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Abstract XML has become the standard document repre-
sentation for many popular tools in various domains. When
multiple authors collaborate to produce a document, they
must be able to work in parallel and periodically merge their
efforts into a single work. While there exist a small number
of three-way XML merging tools, their performance could
be improved in several areas. We present a three-way XML
merge algorithm that is faster, uses less memory and is more
precise than previous algorithms. It uses a specialized ver-
sioning tree data structure that supports node identity and
change detection. The algorithm applies the traditional three-
way merge found in GNU diff3 to the children of changed
nodes. The editing operations it supports are addition, dele-
tion, update, and move. The algorithm is evaluated by com-
paring its performance to that of the previous algorithms,
using synthetically generated XML documents of a range
of sizes and modified by varying numbers of random edit-
ing operations. The prototype merge tool used in these tests
also includes a simple graphical interface for visualizing and
resolving conflicts.
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1 Introduction

In this article, we describe and evaluate a new algorithm for
three-way merging of XML documents. This algorithm is
important because three-way merging is a critical element
in any modern version control framework. The algorithm is
novel because it is substantially faster and uses less memory
than previous three-way XML merging algorithms. We show
this through an empirical evaluation on simulated XML files,
comparing our algorithm directly to the previously published
alternatives.

The key difference between our algorithm and the alter-
natives is our use of node identity to keep track of which
parts of an XML document have changed. We assume that
each time an XML file is saved, all newly created elements
become marked with a unique identifier and that these unique
identifiers are not changed by future editing sessions, no mat-
ter what other changes are made to the element. This use of
UIDs contrasts with the approximate matching approaches
used by other XML merging algorithms and is key to the
higher efficiency of our algorithm.

The remainder of this section will motivate the three-way
XML merging problem, briefly discuss conventional version
control systems, explain what makes three-way XML merg-
ing special and introduce notation used in the paper.

1.1 Motivation

Research on software engineering tools has focused on tools
for program source code and the many other formal lan-
guages that are central to system development. But it is well
known that many important software engineering artifacts
are natural language documents many of which are simply
conventional office documents (requirements and design nar-
ratives, user documentation, high-level testing plans, meeting
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transcripts and notes). Others are structured, but not so formal
as source code (e.g. various UML diagrams, figures show-
ing architecture, etc.). Like source code, these documents are
produced by collaborative teams and they evolve in the same
ways. So, they need the same version control services that
are used with source code: branching with some means of
tracking ownership and responsibility, differencing to under-
stand changes, and merging to create a single shared version
from multiple branches.

Today, non-source-code documents are usually produced
using modern GUI applications that save their files in an
XML syntax based on either open or proprietary XML doc-
ument structures. For example, files for Microsoft Office use
the Office Open XML Format, while OpenOffice and Libre-
Office use the Open Office XML format. In both cases, the
“saved file” is actually a compressed archive containing mul-
tiple XML files. Since all of these office suites now support
change tracking and merging of versions, it might be argued
that there is no room for innovation in version control of nat-
ural language documents. But we are interested in making it
easy for any XML application to support a variety of useful
versioning interfaces via standardized XML versioning. Fur-
thermore, it is clear that office applications do not yet provide
adequate version support because collaborating authors find
that they must keep copies of many different versions of their
documents and to construct cumbersome naming schemes to
distinguish those versions from each other.

Version control of XML files presents challenges and
opportunities not seen with simple text files.

The challenges come from the fact that XML files often
lack the line breaks that function as structure boundaries
in text files. Large portions of the document content may
have been manually entered, but the start and end tags that
define the document’s tree structure and carry the attribute
values are generated by software that has little need for line
breaks. For example, both Microsoft Office and OpenOffice
produce XML files with exactly two lines. The first line is
short and contains the XML declaration. The second line
contains everything else, and in the files that hold the main
document content, may be many kilobytes long. Thus, line
breaks have little value for version control in XML-based
applications.

It is the tagged tree structure of XML that provides oppor-
tunities because it provides a rich syntactic structure that can
be mapped to semantics when document schemas are well-
designed. Good tools could use this structure to find ver-
sioning information that has much greater utility for human
users than the simple line-based differences of SCM ver-
sioning or the edit-operation based change model used by
office suites. It is worth noting that the Office Open XML
and Open Office XML representations are very presentation
oriented and do not have particularly good semantics, but
they do clearly mark paragraph boundaries and divide tables

into cells. Other XML formats, such as those for e-books [1]
and for UML diagrams [2], are more promising.

XML provides another advantage over simple text through
its namespace mechanism. XML namespaces are designed
to allow third-party applications (TPAs) to add elements
or attribute values that are marked with a TPA-specific
namespace. The TPA can use these to embed extra con-
tent (via elements) or to annotate existing content (via
attributes), provided that the main application is not disrupted
by the additional material and preserves that material through
the load-edit-save cycle. The research presented here takes
advantage of this mechanism by attaching UIDs to document
elements using attributes. This allows our versioning soft-
ware to reliably distinguish betweenmove operations and the
combination of a delete followed by an insert of the same or
similar material at a different location. For example, if source
code is stored in the SrcML format [3], our software knows
the difference between these two cases:

1. A Java method is removed from position A and a different
method is inserted in position B.

2. A Java method is moved from position A to position B
and is then renamed and substantially modified.

1.2 Conventional version control systems

Beginning with the introduction of the SCCS [4] and RCS [5]
systems, version control software has become a standard
element of modern software development practice. SCCS
and RCS focused on managing versions of individual files
and did so on conventional file systems. The introduction of
CVS [6] extended RCS to better support complete projects
and allow remote access to version repositories. Recently,
Subversion [7], Mercurial [8] and Git [9] have been intro-
duced, each providing somewhat different approaches to dis-
tributed version control. Subversion uses a centralized ver-
sion repository and adopts the “product versioning” model, in
which the version history is connected with the entire project,
rather than individual files having separate histories. Mercur-
ial and Git use replicated local repositories and focus on high
performance during merging.

