
Comput Sci Res Dev
DOI 10.1007/s00450-011-0193-x

S P E C I A L I S S U E PA P E R

Towards an energy-aware scientific I/O interface

Stretching the ADIOS interface to foster performance analysis and energy awareness

Julian M. Kunkel · Timo Minartz · Michael Kuhn ·
Thomas Ludwig

© Springer-Verlag 2011

Abstract Intelligently switching energy saving modes of
CPUs, NICs and disks is mandatory to reduce the energy
consumption.

Hardware and operating system have a limited perspec-
tive of future performance demands, thus automatic control
is suboptimal. However, it is tedious for a developer to con-
trol the hardware by himself.

In this paper we propose an extension of an existing I/O
interface which on the one hand is easy to use and on the
other hand could steer energy saving modes more efficiently.
Furthermore, the proposed modifications are beneficial for
performance analysis and provide even more information to
the I/O library to improve performance.

When a user annotates the program with the proposed in-
terface, I/O, communication and computation phases are la-
beled by the developer. Run-time behavior is then character-
ized for each phase, this knowledge could be then exploited
by the new library.

Keywords Scientific I/O API · Energy efficiency ·
ADIOS · Performance analysis · Performance optimization

1 Introduction

Newer hardware devices offer sophisticated power manage-
ment with various states—each with different energy and

J.M. Kunkel (�) · T. Minartz · M. Kuhn
Department of Informatics, University of Hamburg, Hamburg,
Germany
e-mail: kunkel@dkrz.de

T. Ludwig
DKRZ GmbH & Department of Informatics, University
of Hamburg, Hamburg, Germany

performance characteristics. Aim of those energy saving
modes is to reduce the energy footprint. Some of these ca-
pabilities are hidden within the device while others are dis-
closed to the operating system via an interface. For instance,
when a CPU is idle in modern processors the microarchi-
tecture reduces the voltage and frequency automatically or
turns off parts of the electronic by putting it into a so-called
C-State. In the same fashion storage and communication
subsystems can be put into energy saving modes.

It is mandatory to switch the states intelligently, be-
cause switching between two states takes some time—while
changing CPU states is fast, changing the state of a hard
disk and network device is in the order of seconds. Usu-
ally, the operating system manages the state of deep sleep
of CPU, network and communication devices to ensure they
are available to process their work when needed. As the op-
erating system does not know the future workload, often
historic knowledge about the utilization is extrapolated to
the future. For example, a disk is spun down when it was
idle for 10 minutes. In High Performance Computing (HPC)
even small interruptions, for example, by changing energy
saving modes of a CPU, can cause noise which could hin-
der synchronization with 1000 other processors, thus those
hardware capabilities are often disabled.

Developers on the other hand, can predict the activity of
their program more accurately. This especially true in HPC
environments, where in most cases only one application runs
on one node. Therefore, if the developer indicates the future
activity to the operating system, the operating system can
control those devices in an efficient manner.

However, developers do not see the need to instrument
the code to trigger specific hardware energy modes. There-
fore, we leverage an existing I/O interface, requiring less
code rewrite by the developers. Also, the I/O interface will
benefit by those extensions because it can perform back-

mailto:kunkel@dkrz.de


J.M. Kunkel et al.

ground operations more efficiently. In detail, we propose
to combine the CIAO API into the existing ADIOS inter-
face.1 In brief, ADIOS replaces existing interfaces aiming
to improve I/O performance and usability. It is already used
in large scale scientific applications. Small modifications to
the ADIOS API enable us to control the energy modes of
the devices automatically. Additionally, those interfaces also
strengthen performance analysis.

When a user annotates the program with the proposed
CIAO interface, I/O, communication and computation pha-
ses are labeled by the developer. On the one hand this in-
formation is exploited by ADIOS to optimize the I/O—for
example, by performing write-behind—, on the other hand
it could assist performance analysis—that is, users could as-
sess phases individually. Lastly the interface could announce
expected utilization to the OS which in turn could control the
hardware accordingly.

Seeing all the potential gains by such an API developers
could be convinced to instrument their code accordingly.

