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Abstract The collection of detailed consumption data
through smart metering has led to privacy concerns. Aggre-
gating the consumption data over a number of smart meters
can be used to strike a balance between functional and pri-
vacy requirements. A number of contributions have proposed
the use of differential privacy in smart metering to perturb
aggregates in order to provide a proven privacy property for
end consumers. However, as differential privacy has origi-
nally been proposed for very large datasets, the applicability
in real-world smart metering is not guaranteed. In this paper,
the effect of differential privacy on real smart metering data
is studied, especially with respect to balancing utility and pri-
vacy requirements. The main finding is that even after some
improvements of the basicmethod the aggregation group size
must be of the order of thousands of smart meters in order to
have reasonable utility.

Keywords Differential privacy · Smart metering ·
Aggregation

1 Introduction

Smart Grids introduce state-of-the-art information and com-
munication technologies in energy grids to facilitate commu-
nication between grid participants, e.g., to enable widespread
integration of distributed renewable energy sources, and to
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collect detailed data on current grid status. In order to gain
data insights into the status of the distribution grid, smart
meters are used, also in private households. This has led
to privacy concerns, as the metered consumption data can
potentially be used to infer absence and presence, appliance
use, or even lifestyle of the household members [15]. What
data items can be inferred and to which accuracy depends
not only on the resolution on the available meter data in time
[9], but also on the level of aggregation of meter data over
various households (also termed “spatial aggregation”).

The aggregated data will be more or less useful for other
stakeholders in the energy grid, such as the distribution
system operator (DSO), depending on the extent of spatial
aggregation and the intended use case. For use cases such as
usage prognosis, network planning and settlement, the total,
aggregated consumption of a set of N smart meters can be
useful for moderate values of N [15].

Many methods have been developed in order to privately
compute such an aggregate value based on cryptographic
methods [3–5,10,11,13,14], masking [1,17] or both [12,16,
19,20]. While the aggregate value contains less (private)
information, the aggregate value can still contain private
information, there is no guarantee that the resulting aggre-
gate value ensures privacy. This holds even more for a daily
profile of aggregate values. Given a daily profile, spatially
aggregated over N smart meters, the goal of this paper is
to practically make this aggregated time profile privacy pre-
serving.

A privacy model for smart metering aggregation has
already been developed in [2]. The privacy model is defined
by a cryptographic game. The adversary can choose two
smart metering scenarios that should be indistinguishable.
The challenger perturbs the data of an arbitrary one of these
two scenarios and gives the information about both the spa-
tial aggregate at each time point and the temporal aggregate
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of each smart meter’s profile to the adversary. Privacy is high
if the ability of the adversary to correctly determine which of
the two scenarios was given back to him is only slightly bet-
ter than random guessing. However, for reasonable precision
of the aggregate the advantage of the adversary over random
guessing is high. Thus, the approach is either not accurate
enough or not private enough.

Differential privacy offers another possible solution by
perturbing aggregate values in a way that the aggregate value
can be proven to be differentially private. Differential pri-
vacy is the current state-of-the-art definition for privacy [7,8]
with appealing properties such as closure under post-proce-
ssing or the estimation of privacy loss of a composition of
queries (here, a single aggregate is considered as a single
query). Mechanisms exist that turn a query result into a ε-
differentially private one, usually byperturbation of the query
result.

Differential privacy is designed for huge databases. There
the effect of the differential privacy mechanism is small
enough that the result can be utilized. A similar trade-off
between accuracy and privacy as for [2] exists. The leakage
ε is a parameter that indicates the strength of the privacy
guarantee. For the Laplacian mechanism the variance of the
noise added is inverse proportional to the privacy parame-
ter ε. Therefore, while a small ε is desirable for privacy, it
is undesirable for accuracy. In the case of smart metering
the question one could ask for which size of the aggregation
group the differential privacy mechanism does not destroy
the utility of the aggregate signal.