All of these systems have a clear focus on supporting soft-
ware development and have adopted some limiting assump-
tions. None of them attempts to understand the semantics
of the files that are versioned, probably because they must
support a variety of languages with very different gram-
matical structures (e.g. lex, perl, Ant, and Java). Files are
either simple text, where line breaks are considered to have
utility for information organization, or are binary files that
lack meaningful internal structure. The focus on simple text
makes sense for software developers, who must work with
a variety of formal languages and who are also sophisti-
cated users of low-level textual search and analysis tools (e.g.
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grep, diff, etc.). But more and more, software developers are
using advanced editing tools with graphical user interfaces
that could easily support more complicated representations
built on top of XML or other structured document languages.
And most other “knowledge workers” are already using tools
whose underlying representation is an XML document type
with much richer syntax and semantics than raw text.

Three-way merging is an important operation in version
control because developers’ independent changes must, at
some point, be merged into a common result. For text files,
there exist tools like GNU diff3 [10] for merging two docu-
ments derived from a common base document. This process
is called three-way merging because it requires three docu-
ments: the original or base document and the two modified
or derived documents. Software configuration management
(SCM) tools such as CVS [6] and Subversion [7] make heavy
use of three-way merging to support collaborative editing of
program source code.

1.3 Three-way merging for XML

Three-way merging for XML documents is considered to be
meaningfully different from text-based merging for several
reasons. First, where a text file is considered to be a sequence
of lines, an XML document is considered to be a tree of
attributed elements. Second, XML has non-trivial semantics
for differences.

The XML language definition specifies that the order of
elements is significant, but that the order of attributes in an
element’s start tag is not significant. So, XML definesordered
trees of elements with unordered attributes on each element.
The ordered tree semantic is obviously important for text
documents such as OpenOffice XML and it also matches
the standard semantics of the painter’s algorithm for two-
dimensional graphics documents, as in SVG. However, many
XML document types have unordered semantics for at least
some elements of their trees. For example, when defining
linear gradients in SVG, the order of the stop elements is
not important.

Although one could build a specialized XML merge tool
for a specific XML document type, this paper addresses
general XML documents and assumes that element order is
important and attribute order is not important. This influences
how the algorithm detects conflicts, especially insertion and
move conflicts. The proposed algorithm also assumes that
there are unique identifiers at least for all base document
nodes. This includes those elements in the modified docu-
ments that were originally part of the base document, even
if they have been substantially modified in the intervening
versions. We use the attribute mouid to store the unique ID
of an element.

There exist both commercial and research tools to perform
three-way merging of XML documents [11,12]. They differ

from diff3 in that they merge trees of nodes that have both
attribute values and textual content rather than sequences of
text lines. For efficiency reasons when matching nodes in dif-
ferent versions, these tools assign hash values to the nodes
and the node content. While the use of hash values speeds
the matching process, it leaves the tools unable to iden-
tify matches between versions of XML document nodes that
have undergone large transformations. Performance remains
a problem, because to do a complete merge, these tools
build three, if not four, complete document trees in mem-
ory even when changes are trivial. While these tools can
merge changes to a sizable single file in a few seconds, in
big projects, document sets are large and the time to merge
many documents will be substantial and irritating. Further-
more, the tools lack useful conflict resolution interfaces or
APIs, which adds considerably to the effort required for prac-
tical document merging.

Our approach to three-way merging starts with the use
of unique IDs so that nodes that have undergone substan-
tial transformations can still be matched with their origi-
nal version. The unique IDs also help to better distinguish
move operations and to improve conflict detection. To reduce
memory usage, we use a versioned tree data structure so
that only one full document tree must be created in mem-
ory, along with enough tree deltas to represent any changes.
The versioned tree supports a change history that allows it to
merge only those nodes that have changed, while ignoring all
others.

1.4 Terminology and notation for three-way tree merging

The problem of three-way tree merging can be defined as
follows. Suppose t0, t1 and t2 are ordered document trees
where t1 and t2 are each derived from t0 by separate sets of
changes. t0 is the common base or common ancestor of t1 and
t2 in the revision tree. The problem of merging t1 and t2 is
to find t3 such that t3 can be derived by a combination of the
changes made to t0 to produce t1 and the changes made to t0 to
produce t2. In general, the problem of merging trees involves
matching the nodes between the base tree and changed trees,
identifying the changes made and finding a merge of the two
sets of changes. We will use this ti notation throughout the
rest of the paper.

When performing a merge of t1 and t2, the starting assump-
tion is that all changes made by the respective authors are
valid. But when performing the merge operations, conflicts
can occur when two changes are made in the same location.
A simple example of a conflict occurs when the two authors
add different material at the same location. This is a conflict
because there is no clear choice for which addition should
be placed first. We use the term false conflict to describe
independent changes by two authors at the same location
that produce identical results. A serious practical solution
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Fig. 1 A three-way merge
example for SVG documents

to version control must be able identify conflicts and allow
authors to resolve them. Our algorithm can identify conflicts
and our prototype provides simple support for conflict reso-
lution. However, this paper is not focused on the problem of
conflicts.