The structure of this paper is as follows. In Sect. 2, re-
lated work and the state of the art are discussed. The orig-
inal ADIOS interface is presented in detail in Sect. 2.1. In
Sect. 3, the proposed interface extension is introduced. Ben-
efits for trace analysis tools and energy-saving mechanisms
are discussed in Sects. 4 and 5. In Sect. 6, the paper is con-
cluded and ideas for future work are presented.

2 Related work

As the aspects covered by this paper are threefold, related
work on controlling energy saving modes, performance
analysis and the parallel I/O interface ADIOS is provided.

Our project—called Energy-Efficient Cluster Computing
[14]2—aims at making high performance computing more
efficient with respect to economic and ecological aspects.
Its basic idea is to determine relationships between the be-
havior of parallel programs and their impact on the energy
consumption of the underlying compute cluster. Strategies
will be developed to reduce the energy consumption with as
little impact as possible on program performance. In addi-
tion to measuring and analyzing program behavior our tools
will be enhanced to record energy-related metrics as well.
Based on this new energy efficiency analysis, the users can
insert energy control calls into their applications which will
allow the operating system and the cluster job scheduler to
control the cluster hardware in an energy-efficient way. This
paper is supplementary to the eeClust project, the introduced

1Although, CIAO can be considered an extension of ADIOS, for clari-
fication we use the term CIAO to refer to it.
2eeClust—http://www.eeclust.de/.

API will control the hardware with the services provided by
eeClust.

Next, related work for performance analysis of parallel
application is briefly mentioned. The localization of an per-
formance issue on a existing system is a process in which
a hypothesis is supported by measurement and theoretic
considerations—in praxis due to the complexity of the soft-
ware mostly measurements are conducted. Measurements
are performed by executing the program while monitoring
run-time behavior of the application and the system.

Popular post-mortem performance analysis tools are
TAU [17], Vampir [9] and Scalasca [4]. All of those tools
provide several ways to assist a developer to assess appli-
cation behavior. Typically, a GUI visualizes the actual be-
havior of the individual processes over time, or it summa-
rizes system metrics for each function in a so called pro-
file. Periscope [5] and PerfExpert [1] are automatic tools
which perform online scans of performance properties—
appropriate metrics are measured and evaluated directly,
ultimately locating the bottlenecks to some extent. Many
performance analysis tools allow to group a sequence of in-
structions together in a phase with a user-defined label. For
example, with TAU profiles can be created per phase, thus
the user can analyze phases of different activity separately.

These profiles or trace files can further be examined in
terms of energy efficiency. Free et al. [3] divide the trace
files into blocks whereat a block is a set of executed state-
ments demarcated by MPI operations and memory pres-
sure3 changes. Two adjacent blocks are merged into a phase
if their corresponding memory pressure is within the same
threshold. They execute each phase with different DVFS set-
tings and select the right setting based on a user-weighted
energy-time trade off. Hotta et al. [6] use the same approach,
but they use the EDP (Energy Delay Product) as the metric
for selecting the right setting. Further they instrument their
application manually into phases.

To identify the (low utilization) phases it is also possible
to monitor performance counters [2], to analyze the current
MIPS of the processor [7] or to perform an interval based
workload characterization based on processor stall cycles
due to off-chip activities [8]. There are many further ap-
proaches for phase-detection, but this is out of the scope of
this work.

2.1 ADIOS interface

The Adaptable IO System (ADIOS) [10, 11] provides an ab-
stract I/O API and library, which decouples application logic
from the actual I/O setting. Several best practices are re-
alized within the ADIOS library to increase usability and

3Memory pressure changes are indicated by L3 cache misses.

http://www.eeclust.de/


Towards an energy-aware scientific I/O interface

performance, for instance aggressive write-behind is per-
formed, and MPI collectives transfer file information to de-
crease the burden on metadata servers.

By using the API the developer specifies the variables
and attributes which should be accessed in an XML file, a
tool generates C or Fortran code to call the library. Each
write call is annotated in ADIOS with names which can be
referred to in the XML file. The amount of data accessed,
datatype4 and further attributes are defined in the XML.