Criticism exists [6] arguing that the choice of parame-
ters like the privacy parameter ε is not clear in all cases.
Differential privacy is typically applied to static data, i.e. a
single query is evaluated. In this paper, daily load profiles
are considered. An important theorem states that a compo-
sition of T independent queries the privacy parameter adds
up, i.e. setting the privacy parameter of a single query to
ε = 0.5, the privacy parameter of T = 288 independent
single queries (corresponding to a day profile with a time
interval of 5 min) is only ε = 144. However, measurements
of time series are not independent. The question is howmuch
the dependency of smart meter time-series can decrease the
composition effect.

The second parameter that must be set for differential pri-
vacy is the sensitivity which is, roughly spoken, a global
bound on the effect of a single entry. Differential privacy is
typically applied on counting data, where the sensitivity is
known to be 1. While differential privacy methods have been
applied on time-series of counting data [19], smart metering
data are not counting data, and a global maximum value is
not known. This work examines real smart metering data.
Real data have the potential of containing wrong measure-
ments with extremely large values. These large values could

destroy the utility of the differentially private aggregate load
profile.

In this paper, the effect of differential privacy on the spa-
tially aggregated smart metering daily profile is studied. It is
assumed that an aggregation protocol compatible with dif-
ferential privacy exists. This assumption is reasonable, since
differential privacy has already been successfully combined
with privacy preserving protocols [1,5,19,20].

The contribution is the first application of differential pri-
vacy to a real smart meter dataset. It explores (1) different
formulations for time-series, (2) arising problems e.g. in
choosing the sensitivity and (3) a better trade-off between
utility and privacy of the result.

2 Preliminaries

Differential privacy is a rather formal and general topic. In
this section, the necessary definitions are given, for sake of
clarity already specified for the case of real time-series.

2.1 Problem statement

We assume a smart metering system consisting of N smart
meters (with index i identifying a single smart meter) which
send their measured consumption values xi,t ∈ R at regular
time intervals � · t , where t = 1, . . . , T and � ∈ R, to the
aggregator. Thewhole dataset ofmeasured values is therefore

D = (xi,t )i=1,...,N ; t=1,...,T ∈ R
N × R

T . (1)

The aggregator is interested in the aggregate time profile

f = f (D) = ( f1, . . . , fT ) ∈ R
T , (2)

where at each point in time the spatial aggregate is com-
puted by

ft =
N∑

i=1

xi,t . (3)

This paper deals with the problem how the aggregate time
profile f = ( ft )t=1,...,T can be turned into an ε-differentially
private time profile

Y = Y (D) = (Yt )t=1,...,T . (4)

Note that consumption values xi,t are real values, and a
time profile is therefore be modeled as a vector in R

T . In
contrast, differentially private algorithms have been studied
for single counting values xi ∈ {0, 1} or counting vectors
xi ∈ {0, 1}T . To best of our knowledge, no study of differ-
ential privacy with a real world dataset with xi ∈ R

T exists.
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Since, as will be shown next, Y is a perturbed version
of f , the usability of y will be smaller than that of f . In
this paper, the decrease in usability is assessed for real-world
smart meter daily profiles both by visualization and by the
relative error errt in percent, where the common denomi-
nator is chosen as the “amplitude” of the exact aggregate
profile

errt := 100 · |Yt − ft |
maxt ′ ft ′ − mint ′ ft ′

. (5)

2.2 Laplace mechanism for differential privacy

The usual way of presenting differential privacy starts with
the definition of differential privacy which is cumbersome at
first glance. For sake of understandability, we start with the
description of the Laplace mechanism which is the method
used in this paper to achieve differential privacy.

The Laplace mechanism is one of the main mechanisms
to encompass differential privacy. It works by perturbing the
output through adding noise from a Laplace distribution. The
Laplace distribution is a probability distribution with the fol-
lowing density function

Lapλ(x) = 1

2λ
exp

(
−|x |

λ

)
. (6)

The parameter λ describes the amount of noise that is
added: the higher λ, the bigger the noise. It is chosen as a
function of the desired privacy parameter ε and the sensitivity
S( f ) of the aggregation function f

λ = S( f )

ε
. (7)

The sensitivity S( f ) and the privacy parameter ε will be
described in Sect. 2.3 below.

