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Abstract Detecting the occupancy in households is becom-
ing increasingly important for enabling context-aware appli-
cations in smart homes. For example, smart heating systems,
which aim at optimising the heating energy, often use the
occupancy to determine when to heat the home. The occu-
pancy schedule of a household can be inferred from the
electricity consumption, as its changes indicate the pres-
ence or absence of inhabitants. As smart meters become
more widespread, the real-time electricity consumption of
households is often available in digital form. For such data,
supervised classifiers are typically employed as occupancy
detection mechanisms. However, these have to be trained
on data labelled with the occupancy ground truth. Labelling
occupancy data requires a high effort, sometimes it even may
be impossible, making it difficult to apply these methods
in real-world settings. Alternatively, one could use unsu-
pervised classifiers, which do not require any labelled data
for training. In this work, we introduce and explain several
unsupervised occupancy detection algorithms. We evaluate
these algorithms by applying them to three publicly available
datasetswith ground truth occupancydata, and compare them
to one existing unsupervised classifier and several supervised
classifiers. Two unsupervised algorithms perform the best
and we find that the unsupervised classifiers outperform the
supervised ones we compared to. Interestingly, we achieve a
similar classification performance on coarse-grained aggre-
gated datasets and their fine-grained counterparts.
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1 Introduction

Occupancy, i.e. whether the inhabitants of a dwelling are at
home or not, is one of the major contextual features used in
smart home applications. Determining occupancy patterns as
shown by the examples in Fig. 1a, b could be used to control
the heating, electronic devices, the burglar alarm, etc.

There are several ways to determine the presence or
absence of inhabitants (cf. Sect. 4). A common approach
is installing sensors in the dwelling, such as reed switches
on the main doors or motion detectors indoors. However,
these approaches are relatively obtrusive and require the
installation of dedicated hardware. Another possibility is to
use location-connected services on smartphones, such as the
inhabitants’ GPS location or the Wi-Fi networks their smart-
phones are connected to. However, the inhabitants would
have to carry their smartphone with them at all times for this
to work.

A different and promising possibility relies on monitor-
ing the electricity consumption of the household. Previous
research has shown that it is possible to detect occupancy
from electrical load data using machine learning algorithms
with sufficiently high accuracy [25,27,28]. Indeed, electrical
load data is a good proxy for a household’s occupancy since
itsmagnitude and changes in the power consumption are indi-
cators for human activity (i.e. interactions with appliances)
in the household. At the same time, smart electricity meters,
which continuously measure the electrical power demand of
a household, are becomingmore andmore ubiquitous. In six-
teen EU member countries, a smart meter penetration rate of
95% is expected by 2020 [18]. This large-scale deployment
of smart meters makes it increasingly viable to use their mea-
surements for purposes like occupancy detection.

The task of occupancy detection in our context can be
defined as follows: Given a time series of electricity con-
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Fig. 1 Average weekly schedules for two different households. The higher the value (as displayed by the colour) in a time slot, the likelier the
home is occupied during that time slot (colour figure online)

sumption measurements, determine (i.e. estimate with a
sufficiently high probability) whether the home is occupied
or not for each time interval. We thus face a classification
problem with two classes, occupied and unoccupied.

In machine learning, there are two main types of clas-
sifiers: supervised and unsupervised. Supervised classifiers
have to be trained on data labelled with ground truth in order
to learn the relevant patterns. In terms of our setting, elec-
tricity consumption samples labelledwith the true occupancy
class of the specific household would have to be provided.
This labelling process entails a great effort, yielding super-
vised algorithms difficult to apply in a real-world scenario,
where labelled data is not easily available. By contrast, unsu-
pervised algorithms do not require any labelled samples,
hence the term zero-training.