The I/O interface and parameters for file access to per-
form the actual I/O are selected in the XML file, too. Avail-
able modules include NetCDF, HDF5, MPI (collective or
independent), POSIX and several asynchronous staging
modules. Settings can be defined without changing code, for
example, the buffer size can be altered. An advantage of the
decoupling of the underlying I/O procedure is that the best
fitting implementation can be selected for a group of files—
on one system the POSIX interface shows best performance,
while on another system the MPI module is advantageous.
It is also possible to specify the NULL method which dis-
cards I/O.

Moreover, data could be forwarded to a visualization
system—even multiple I/O methods can be selected to visu-
alize and store data at the same time. Similar to SIONlib, the
system is capable to either write a shared file or to split log-
ical I/O into several file system objects, therefore, the new
BP file format is proposed. ADIOS ships tools to edit and
convert BP files into HDF5 and NetCDF files.

The API provides functions to the programmer to in-
dicate when the computation starts or ends, or where
the scientific application main loop occurs (adios_end_
iteration()) to indicate the speed of an iteration. On the
one hand, this enables efficient write-back of data to the
servers without disturbing application communication, on
the other hand the pace in which data is created and writ-
ten back is announced to the library. Concluding, ADIOS
provides a completely new API in which the programmer
is forced to deal with I/O related aspects consciously—but
due to the XML system, optimizations are possible without
source code modifications.

In Listing 1 an MPI example is sketched in which an iter-
ative algorithm loops through computation, communication
(here MPI_Barrier()) and then writes the computed re-
sults into the file “testfile.bp”—the data types are defined
in the group “fullData”. Accessed data is a 3-dimensional
matrix, the dimensions are defined in the NX, NY and NZ
variables respectively. The write calls to store one iteration
of the data are automatically generated from the XML file by
a tool (see Listing 2). Once every 5 iterations a checkpoint is
written which contains also the whole data—for simplicity

4Elementary datatypes and arrays of arbitrary dimension are supported.

the same data is written in this example, in a more realistic
example the checkpoint would contain all variables needed
to restart the application.

Listing 3 shows the XML file which defines two I/O
groups, the “fullData” group contains a time-series and the
variables NX, NY, NZ and the matrix. An attribute describ-
ing the data in more detail is also given. Datatypes of each
variable and the corresponding names in the file and the
C code (gwrite attribute) are defined. ADIOS is capable to
automatically generate histograms from the data—the his-
togram is generated for each stored group, in our case for
each timestep of the full matrix, this can be done by spec-
ifying the analysis tag in the XML file, again without re-
compiling the application. For each group the I/O method
is defined, here both, the “checkpoint” and “fullData” group
use the MPI backend, we could replace that with POSIX or
NULL to discard all I/O. In the last tag the size of the write-
behind buffer is given.

Listing 1 Sketched ADIOS code
1 #include <stdio.h>
2 #include <string.h>
3 #include "mpi.h"
4 #include "adios.h"
5
6 int main (int argc, char** argv) {
7 int rank, size, i, j, k, t;
8 int NX = 10, NY = 10, NZ = 100;
9
10 double matrix[NX][NY][NZ];
11
12 MPI_Comm comm = MPI_COMM_WORLD;
13
14 int adios_err;
15 uint64_t adios_groupsize, adios_totalsize;
16 int64_t adios_handle;
17
18 MPI_Init(&argc, &argv);
19 MPI_Comm_rank(comm, &rank);
20
21 adios_init("example.xml");
22
23 for (t = 0; t < 10 ; t++) {
24 adios_start_calculation();
25 /* computation */
26 adios_stop_calculation();
27
28 /* MPI communication */
29
30 adios_open(&adios_handle, "fullData", "testfile.bp", t == 0 ? "w":

↪→ "a", &comm);
31 #include "gwrite_fullData.ch"
32 adios_close(adios_handle);
33
34 if (t == 5) {
35 adios_open(&adios_handle, "checkpoint", "testfile.bp", "a",

↪→ &comm);
36 #include "gwrite_checkpoint.ch"
37 adios_close(adios_handle);
38 }
39
40 /* indicate progress for write-behind */
41 adios_end_iteration();
42 }
43
44 adios_finalize(rank);
45
46 MPI_Finalize();
47
48 return 0;
49 }

Listing 2 ADIOS example code—gwrite_fullData.ch
1 adios_groupsize = 4 \
2 + 4 \
3 + 4 \
4 + 8 * (NX) * (NY) * (NZ);
5 adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
6 adios_write (adios_handle, "NX", &NX);
7 adios_write (adios_handle, "NY", &NY);
8 adios_write (adios_handle, "NZ", &NZ);
9 adios_write (adios_handle, "matrix_data", matrix);



J.M. Kunkel et al.