Figure 1 presents a three-way merge of SVG documents.
The top image (Version 0) is the original document. It has
been copied and shared with two other users so that each
one can add something to the original image. In Version 1,
the user added the text “Joe’s Auto Repair Shop”, painted
the side door, removed the right mirror, and drew a crack
on the windshield to represent a damaged car. The second
user modified his copy to create a shadow below the car and
painted the hood. The third file (Version 3) is the merge result
produced by the proposed algorithm.

1.5 Outline

The outline of this paper is as follows. We describe how ver-
sioned XML documents are mapped to a versioned tree data
structure in Sect. 2. Section 3 describes the merge and conflict
rules as well as the handling of false conflicts, node mapping
and the merge algorithm. Section 4 presents an evaluation of
the algorithm, while Sect. 5 discusses related work and the
conclusion and future work are described in Sect. 6.

2 Versioned tree data model

In this section we describe the versioned data structure and
how it is used to model XML tree and its change detection
mechanism. We use versioned data structures from the Fluid
project [13].

2.1 Versioned data structure

The Fluid project’s [13] goal is to develop tools for Java
program transformation. As part of the project, a low level
versioning system was developed using Fluid’s internal rep-
resentation (IR). Fluid’s central representations are nodes,
slots, attributes and versions.

– Nodes are loci of identity and contain no other informa-
tion.

– Versions are points in tree-structured discrete time. They
are arranged into a tree called the version tree where the
root is the initial or first version and parent versions rep-
resent older states than their children.

– Slots are locations that can store information including
references to other slots and nodes. Versioned slots are
specialized slots that can store different information at
different versions.

– Attributes are names that map nodes to slots. Given a node
and an attribute, we can obtain the slot value assigned to
that node. This models the idea that nodes have attributes.

Nodes, attributes and slots then can be thought of as a table
where the rows are the nodes, the columns are the attributes
and the cells are the slots that store the values. With the
addition of versions, the table becomes a three dimensional
table where the third dimension is version. With versioned
slots, given a node, an attribute, and a version, the value at
that version is retrieved. This structure models the notion
that a node’s attributes have different values at different
versions.

The API to the Fluid IR provides a change-and-commit
model for managing versions. When a new version of a doc-
ument is created, it is represented by an empty table of nodes,
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attributes and slots that is the current version. This table is
filled in with information and at some point the result is com-
mitted as an initial version, v0. Once committed, v0 never
changes again in any way. Further editing changes to the
“current version” are permitted, but those changes are part
of a new, unnamed version. Eventually, those changes may
be committed as v1. Once more than one version has been
committed into the system, it becomes possible to set the
“current version” to be any such version and to start making
a new version derived from it.

2.2 Change history

Changes to a node are recorded by a listener object of
type ChangeRecord. This occurs during parsing of derived
documents as described in Sect. 3.4. Using a ChangeRe-
cord object, a given node n can be queried whether it has
changed in v2 relative to v1. ChangeRecord objects are
coarse-grained; they know that n has changed but not the
nature of the change. The change could be an update to one
or more attributes or an addition or deletion of one or more
children. For example, if the value of an attribute a of node n
is updated, n is marked as changed from the previous version,
butChangeRecord says nothing about a being changed other
than that node n has changed from previous version. A node
that has a child added or removed is marked as changed, but
the child that was added or removed is not marked as changed.
Using aChangeRecord we can obtain a list of nodes that have
been changed from a given version. This gives us the notion
of change history and is used during the merge process to
ignore nodes that have not changed.

2.3 XML documents as versioned trees

More complex structures such as containers and trees are
formed using nodes, attributes and slots. A container is a
collection of slots and can act as a linked list or as a fixed
size array. A node in a versioned tree has a children attribute
and a parent attribute. The parent attribute maps to a slot
containing the reference of the parent node. The children
attribute maps to a container containing the references of the
child nodes. To represent an XML element, a node is given
a tagname attribute, and an attributes attribute that points to
a collection of name-value pairs which hold the name and
value of an XML attribute as specified in an XML element’s
start tag. Notice that we are now talking about two kinds of
attributes (Fluid and XML) at the same time. This is con-
fusing, but appears unavoidable. For text nodes in the XML
tree, there is one additional Fluid attribute text that holds the
text or character data. We ignore comments and processing
instructions although they could easily be represented.

Mapping the Fluid attributes to versioned slots allows us
to represent trees at different versions. Figure 2 shows the

Fig. 2 Representing XML documents as versioned trees

modeling of two XML documents where the second is a mod-
ified copy of the first as versioned trees. For each version, the
XML source is shown on the left, while the corresponding
versioned tree is shown on the right. Nodes with solid cir-
cles are nodes that were created in that version. Their Fluid
attribute values can be accessed by descendant versions in the
version tree but not by ancestor versions. For example, nodes
a, b, c and d in version 0 were created in version 0. Since ver-
sion 1 is a child of version 0, it shares the nodes from version
0 which are shown with dashed circles. In version 1, only
node e was created while node b was deleted. We refer to the
representation of these changes as the delta between version
0 and version 1. Note that the tree at version 0 and version
1 is really the same tree in memory but depending on which
version has been chosen as the current version, traversal of
the tree will give the tree structure for that version.

3 Proposed merge algorithm

This section describes the merge algorithm. It starts out by
describing rules for merging and conflict detection. Then
it describes how elements in derived XML documents are
matched to elements that already existed in the base docu-
ment. Then once these preliminaries are complete, the algo-
rithm is presented in detail.

