches inAPI gov-
ernance supported by structural API analysis approaches.

In this paper, we apply an automated analysis (type 3)
focusing on the structure of REST APIs (Sect. 6.1) using
an analysis framework developed in previous work [8]. This
approach can already be applied at design time, as it only
requires a description (a model) of an API, but no imple-
mentation. Being an automated analysis, it can also be easily
applied to huge sets of APIs, making our API governance
support also applicable to scenarios comprising many APIs.

The last analysis type, the manual analysis of machine-
readable API descriptions (type 4), builds on a graphical
representation of the structure of REST APIs and targets the
in-depth analysis of selected APIs. This analysis type is also
supported by the analysis framework we developed in previ-
ous work [8] and can also already applied at design time.

3 Common REST API description languages

There exist many languages for the description of REST
APIs from both, academia as well as industry. For our work,
we are concentrating on description languages that are com-
monly used in real world, assuming that API descriptions
based on these languages will then be available for a wide
range of real-world APIs. In the following, we will first dis-
cuss our selection process and then introduce the description

languages that have been selected for further investigation,
Swagger and RAML.

3.1 Selection process

As a first step towards selecting a suitable set of REST API
description languages to be used in our analysis approach,
we conducted a Google search for the term “rest api descrip-
tion language”. In the result set of this search, the following
names appeared repeatedly: API Blueprint [17], I/O Docs
[18], Swagger [14], RAML [15], WADL [19], WSDL 2.0
[20], Open API [16].

To narrow this set further down and to get a better
understanding of the dissemination and usage of these lan-
guages, we applied additional quantitative criteria as shown
in Table 1. For each description language, we conducted
a Google search using the search term “{description lan-
guage name}” + “REST” and noted the total number of
search results. We also used StackOverflow.com (SO), a
popular developer community, to search for questions hav-
ing the name of a description language in their title as
well as for questions that have been tagged with the cor-
responding description language. On GitHub.com, a popular
service offering Git repositories for software development,
we searched for repositories having the name of each descrip-
tion languages in their title. As most of the description
languages have their specification documents hosted on
GitHub, we also considered how often these specifications
have been starred (marked as favorite) and forked.

The results of our searches shown in Table 1 indicate that
Swagger seems to be the most widespread description lan-
guage used in real world projects. What has to be considered
here is that Swagger has a special relationship to the Open
API specification. TheOpenAPI Initiative is highly based on
Swagger; the current OpenAPI specification v2.0 is identical
to the latest Swagger specification v2.0. Therefore, when-
ever we consider Swagger in the following, all statements
also apply to Open API. Following the numbers in Table 1,
we also consider RAML in our work, as it also seems to
have some practical relevance. Although WADL scores high
for some of the criteria, we do not consider it in this work.
The WADL specification is rather old and, according to our
experience, continuously losing practical relevance.

3.2 Swagger and RAML

The core of the Swagger framework is the Swagger specifi-
cation that defines how to describe a REST API as JSON (or
YAML) file. In the following, we will call such files that fol-
low the Swagger specification Swagger files. In the context
of this work, we focus on the structure of a REST API, i.e.
the resources and their relationships. When reducing Swag-
ger to this aspects, we can create a simplified metamodel

123



294 F. Haupt et al.

Table 1 Quantitative selection
criteria

Google search SO by title SO by tags GitHub projects Spec. star/fork

API blueprint 20,400 79 188 440 4714/1344

I/O docs 4120 0 15 26 1830/430

Swagger 2,790,000 2465 2551 4638 5321/1583

RAML 120,000 148 181 926 2501/367

WADL 93,100 178 192 192 –

WSDL 2.0 20,800 23 7 0 –

Open API 143,000 48 30 662 5321/1583

Swagger Resource
+absPath*

Method
0..7

Fig. 2 Simplified Swagger metamodel

RAML

Resource
+relPath Method* 1..7

+subResource

*

Fig. 3 Simplified RAML metamodel

for it as shown in Fig. 2. A Swagger file describes an REST
API as a set of resources. Each resource is identified by an
absolute path and supports a set of HTTPmethods. Although
the HTTP specification [6] defines eight methods, Swagger
only supports a subset of six HTTP methods as well as the
additional PATCH method [21].

Regarding the general structure, Swagger and RAMLfiles
are very similar. A noteworthy difference is however, that
RAML allows the explicit modeling of resource hierarchies.
A simplifiedmetamodel forRAMLfocusingonAPI structure
is shown in Fig. 3.

Analyzing the structure of a RESTAPI based on the (sim-
plified)metamodels of Swagger andRAMLhas some serious
drawbacks. First, the different metamodels would require (at
least in parts) different realizations for the same analyzes,
resulting in increased effort as well as an increased probabil-
ity for inconsistencies and faults. Second, Swagger models
do not explicitly model the structure of a REST API at all.
At first glance, Swagger only lists a set of resources. Any
relationship between these resources, like the formation of a
resource hierarchy, has to be extracted from the structure of
the URIs of the resources.