Before, it will be shown how the Laplacian noise is added
in a smart metering system. In the typical differential privacy
setting the data are owned by a single actor. This is not the
case for the smart metering setup, where a single smart meter
only owes its own data. It is not desired to reveal the data to
either the aggregator or another smartmeter. So twoproblems
arise: (1) who privately adds the data and (2) who adds the
Laplacian noise. Several methods for private spatial aggre-
gation have already been combined with differential privacy
methods [1,5,19,20]. Therefore, the existence of a method
that privately adds up the data without specifying it further
can be safely assumed.

The second problem (2) can be solved by not adding the
Laplace distribution as a whole. Instead, each smart meter
individually adds noise from a Gamma distribution. This
can be done in a way that the addition of these individual
noise values corresponds to the addition of a single noise

value from a Laplace distribution. The mathematical reason
is a theorem that states that the Laplacian distribution can be
divided into several individual distributions.

Theorem 1 (Divisibility of the Laplace distribution) For all
N ≥ 1

Lapλ(x) =
N∑

i=1

(
G1
1/N ,λ(x) − G2

1/N ,λ(x)
)

=:
N∑

i=1

Gλ (8)

whereG1 andG2 are two i.i.d.gammadistributionswith iden-
tical shape parameter 1/N and scale parameter λ.

Exploiting the divisibility property, each smart meter adds
gamma-noise to its measurement xi (t), independently of the
others and independently of the other time points, i.e.

Yi,t = xi,t +
(
G1
1/N ,λ − G2

1/N ,λ

)
= xi,t + Gλ. (9)

These noisy values Xi,t are summed up in a private man-
ner. Due to (8), these noisy values add up to

Yt :=
N∑

i=1

Yi,t =
N∑

i=1

xi,t + Lapλ = ft + Lapλ. (10)

The computation of the random variable Yt is sketched in
Fig. 1. Note again that the summation is assumed to be done
in a private manner.

2.3 Differential privacy

As the privacy measure of [2], differential privacy is defined
by an indistinguishability property. The result of the query
should be changed in such a way that by examining the result
one can not distinguish, if a single person’s entry is contained
or not. This is stated more formally in the following defini-
tion.

Definition 1 (ε-differential privacy) Two datasets D and D̃
are neighboring, if theydiffer just in the entries of a single per-
son/household, i.e. in one row. A query Y is ε-differentially
private, if for all possible outcomes y and all neighboring
datasets D and D̃

Fig. 1 Distributed computation of the differentially private aggregate
consumption profile Y
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Pr[Y (D) = y] ≤ eε Pr[Y (D̃) = y] (11)

where Y (D) denotes the query applied to dataset D. The
privacy parameter ε is also called leakage.

In the situation of this paper, a dataset consists of n load
profiles, i.e. D, D̃ ∈ R

n × R
T . From the definition and the

name it is clear that a small leakage ε near zero is desirable.
Theprivacyparameter ε is viewedas a parameter that needs to
be specified in advance. From the definition a choice of ε ≤ 1
seems reasonable. For sake of simplicity in the experiments
the default selection is ε = 1.

Now it is shown how the sensitivity must be chosen in
order to turn the Laplace mechanism differentially private.

Vector SensitivityHere, the sensitivity of a vector is shown.
Regarding the values of a time-series as a vector is the most
straightforward and, in this paper, the standard way to define
the sensitivity.

Definition 2 (Sensitivity) The L1-sensitivity of a function
f : Rn ×R

T → R
T is the smallest number S1( f ) such that

for two neighboring datasets D and D̃ in Rn × R
T

S1( f ) := argmax
D,D̃

‖ f (D) − f (D̃)‖1. (12)

Since here the datasets can differ in an arbitrary smart
meter and the function f is just a sum over the smart meter
values per time point t , this is the same as

S1( f ) = argmax
i

T∑

t=1

|xi,t | (13)

Theorem 2 (Differential privacy of the Laplacian mecha-
nism) With the choice (12) for the sensitivity, the Laplacian
mechanism (10) with λ chosen by (7) is ε-differentially pri-
vate.