Throughout this section, we will use t0 to denote the base
document tree, t1 and t2 as the two derived document trees,
and t3 as the merged document tree.vk refers to the version for
which tk is the document tree. We also use t ′ to denote either
t1 or t2, n to denote an XML element, and n′ to denote an
updated version of n. The assertion n ∈ tk says that element
n is a part of tree tk in version vk .

3.1 Merge rules

We model the changes between versions of an XML docu-
ment as operations on the base document t0. Operations that
can occur are addition, deletion, update and move. An addi-
tion occurs when a new element is created and added to t ′
which did not exist in t0. The deletion of an element removes
the subtree of which that element is the root. Anupdateopera-
tion occurs when an element in t ′ sees changes in one or more
XML attributes, in its tagname, or in its sequence of child ele-
ments. An element is moved when its parent is changed or
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its position in the sequence of children of the same parent
is changed. Notice that the movement of elements is marked
as two operations: an update of the parent and a move of the
child.

The following are the merge rules. They are written under
the assumption that there are no conflicts. The rules describe
the operations that will be applied to t0 in order to produce t3.

– addition: if n is added to t ′, then n also appears in t3.
– deletion: if n is deleted in t ′, then n is deleted in t3.
– update: if n is updated to n′ in t ′ then n′ replaces n in t3.
– update: if n is updated in both t1 and t2 and the changes

are disjoint, then all changes are made in t3.
– move: if n is moved in t ′, the move also occurs in t3.

3.2 Conflict detection rules

A merge algorithm must have rules for detecting conflicts.
Lindholm [14] adapted the conventional conflict rules for raw
text files to the context of ordered trees. We have adopted
his conflict model which we describe here. Similar con-
flict rules have been articulated for mobile XML data by
Lam et al. [15].

A conflict occurs when changes to the same element occur
in both t1 and t2. For example, if n has an attribute value
changed in t1 but n is removed in t2, there would be a conflict.
The following list specifies the cases that cause conflicts. In
this list, we let n1 and n2 to refer to respective elements in t1
and t2 and the elements are different. We use n to refer to a
single element that is relevant in both trees.

– n1 is added or moved to a location in t1 and n2 is added or
moved to the same location in t2. This is a conflict because
the correct order of the two elements cannot be determined.

– n is moved in both t1 and t2, but its new location in those
trees is not the same.

– n is updated or moved in t1 and n is deleted in t2.
– attribute a of n is updated with different values in both

trees.
– n is deleted in t1 and n or one of its descendants are updated

in t2.

3.3 False conflict handling

The following cases are combinations of changes that we
believe should not be considered conflicts because we want
to avoid overloading users with false conflicts. An alterna-
tive model would be to have conflict levels similar to the
error/warning distinction in many compilers.

– attribute a of n is updated with the same content in both t1
and t2.

– n is deleted from both t1 and t2.

– n is moved to same location in both t1 and t2.

3.4 Node matching

In our system, node matching and change detection occur at
parse time for the three documents. Our approach relies on
versioning services provided by the Fluid IR. Note that we
give every element in the base document a mouid attribute
containing a unique ID string.

The base document is first read in and a versioned tree
t0 is created for it and committed as the representation of
version v0. A hash table is created mapping UIDs to elements
in t0.

Next, the parser reads in the the first modified document
in order to construct a delta representing t1. Each element is
examined to see if it has a mouid attribute. If an element
does, then that element is compared to the corresponding
element in t0. If the element has changed, then the corre-
sponding operations are added to the delta for t1. Otherwise,
no action is taken. Note that we ignore the permutation of
attributes so that elements having different permutations of
attributes in their start tags will not trigger a change event.
If an element read in for t1 does not have a UID, then it is a
new element and an element representing it is added to the
delta for t1. When the entire document has been processed,
the delta for t1 is committed as the representation of a new
version v1.

The system then turns to parsing the second modified
XML document that will be t2. The current version is set
to be v0 and parsing proceeds exactly as with the first docu-
ment, except that change representation are added to a delta
for t2, which is committed as the representation of v2.

Our approach requires UIDs be placed on the elements
of the base document before it is shared. Stamping UIDs
on the base document has a linear runtime relative to the
numbers of elements. Any element in the derived documents
that does not have a UID must be a new node introduced
by the editor. If the editor stamps new elements with UIDs
then new elements in both derived documents must not have
duplicate UIDs. Since most editors do not assign UIDs to
XML elements, we propose that before a document is shared,
it should first be stamped with UIDs. We also assume that
any editors used will preserve UIDs during editing but do not
need to stamp new elements with UIDs. We have tested our
approach with the Inkscape [16] and GLIPS SVG editor [17]
and they both preserve our UIDs. We also propose that to
better support merging, tools should stamp XML elements
with UIDs when first creating a file. Our current approach is
to stamp the file using our tool, and then share the file. The
file can then be edited by tools that do not strip out the UIDs.

Other XML merging tools do element matching by com-
puting hash values of each element from all three files and
then matching elements that have the same hash values or
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whose hash values meet a certain threshold for a closeness
approximation. These approaches require creating full doc-
ument trees for all three documents before elements can be
matched. Furthermore, our UID-based approach is able to
accurately represent radical changes to elements that make
matching difficult under the hash-based model. An impor-
tant restriction of the UID-based approach is that it can’t
merge base and derived documents that lack UIDs. Thus, our
approach will not work with XML documents produced by
arbitrary tools. We suggest that the performance and power
advantages of the UID-based approach argue for the addi-
tion of UID support to XML editing environments and are
engaged in research to show that scaleable approaches exist
for doing so.