Consequently, we decided that our analysis would be
based neither on the Swagger metamodel nor on the RAML
metamodel but on a metamodel for REST APIs that we
have developed in previous works [22]. In the following sec-
tion, we will introduce the relevant parts of this metamodel

Application Model
Model

Domain Model

Composite
Resource Model

Atomic
Resource Model

URL Model

Code
Code

Java
Code

Application Model
Application Model

JAX-RS
Application Model

Service Description
Service Description

HTML
Service Description

model-to-model
transformation

code generation

model reference

Fig. 4 Metamodels for REST APIs [22]

and show how the Swagger and RAML metamodel can be
mapped on it.

4 A canonical metamodel for REST APIs

In order to get a better understanding about the structure of
REST APIs and to help designers and developers to create
better REST APIs, we have developed a set of metamodels
for REST APIs as shown in Fig. 4 and successfully inte-
grated them in a model-driven approach for the design and
realization of REST APIs [22,31].

The core model is the atomic resource model, which
describes a REST API in terms of its basic elements
like resources, methods, representations, or query parame-
ters. The composite resource model provides higher level
modeling elements that ease themodeling task and the under-
standing of complex models. A composite resource model
based on the concept of conversations has been introduced in
[23]. An important feature is the URImodel. The HATEOAS
constraint of REST demands that clients navigate through an

123



API governance support through the structural analysis of REST APIs 295

Resource
+name

Method

Relationship

+supports

+enables

+target

Navigation Creation

relPath
+attachedToRestAPI

+consistsOf

atomic resource model URI model

Fig. 5 Simplified metamodel for REST APIs

API independent of any specific URIs by following hyper-
links. The separation of the resource model (which contains
no URIs at all) from the URI model reflects this very impor-
tant aspect of REST and intends to support API designers
as well as API clients in following the HATEOAS principle.
Details about the other models are not relevant in the context
in this paper and can be found in [22].

A simplified version of the metamodel for the atomic
resource model as well as for the URI model is shown in
Fig. 5. A REST API consists of a set of resources and each
resource supports a set of methods. An important distinc-
tive feature of our metamodel is that relationships between
resources are not directly attached to the resource but related
to the methods of a resource. The rationale behind this is
as follows. When submitting for example a GET request
to a resource, the response may contain hyperlinks, which
then allow navigating further to other resources. Similarly,
the submission of a POST request to a resource (e.g. a list
resource) may result in the creation of another resource. In
summary, relations between resources always depend on the
usage of the methods of the source resource of a connection
and our metamodel reflects this. An example instance of this
metamodel is presented in Fig. 11, showing the model of an
example REST API in a graphical editor we developed as
part of a toolchain around our REST API metamodel.

The URI model shown in Fig. 5 is defined separately from
the atomic resource model. It defines a set of relative paths
that are then attached (by reference) to (a subset of) the rela-
tionships of the resourcemodel. Regarding the analysis of the
structure of an REST API, i.e. the analysis of the resources
and their connections, the resource model contains all neces-
sary information and we will therefore ignore the URI model
in the following.

5 Model transformations

As discussed in the previous section, we aim at using our
atomic resource model as base for the structural analysis of

{ "swagger": "2.0",…,"paths": {"/pet": {"post": {…}},"/pet/findByStatus": {"get": {…}}"/pet/{petID}": {“get": {…},“delete": {…}},},"definitions": {...}}

/pet/findByStatus

• GET

/pet

• POST

/pet/{petID}
• GET
• DELETE

findByStatus

• GETpet

• POST
{petID}

• GET
• DELETE

1

2

Fig. 6 Swagger transformation process

REST APIs. Consequently, we first have to design and real-
ize the transformation of Swagger as well as RAML models
into our metamodel. In addition, this process already pro-
vides some interesting findings about the characteristics of
the description languages we considered in our work (and
these characteristics may in turn influence the characteristics
of the REST APIs that are designed using them).

5.1 Transformation design

The transformation of a Swagger model comprises two
phases as shown in Fig. 6. First, all resources are identified
and transformed including their entire detailed configura-
tion like the supported methods, representations or query
parameters. Second, the relationships between the resources
are identified. Unfortunately, Swagger does not provide any
means to describe links between resources explicitly. Instead,
the structure of a REST API is usually given by the paths the
API provides. Here it is generally accepted that these paths
represent hierarchical relationships.Webuild on this assump-
tion for determining the relationships between resources.