In this workwe address two challenges: First, creating and
exploring different unsupervised classifiers for occupancy
detection, and second, coping with coarse-grained electric-
ity consumption data with a sampling interval of half an hour.
The classifiers presented are very lightweight and could eas-
ily be run locally, i.e. within the home without having to
disclose information to the outside. In more detail, our con-
tributions are:

– Developingunsupervised classifiers for occupancydetec-
tion from generally available electricity consumption
data (only energymeasurements, novoltages or currents).

– Being able to handle coarsely grained data at a sampling
interval of 30min.

– Validating and evaluating the algorithms on three pub-
licly available datasets containing electrical energy con-
sumption and ground truth occupancy values; further,

comparing them to previous algorithms including super-
vised classifiers.

The remainder of the paper is structured as follows: In Sect. 2,
we show the design of our occupancy detection algorithms.
We evaluate them in Sect. 3. In Sect. 4, we discuss related
work done on occupancy detection. Finally, we draw conclu-
sions in Sect. 5.

2 Occupancy detection from electricity
consumption data

Our aim is to determine the occupancy state of a household by
analysing its electricity consumption. We assume a coarse-
grained sampling interval of 30min. First, we pre-process the
data. We take the logarithm of all power values (to the base
10) and use a moving average filter with a window size of 5
to smooth the data.

Then, we perform the classification, using one of the unsu-
pervised classifiers mentioned below. The classifier assigns
a label (either occupied or unoccupied) to each sample (i.e.
30min interval). The sequence of the resulting labels is the
occupancy schedule.After classification,we post-process the
schedule by again performing moving average smoothing on
the schedule. The whole process is depicted in Fig. 2.

In the following we will detail on the three unsupervised
occupancy detection algorithms we developed: a Hidden
Markov Model, a model using a geometric moving average,
and one using a Page–Hinkley test. We face two chal-
lenges: firstly, in a real-world scenario, there are no labels
available, i.e. the electricity data is not annotated with the
occupancy ground truth. Hence, the use of supervised classi-
fiers is not possible. Secondly, wewant to be able to deal with

Raw meter
data

Smoothing Classification
Schedule

smoothing Schedule

Fig. 2 The pipeline for occupancy detection
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coarse-grained electricity consumption data. For a large sam-
pling interval the raw data already gives a very aggregated
view of the household’s electricity consumptions. Therefore,
the possibilities to calculate features over time windows are
limited since one feature would aggregate a long period of
time. To compare the algorithms and measure their quality,
we apply each of them to three datasets for which occupancy
ground truth is available, i.e. it is possible to determine how
well they perform (cf. Sect. 3).

2.1 First algorithm: Hidden Markov Model (HMM)

The occupancy of a household can be modelled as a proba-
bilistic model with two states—occupied and unoccupied. At
any point in time, there is a certain probability of the house-
hold changing from one to the other. This kind of system
can be represented by a Hidden Markov Model (HMM), a
statistical model, through which a process is modelled by a
Markov chain with hidden states. This means that the model
randomly changes from one state to another with certain
transition probabilities depending only on the current state.
The states cannot be observed themselves, they are hidden
and instead only the states’ emissions are observable which
emerge with certain probabilities depending on the emitting
state. In our case the HMM models the binary occupancy of
a home and hence has only two states, unoccupied and occu-
pied. The emissions are power consumption values which are

drawn from emission distributions. The model is depicted in
Fig. 3.

Figure 4 shows an example for a household from 4 a.m.
to 12 a.m.

The only information we can observe are the power con-
sumption values for each 30min time slot. The goal is to
find the most probable state sequence to a given sequence
of observations (also known as decoding), which is solved
by the Viterbi algorithm [48]. Usually, the parameters of
the model would be learnt using a training algorithm, e.g.
the Baum–Welch algorithm [38] following an expectation-
maximisation approach. HMMs have been used for occu-
pancy detection from electricity data in this supervised
manner before [25,27,28]. For that however, training data
would have to be available. Thus, we determine the emission
distribution and transition probability on basic assumptions
we make, which we detail on in the following.

