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Abstract Full system electricity intake from thewall socket
is important for understanding and budgeting the power con-
sumption of large scale data centers. Measuring full system
power, however, requires extra instrumentation with exter-
nal physical devices, which is not only cumbersome, but also
expensive and time consuming. To tackle this problem, in this
paper, we propose to model wall socket power from proces-
sor package power obtained from the running average power
limit (RAPL) interface, which is available on the latest Intel
processors. Our experimental results demonstrate a strong
correlation between RAPL package power and wall socket
power consumption. Based on the observations, we propose
an empirical power model to predict the full system power.
We verify the model using multiple synthetic benchmarks
(Stress-ng, STREAM), high energy physics benchmark (Par-
FullCMS), and non-trivial application benchmarks (Parsec).
Experimental results show that the predictionmodel achieves
good accuracy, which is maximum 5.6 % error rate.
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1 Introduction

Power consumption of servers can be acquired by different
approaches, e.g., using external devices like energy sensors
and energy meters, and modeling the power consumption
with the help of performance counters and external devices
like Mantis [7]. Mounting energy sensors, watt meters, or
instrumenting the systems with energy meters, however, is
not only expensive, but also hinders the normal operation of
the data center [16].

The introduction of running average power limit (RAPL)
[12] to the latest Intel processors has mitigated this problem.
RAPL provides model specific registers (MSRs) to read the
processor energy consumption values in real time. It provides
energy readings from four domains, including package
(both cores and uncores, i.e., last-level cache), pp0 (all cores
in one package), pp1 [specific device in the uncore, i.e., on-
chip graphics processing unit (GPU)], and dynamic random
access memory (DRAM) plane. With RAPL, we can get fine-
grained and reliable energy measurements without needing
to custom-instrument the hardware [9].

The introduction of RAPL has enabled multiple new
opportunities, e.g., measuring energy consumption of short-
code paths [10], power limiting and capping for main
memory [6]. Furthermore, RAPL has been extensively stud-
ied and incorporated in different tools for fine-grained energy
measurements of computing systems [9,11]. Unlike those
works, in this paper,we take a different angle to utilizeRAPL,
i.e., leveraging RAPL readings to model power consumption
drawn from the wall socket.

Knowing the wall socket power draw is beneficial. It helps
to determine the exact energy spending, and thus allocate
proper energy budget for the system. In addition, it is helpful
to set power limit properly to best utilize pricing variations
(e.g., setting a high power limit when the hourly electricity
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price is low, and vice versa) [1]. Utilizing RAPL readings
to provide estimates for wall socket power brings several
advantages: (1) it promises to minimally interrupt the regular
operations of data centers; (2) it is easily executable because
it does not require any external sensors or energy meters to
be mounted with the system.

We make the following major contributions in this paper:

1. Through a set of experiments performed on three differ-
ent Intel-based systems, we demonstrate that there exists
a strong linear relationship betweenwall power and pack-
age power.

2. Based on the observation mentioned above, we apply
machine learning techniques to formulate a powermodel,
which can predict the wall power from RAPL package
power when arbitrary workloads are running in the sys-
tem.

3. Experimental results demonstrate good accuracy of the
model, i.e., it can achieve maximally 5.6 % error rate at
different processor frequencies.

The rest of the paper is structured as follows. Section 2
discusses the related work, while Sect. 3 describes the
experimental setup and benchmark specifications. Section
4 presents the experimental results from our empirical study,
and Sect. 5 describes the model formulation. Section 6 dis-
cusses the use case of our model and Sect. 7 concludes the
paper.

2 Related work

Prior to the introduction of RAPL, power modeling tech-
niques usually focused on carefully designed software mon-
itors and hardwaremeasurement tools, or leveragingmachine
learning techniques such as stochastic powermodels.McCul-
lough et al. [15] presented an extensive evaluation of such
techniques. They observed that such models perform well
for single- and multi-core scenarios but perform poorly for
subsystem power modeling due to increased system com-
plexity and hidden power states that are not exposed to
OS. The introduction of RAPL mitigates the hidden power
states problem because they expose the energy readings and
power states to the OS now. Hackenberg et al. [8] presented
a comprehensive overview of different power consumption
measurement methodologies using RAPL. Venkatesh et al.
[21] proposed a new shared-memory window-based solution
to model the energy consumed by processes engaged in mes-
sage passing interface (MPI) operations using RAPL. Balaji
et al. [20] investigated the efficacy of RAPL in achieving
energy proportionality for SPECpower benchmark. Similar
to our work, Castano et al. [5] presented a model for full
system instantaneous power dissipation using energy con-
sumption information from a subset of advanced technology

extended (ATX) lines. In addition, a lot of work has been
directed towards modeling the full system power consump-
tion of server based systems [4,7,10,17].