The corresponding algorithm for deriving resource rela-
tions from the associated paths,which is applied in the second
step of the transformation process, is sketched in Listing 1.
The general idea is to first sort all resources by levels, where
the level of a resource is determined by the length of its
path (in terms of the number of elements of the path). Then,
the resources are processed from top level to bottom level
(i.e. shortest paths first) and each resource is connected to
all resources on higher levels whose path is a prefix of the
current resource. Consequently, the resulting resource graph
is always a tree, as Swagger is inherently limited to such
structures.

123



296 F. Haupt et al.

Listing 1 Resource structure derivation algorithm for Swagger

public void deriveStructure(Swagger model) {

//<level , paths on this level >

Map <int , Set <Path >> paths;

//order paths by level (i.e. length)

for (Path p : model.getPaths ()) {

paths.get(p.getElements ()).add(p);

}

//sort levels ascending

Set <int > sorted = sortAsc(paths.keySet ());

// process paths from shortest to longest

for (int i : sorted) {

// process all paths on current level

for (Path current : paths.get(i)) {

//look at all higher levels

for (int x = i-1; x >= 0; x--) {

for (Path p : paths.get(x)) {

//if a is a prefix of b, then a is

parent of b

if (current.startsWith(p)) {

connect(p, current);

found = true;

}

}

//stop if parent resource was found

if (found) { break; }

}}}}

The RAML transformation is for the most parts very simi-
lar to the Swagger transformation. Themain difference is that
the derivation of the resource structure is simpler because
RAML already supports the modeling of nested resources
structures. As for Swagger, the resulting resource graph is
always a tree.

5.2 Findings

A general finding that has already been mentioned is that
Swagger as well as RAML provide no explicit means for
describing links between resources. In addition, Swagger
as well as RAML also do not support to describe the rela-
tionship between POST requests on one resource and the
resulting creation of another resource. Such relationships are
very common (e.g. for list resources) andusually documented
in the human-readable description text, but they cannot be
included in the formal description of an API. Altogether,
these drawbacks either result in APIs that do not exploit the
full power of REST (especially the HATEOAS concept) or it
results in incomplete API description that only cover a subset
of the capabilities an API provides.

Another observation is that relationships between resour-
ces sometimes go across multiple levels, i.e. the path of a
child resource extends the path of its parent resource by
more than one element. For example, an API might offer the
resource /api and its child resource /api/products/pid but no
resource with a path of /api/products. Although an API with
such an URI structure might still be fully REST compliant,
it is usually considered a best practice to assume that clients

might access any part of a URI and therefore to provide at
least some response at any possible URI.

6 API governance support

The general approach of the REST API analysis we con-
ducted is based on a framework for the structural analysis of
REST APIs we presented in [8]. An overview is depicted in
Fig. 7. Starting from available REST API description doc-
uments in Swagger and RAML we transform them into our
canonical metamodel and store them in a model repository.
This way, the following analysis steps are easily reusable for
other REST API description languages, they only need to be
transformed into the canonical metamodel.

The models stored in the repository can be automatically
processed by the analysis component, which in turn builds on
a repository of algorithms that are able to calculate themetrics
we are interested in, making this part easily extendable with
new metrics as desired. The results of this analysis (i.e. a
set of metrics for each REST API) are written to CSV files,
allowing further analysis and processing by common office
tools. This kind of analysis refers to type 3 as introduced in
Sect. 2.2.

The REST API models stored in the repository can in
addition be visualized using a graphical editor we developed
as part of a toolchain around our REST API metamodel.
The graphical representation of the resources and their rela-
tionships enables domain as well as REST experts to easily
understand and assess the structure of an API. This kind of
analysis refers to type 4 as introduced in Sect. 2.2.

The goal of our work is to provide API governance sup-
port based on the structural analysis of REST APIs. API
governance is a task mainly applied inside an organiza-
tion, typically aiming at achieving a certain harmonization
of APIs in terms of their non-functional properties, best-
practices-support, documentation quality or rule compliance
in general. Especially when considering Microservice archi-
tectures, this task may have to consider a considerably huge

Swagger

X X

REST API Models

Analysis

Metrics

RAML …

X

Fig. 7 Analysis approach [8]

123



API governance support through the structural analysis of REST APIs 297

set of APIs. Our approach assumes that API description
documents are available, and as discussed in Sect. 3 this
assumption is valid in many cases.

All analyzes discussed in the following are based on a
set of 286 API description documents retrieved from https://
apis.guru, a web page (and API) that describes itself as
Wikipedia for WEB APIs. The set includes only APIs that
are publicly available (free or paid) and includes renowned
providers likeMicrosoftAzure,Google,BBC,GitHub, Insta-
gram, NYTimes, Spotify, and Wikimedia.