Listing 3 ADIOS example code XML file
1 <?xml version="1.0"?>
2 <adios-config host-language="C">
3 <adios-group name="fullData" coordination-communicator="comm"

↪→ time-index="iteration">
4 <var name="NX" type="integer"/>
5 <var name="NY" type="integer"/>
6 <var name="NZ" type="integer"/>
7 <attribute name="description" path="/fullData" value="Global array

↪→ of memory data" type="string"/>
8 <var name="matrix_data" gwrite="matrix" type="double"

↪→ dimensions="iteration,NX,NY,NZ"/>
9 </adios-group>
10
11 <analysis adios-group="fullData" var="matrix_data" min="0"

↪→ max="3000000" count="30"/>
12
13
14 <adios-group name="checkpoint" coordination-communicator="comm">
15 <var name="NX" type="integer"/>
16 <var name="NY" type="integer"/>
17 <var name="NZ" type="integer"/>
18 <var name="matrix_data" gwrite="matrix" type="double"

↪→ dimensions="NX,NY,NZ"/>
19 </adios-group>
20
21 <method group="fullData" method="MPI"/>
22 <method group="checkpoint" method="MPI"/>
23
24 <buffer size-MB="80" allocate-time="now"/>
25 </adios-config>

3 CIAO interface

The CIAO interface and library extends ADIOS in some im-
portant aspects, specifically computation phases and com-
munication phases are now annotated by the user. Further it
stretches the concept of so-called phases into named phases.
A phase is a sequence of code with one goal specified by its
label, repeated invocations of the same phase should show
similar characteristics in respect to computation, I/O and
communication. Depending on the bottleneck, phases are
classified into computation bound, I/O bound or commu-
nication bound. CIAO also should maintain information to
characterize the phase, that is, the demand on CPU, network
and I/O resources and the estimated length of the phase.
More information about the characterization of phases is
found in Sect. 3.2.

The original ADIOS only provides the adios_end_

iteration() function to indicate the end of an iteration.
Obviously, this only works for application with very regular
iterations. Doing pre-processing, post-processing or check-
pointing every n iterations can not be handled in this way.
Introducing phases allows the library to make better predic-
tions by delivering more information about the application’s
structure. For example, the library could detect that every n-
th iteration a checkpoint is written. This could be used to do
write-behind over the next n iterations if no communication
is happening at the same time.

Calculation and I/O is associated with exactly one
phase. The calculation phase is indicated with the new
function ciao_start_calculation(), which takes the
phase name as its only argument. The I/O phase is indi-
cated implicitly by using the group name provided in the
appropriate ciao_open() call. The ciao_open() and
ciao_close() functions are just thin wrappers around the
ADIOS counterparts.

Because the end of the iteration can be detected by using
the calculation phase, this also makes it possible to remove
the need for adios_end_iteration(). That is, whenever
a previously seen calculation phase is entered again, the it-
eration has ended. With the calculation and I/O phases po-
tential communication phases are implicitly derived.

Listing 4 shows the application from Listing 1 modi-
fied to use the CIAO interface. In lines 3–5, ciao_open()
and ciao_close() are used read the input data. ciao_
start_calculation() and ciao_end_calculation()
is used in lines 7–9 to indicate that some form of calcu-
lation is happening during the pre-processing phase.
In line 12, adios_start_calculation() is replaced by
ciao_start_calculation() to signify the start of the
iteration phase. This phase is then ended by
ciao_end_calculation() in line 14. Communication
phases are indicated by ciao_start_communication()

and end respectively. By using the additional knowledge
provided by the ciao_open() calls in lines 20 and 25 it
is possible to handle these I/O operations more efficiently.
The code blocks on lines 31–33 and 35–37 work analogous
to the input and pre-processing blocks.