3.5 The algorithm

Once t0, t1 and t2 have been constructed from the docu-
ments by the parser, the merge process can begin as described
by Algorithm 1. Before the merge, t3 is created as a new
revision or a branch of t2, which places t3 in a child ver-
sion of the version of t2. t3 and t2 are identical initially. To
merge t1 and t2, we look for nodes in t1 that are marked
as changed from t0 by querying the ChangeRecord for t1.
For each changed element n in t1, we get its children in
t0, t1 and t2. An Longest Common Subsequence (LCS) based
on node IDs is computed for the sequence of children of
n in t0 and t1 and another LCS for the sequence of chil-
dren of n in t0 and t2. We then use a node sequence diff3
algorithm to compute a new sequence of children for the
merged node n in t3 (Khanna et al. [18] give a formal pre-
sentation of the diff3 algorithm). Element n’s children in t3
are then manipulated by Algorithm 2 such that n’s children
will have the same sequence as the merge sequence. Lastly,
the attribute values for n in t1 and t2 are then merged, which
is a much simpler process, since order of attributes is irrele-
vant.

Algorithm 2 describes the process of merging the children
sequence from n in t1 and t2. Elements that are in the merge
sequence, but not in the children sequence of n in t3, are ele-
ments that have been added in t1. To distinguish a move from
an add, we check to see if the element that appears in the
merge sequence already exists in t0 and t3. If it does not, then
it is a new element in t1 and we simply add it to t3. We then
copy the attribute values of n from t1 because t3 can’t access
attribute values of n because t3’s version is not a descendent
of the version which t1 is in. Elements that are not in the merge
sequence, but are children of n in t3 are elements that have
been removed in the merge. So, these elements are removed
from t3. Once all the changed elements’ children have been
merged, t3 is the tree that merges the changes from both t1
and t2.

input : t0, t1, t2: document trees
output: t3: merged document tree

t3 ← branchOf(t2);
changeList ← getChangedNodes(t1, t0);

foreach n ∈ changeList do
children0 ← getChildren(n, t0);
children1 ← getChildren(n, t1);
children2 ← getChildren(n, t2);
lcs1 ← computeLCS(children0, children1);
lcs2 ← computeLCS(children0, children2);
mergeSeq ← computeMergeSeq(lcs1, lcs2);
mergeAttributes(n, t0, t1, t3);
mergeChildren(mergeSeq, n, t0, t1, t2, t3);

end
return t3 ;

Algorithm 1: Three-way merge

input : mergeSeq, n, t0, t1, t2
output: n ∈ t3 with its children sequence matching mergeSeq

removeChildren(n, t3);
foreach c ∈ mergeSeq do

if c /∈ t3∧ /∈ t0 then
c ← copyNodeContent(c, t1, t3);

else
parent ← getParent(c, t3);
removeChild(parent, c, t3);

end
addChild(n, c, t3);

end

Algorithm 2: Merge children

The runtime and space complexity of the algorithm are
quadratic. In the worst case, in which the tree is one level
deep and there are N nodes, then the runtime is O(N − 1)2.
Space complexity is also O(N − 1)2 in the worst case since
we use a quadratic LCS algorithm. The versioned tree data
structure reduces memory usage when there are elements in
the modified documents that are also in the base document.
When there are no nodes common between all three docu-
ments, our approach will build three complete trees, but this
seems to be a rare and degenerate case.

The tree data structures throughout the merge algorithm
look like those in Fig. 3. Throughout the entire process from
parsing all the way to the end of the merge, there is just
one full tree and some delta nodes that are new in t1 and
t2. There is no need to create any new node for t3 as all
of its nodes are from t1 and t2. Note that node f in t3 has
a dashed circle but a solid label and a solid edge linking
it to the tree. This denotes that the Fluid IR node for the
element itself is shared between t3 and t1, but since t3 is not
a child version of t1, it can not access the Fluid attribute
values of f in t1. Hence, the Fluid attribute values must be
copied into the delta for t3 where they appear as newly added
information.
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Fig. 3 Three-way merged of versioned tree

3.6 Implementation

The proposed three-way XML tool is implemented in Java
and its conflict resolution interface is implemented using Java
Swing. The tree and node conflict visualization make use of
the Netbeans Node, Explorer and Action API taken
from the Netbeans Platform [19]. The document parser was
implemented using the Simple API for XML (SAX) API.

The tool is command-line based but it provides a graphical
interface for resolving conflicts as shown in Fig. 4. Existing
XML three-way merge tools, such as 3dm [12], generate only
log files with cryptic messages, which makes it difficult for
the user to locate conflicts in large and complex XML files.
When the merge tool detects one or more conflicts, it displays
the conflict resolution interface and expands those elements
that are in conflict. As the user places the cursor over a con-
flicting element in the interface, a caption is displayed that
specifies the type of conflict: attribute update conflict, inser-
tion/move location conflict, or deletion conflict. For attribute
conflicts, the user can select a node and edit the conflicting
attributes using the attribute editor. The attribute editor dis-
plays only the conflicting attributes of the selected elements.
The interface allows the user to move and delete elements and
to update an element’s name in order to resolve conflicts.