6.1 Metrics-based API analysis

As a first step towards API governance support we propose
to characterize a set of APIs using metrics that are related
to the structure of an API. Based on expert knowledge and
experience we identified a set of potentially relevant metrics,
implemented them, integrated them in the analysis frame-
work, and calculated them for each API under investigation.
An overview about the aggregated values of all metrics that
were calculated during this analysis is given in Table 2. The
first group of four metrics concentrates on the resources of an
API. The number of resources, i.e. the size of an API, covers
a range from a minimum of one resource to a maximum of
264 resources perAPI. The deviation between themean value

and themedian indicates that the distribution is rather uneven
and includes breakout values. This can in detail be seen in
Fig. 8, which shows the distribution of the API size through-
out the set of all APIs. The majority of APIs (53.5%) has a
size of 10 or less resources (33% APIs have a size between 1
and 5 resources, and 20.5% APIs have a size between 6 and
10 resources). Another 37.5% of all APIs has a size ranging
between 11 and 40 resources and the remaining 9% have a
size between 41 and the maximum of 264 resources (the dis-
tribution between 111 and 270 resources has been combined
into one value in Fig. 8).

The set of APIs considered in the analysis comprises two
noteworthy subsets, a set of 39 API models from Microsoft
Azure, and a set of 105 API models from Google. As these
two sets represent a significant amount of the complete API
set, Fig. 8 also shows the distribution of the API size sepa-
rately for the set of Azure APIs, the set of Google APIs, and
the set of all remaining APIs. These three distributions vary
in parts. The share of APIs with a size up to five resources is
23% and 36% for the Azure and Google APIs respectively,
and nearly 45% for all remaining APIs. In contrast, the share
of APIs with a size from six up to ten resources is much
smaller for the remaining APIs than for Azure and Google.

The next metric, the number of read-only resources
(#ReadOnly Resources in Table 2) counts all resources that

Table 2 Aggregated metrics
overview

Min Max Mean Median

#Resources 1 264 20.3 9

#ReadOnly resources 0 227 10.4 4

#POST 0 93 6.5 3

#DELETE 0 40 2.6 1

#Roots 1 227 8.1 4

#Links 0 248 12.2 4

MaxDepth 0 7 1.8 1

#Components 1 227 8.1 4

Smallest component 1 165 2.4 1

Biggest component 1 165 8.3 3.5

Avg component size 1 165 4.0 2

Biggest component coverage 0.4% 100.0% 54.0% 50.0%

0%

10%

20%

30%

40%

#A
PI

s

#resources (API size)

complete Set Azure APIs Google APIs other APIs

Fig. 8 Distribution of API size (number of resources)

123

https://apis.guru
https://apis.guru


298 F. Haupt et al.

0%

10%

20%

30%

40%

50%
AP

Is

ro = share of read-only resources

complete Set Azure APIs
Google APIs other APIs

Fig. 9 Share of read-only resources in APIs

support only the GET method but no other methods. For
POST and DELETE, we count all resources that support
these methods (and maybe others, as usually every resources
is supposed to support GET requests).

The distribution of the share of read-only resources in an
API is shown in Fig. 9, again for the whole API set (bars) as
well as separately for the three subsets (curves). Looking at
the whole set, it is noticeable that around 24.5% of all APIs
have a share of read-only resources between 90% and 100%,
i.e. these APIs focus on information retrieval rather than on
content creation and manipulation. Looking at the three sub-
sets, their distributions are rather different. The majority of
Azure APIs (61.5%) has a read-only share between 30 and
60%, whereas the distribution for the Google APIs is more
even. For the set of all remaining APIs, 50.5% have a read-
only share of 90% ormore. These differences probably result
from the fact, that theAzure andGoogleAPIs provide similar
functionality in their APIs (both provide common cloud ser-
vices) which includes not only information retrieval but also
content creation and manipulation. The set of all remaining
APIs however covers a much broader spectrum of services,
which evidently include a significant set of information ser-
vices.

Comparing the numbers of the first four metrics in Table 2
shows that read-only resources are very common in REST
APIs, in average they make up half of all resources. In addi-
tion, we can also read off that there are in general more
resources supporting the POST method than resources sup-
porting the DELETE method. This proportion can, at least
partially, be explained when we have a closer look at two
commonly used resource types, list resources and command
resources [24]. List resources are used to manage a set of
child resources. The list resource supports GET for retriev-
ing a list of references to all child resources and it supports
POST for adding new child resources. Child resources sup-
port GET for retrieval, DELETE for deleting, and PUT for
updating. Examples of list resources are shown in Fig. 11
(labeled 1). Altogether, list resources add the same amount

of POST as well as DELETE methods to an API. The
increased occurrence of POST resources is mostly added by
so-called command resources. Such resources usually rep-
resent functionality that cannot be mapped to one of the
other methods (GET, PUT, and DELETE). Typically, each
command resource represents one functionality that is called
using the POST method. Examples of command resources
are shown in Fig. 11 (labeled 2).