Transition probabilities The transition probabilities define
howprobable it is in each time slot for the state to change from
unoccupied to occupied or from occupied to unoccupied,
respectively. In ourmethod a single day has 48 half-hour time
slots. The transition probabilities depend on the expectation
how long the home is unoccupied or occupied, respectively
and how many “leave” and “return” events there are. We cal-
culate α = #return

#unoccupied and β = #leave
#occupied = #leave

48−#unoccupied .
Since it is the most common, we assume a typical working

Unoccupied Occupied

Fig. 3 The HMM for occupancy detection. Each state emits power values from a certain emission probability distribution and the transition from
one state to the other takes place with a certain probability in each step
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Fig. 4 An example of the 30min aggregated power consumption
for a specific household from 4 a.m. to 12 a.m. The states are
either occupied or unoccupied. The colours (red implying occu-

pied and blue unoccupied) are a guess for a schedule and depict
the non-trivial task of estimating the state sequence (colour figure
online)

day schedule in which the home is unoccupied nine contin-
uous hours a day with a single “leave” event and a single
“return” event. Hence there are 30 occupied and 18 unoccu-
pied slots out of the 48 slots per day in total. Thuswe calculate
the transition probabilities by α = 1

18 and β = 1
30 . If further

knowledge such as a rough estimation of the schedule of the
household was available, this could be easily adjusted.

Emission probabilities For the emission probabilities we
have to find a set of samples which we assume to belong to
the unoccupied and the occupied state, respectively. To do so
we use the mean over all power values from the household’s
data as threshold and assume that all samples below themean
belong to the unoccupied state and all above or equal to the
occupied state. In our experiments the mean has proven to
be a good heuristic for a threshold to separate occupied from
unoccupied emissions. For each sample set we fit a normal
distribution and use this as the emission distribution.

2.2 Second algorithm: geometric moving average
(GeoMA)

Themotivation behind this strategy is that periods of absence
will decrease the moving average of the electricity con-
sumption. As soon as the inhabitants are home again the
consumptionwill increase.The averagewill too, but naturally
not as fast.Hence, themomentary electrical consumptionwill
rise above the average and we will signal occupancy.

Implementing this idea, the algorithm using the geometric
moving average follows a simple strategy. In each time step
we calculate the geometric moving average. If the current
sample is greater than the average, we set the schedule for
the current time slot to occupied, otherwise to unoccupied.
The procedure is shown in “Appendix” and Fig. 5 depicts an
example for a single day.

Fig. 5 An example for the geometric moving average, marked as the
red line. Whenever the momentary electricity consumption (shown as
the blue line) is higher than the geometric moving average, the house-
hold is considered to be occupied. The estimation for the given data is
shown by the green areas (colour figure online)

2.3 Third algorithm: Page–Hinkley test (PHT)

The Page–Hinkley test [34] is an unsupervised concept
change detection algorithm. In the area of data streams (a
potentially unbounded sequence of data points, such as our
power consumption values), the concept is considered as
the probability distribution generating the stream data. In
our case we can imagine two concepts, the unoccupied and
occupied home,which incorporate two different distributions
emitting the data. The aim is to find the changes, i.e. when
the stream process moves from one conept (i.e. distribution)
to the other, which corresponds to the change from unoc-
cupied to occupied or vice versa. The Page–Hinkley test
detects changes in signals by observing the difference of
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cumulative variables from adapting averages. Basically, it is
a more sophisticated version of the geometric moving aver-
age explained above. The procedure, fitted to our application,
is shown in “Appendix”. The Page–Hinkley test can detect
increasing and decreasing changes. If we find an increasing
change,we set the schedule for that slot to 1, i.e. occupied, for
a decreasing change to 0, i.e. unoccupied. In case we detect
no change we set the slot to the state in the previous slot.