Pointwise Sensitivity One could also consider each time
point individually, independently from the others and per-
turb each of the T time point individually by considering
T applications of the Laplace mechanism. This method will
be denoted as single later, in contrast to the vector version
above. This would change that the sensitivity would be the
global maximum of the values

Spointwise( f ) := arg max
t,D,D̃

| ft (D) − ft (D̃)| = max
t,i

|xi,t |
(14)

Due to the composition theorem, the leakages for each of
the T single perturbed queries add up. Therefore, for a query
at a single time point t the leakage is chosen as εt = ε/T
such that

∑
t εt = ε. Differential privacy then follows from

the basic theorem and (14).

Theorem 3 (Differential privacy of the Laplacian mecha-
nism) With the choice (14) for the sensitivity, the Laplacian
mechanism (10) with λ chosen by

λ = T · Spointwise( f )
ε

(15)

is ε-differentially private.

This second view is expected to have aworse performance
due to the independence assumption leading to the summa-
tion of the leakages. The effect of this assumption is evaluated
in this paper. If the difference is small, one could think about
using unequal privacy parameters εt at different time points,
for example εt could be chosen smaller during night times
where fewer activities take place in a household.

Note that that in the literature the typical case where dif-
ferential privacy has been applied, is counting data with
xi,t ∈ {0, 1}. There, the sensitivity Ssingle( f ) is clearly 1.
However, in this situation the estimation of the maximum
can be critically influenced by a single outlier. The effect of
outliers will be studied in Sect. 3.2.1.

Post-processing A differentially private result of a query
remains differentially private after post-processing [8]. This
property is very important, since a data analyst can com-
pute any function of the output of a differentially private
algorithm without diminishing the privacy properties. This
property will be exploited in Sect. 3.3 by smoothing the dif-
ferentially private aggregate load profile in order to increase
its utility. The following theorem is stated less generally than
in [8] for aggregation of load profiles and an arbitrary deter-
ministic mapping instead of an arbitrary random mapping. It
ensures that a smoothed differentially private signal is still
differentially private.

Theorem 4 (Post-processing) Let Y : Rn × R
T → R

T be
a ε-differentially private query and g : R

T → R
T be an

arbitrary deterministic mapping. Then

g ◦ Y : Rn × R
T → R

T : D 	→ g(Y (D)) (16)

is also ε-differentially private.

3 Experiments

The main goal of this paper is to assess the utility of differen-
tial privacy for smart metering load profiles. That means that
the utility of Y for approximating f is studied for real world
smart metering data and assessed by visualization and by the
relative error (5). The way how the noisy aggregate time pro-
file Y is computed is ignored (for example who determines
the sensitivity) and the starting point for the experiments is
Eq. (10).
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Fig. 2 Scheme of overall procedure: first, the aggregate signal is calcu-
lated (left panel). Then Laplacian noise is added for differential privacy
(middle panel). To increase the utility the differentially private signal is
smoothed (right panel)

Note that the input data are a time series of real-valued
measurements. While the utility of differential privacy has
been studied for counting data xit ∈ {0, 1} before, to best of
our knowledge this has not been done for real datasets with
xit ∈ R, especially not for smart metering load profiles.

The overall procedure part can be described as follows
and is also illustrated in Fig. 2.

– Calculate the exact aggregate f from (3).
– Choose ε (here ε = 1).
– Determine the sensitivity S using (13) or (14).

– Determine either the exact or a robust maximum.

– Calculate λ from (7) and (15), respectively.
– Each smart meter adds noise using (9).
– Calculate the aggregate signal Y using (10).
– Smooth the aggregate signal.
– Compare Y with the exact aggregate f .

The whole analysis was performed 20 times. Since the
results are very similar for different trials, for sake of clarity
a single result is presented. Only for the comparison of the
robust maximumwith the exact maximum, the average error,
averaged over both time and the 20 trials, is presented (the
spread over the 20 trials is negligibly small there).