The next group of three metrics in Table 2 adds data
about links between resources to the analysis. We define any
resource that has no incoming links as a root resource. A gen-
erally accepted best practice in REST API design, driven by
theHATEOAs constraint, is that anAPI should have only one
(or at least few) root resource [25]. However, the numbers in
Table 2 show that todays RESTAPIs usually have quite some
root resources. Due to the fact that all APIs that we consider
in our analysis are trees, the total amount of links per API is
limited by the amount of resources. The maximum depth of
an API is given by the longest path of resources that are con-
nected by links. This metric shows rather small values if we
compare it to the number of resources, which indicates that
APIs are in general more wide than deep. Speaking from a
clients view, this means that when navigating through an API
there are comparatively little possibilities to navigate deeper
into the API, but at each of these steps, there are in average
many alternatives to navigate further.

The last group of five metrics in Table 2 adds data about
components to the analysis. In graph theory, a component of
a graph is defined as a subset of a graph where each node
in the subset (i.e. resource) is connected (directly or by a
path) to any other node in the subset, but not to any other
node outside the subset [26]. Speaking in terms of REST
APIs, a component comprises a root resource together with
all resources that can be accessed from this root resource.
The API shown in Fig. 11 consists of three components. Fol-
lowing the best practice of having exactly one root resource,
an API should comprise exactly one component (in the case
of trees, the number of root resources and the number of
components are always equal). However, the numbers in
Table 2 show that APIs usually comprise several compo-
nents.

If we have a closer look at the size of the components of an
API, we can observe that for the average size of the smallest
component as well as for the average size of the biggest com-
ponent the mean value and the median again clearly differ,
indicating an uneven distribution of these metrics (similar to
the API size). However, this does not apply to the share of an
API that is covered by the biggest component (Biggest Com-
ponent Coverage in Table 2). The distribution of thismetric is
shown in detail by the bars in Fig. 10. One remarkable aspect
is that the share of APIs for which the biggest component
covers at least 90% of an API is rather high. This means that
around 22% percent of the APIs we analyzed can be viewed

123



API governance support through the structural analysis of REST APIs 299

0%

5%

10%

15%

20%

25%

30%

35%
AP

Is

bcs = share of API the biggest component covers

complete Set Azure APIs
Google APIs other APIs

Fig. 10 Share of API covered by the biggest component

as well structured, as they are mostly accessible starting from
one root resource. In fact, 52 of 286 APIs (18%) comprise
exactly one component.

6.2 Measuring user-perceived API complexity

The metrics we have calculated and discussed so far can
serve as a first step towards understanding and characteriz-
ing a (potentially huge) set of APIs. Such an analysis can
then provide hints for further actions in the context of API
governance. Considering the set of REST APIs we analyzed
so far, the metrics for example show that many APIs have
(considerably) more than one root resource, which violates
the HATEOAS constraint of the REST style. Also, the rather

uneven distribution of the API size can be a hint that it might
bemeaningful to investigate if theAPI size is relevant forAPI
governance (and if additional governance rules are required).

All these metrics are however very low-level, and they
often require a significant amount of processing and inter-
pretation before resulting in useful information (as seen in
the previous section). We therefore propose to complement
the metrics-based analysis by the development of aggregated
metrics representing higher-level information about the APIs
under investigation. In the following, we are considering the
user-perceived complexity of an API as an exemplary use
case for such an aggregated metric.

Complexity can in general be distinguished in descrip-
tive and perceived complexity [27]. Descriptive complexity
assumes that there exists an objective truth and consequently
that such a complexity can be objectively measured. In the
context of REST APIs, the descriptive complexity may be
determined by investigating the time it takes clients to under-
stand an API or the amount of misunderstandings and errors
that occur during its usage.Perceived complexity in contrast is
a rather subjective concept and solely based on the perception
of an observer. In the context of REST APIs, the perceived
complexity of an API describes how a user judges the com-
plexity of the API without objectively measuring it. In the
following, we are looking at the user-perceived complexity
of RESTAPIs. A high user-perceived complexitymay hinder
the use and dissemination of an API, which is especially rel-
evant in case an API is offered using a marketplace or public
API registry.

1 1

2 2

2

3

Fig. 11 Graphical representation of the Google Blogger API

123



300 F. Haupt et al.

In a first step, we selected a random set of ten APIs from
the set of 286 APIs introduced in Sect. 6. Then we asked a
group of nine software developers, each having at least one
year of experience in designing and realizing REST APIs,
to rank these APIs based on their complexity (as perceived
by the developer). For the ranking, we applied the Analytic
Hierarchy Process (AHP) [32] by carrying out a pairwise
comparison of all ten APIs. For each pair of APIs, graphi-
cal representations of the APIs (as generated by the analysis
framework) were shown to the developers and they were
asked to decide, which one is more complex. They also had
to indicate how much one API is more complex than the
other using a scale (as defined by Saaty [32]) ranging from
1 (equally complex) to 9 (extremely more complex). One
advantage of applying AHP is, that it provides a quantitative
ranking of the APIs under investigation, meaning that it does
not only show which API is perceived more complex than
another but also howmuchmore complex it is perceived. The
result of the described AHP process is depicted in Fig. 12,
showing the judgments of the individual developers as bars
(D1 to D9) and the consolidated ranking as line.