There are several differences between these works and our
approach. Firstly, most of the power modeling techniques
formulate the power models using bottom up approach, i.e.,
modelling the power consumption of the individual com-
ponents and then adding up to the full system power. Such
approaches tend to accumulate the modeling errors to the
full system, and usually the error rate can reach up to 10 %,
while our approach can achieve better accuracy. Secondly,
the approaches that achieve low error rates usually perform
instrumentation of the system board with external metering
tools, while our approach avoids the usage of such tools dur-
ing the regular operation of the system.

3 Experimental setup and benchmark
specifications

We choose three different Intel-based systems to conduct the
experiments. Table 1 lists the specifications of the three sys-
tems. For brevity, in the rest of the paper, we refer to the
machines as Machine 1, Machine 2, and Machine 3, respec-
tively. Machine 1 and 2 are workstation-grade and Machine
3 is a server-grade machine. To cover different aspects of the
systems, we use in total 16 different workloads (cf. Table
2) which cover CPU, memory, and network-intensive tasks,
HEP workloads, and non-trivial applications.

Stress-ng [19] is originally designed to stress different sub-
systems of a computer. In ourwork, we use Stress-ng to stress
the CPU cores with 100 % workload running a number of
sqrt() operations on pseudo-random values.

Stream McCalpin [14] is a well known benchmark
designed to measure the sustainable memory bandwidth.
Using Stream helps us understand the characteristics of dif-
ferent systems in terms of power consumption when running
a memory intensive task.

ParFullCMS is a Geant4 [2] benchmark, which is a multi-
threaded high energy physics workload. This benchmark
employs complex geometry for simulation and essentially
exhibits similar properties like compact muon solenoid
(CMS) experiments in CERN.

Parsec is not a synthetic benchmark, hence it provides
opportunities to test power models for diverse instruction
mix, memory access and network operations [3]. It includes
emerging applications from different application domains,
e.g., financial, computer vision, deduplication. In Table 2
the 13 benchmarks starting from Black-scholes are all from
Parsec benchmark suite.

To measure the power consumption from the wall, we
deploy Plugwise Smart Plug [18]. The RAPL measurements
are obtained using the latest stable version of Likwid tool set
[13].
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Table 1 System specifications

Processor (Intel) Sockets Cores Hyperthreads Frequency range (GHz) L3 cache (MB) Memory (GB) Tag

Core i7-4770 1 4 4 0.8–3.4 8 16 Machine 1

Xeon E3-1230 1 4 4 0.8–3.3 8 16 Machine 2

Xeon E5-2650 2 16 16 1.2–2.6 40 64 Machine 3

Table 2 Benchmark specifications

Benchmark Description

Stress-ng Stresses the CPUs

Stream Calculates memory bandwidth

ParFullCMS Simulates HEP events

Black-Scholes Computes Black-Scholes PDE

Body-track Tracks human-computer vision

Canneal Cache-aware simulated annealing

Dedup Compresses data stream

Facesim Simulates human face motions

Ferret Content based similarity search

Fluidanimate Fluid simulation for animation

Freqmine Frequent itemset mining

Raytrace Real-time raytracing

Streamcluster Performs online stream cluster

Netdedup High-bandwidth single connection

Netferret Latency intensive

Netstreamcluster High-bandwidth multi-connections

4 Modeling wall power consumption from RAPL

In this section, we present the experimental results and
discuss the empirical analysis that helps understand themod-
eling technique.

4.1 Stress-ng and Stream benchmarks observations

Figure 1a presents the power consumption in processor pack-
age, DRAM interface and wall power consumption when
the CPU frequency varies for the CPU-intensive Stress-ng
workload. All the three systems presented in Table 1 offer
15 distinct frequencies that are chosen by the operating sys-
tem in dynamic voltage and frequency scaling (DVFS). For
these experiments, we pin the frequency at a specific value to
acquire the exact power consumption of the system for that
frequency. We plot the wall power consumption against the
package power in Fig. 1b. The linear curve fit in this figure
suggests that there is a near exact linear relationship between
the package power and wall power. In fact the correlation
between these two values is 0.999. For the Stress-ng bench-
mark, the linear equation obtained from the linear fitting is:
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Fig. 1 Experimental results of Machine 1-Stress-ng

Pwall = 1.214 ∗ Ppackage + 20.221 (1)

wherein, Ppackage represents the package power as mea-
sured with RAPL, and Pwall represents the wall power. For
Machine 1, we perform similar experiments with Stream
benchmark. The observations are similar. In this case, the cor-
relation between the package power consumption and wall
power consumption is again 0.999 and the linear equation is
presented in Eq. 2.