3.1 Smart metering datasets

In this work, a real smart metering dataset with data from the
Modellregion Köstendorf1 is studied. Measurements of 40
households for a period of one year with 5 min time intervals
are available. Since the number of 40 households is much to

1 http://www.smartgridssalzburg.at.

small to demonstrate reasonable utility, different daily pro-
files of the same household are treated as if they would stem
from different households. Ignoring the dependency on the
household therefore results in a total of N = 14,052 daily
profiles which are to be aggregated. This approach is reason-
able, since the the focus of this paper lies on the study of the
effect of the Laplacian noise and not e.g. on a privacy attack.

3.2 Differential privacy results

Differential privacy works by adding Laplacian noise to the
target signal. The amount of noise depends on 2 parame-
ters. The first parameter is the privacy budget ε. To best
of our knowledge no recommendation for how to set ε is
known. Differential privacy is a theoretically appealing defi-
nitionwhich is on contrary hard to comprehend intuitively. In
particular, it is not clear how ε affects e.g. the identifiability
of an individual in a database. In this paper, for the develop-
ment of the method ε is set to 1. Afterwards, ε is considered
a free parameter that is varied. Its influence on the utility is
studied in Sect. 3.5.

3.2.1 Determination of the sensitivity

The second parameter influencing the noise is the sensitivity
S( f ) of the function that should be evaluated. In the usual
case of countingdata, the sensitivity is known tobe S( f ) = 1.
However, here the data are real numbers and the sensitivity
must be determined. In the normal differential privacy set-
ting, the data curator has full control over the data and can
therefore calculate S( f ). In a private smart grid setting, each
smart meter only owns its load profile, so there is no single
entity that owns all data. A practical way would need to be
found in order to privately determine S( f ), e.g. based on
(expensive) secure comparison protocols. Even if one would
privately determine the sensitivity, Fig. 3 shows, that a sin-
gle wrong value could completely destroy the utility of the
query. Such a bad case would not be easily detectable then.
In practice, it seems reasonable that a good estimation for the
upper bound is already known.

Therefore, in this work this topic is left open and the data
present are used to determine the sensitivity S( f ). Even then,

0 50 100 150 200 250

Max

Robust

Mean Relative Error [%]

Fig. 3 Influence of robust sensitivity estimation
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the best way to determine S( f ) is not evident. Using the
Eq. (13) directly with an exact maximum, a huge value was
obtained for S( f ). Inspecting the data more closely, it was
found that one household showed extremely high and there-
fore implausible values for certain periods of time. In order
to not destroy the whole analysis by possible errors, S( f )
was computed in a robust way as the 95 %-percentile of the
1-norms of all daily load profiles. As can be seen in the left
panel of Fig. 3, the effect on the relative error is extremely
large: the robust version (Robust) decreases the relative error
by an order of magnitude compared to the exact but unstable
version (Max). Therefore, the robust version was chosen for
further examinations.

3.2.2 Laplacian noise scenarios

A time-series x = (x1, . . . , xT ) can be seen as (i) a set of
single, independent values or (ii) as a vector in a high dimen-
sional space (with a 5min time interval a daily curve consists
of 288 values). Because consecutive values are clearly not
independent, the vector-version (called LapVec) is expected
to yield better results than the method considering different
values in time as independent (called LapSingle).

Both methods are investigated experimentally. On one
hand to determine the possible gain of the vector formula-
tion. On the other hand, the method assuming independency
leads to a simpler interpretation since the privacy budget sim-
ply adds up due to the composition property of differential
privacy.

Figure 4 shows the original curve which is the sum of
all 14,052 load profile curves (solid red) which is called the
target profile. The dash-dotted, black line is the the target pro-
file with single-point Laplacian noise added and the dashed,
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Fig. 4 Resulting differentially private load profiles after the addition
of Laplacian noise
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Fig. 5 Influence of type of Laplacian noise

blue line has vector Laplacian noise added. It can be seen
that the vector Laplacian noise is the method nearer to the
target curve.