2.4 NIOM (non-intrusive occupancy monitoring)

NIOM [14] was presented by Chen et al. (cf. Sect. 4).
We include it in our comparison of the three previously
mentioned methods (and the supervised algorithms). NIOM
calculates three features over a time window. These are the
average, the standard deviation, and the maximum range of
values in the window. The home is considered to be occupied
in a specific time slot if one ormore of the features are above a
certain threshold. The thresholds are determined by the max-
ima of the features during the previous night. Thereby, the
thresholds are dynamic. If any two time slots are detected to
be occupied and are within a certain window τcluster , then all
slots in between are set to occupied. If the home was occu-
pied in the evening, then it is also considered to be occupied
during the night.

2.5 Adding a nightly schedule

Detecting nightly occupancy merely from electricity con-
sumption data is not a simple task, since during sleep people
do not interact with electrical devices and most of them are
turned off or in standby mode. Similar to the authors of [14]
we resort to an additional simple rule-based approach by
adding a nightly schedule when applying any of our algo-
rithms. If we detect occupancy with a duration of at least 1h
from 8 p.m. to midnight, we set the state of each time slot
for the following night (until 9 a.m.) to occupied, beginning
with the slot which is the last to be detected as occupied.

3 Validation and evaluation

We test our three unsupervised algorithms HMM, GeoMA,
and PHT on three publicly available labelled datasets to
be able to asses their performance. Due to the high effort
and costs of annotating the data, such datasets are relatively
rare. We downsampled each dataset by averaging to a sam-
pling interval of half an hour to show we can indeed handle
coarse-grained data. This downsampling does not impair the
performance of the classification in most cases. Rather, it is
often improved (cf. Sect. 3.5).

For comparison we also apply NIOM and three super-
vised algorithms, k-Nearest Neighbours (k = 5) (KNN), a

Support Vector Machine (SVM) with an RBF-kernel, and a
random forest (RF). Additionally we show a baseline, which
assumes that the home was occupied in every time slot. The
baseline is a lower bound for the performance the other clas-
sifiers should achieve. For all supervised classifiers we use
the standard implementations in MATLAB. For evaluation,
we use 10-fold cross-validation (90% training and 10% test-
ing). The features we use for the supervised classifiers are
the mean, the standard deviation, the sum of absolute differ-
ences, and the maximum of the difference in a time window
of two observations. Naturally, these supervised algorithms
cannot be applied in real-world scenarios without any prior
training. For GeoMA we set the adaptation rate λ = 0.05.
For PHT we use 0.05 for the magnitude threshold and 0.3 for
the detection threshold.

As metrics for the performance of a classifier we use the
accuracy (ACC) and the Matthews correlation coefficient
(MCC , [32]), which are defined in Eqs. 1 and 2. The bounds
for the accuracy are 0 and 1, for the MCC −1 and 1. In
both cases a higher number indicates a better result. The
ACC resultmay bemisleading in case of an unbalanced class
distribution (as it is in our case, since the homes are occupied
more than they are unoccupied), whereas the MCC has the
advantage that it compensates for skewed classes.

ACC = tp + tn

tp + tn + fp + fn
(1)

MCC = tp ∗ tn − fp ∗ fn
√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(2)

The arguments are the number of true positives (tp), false
positives (fp), true negatives (tn), and false negatives (fn).
If the classifier assigns all samples to one class, the MCC
cannot be calculated and thus will not be shown in the results
in such cases.

3.1 Dataset A: Tang et al.

The dataset is presented in [43]. It contains the electricity and
occupancy data over 1month for a single household in Victo-
ria, BC, Canada. The consumption data was collected using
off-the-shelf measuring devices and the occupancy informa-
tion was derived from the GPS traces of the inhabitants’
mobile phones. The collection period was from the 23rd
February 2015 to 23rd March 2015. The original sampling
frequency was 0.1 Hz. Table 1 displays the results for the
detection algorithms.