In a second step, we selected (based on expert knowledge
and experience) a subset of two basic metrics (as introduced
in Sect. 6.1) as candidates for defining an aggregated met-
ric that represents the user-perceived complexity of an API.
Then, we composed out of these basic metrics new aggre-
gated metrics, resulting in a set of five metrics candidates as
shown in Eq. 1:

M1 = #roots

M2 = BiggestComponentCoverage

M3 = M1 + M2

M4 = M1 + M2
2

M5 = M2
1 + M2

(1)

These five metrics have then been applied to the set of ten
APIs that have been ranked by the users before. To ensure
comparability with the AHP results, the resulting values are
normalized to a scale between 0 and 1. A graphical repre-
sentation of the result of this process is shown in Fig. 13. If
we consider only the order of the ranking, M1 as well as M4
result in the same ranking order as the user ranking (their
curves are monotonously rising, same as the user ranking).
Another approach of comparing the different metrics candi-
dates is to calculate their mean square deviation from the user
ranking. The result of this calculation is shown in Fig. 14,
indicating M3 as the best candidate as it deviates least from
the user ranking. M3 however, as shown in Fig. 13, would
result in a different ranking order than the user ranking.

For the use case under investigation, the assessment of
the user-perceived complexity of an API, we were able to
derive suitable metrics based on structural API analysis. It is
obvious, that this approach gets more complex when consid-
ering more metrics and also additional metric combinations.
However, the presented process can easily be automated,
including the combination of metrics to aggregate as well
as the evaluation of their deviation from the expected result.

7 Threats to validity

The results of our work presented in the previous sections are
subject to several threats to their validity. In the following,
we will discuss how we proceeded in our work in order to
minimize these threats.

7.1 Internal validity

The model-to-model transformations from Swagger and
RAML into the canonical resource metamodel might dis-

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

D1 D2 D3 D4 D5 D6 D7 D8 D9 consolidated

Fig. 12 Perceived API complexity according to AHP results

123



API governance support through the structural analysis of REST APIs 301

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

M1 M2 M3 M4 M5 user ranking

Fig. 13 Perceived API complexity according to metric candidates

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

M1 M2 M3 M4 M5

Fig. 14 Mean square deviation from user ranking

tort the structure of an API description, and therefore also
the analysis results, in case they do not follow the conceptual
mapping described in Sect. 5 correctly.We tackled this threat
by manually checking a random sample of source and target
models for their transformation being correct and coherent in
terms of content.We randomly selected a sample of 30model
pairs out of a total of 286, and 29 of the reviewed transforma-
tions were found to be correct. The remaining transformation
showed some errors due to some very unusual URI naming
that could not be properly processed by the transformation
algorithm.

Many of the metrics used in the analysis of the resource
structure are based on graph algorithms. Errors in these graph
algorithms (or their implementation) might result in incor-
rect values for the metrics and therefore distort the analysis
results. We reduced this threat by following software engi-
neering best practices. We reused existing and mature graph
libraries (JGraphT), we implemented unit tests for all analy-
sis algorithms, and we manually validated the correctness of
the analysis for a random sample of 30 APIs.

7.2 External validity

The general significance of the analysis results presented in
Sect. 6 depends on the set of analyzed REST API descrip-
tions. We minimized this threat by analyzing a set of 286
descriptions, all of them describing publicly available real-
world REST APIs, including well-known ones like for
example several Google APIs, the GitHub API, or the Insta-
gram API. In addition, we decided to examine Swagger and
RAML as they are among the most popular and common
RESTAPIdescription languages in practice. This contributes
to the relevance of our analysis results as the set of analyzed
REST API descriptions reflects the state-of-the-art of todays
REST APIs.

Our analysis is based on the assumption that theRESTAPI
descriptions that were transformed and analyzed describe the
real APIs completely and correctly. Incomplete and faulty
descriptions might distort the analysis results, as they would
only apply to the descriptions but not to the real APIs. We
minimized this threat bymanually comparing a random sam-
ple of 64RESTAPI descriptionswith theAPIs they describe.
We found out, that all of the checked API descriptions are
correct and complete. Another indication for the correctness
and completeness of the analyzed REST API description is
given by the fact, that the Swagger files we used are serving
as the base for other API related services like https://any-api.
com and https://datafire.io.