The small superiority of the vector version over the can
be evaluated by looking at the cumulative distribution of the
relative error values for all 288 time points of the curves
(Fig. 5). This figure also shows that while approximately
half of the values have a relative error of 5 % or less, the
highest relative error is at the order of 45 % (small circles).
For this reason both methods offer rather limited utility in
approximating the target curve at all points of time for the
given sample size of 14,052.

3.3 Postprocessing: smoothing

The approximation for the aggregate with both Laplacian
methods in does not seem to be satisfactory (Figs. 4, 5).
The differentially private curves significantly deviate from
the exact aggregate. Looking at the curve it is obvious that
smoothing could improve the utility. However, one could
think that a smoothing operation could destroy the differen-
tially privacy property. This is not the case, because differen-
tial privacy is preserved due to the post-processingTheorem4
which states that differential privacy is not decreased by a
mapping on the output. Therefore, we smoothed the curve
for better utility.

In order to avoid border effects, the daily signalswere aug-
mented with values half the filter length at both sides. For
filtering several smoothing methods from Matlab (running
average, loess, lowess and its robust versions, Savitz–Golay)
were tried. The running averagewas chosen for further analy-
sis. Although it is the simplest method it nevertheless offered
equal performance. For each method the filter length was
chosen that leads to the minimum average relative error. The
optimal span for the running average was about 20. Note that
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Fig. 6 Resulting differentially private load profiles after additional
smoothing

in practice, the relative error can not be calculated since the
exact aggregate profile f is not known. Therefore, the filter
length can not be chosen this way in practice.

As expected [18], smoothing significantly improves the
result. The approximations in Fig. 4 are further away from
the aggregate curve than the approximation in Fig. 6. The
beneficial effect can be seen even better in Fig. 5. Not only the
median error decreases by a factor of about 2. More impor-
tantly, the maximum error decreases from 45 to 12 %.

3.4 Discussion of smoothing and privacy

Differential privacy has the important property that it
is immune to post-processing. Post-processing includes
smoothing which explains the allowed use of smoothing fil-
ters. However, from the filtering perspective, there seems to
be a contradiction. First, (Laplacian) noise is added for pri-
vacy reasons, then amoving average filter is applied to reduce
the effect of noise. One could think that through the reduction
of the noise the filter also destroys the privacy property.

For illustrative purpose we explicitly show here that
smoothing does not destroy the differential privacy property.
Unfortunately, privacy can not be directly confirmed exper-
imentally because this would require an extremely exact
estimation of probability densities in a high dimensional
(288 dimensions) space. Instead, the analysis shows that dif-
ferential privacy is not destroyed for a single, but arbitrary
time point t and a simple moving average filter with span 3
(where the change to an arbitrary span is straightforward) is
used.

The smoothed curve at time t is

Y sm
t := 1

3
(Yt−1 + Yt + Yt+1) . (17)

Since Laplacian noise with zero mean noise is added, the
expected curve for Yt is the time averaged curve of the target
curve

μsm
t := E[Y sm

t ] = 1

3
( ft−1 + ft + ft+1) . (18)

Since the Laplacian noise at each time point is created
independently of other time points, the usage of Eqs. (17),
(18) and (6) yield

Pr(Y sm
t = y) = Pr(Yt−1 = y−1, Yt = y0, Yt+1 = 3y − y−1 − y0)

=
(

1

2λ

)3

e− |y−1−μsmt−1 |
λ e− |y0−μsmt |

λ e− |3y−y−1−y0−μsmt+1 |
λ .

For simplicity of argumentationweassume that all three y-
values exceed their expected valuesμ. Therefore the absolute
value function has no effect, the x-terms cancel out and, intro-
ducing

Msm
t = μsm

t−1 + μsm
t + μsm

t+1, (19)

one obtains

Pr(Yt = y) =
(

1

2λ

)3

e(−3y+Msm
t )/λ. (20)

Now, two neighboring datasets D and D̃ are considered.
W.l.o.g, they differ in the last profile which is only present
in dataset D and for all i ≤ N − 1 the profiles coincide
xi = x̃i . Now the differential privacy condition directly can
be proved: Starting from Eq. (20), substituting back Eqs.
(19) and (18) and then using the neighboring condition as
formulated above, one gets

Pr(Yt (D) = y)

Pr(Yt (D̃) = y)
= e(Msm

t (D)−Msm
t (D̃))/λ

= e

(
1
3 xN ,t−2+ 2

3 xN ,t−1+xN ,t+ 2
3 xN ,t+1+ 1

3 xN ,t+2

)
/λ

≤ e

(
T∑
t=1

xN ,t

)
/λ

.