Pwall = 1.212 ∗ Ppackage + 25.580 (2)

For Machine 1 and 2, the idle wall power consumption
are 24.65 and 33.97 watts respectively. We observe that the
constant part of the linear Eqs. 1 and 2 are dominated by the
idle wall power consumption. In general, the observations
for Machine 2 follow the same trends as Machine 1. Thus,
for brevity, we do not present the results from Machine 2 in
this paper.
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Fig. 2 Experimental results of Machine 3-Stress-ng

For the server-grade Machine 3, the same set of exper-
iments also exhibit a linear relationship between package
power and wall power consumption. Observations for Stress-
ng benchmark are presented in Fig. 2. In case of Machine 3,
the correlation between package power and wall power is
0.999 for both Stress and Stream benchmarks. The linear
equations for Machine 3 are presented in Eqs. 3 and 4, for
Stress-ng and Stream workload, respectively.

Pwall = 1.327 ∗ Ppackage + 97.732 (3)

Pwall = 1.330 ∗ Ppackage + 116.70 (4)

Although Machine 3 is a server-grade machine with two
processor sockets, the relationship between package power
and wall power remains linear.

4.2 ParFullCMS and Parsec benchmarks observations

Figure 3 presents a detailed view of the wall power and pack-
age power consumption over time (in seconds) as we run
ParFullCMS on different processor frequencies. Figure 3
demonstrates that the multithreaded ParFullCMS has two
distinct phases: the initialization phase and the compute-
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Fig. 3 Wall and package power consumption with time-ParFullCMS
- Machine 1

intensive phase. The initialization phase sets up the events
to be processed and consumes relatively less power, whereas
the compute intensive phase performs bulk of the simulation
tasks and consumes relatively more power. It is evident from
the figure that irrespective of processor frequencies, package
power and wall power correlate strongly with each other and
follow the same pattern. In this case the correlation coeffi-
cient is 0.997, and the linear equation is presented in Eq. 5.

Pwall = 1.140 ∗ Ppackage + 21.40 (5)

Figure 4 presents the package power vs. wall power con-
sumption for a subset of the Parsec benchmarks running on
Machine 1. Because of space limit, Fig. 4 only includes the
observations from canneal, fluidanimate, ferret, facesim, net-
ferret and netstreamcluster. The observations from the rest of
the Parsec benchmark are also similar. We run Parsec bench-
mark with native input size (the largest input set) and make
sure that the number of threads are enough to keep all the
physical cores active. Parsec results (Fig. 4) show that the
strong correlation between wall power and package power
holds for non-trivial applications.

The observations obtained from running ParFullCMS and
Parsec benchmarks confirm that irrespective of the type of
workload, careful formulation of power models can yield the
full system power consumption from RAPL package power.
Our experiments show that the package power consumption
almost always remains strongly correlated with full system
power consumption, even when the non-cpu power draw of
a machine is not constant, and when the different compo-
nents of the system exhibit dynamic behaviour with multiple
phases.

5 Wall power modeling

As shown in previous sections, the linear model has an excel-
lent fit but the co-efficients vary for different workloads.
Thus,weneed an approach to calibrate themodel for any arbi-
trary workload. In this section, we develop a generic power
model for wall power consumption using machine learning
techniques. Note that for brevity, in the rest of the paper, we
useMachine 1 only to present the results. The othermachines
demonstrate similar trends.

5.1 Model calibration

We use Stream, Stress-ng and Parsec benchmarks data for
training, and validating the wall power consumption model.
We then use the ParFullCMS data to test the accuracy of the
model.

We formulate the model using the general least square
solution. Assuming that we have a training set of N obser-
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vations of package power and wall power pairs (pkg,wall),
our aim is to obtain a function f : R → R (which calculates
wall power from package power) so that the average squared
error E is minimized. E can be defined as

E = 1

N

N∑

t=1

(wallt − f (pkgt ))
2. (6)

Let us consider basis functions yi : R → R. In general
terms, f (pkg) can be defined as

f (pkg) =
k−1∑

i=0

ai · yi (pkg) (7)

where A = (a0, . . . , ak−1) is a 1×k vector. Our aim is to find
an optimum f (x) that minimizes E . E is minimum when its
partial derivatives become zero. We can then acquire

δE

δa j
= 1

N

N∑

t=1

2

(
(wallt ) −

k−1∑

i=0

ai · yi (pkgt )
)
y j (pkgt ).