It should however be noted that Swagger and RAML, in
contrast to our metamodel, do not support the explicit mod-
eling of hyperlinks between resources at all. If a REST API
provides hyperlinks that do not follow the URL structure of
an API, then these relationships between resources cannot
be explicitly represented in the corresponding Swagger or
RAML description document. This can then lead to analysis
results that are still correct with respect to the API descrip-

123

https://any-api.com
https://any-api.com
https://datafire.io


302 F. Haupt et al.

tion document, but not necessarily correct with respect to the
API itself. This fact has however no or only little influence
to the results presented in this paper, as only very few APIs
provide such hyperlinks at all. Regarding the random sample
of 64 REST API descriptions that we manually compared
with their underlying APIs, we found no API that contains
this kind of hyperlinks.

All the data our analysis is based on as well as the imple-
mentation of the model-to-model transformation and the
analysis are available online at http://www.iaas.uni-stuttgart.
de/rest. This enables anyone to replicate, review, validate,
and reuse our work.

8 Discussion and outlook

Our work we presented in this paper applies structural anal-
ysis of REST APIs for supporting API governance tasks.
Advantages of this are that it can already be applied at design-
time (as it requires only APImodels but no implementations)
and that it is easily applicable to huge sets of APIs (as being
executable automatically).

Themetrics-based analysis provided ahigh-level overview
and characterization of a large set of real-world REST APIs.
We discovered that the APIs under investigation are on aver-
age small with a median of nine resources per API, but that
the distribution of the API size is rather uneven and that some
APIs have more than 250 resources. Therefore, it seems sen-
sible that any works on the design of REST APIs should be
able to cope with such huge APIs. Another interesting result
is that read-only resources are very common and that there
is even a subset of APIs that are completely read-only.

The measurement of user-perceived complexity, based
on the metrics-based analysis, demonstrated that aggregated
metrics can provide even further benefits for API gov-
ernance tasks. We systematically derived metrics for the
user-perceived complexity of APIs and validated them by
a survey among API designers and developers. Such metrics
can then be automatically applied to APIs without requiring
additional user input.

For future work, we think of automating the detection
of reoccurring structures in REST APIs. Similar to existing
works in the context of business process models [28] we can
automatically analyze a set of RESTAPImodels for frequent
structures. In a next step, these reoccurring structures can be
analyzed by REST experts, which might finally result in the
detection of structural REST API patterns. It might also be
worth it, to investigate if existing RESTAPI patterns [29,30]
can be validated by analyzing our set of REST API models.

Acknowledgements This work has been partially funded by the Ger-
man Research Foundation (DFG) within the Cluster of Excellence in
Simulation Technology (EXC310/2) at the University of Stuttgart.

References

1. Webber J, Parastatidis S, Robinson I (2010) REST in practice:
hypermedia and systems architecture. O’Reilly Media, Sebastopol

2. Fielding RT, Taylor RN (2002) Principled design of the modern
Web architecture. ACM Trans Internet Technol 2:115–150

3. Renzel D, Schlebusch P, Klamma R (2012) Todays top RESTful
services and why they are not RESTful. WISE, london

4. MaleshkovaM, Pedrinaci C, Domingue J (2010) Investigating web
APIs on the World Wide Web. In: The 8th IEEE European confer-
ence on web services (ECOWS 2010), 1–3, Ayia Napa, Cyprus

5. Adamczyk P, Smith PH, Johnson RE, Hafiz M (2011) REST and
Web services: In theory and in practice, REST: from research to
practice. Springer, New York

6. Fielding R, Reschke J (2014) Hypertext transfer protocol
(HTTP/1.1): Semantics and Content”, RFC 7231. http://www.ietf.
org/rfc/rfc7231.txt

7. Haupt F, Fischer M, Karastoyanova D, Leymann F, Vukojevic-
Haupt K (2014) Service composition for REST, In: IEEE 18th
international enterprise distributed object computing conference
(EDOC), pp 110–119

8. Haupt F, Leymann F, Scherer A, Vukojevic-Haupt K (2017) A
framework for the structural analysis of REST APIs. In: Proceed-
ings of the IEEE international conference on software architecture
(ICSA 2017)

9. Palma F, Dubois J, Moha N, Guhneuc YG (2014) Detection
of REST patterns and antipatterns: a heuristics-based approach,
ICSOC 2014. Springer, Berlin

10. Palma F. Gonzalez-Huerta J, Moha N, Guhneuc Y.G, Tremblay G
(2015) Are restful apis well-designed? Detection of their linguis-
tic (anti) patterns. In: International conference on service-oriented
computing. Springer, Berlin

11. Petrillo F, Merle P, Moha N, Guhneuc YG (2016) Are REST
APIs for cloud computing well-designed? An exploratory study.
Springer, Berlin

12. Rodriguez C, et al. (2016) REST APIs: a large-scale analysis of
compliance with principles and best practices. In: International
conference on web engineering, Springer