The HMM, the PHT, and the GeoMA perform the best,
even better than the supervised algorithms. The baseline
assumes the house to be occupied all the time. Thus, there
are no true and false negatives and theMCC cannot be calcu-
lated. Since the occupancy is relatively high (65%), the SVM
seems to have learnt to always classify a slot as occupied, i.e.
it behaves just like the baseline.
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Table 1 The average results of Tang’s dataset

Algorithm ACC MCC

Baseline 0.65 –

HMM 0.89 0.76

GeoMA 0.90 0.78

PHT 0.89 0.75

NIOM 0.85 0.67

KNN 0.70 0.33

SVM 0.65 –

RF 0.70 0.33

3.2 Dataset B: Chen et al.

Chen’s dataset [14] is part of the Smart* dataset [6]
augmented with occupancy information, which are again
obtained from the GPS traces of the inhabitants’ smart-
phones. It contains three parts, spring (1st April 2013 to 7th
April 2013) and summer (8th July 2013 to 14th July 2013)
measurements for one house, and only summer measure-
ments for another. The original sampling interval is 1min.
The households both are inWestern Massachusetts, US. Fig-
ure 6 show the results on this dataset and the averages are in
Table 2.

In termsof accuracy, all algorithmsperformsimilarlywell.
For theMCCmetric, however, the HMMandGeoMA are the
best and NIOM, the algorithm which was evaluated on this
dataset in [14], is outperformed.

3.3 Dataset C: ECO dataset

The ECO dataset presented in [7] contains the data of six
households in Thun, Switzerland. It was collected over a

Table 2 The average results over the three parts of Chen’s datast

Algorithm ACC MCC

Baseline 0.77 –

HMM 0.90 0.73

GeoMA 0.91 0.73

PHT 0.89 0.68

NIOM 0.88 0.55

KNN 0.88 0.63

SVM 0.85 –

RF 0.90 0.69

period of 8months from June 2012 to January 2013. The
data is split into two periods, summer and winter. The sixth
household did not provide any occupancy information so we
omit it here. To create occupancy ground truth the inhabi-
tants manually registered presence and absence with a tablet.
Additionally, a PIR sensor near the main door and several
smart plugs were deployed in each household, connected to
devices such as PCs, etc., to enhance the annotation. The
original sampling rate is 1 Hz. Except household two, all
households are occupied nearly all the time, hence it makes
it difficult to perform better than the baseline. Figure 7 shows
the results on this dataset and the averages are in Table 3.

The authors of [28] have already shown the difficulty of
beating the baseline for this dataset, even with 1 Hz data
and supervised learning algorithms. Here we work on 30min
sampling intervals and our methods do not compute features.
The supervised algorithms perform the best, but often make
predictions similar to the baseline, estimating occupancy for
nearly all time slots. Among the unsupervised algorithms, the
HMM and the GeoMA perform the best in terms of MCC.

Fig. 6 The results on the dataset of Chen et al.
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Fig. 7 The results on the ECO dataset

3.4 Overall results

In terms of MCC performance, which is a more appropriate
performance measure than ACC, the HMM and the GeoMA

Table 3 The average results over the ECO dataset

Algorithm ACC MCC

Baseline 0.82 –

HMM 0.69 0.20

GeoMA 0.70 0.20

PHT 0.68 0.14

NIOM 0.76 0.17

KNN 0.81 –

SVM 0.83 –

RF 0.82 –

Table 4 The results of the HMM on the original datasets with higher
sampling rates

Dataset ACC MCC

A (Tang) 0.74 0.78

B (Chen) 0.78 0.68

C (ECO) 0.75 0.38

The values show the average performance for each of the datasets

perform the best with the PHT as close runner-up. Note that
the disadvantage of theHMMis thatwe need all the data prior
to detection, while the GeoMA and the PHT work online.
Whether the achieved classification performance is sufficient
clearly depends on the application. We believe it is suffi-
cient for many non-critical systems, such as an occupancy
controlled heating or lighting system, which could be easily
overruled by humans in case of false classification. In addi-
tion, since our algorithms achieve a significantly better per-
formance than a random guess, they certainly would be bene-
ficial when combined with with other occupancy techniques
to create an ensemble which achieves higher performance.