Figure 4 displays the conflicts that resulted from merg-
ing two Inkscape [16] SVG documents derived from the

Fig. 4 Graphical conflict resolution interface. Conflicting elements are
marked with a large square in front of the element name. The number
displayed after a conflicting element helps the user identify the conflict-
ing elements in the other trees. The number in front of the element is the

node ID and allows users to match elements in different trees especially
when the element name is not meaningful and there are many elements
with that name
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same document. The svg element conflict is due to the file-
name attribute because Inkscape stores the filenames in the
SVG document itself and these two files were saved with
different names. Inkscape also saves the window’s coordi-
nates in the SVG document, which results in merge con-
flict in sodipodi:namedview element. The editor displays an
attribute editor for the conflicting node sodipodi:namedview.
The conflict here is the attribute inkscape:cxwhich represents
the x coordinate of the window that was saved. Not shown
in the figure is the conflict between v1 and v2 due to adding
two gradient nodes to the same location. Hence, the interface
expands both trees in v1 and v2 to show the conflicts but not
v0 since v0 does not have any of these nodes.

The interface also provides a text view of each of the tree
documents. The user may choose to edit the text rather than
using the tree view editor. Unlike some source code merging
software, the current implementation does not provide color
markup to highlight conflicts.

4 Performance evaluation

In this section we present an experiment to evaluate the per-
formance of the our merge tool in terms of speed, memory
usage and scalability relative to existing research and com-
mercial three-way XML merge tools. For three-way merge
tools, we are only aware of 3dm [12] and deltaxml [11]. For
this experiment, we used the trial version of deltaxml, which
is limited to documents with ten thousand elements. We also
include xcc [20] in this experiment, which is a two-way diff
tool and can apply its delta to XML files that the delta was
not originally created for. This feature allows xcc to pro-
vide a limited form of three-way merging and in many cases
xcc produced incorrect merges. Still, the performance of xcc
should act as a good point of comparison since it does less
work than a three-way merge tool.

The questions the experiment tries to answers are: (a)
whether the use of the versioned tree structure reduces over-
all memory usage, (b) whether the use of the versioned tree
structure speeds up merging, (c) how the algorithm scales
with increases in both the number of elements and the num-
ber of changes to the document.

4.1 Test data and hardware configuration

To test the performance of our proposed algorithm, we cre-
ated a set of five automatically generated XML base docu-
ments and created derived versions based on random editing
changes.

Five base documents were generated at sizes of 2,000,
4,000, 6,000, 8,000, and 10,000 elements. Every element
had both a unique name and a unique identifier attribute, plus
four attributes a0– a3 whose values were random strings of

digits. The trees were of depth 6 or 7 and had a fixed branch-
ing factor of 4, except that some nodes had fewer children
because of the round-number sizes of the trees. These trees
are not particularly realistic, but we lacked a standard for
realism and decided, after some consideration, that these syn-
thetic trees were a sufficient basis for performance testing of
algorithms.

For each base document, we created sets of editing
changes at six different sizes: 0, 20, 40, 60, 80, and 100.
We divided these sets into equal-sized halves and applied
them to the base documents to create two derived versions
for each base document. The change size of zero was a degen-
erate case where the so-called derived documents were iden-
tical to the base document. Each set of modifications was
divided into updates, deletions, additions, and moves where
deletions, insertions, and moves were allotted 20 % of the
modifications and the remaining 40 % of modifications were
updates to attribute values. The nodes and attributes selected
to be modified were chosen randomly using a uniform distri-
bution among nodes and attributes, but we also ensured, by a
combination of automatic and manual means, that there were
no conflicts between the change sets for any tool. The total
numbers of files created was 55 including the base versions.

The experiment was conducted on a Lenovo Thinkpad
X61 with 2.2 Ghz Core 2 Duo processor and 4 GB of RAM,
running Ubuntu 10.04 Beta 1 AMD 64 with a Solid State Disk
(approximately 100 MB/s read). The code was built and run
on OpenJDK 1.6 as shipped with Ubuntu 10.04. All the tools
ran with default settings (-Xmx variable was not set).

We use System.currentTimeMillis() as a way
to determine the amount of time a segment of code executes
and totalMemory and getFreeMemory methods of the
Runtime class to determine the amount of memory currently
used in the Java Virtual machine. We modified 3dm’s code
to print execution time and memory usage. For deltaxml, we
used the PipelinedSynchronizer API of the deltaxml
package to do the merge. Since we do not have the source
code, we can only measure the entire execution from parsing
to saving the merge result. This prevents us from determine
how fast deltaxml parses XML files and writes merged result
to disk compared to 3dm, and xcc.

Note that we use total time to mean the total execution
time including parsing, merging, and writing the result to
disk. When we say actual merge time we refer only to the
execution of the merge algorithm excluding the parse time
and the time spent saving the merge output. For this discus-
sion, our implementation is simply called molhado.

4.2 Results

First, we compare the execution time and memory usage of
molhado, xcc, 3dm and deltaxml as the number of changes
increases. The number of elements for this test is fixed at
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Fig. 6 Memory usage as changes increase

10,000 while the changes are increased by increments of
20. Figure 5 compares the different tools’ total execution
time with increasing changes. The charts shows that molhado
and xcc have the lowest total execution time. 3dm’s execu-
tion time increases rapidly and linearly with an increase in
changes while all other tools’ execution times increase by
a very small amount. As shown in Fig. 6, molhado and xcc
show an almost constant level of memory usage relative to
the number of changes. 3dm and deltaxml show high vari-
ability of memory usage with results suggesting that memory
usage is increasing for 3dm at higher levels. Molhado uses
the least memory among all the tools which appears to con-
firm that the versioned tree data structure reduces memory
requirements.