Ignoring possible border effects due to smoothing (i.e.
taking t ∈ {3, . . . , T − 2}), using the definition of λ from
Eq. (7) and the sensitivity (13) then directly leads to the ε-
differential privacy property

Pr(Yt (D) = y)

Pr(Yt (D̃) = y)
≤ eε .

Thus, differential privacy is preserved for a single time
point even after smoothing with a moving average filter.
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3.5 Dependency on the privacy parameter

In practice, it is important, how the utility changes when the
desired privacy restriction, i.e. ε changes. In all experiments
so far the differentially privacy budget parameter ε was set
to 1. Ignoring smoothing, the noise is corresponding to the
standard deviation σ of the Laplace distribution which is
known to be σ = √

2λ. Since λ is inverse proportional to
ε, increasing privacy by halfing ε would result in

√
2 larger

error. Therefore, knowing the error for ε = 1, the error for
another ε could be theoretically calculated by

ˆerr(ε) = 1√
ε

· err(1). (21)

Maybe due to the smoothing operation following the addi-
tion of Laplacian noise, this relation is only approximately
valid. As can be seen in Fig. 7 the measured relative error
(blue curves with pluses) is larger than the theoretical one
(red curve with o) for small ε. Note that the measured error
is here robustly estimated as the median relative error over
30 trials and all time points.

3.6 Dependency on the number of households

To successfully use differential privacy methods it is crucial
to have reasonable utility. Turned another way round one can
ask the question, how the error increases when the sample
size decreases.

The result is shown in Fig. 8 (blue line with pluses). At
current state differential privacy is very likely not suited for
small neighborhoods in the size of hundreds.

Again one can compare the result with a theoretical
extrapolation. Ignoring the effect of smoothing the noise is
independent on the sample size N . This can directly be seen
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Fig. 8 Dependency of the error on the size of the aggregation group

from (15), so the nominator of the relative error terms (5)
does not depend on N . However, the denominators ft are
proportional to N due to (3). Therefore, one can expect that
the relative error decreases with 1/N , i.e.

ˆerr(N ) = 14,052

N
· err(14,052). (22)

This is roughly the case: the error extrapolated from N =
14,052 (red curve with o) is rather near to the measured one
(Fig. 8). Although the relative error is a factor of 2 wrong at
a sample size of 500, this is not very bad considering the fact
that the extrapolation from 14,052 to 500 is roughly a factor
of 28. Again, the measured error is here robustly estimated
as the median relative error over 30 trials and all time points.
For each trial, a subsample of the right size has been sampled
with replacement from the total of 14,052 load curves.

4 Conclusion and outlook

In this paper, differential privacy is applied on real smart
metering consumption data for the first time. More specif-
ically, differential privacy is applied on the aggregate of
time-series consisting of daily load profiles of real smart
metering consumption data.

The paper focuses on the assessment of the practical utility
that can be reached. The main finding is that even after some
improvements of the basic method the aggregation group
size must be of the order of thousands of smart meters in
order to have reasonable utility. The dependence of the utility
on various parameters is thoroughly investigated. Smoothing
significantly improved the utility without destroying differ-
ential privacy.

The practical application of differential privacy shows
several open points. A practical way of privately determin-
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ing the sensitivity still needs to be found. This could be
done in a straightforward manner using secure comparison
protocols, however these are known to be expensive. The
filter length of the smoothing operation was chosen based
on knowledge of the exact aggregate. An alternative, pri-
vate way to set this parameter needs to be established. In
order to be applicable for smaller aggregation group sizes
the utility of differential privacy still needs to be improved
further.An approach similar to that of [19] but using awavelet
instead of a Fourier transformation could be a promising
approach.
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