3.5 Performance with higher sampling rates

Asmentioned before,we downsampled the datasets to a com-
mon sampling interval of 30min. To show that this did not
strongly decrease the performancewe also evaluated the orig-
inal datasets. The original sampling rates were 0.1 Hz for the
dataset of Tang et al., once per minute for the dataset of Chen
et al., and 1 Hz for the ECO dataset. We run the HMM on
the original datasets to be able to compare to the downsam-
pled version. The average classification performance for each
dataset is shown in Table 4.

The results for the original and the downsampled version
are similar for Tang’s dataset. For Chen’s dataset the results
are better in the downsampled version. Only for the ECO
dataset the results are significantly better using the original
dataset.

123



32 V. Becker, W. Kleiminger

4 Related work on occupancy detection

In this section we discuss the related work that has been
done in the effort of detecting the occupancy in households.
There are several approaches for occupancy detection, dif-
fering both conceptually and technologically.

4.1 Using the inhabitants’ smartphones

One way to detect the occupancy of a household is to aug-
ment its members with devices which sense their location.
This location information can then be used to check whether
the inhabitants are at home or not. A device with localisation
capabilities which many people already possess is a smart-
phone.

Gupta et al. [22] use GPS (Global Positioning System)
information to calculate the inhabitants’ distance to their
home and employ a GPS-enabled thermostat to control the
home’s heating based on that distance. Thereby, the home
can be reheated prior to the inhabitants’ expected return. In
that sense the systems actually applies occupancy prediction
which naturally can be used for occupancy detection.

In the homeset algorithm,Kleiminger et al. [26] exploit the
WLAN information sensed with an inhabitant’s smartphone.
In an initial stage a set ofWi-Fi networks,which are reachable
from the home, is created. Whenever one of the networks in
the set is reachable from the inhabitant’s smartphone, the
inhabitant is considered to be at home, otherwise not.

Smith et al. [40] use RFID tags on objects and a user-worn
wristband to identify which activity a human is performing.

A disadvantage of these approaches is that the inhabitants
have to carry their smartphones or other devices with them
and that the location service has to be turned on at all times.

4.2 Using sensors inside the home

Often, a variety of sensors inside the home is used to directly
detect the occupancy of a building or even single rooms.

In their review, Guo et al. [21] examine different occu-
pancy detection sensors such as PIR sensors, ultra-sonic
sensors, micro-wave sensors, light barriers, and video cam-
eras in order to be able to control the lighting of a building.
In their approach “Smart Thermostat”, Lu et al. [31] use PIR
sensors in rooms and magnetic reed switches on the main
door of the home to create features. With these features,
a Hidden Markov model is applied to infer the occu-
pancy states, either being Active, Away, or Sleep. Using the
occupancy information, the HVAC system of the house is
controlled. To be able to preheat the home in time before the
occupants arrive home again in order to avoid a loss in com-
fort, an occupancy schedule is set up incorporating historical
occupancy data to predict arrival times. Hence the method is
a mixture of occupancy detection and prediction.

Soltanaghaei et al. [41] present WalkSense, a system con-
sisting of motion sensors distributed along the walkways of a
home. Brown et al. [10] use an ultra-wideband radar module
to sense occupancy. Woodstock et al. [50] employ time-of-
flight sensors to detect occupancy. Wang et al. [49] measure
the indoor CO2 levels to detect if someone is present. Sensing
changes in the CO2 levels is a common approach in many
other works [11,15,23,42], also in combination with other
environmental values, such as temperature [16,17], light and
humidity [12] and others [4,37]. Zikos et al. [52] explore
conditional random fields for fusing different combination
of sensors including CO2, motion, and acoustic sensors.
Amayri et al. [3] calculate information gains to determine
the most useful measurements. Teixeira et al. [45] present an
approach to determine the number of people in a room using
a camera sensor network. Gao andWhitehouse [20] present a
self-programmable thermostat. The leaving and arrival time-
points of the inhabitants are registered using simple sensors
and with that data an automatic heating schedule is defined.
Similarly, Barbato et al. [5] create user profiles from data
gathered with a wireless sensor network in order to opti-
mize energy consumption. Brackney et al. [9] present an
image processing occupancy sensor which analyses video
data aiming to detect humans in the pictures. It overcomes
several disadvantages of PIR and ultra-sonic based motion
sensors such as detecting humans who are not in motion.
Furthermore it is possible to determine the number of people
present. However, a video analysis system has severe privacy
issues.