(8)

If we simplify Eq. 8, we can get

N∑

t=1

wallt y j (pkgt ) =
N∑

t=1

k−1∑

i=0

ai · yi (pkgt )y j (pkgt ) (9)

where j varies from 0 to k−1. In simplified matrix notation,
Eq. 9 can be written as

A = WYT (YY T )−1. (10)

In Eq. 10, Y is a k × N matrix where Yi,t = yi (pkgt )
and W = (wall0, . . . , wallt ). We define the basis function
as yi (pkg) = pkgi , which means function f is defined by a
polynomial with k terms and A becomes the vector of coef-
ficients obtained from polynomial regression.

We solve Eq. 10 for different orders of polynomials k,
where k varies from 1 to 4. From previous sections we get
the inductive bias of our learning algorithm that there exist
a linear relation between RAPL package and wall power.
However, to test the generalization of our assumptions, we
test different orders of polynomials on our data set to see
whether the linear relationship holds also for diverse work-
loadmix in comparison to higher order polynomials.Oncewe
formulate themodel, we calculate ET , EV , ET+V and ETest ,
which represents average squared training error, validation
error, training+validation error, and test error, respectively.
The values are presented in Table 3. EV and ET+V (Table 3)
give us the accuracy of the validation set and the total train-
ing set. The lower the values of EV and ET+V the better the
model performs.

As Table 3 suggests, the training data and test data per-
forms the best for linear regression. The obtained power
model for Machine 1 is

Pwall = 1.227 ∗ Ppackage + 22.084 (11)
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Table 3 Polynomial regression
results

k ET EV ET+V ETest

1 4.87 6.42 5.66 5.59

2 4.38 7.89 6.16 7.08

3 4.37 8.34 6.37 7.13

4 4.37 8.17 6.30 7.18

Equation 11 predicts the wall power consumption for Par-
FullCMS benchmark with an average square error rate of
5.59 % for different processor frequencies on Machine 1.

Our model requires a one time run of the benchmarks
with the external AC-power measurement equipment con-
nected for a single machine. Once we acquire the wall power
and the corresponding package power consumption data for
a specific machine, we perform the training and validation
stage that results in a power model. The power model is then
tested for any arbitrary application to measure the accuracy.
The model can predict the wall power consumption of any
workload running on themachine without the external power
meters with promising accuracy. If the machine has access
to external power meter at a later point of time, the evalu-
ation stage can recalibrate the predicted data with the real
data measured. The feedback information can be fed into the
training and validation stage to fine tune and recalibrate the
model for better prediction.

6 Discussion

The proposed model can predict wall power from RAPL
package power for any work-load where CPU performs the
bulk of the system operations. There are cases when RAPL
measurements are not enough to measure the wall power
consumption, specifically when there are components other
than the CPU conducting bulk of the system operations. For
example, a file server withmultiple disks is performing a disk
intensive task, or a server with a separate (non-integrated)
GPU processor where the processing is executed by the GPU
rather than the CPU. For the former example, the wall power
consumption can be estimated using the following equation.

Pt = Pi + PRAPL + Pdisk (12)

where Pt is the wall power consumption at time t, Pi is the
wall power consumption when the system is idle, PRAPL

is the difference of power consumption between operating
mode and idle mode in RAPL domain, and Pdisk is the dif-
ference of power consumption between operating mode and
idle mode of the disk drive that can be obtained from its
specification datasheet.

Be noted that although we only focus on Intel processors
supporting RAPL feature, our method itself is not limited

to RAPL, because it only needs power consumption data
of different components of a computing system (specifically
CPU package and DRAM power). As such, similar models
can be developed for AMD or ARM processors as well.

7 Conclusion

In this paper, we present an empirical study on wall socket
power consumption and propose a power model to predict
wall power from RAPL package power. The proposed power
model can predict full system power for any workload with
only one time calibration with external power meter. Exper-
imental results demonstrate that our model can predict wall
power consumption with an accuracy of 5.6 % error rate in
the worst case. Our findings suggest that a careful formula-
tion of the linear coefficients can present a useful and efficient
model to predict wall socket power consumption fromRAPL
package. We plan to extend our work by evaluating the
power draw characteristics of different processor architec-
ture (AMD, ARM etc.) and fine-tune the power model with
diverse workloads.
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