Listing 4 CIAO example code
1 adios_init("example.xml");
2
3 ciao_open(...);
4 /* read input */
5 ciao_close(...);
6
7 ciao_start_calculation("pre-processing");
8 /* pre-process input */
9 ciao_end_calculation();
10
11 for (t = 0; t < 10 ; t++) {
12 ciao_start_calculation("iteration");
13 /* computation */
14 ciao_end_calculation();
15
16 ciao_start_communication("exchange-neighbor");
17 /* communication */
18 ciao_end_communication();
19
20 ciao_open(&adios_handle, "fullData", "testfile.bp", t == 0 ? "w": "a",

↪→ &comm);
21 #include "gwrite_fullData.ch"
22 ciao_close(adios_handle);
23
24 if (t == 5) {
25 ciao_open(&adios_handle, "checkpoint", "testfile.bp", "a", &comm);
26 #include "gwrite_checkpoint.ch"
27 ciao_close(adios_handle);
28 }
29 }
30
31 ciao_start_calculation("post-processing");
32 /* post-process output */
33 ciao_end_calculation();
34
35 ciao_open(...);
36 /* write output */
37 ciao_close(...);
38
39 adios_finalize(rank);

3.1 Triggered activity by the library

The relation between the phases and potentially triggered
activity of CIAO is shown in Table 1.

During an I/O phase data is either read or written, in case
data is read, then the actual data must be requested from
the (parallel) file system. ADIOS aims to cache write oper-
ations to enable write-behind during the iterative computa-
tion phase—during a computation bound phase the network



Towards an energy-aware scientific I/O interface

Table 1 Process phases and
triggered activity Phase bottleneck I/O activity Network activity Potential energy

savings

Computation – Write-behind to I/O servers I/O and NIC

Communication – – I/O and CPU

Input/Output Access data and/or buffer data Read data if necessary CPU and NIC

is not utilized, thus the data can be staged to the I/O servers.
In case the buffer does not suffice to keep all data, then it is
forced to actually write data in the I/O phase, thus commu-
nication to the servers is needed.

When a communication phase starts, that is, no compu-
tation happens, then all background activity must pause un-
til the communication phase completes—this ensures that
communication bandwidth is available to potential commu-
nication activity.

CIAO exploits this information by triggering energy
modes of (un)required devices for a phase. During commu-
nication and I/O phases usually the CPU is not utilized to a
high extent, thus, the frequency could be reduced via DVFS.
ADIOS aggressively caches data for write-behind and tries
to write-out data during computation phases, once the data
is staged on the I/O servers NICs and I/O devices could be
put into an energy saving mode (often energy saving modes
are also referred to as ACPI Device Power States).

For devices such as disks and NICs of some network
technology which require seconds to change states it is im-
portant to estimate the benefit before the state change is trig-
gered. Therefore, the time until the device is needed again
must be approximated and indicated by CIAO. More details
about how CIAO fosters energy efficiency are provided in
Sect. 5.

3.2 Characterization of phases

In order to control the devices appropriately characteristics
of phases must be available in CIAO. Two kind of phases
can be distinguished: a regular phase shows very predictable
characteristics and varies only slightly, thus it can be esti-
mated easily by using little historic knowledge, for example
just using the last characteristics might be a very good ap-
proximation. However, irregular phases reveal major differ-
ences in their characteristics depending on the state of the
program. For instance, this could be caused by repartition-
ing of the workloads in finite element methods or by load-
balanced applications.

There are two methods to tackle this issue, either the user
provides hints to the characteristics or CIAO detects charac-
teristics by itself. The former requires the user to carefully
indicate bottlenecks and thus bears a burden to the user. The
latter is problematic for irregular patterns, because there is
a magnitude of potential patterns. Thus, we propose that the

user can provide hints to CIAO via the XML file to indi-
cate the estimation module which is used for approxima-
tion. Those hints could be embedded into the ADIOS XML
as illustrated in Listing 5—for each phase the estimation
method is selected. General characteristics of the estimation
are specified as attributes of the estimation tag. To estimate
valuable switches CIAO must not understand the cost for
switching between states of the hardware, however, this in-
formation must be available (for example in the eeClust dae-
mons). Thus, CIAO just tells the daemons an estimate for the
duration in which a resource is not used and how much per-
formance is needed, then the daemon switches the device
states if profitable. It is possible to compute the threshold
within CIAO, though.