13. Fowler M (2010) Richardson maturity model: steps
toward the glory of rest. http://martinfowler.com/articles/
richardsonMaturityModel.html

14. Swagger. http://swagger.io/
15. RESTful API modeling language (RAML). http://raml.org/
16. Open API initiative. https://www.openapis.org/
17. API blueprint. https://apiblueprint.org/
18. I/O Docs. http://mashery.github.io/
19. HadleyMJ (2006)Web application description language (WADL).

https://www.w3.org/Submission/wadl/
20. Chinnici R, et al. (2007) Web services description language (wsdl)

version 2.0 part 1: Core language. W3C recommendation 26
21. Dusseault L, Snell J (2010) PATCH method for HTTP, RFC 5789.

https://tools.ietf.org/rfc/rfc5789.txt
22. Haupt F, KarastoyanovaD, Leymann F, Schroth B (2014) Amodel-

driven approach for REST compliant services. In: ICWS
23. Haupt F, Leymann F, Pautasso C (2015) A conversation based

approach for modeling REST APIs. In: IEEE WICSA 2015
24. Allamaraju S (2010) Restful web services cookbook: solutions

for improving scalability and simplicity. O’Reilly Media Inc,
Sebastopol

25. Nottingham M. Home documents for HTTP APIs. https://tools.
ietf.org/html/draft-nottingham-json-home-05

26. Bondy JA, Murty USR (1976) Graph theory with applications.
Macmillan, London

123

http://www.iaas.uni-stuttgart.de/rest
http://www.iaas.uni-stuttgart.de/rest
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7231.txt
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://swagger.io/
http://raml.org/
https://www.openapis.org/
https://apiblueprint.org/
http://mashery.github.io/
https://www.w3.org/Submission/wadl/
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/html/draft-nottingham-json-home-05
https://tools.ietf.org/html/draft-nottingham-json-home-05


API governance support through the structural analysis of REST APIs 303

27. Schlindwein SL, Ison R (2004) Human knowing and perceived
complexity: implications for systems practice. Emerg Complex
Organ 6(3):2732

28. Skouradaki M, Andrikopoulos V, Kopp O, Leymann F (2016)
RoSE: reoccurring structures detection inBPMN2.0processmodel
collections, OTM 2016. Springer, Berlin

29. Pautasso C, Ivanchikj A, Schreier S. RESTalk pattern language—
patterns for RESTful conversations. http://restalk-patterns.org

30. Pautasso C, Ivanchikj A, Schreier S (2016) A pattern language
for RESTful conversations. In: Proceedings of the 21st European
conference on pattern languages of programs (PLoP), ACM

31. Vukojevic-Haupt K, Haupt F, Leymann F, Reinfurt L (2015) Boot-
strapping complex workflow middleware systems into the cloud.
e-Science 2015, IEEE

32. Saaty TL (2008) Decision making with the analytic hierarchy pro-
cess. Int J Serv Sci 1(1):83–98

Florian Haupt is a research
associate and PhD student at
the University of Stuttgart. His
research focuses on the design
and realization of REST APIs.
Florian was part of the Migrate!
Project, which investigated the
environmental effects of cloud
computing. Besides his various
teaching activities, he is involved
in further projects related to
cloud computing, the TOSCA
standard, and Microservices.

Frank Leymann is a full pro-
fessor of computer science and
director of the Institute of Archi-
tecture of Application Systems
(IAAS) at the University of
Stuttgart, Germany. His research
interests include service-oriented
architectures and associatedmid-
dleware, workflow- and busi-
ness process management, cloud
computing and associated sys-
tems management aspects, and
patterns. Frank is co-author of
more than 300 peer-reviewed
papers, more than 40 patents, and

several industry standards. He is on the Palsberg list of Computer Sci-
entists with highest h-index.

Karolina Vukojevic-Haupt is
a research associate and PhD
student at the University of
Stuttgart. Her research focuses
on the automated on-demand
provisioning of workflow infras-
tructures and simulation ser-
vices in Cloud environments,
enabling the efficient execution
of simulation experiments. Her
work is part of the cluster of
excellence in simulation tech-
nology (SimTech). Besides that,
Karolina works on topics related
to application system architec-

ture, quality of services, and resiliency.

123

http://restalk-patterns.org

	API governance support through the structural analysis of REST APIs
	Abstract
	1 Introduction
	2 Related work
	2.1 Literature overview
	2.2 Summary and categorization

	3 Common REST API description languages
	3.1 Selection process
	3.2 Swagger and RAML

	4 A canonical metamodel for REST APIs
	5 Model transformations
	5.1 Transformation design
	5.2 Findings

	6 API governance support
	6.1 Metrics-based API analysis
	6.2 Measuring user-perceived API complexity

	7 Threats to validity
	7.1 Internal validity
	7.2 External validity

	8 Discussion and outlook
	Acknowledgements
	References