Moreover there are many other approaches which do not
aim at occupancy detection directly but could be applied for
that purpose. Patel et al. [35] sense differences in air pres-
sure when doors are opened and closed using only a single
sensor in a HVAC unit. The authors in [36] detect and clas-
sify electrical events by their pattern in the power line as
occupants trigger switches using plug-in sensors. Froehlich
et al. sense the water activity, e.g. the use of the kitchen sink,
shower, or toilet with a single-point sensor [19]. Besides,
there are more approaches for human activity recognition
in homes using several types of sensors [44,47]. There also
are commercial providers for energy management systems
using sensors for occupancy detection, such as motion or
body heat sensors, in order to control the temperature of the
home [46].

However, all these approaches entail the installation of
sensors in the home.

4.3 Using electricity data form smart meters

As smart meters become more wide-spread, it is attractive
to use their generated electricity data to infer the household
occupancy.Basically, the smartmeter is employed as a sensor
in this approach, however, the advantage is that the sensor is
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not installed solely for the purpose of occupancy detection
and the inhabitants are not required to carry any devices with
them.

When employing algorithms utilising energy consump-
tion data, a common approach is to use supervised classi-
fication to determine the occupancy states. This means that
labelled training data is necessary, i.e. the occupancy ground
truth needs to be obtained. Usually, an individual classifier is
trained for each household. Yang et al. [51] use conditional
random fields to determine the number of people present in
a household. As features the peak, mean, and variance for
short time intervals were chosen. Moreover, they use super-
vised classifiers such as a random forest, a decision tree,
KNN, NaiveBayes, and an MLP for the binary occupancy
case and are able to reach accuaries up to 98% against a
baseline of 88%. Akbar et al. [1] apply supervised machine
learning methods such as KNN and SVM to detect if office
desks are occupied. For this, they use energy meters at each
desk. As features they use the real power, the root mean
square of voltage and current, and the phase angle between
them. They extend the binary setting and add a standby
state to model short breaks of the people. Kleiminger et
al. [25,27,28] also use supervised classifiers such as SVM,
KNN, and a HMM to detect occupancy on the ECO dataset
(cf. Sect. 3). They achieve accuracies of more than 80%.
Chaney et al. [13] use an HMM as well, but combine elec-
tricity with sensed CO2 levels and dew point temperature
utilising the Dempster–Shafer theory for sensor fusion. Boait
and Rylatt [8] exploit the electricity load and hot water usage
data to infer occupancy. Additionally, they incorporate occu-
pancy data from the previous week to set a prior probability
of occupancy. This information is combined using the Bayes
rule to infer the a-posteriori probability of the home being
occupied and hence to control the heating system. Jin et
al. [23] try to reduce the need for supervision by applying
transfer learning, i.e. using supervised classifiers trained on
similar households.

Another method of analysing electrical data is Non Intru-
sive Load Monitoring (NILM, [7]). The aim is to determine
when single appliances are turned on or off from the
aggregate electricity data. From the appliances’ states, the
occupancy of a home could be derived. However, NILM
methods usually rely on high sampling rates and need addi-
tional information about the appliances. Alhamoud et al. [2]
use appliance-level power consumption to derive human
behavioural patterns.