To test whether document size affected total time and
memory usage, we fixed the number of changes at 100 while
the number of elements increased from 2,000 to 10,000 in
steps of 2,000. The results are plotted in Figs. 7 and 8. In
this test, molhado and xcc show nearly identical and low
total processing times. They also have low memory usage,
though there is suggestion that the memory usage of xcc is
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Fig. 8 Memory usage as elements increase

growing somewhat faster than that of molhado. In constrast,
both deltaxml and 3dm appear significantly affected by the
number of elements. In total time, deltaxml appears to have
a substantial startup cost in total time, with a modest lin-
ear increase as the number of elements increases. 3dm’s total
time shows a dramatic linear increase with the number of ele-
ments. 3dm merges using all elements regardless of whether
they have changed, thus increasing merge time linearly. Both
3dm and deltaxml have high memory usage relative to mol-
hado and xcc.

Figures 9 and 10 plot just the execution of the merge algo-
rithm excluding the time to parse and writing of merge result
to disk. Deltaxml was not included because we do not have its
source code and were unable to exclude its parse and writing
time. In this comparison, 3dm is affected by both increased
in changes and the number of elements in linear manner.
Although it is hard to see how the number of changes affect
molhado in Fig. 9, the execution growth rate of molhado
against changes is shown in detail in Fig. 11 which shows
quadratic scaling in the number of changes. This is probably
due to the LCS algorithm we used which has a worst case
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complexity of O(n2). Figure 12 shows the merge time vs the
increase in the number of elements. There is less than 100 ms
increase in total time as the number of elements increases
from 2,000 to 10,000. This small increase is probably for the
traversal of the elements by the ChangeRecord data struc-
ture, as it takes more time to traverse the larger tree looking
for changed elements.
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Fig. 12 Merge time as elements increase
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Fig. 13 Parse time as elements increase

Figure 13 shows the parse time for each tool against the
number of nodes. The graph shows that molhado has the
slowest parser. This is probably because building the ver-
sioned tree data structure is more expensive than building
a simple DOM tree. Also, during the parsing process, ele-
ments in derived trees are marked as changed or not. This
requires code that checks whether elements in derived trees
are present in t0 and whether they have changed. Notice that
this matching task happens during the “parsing” process in
molhado, but is part of the merging step in the other tools. As
Fig. 7 shows, the large parse time of molhado is dominated
by its fast merge time, making it faster than the other tools
in total execution time.

On a side note, under formal XML semantics, the permu-
tations of attributes in a start tag should not have significance.
Some XML pretty print tools rearrange the attributes as doc-
uments are saved. 3dm reports rearrangement of attributes
as a conflict, stating that the element has been updated,
even though the two versions are semantically equivalent.
3dm’s performance suffers drastically with permutation of
attributes. For example, we performed a simple permutation
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of the attributes of all elements in the 2,000-element file and
this resulted in a 16 min (960 s) merge time for 3dm while
the same files without the change in attribute order could be
merged in 1.3 s. In contrast, molhado performed the same
tasks in 1.15 and 1.05 s.

Overall, this experiment shows that the molhado merge
algorithm is faster than that of the available tools and that
the versioned tree data structure reduces memory usage. We
also note that while xcc approaches molhado’s performance
in both time and memory, it is a more limited tool that does
not perform a true three-way merge.

4.3 Summary

Overall, molhado has superior memory and runtime perfor-
mance to both the 3dm and deltaxml merging algorithms.
Molhado’s performance is quite similar to that of the xcc
patching algorithm, but patching is fundamentally a simpler
task. Some more specific observations are:

– At the range of document sizes and number of changes
tested, all of the algorithms appear to show linear scaling,
with the differences between them being in the coefficient
of scaling.

– Molhado’s memory utilization is dramatically lower. This
is almost certainly due to the efficient versioned tree data
structure that we use, since additional storage is only
created for changed nodes in the document tree.

– Close examination of merge time alone shows that
Molhado’s performance is quadratic in the number of
changes. This seems reasonable given the quadratic
behavior of the LCS algorithm. We suspect that 3dm also
has a quadratic scaling factor but that this is dominated by
the linear effects of building multiple trees and matching
nodes at the scale of our simulated documents.

5 Related work

Mens [21] gives a survey on the state of software merging.
The algorithm for diff2 line based content is described in
detail by Myers [22]. Other researchers [12,23–26] describe
two-way structural differencing algorithms that make use of
two documents without a base document. Their node match-
ing techniques are based on node values and various types of
hash values. Tools for three-way differencing and merging
of XML documents also exist [11,12].

The GNU diff utility computes the differences between
any two text files using the LCS algorithm [22].

Chawathe et al. [24] describe an algorithm that does not
assume the use of unique IDs, but makes use of them if they
are available. Cobena et al. [25] implemented a two-way
XML document differencing tool that uses an ID attribute for

node matching. It also make uses of a node signature, which
is a hash value for the node and its content. Wang et al. [27]
proposed X-Diff which uses standard tree-to-tree correc-
tion techniques. X-Diff treats XML documents as unordered
trees, which is not suitable for most document applications.
diffX, which was described by Al-Ekram et al. [23], matches
nodes using node types and node name. Two nodes are equal
if both their types and labels are equal. Lanham et al. [26]
described an algorithm called vdiff. It makes use of the node’s
unique ID and hash values for matching. Lindholm et al. [28]
described an XML differencing algorithm that works on a
sequence of token encoding XML documents rather than doc-
ument trees. It computes a match list from the input token
sequences using a sequence alignment algorithm and hash
values.