The requirement of having to obtain ground truth data
for supervised classification is a problem for the applica-
tion of occupancy detection in practice. However, unsuper-
vised classification is in principle more difficult, since the
household’s consumption patterns are unknown. Chen et
al. [14] present their threshold-based algorithmNIOM (Non-
Intrusive OccupancyMonitoring, cf. Sect. 2.4) which signals

occupancy as soon as one of the features exceeds its cor-
responding threshold. As features they use the mean, the
standard deviation, and the maximum range of the electricity
power data. The thresholds are calculated as the maximum
of the features during the previous night.

Jin et al. [24] present PresenceSense, a zero-training algo-
rithm for occupancy detection in office buildings based on
plug loads. The algorithm uses a vague working schedule of
the participant as initial estimate and iteratively refines the
assessment through classifiers learning from the predictions
in the previous iteration. As features they use the discrete
power levels, the maximum absolute change, the mean of
absolute difference, the mean of the length of changes, and
the standard deviation. They state that a sampling interval of
1min is sufficient, a relatively high rate compared to half an
hour in our case.

Tang et al. present a framework named SHARK which
requires no training. It models a household’s appliances’
states [43]. The mode states are decoded by solving an opti-
mization problem. From the decoded state, the occupancy of
the household is inferred. Although the algorithm needs no
training, knowledge about the appliances within the house is
necessary for the decoding step. Also the approach cannot be
used online, since the optimisation process takes place over
periods of time in the past.

A comparative study on occupancy prediction algorithms
using electricity data can be found in [29]. Further occupancy
prediction algorithms based on other principles among others
are Preheat [39], Neurothermostat [33], or Presence Proba-
bilities [30].

5 Conclusions

Our aim in this work was to advocate unsupervised clas-
sification algorithms for occupancy detection in private
households which use the electricity consumption data mea-
sured by smart meters. One specific objective we approached
was to examine the suitability of coarse-grained consump-
tion data relative to fine-grained consumption data. We
evaluated the performance of our algorithms on three
datasets containing ground truth occupancy information.
Among the algorithms we presented are also online algo-
rithms, which are ready to be used in a real scenario.
Besides, all algorithms we showed require little compu-
tational power and can easily be run inside the home.
The best performing algorithms showed an accuracy of
69–90%, or an MCC of 0.20–0.78. In general we found
that our unsupervised (i.e. zero-training) algorithms com-
pare favourably to supervised algorithms and that the use
of coarse-grained data is comparable to the use of fine-
grained data to the performance in two out of three test
cases.
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Appendix: Algorithms

Algorithm GeoMA: t represents the timesteps, x is an array
containing the electricity consumption values. Each entry
represents a 30 min window of data. Accordingly, schedule
is an array containing the resulting occupancy estimations for
each time slot. The parameter λ determines the importance
of recent values over older values, i.e. (1−λ) determines the
decay of the average.
function GeoMA(x, λ)

average ← x(1)
for all t do

average ← λ ∗ x(t) + (1 − λ)∗ average
if x(t) ≥ average then

schedule(t) ← 1
else

schedule(t) ← 0
end if

end for
return schedule

end function

Algorithm PHT: t represents the timesteps, x is an array
containing the electricity consumption values. Each entry
represents a 30min window of data. Accordingly, schedule
is an array containing the resulting occupancy estimations
for each time slot.
function PHT(x , magThreshold, detectThreshold)

currentState ← 0
for all t do

deviation ← x(t) − x̄− magThreshold
mt ← mt + deviation
increasingMT ← min(increasingMT, mt)
decreasingMT ← max(decreasingMT, mt)
increasingPHT ← mt − increasingMT
decreasingPHT ← decreasingMT − mt
if increasingPHT > detectThreshold then

schedule(t) ← 1
currentState ← 1
mt ← 0

else if decreasingPHT > detectThreshold then
schedule(t) ← 0
currentState ← 0
mt ← 0

else
schedule(t) ← currentState

end if
end for
return schedule

end function
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