DeltaXML [11], a commercial tool, supports three-way
merge of XML documents. Node matching is done using
node ID and longest common subsequence alignment at each
level of the input trees. By default, the order of children within
a node is important, but it could be ignored. DeltaXML sup-
ports the addition, deletion and update operations.

Lindholm et al. [12] presented a three-way merge algo-
rithm for XML documents that performs tree to tree map-
ping. An XML document is encoded as a set of content and
parent–child–successor (PCS) relations. A set of changes are
consistent if the changes in the set are unambiguous. The set
of changes are combined into a “raw” merge and then incon-
sistencies are removed by iterating over the “raw” merge to
create the change set for the merge. It supports the addition,
deletion, update, and move operations. Nodes are required
to match to at most one node. The algorithm is attractive
in its simplicity, but it lacks the ability to deal with multi-
ple moves in either modified tree. When there are multiple
moves that are within the same parent, the change list will be
inconsistent. The algorithm simply ignores the position. In
our approach, the positions of the merged children are com-
puted by using diff3 which places the children in the correct
order, and if it cannot determine the position of children, it
is marked as a conflict.

Rönnau et al. [20] describes a differencing and merging
algorithm for XML documents using context fingerprints,
a sequence of hash values of all nodes within certain dis-
tance from the edit operation, to help resolve the location of
operations during merging. The algorithm supports the add,
delete and update operations. The hash values are computed
using the node element name and its sorted attributes. This
means that a node which has its element name changed will
have a different hash value, hence appearing to be a different
node. Using node identity, our approach knows the node is the
same even if its element name and its attribute values change.
Instead of performing a delete and insert operation, it does
an update. In Rönnau’s approach, finding the node for the
merge operation is heuristic where in our approach, we know
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on what node the operation must occur because of node iden-
tity and diff3. The complexity of Rönnau’s approach results
from trying to support merging of documents the difference
has not been computed, thus allowing it to perform a limited
three-way merge.

Westfechtel [29] and Schwägerl et al. [30] proposed and
implemented a three-way merging tool for models in the
Eclipse Modeling Framework (EMF). Although, EMF mod-
els are encoded as XML, the merge tool uses semantics spe-
cific to EMF models in order to ensure that merge results
are valid. This contrasts with our algorithm which uses less-
specific, generic XML semantics.

Abdessalem et al. [31,32] have proposed a probabilistic
XML merging tool. Changes are associated with probabili-
ties based on the author’s credentials. This approach is pro-
posed to support a kind of adaptive shared document for
which readers can assign measures of trustworthiness to dif-
ferent authors, so that each reader sees a document com-
posed of changes made by authors that the reader most trusts.
Our algorithm has no probabilistic aspects and all authors’
changes are weighted equally.

Vion-Dury [33,34] proposed a generic calculus of editing
deltas but no tool has been implemented to verify the concept.

6 Conclusion and future work

We have described an approach to three-way XML docu-
ment merging using a versioned tree data structure, change
detection and node identity. We showed that it is faster and
uses less memory than other three-way XML merge tools.
Unlike other approaches, which create all elements for three
or four trees, our approach creates one full tree t0, delta nodes
for t1 and t2 and no nodes for t3. With change detection, the
algorithm only merges changed nodes, reducing the num-
ber of LCS computations. The evaluation experiment shows
that the algorithm’s performance is largely unaffected by the
number of nodes. The algorithm’s runtime is affected most
by the number of changes and this appears to be mainly due
to the LCS algorithm.

Future work on this algorithm and its implementation
should include adjusting the algorithm to gain further
improvement in both speed and memory usage. The cur-
rent implementation uses the simple standard LCS algorithm.
Replacing it with the LCS algorithm described by Myers [22],
which has a linear space complexity, could further reduce
memory usage. Merge performance can further be improved
by reducing the numbers of nodes to be merged. Choosing the
derived tree (t1 or t2) that has the most changes and deriving
t3 from it could well reduce run time. Since the algorithm
only visits nodes changed between t0 and the one derived
tree that is not the parent of t3, there would be less nodes to
visit. This is only an advantage when the sizes of the change

sets of the two trees are different by a large degree. Refining
change detection so that it can distinguish the kind of change
(changes to attributes vs. changes to the child list) might
reduce the number of elements for which it is necessary to
compute the children merge sequence. Other things to con-
sider include the use of XML schema to improve correctness
of merging, incorporating the use of hash values for elements
when there exist no UIDs in all three documents, and allow-
ing the user to specify whether the order of attributes should
be preserved. Finally, the evaluation experiment could be
expanded to a larger set of simulated documents so that any
doubt about the relevance of the performance results could
be eliminated.

In the area of applications, the XML three-way merge
algorithm is now part of a set of XML versioning tools on
which we have based other software. We have constructed
version control tools for software product line engineer-
ing [35] that use the same versioning infrastructure. In other
work, we have developed a new add-on structure for XML
documents that places a version history inside each docu-
ment file and we call the resulting file format version aware
documents [36]. The add-on structure uses XML namespaces
to include a preamble with the version history and a set of
UIDs on the document nodes. We are now modifying Libre-
Office [37] to accept our format in order to demonstrate that
version aware documents are practical and that realistic sys-
tems will not require radical changes to support them [38].
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