Several modules are envisioned, to give an impression: a
NULL module which does not trigger any background op-
eration and prohibits to change into energy saving states.
This avoids estimates in case almost random behavior is ex-
pected. The MIN module measures the duration and uses
the minimum time observed during the runtime as an esti-
mate for the future duration. Thus, MIN is useful for regular
patterns and it tries not to overestimate characteristics. With
HISTORIC statistics are stored into a file (or database) and
are reused for subsequent invocations of the program, sim-
ilar to profile-guided-optimization. This is very useful if an
application is run repeatedly with similar parameters.

With the debug attribute, statistics or debugging infor-
mation of the phases can be printed at program termination,
it is also possible that a module warns the user if the as-
sumption provided in the XML file do not hold, that is, the
historic knowledge does not match the observations.

Fast transitions between phases bear a problem to the in-
terface, as the I/O and energy hints change rapidly which
causes overhead and prohibits switching of energy met-
rics. This could also be mitigated by wrapping the medium-
grained phases into larger phases including the bottlenecks.5

In our example for instance, both, the checkpointing and it-
erative write-out could be wrapped into ciao_start_io()
and ciao_end_io(), this way the indicated energy hints
could be reduced. Also, characteristics for the projected se-
quence of phases could be estimated guided by the tran-
sitions between phases. Those inter-phase statistics could

5Remember that it is allowed to perform little communication and/or
computation in all phases.



J.M. Kunkel et al.

be handled by additional modules, a STOCHASTIC module
for instance could estimate the probability for transitions to
other phases and if the phases transits to another phase in
more cases than specified in the threshold, then the transi-
tion is performed and lengthens the current phase.

There is much literature available in which the estimation
of application runtimes is investigated with historic knowl-
edge, for instance in [15, 18]. Also, machine learning has
been applied to provide better estimates of future invoca-
tions. Several approaches exist to merge phases together,
however, in contrast to our proposed extension they are all
built either on artificially introduced “phases” or onto new
interfaces, and are not part of an approach which is espe-
cially designed to improve I/O performance. Thus, all those
mechanisms could be integrated into CIAO.

Listing 5 CIAO XML snippet specifying phase estimators
1 <adios-config host-language="C">
2 ...
3 <buffer size-MB="80" allocate-time="now"/>
4 ...
5
6 <estimation debug="statistics">
7 <inter-phase method="STOCHASTIC" accept-threshold="95%">
8 <phase name="iteration" method="MIN"/>
9 <phase name="post-processing" method="HISTORIC"/>
10 <estimation/>
11 </adios-config>

4 Benefit for analysis tools

The concept of phases allows usability improvements in
trace analysis tools like Sunshot, Vampir or gprof. The
phases can be integrated into the traces and then used by the
respective tool to present a more user-friendly output. For
example, Fig. 1 shows the visualization of an application as
produced by the tool Sunshot. As can be seen, the vertical
lines show the beginning (and end) of each iteration. Addi-
tionally, a checkpointing phase can be observed. This infor-
mation can be added automatically using the knowledge of
the application’s phases as recorded by the CIAO interface.

It is also possible to use the additional information to re-
duce noise when analyzing traces. Because the length and
structure of each phase is known, (mostly) identical itera-
tions can be skipped, showing only deviant ones to the end-
user. For example, this can be useful when analyzing load
imbalances, because it allows the user to concentrate on the
interesting parts of the trace without having to manually find
them.

In tools which analyze code metrics such as time, hard-
ware counters or energy metrics the instrumentation of
phases enables to aggregate those metrics within certain
phases. Further, phases could be analyzed with statistical
methods. For instance profiling tools like gprof could visu-
alize the time spent in each phase (see Listing 6).

Some performance analysis tools already offer the ca-
pability to identify repeated phases and cluster data, yet

Fig. 1 Tracing MPI activity and node power consumption

they usually do this by looking at the hardware counters
and/or function invocation order. The named phases intro-
duced with CIAO are provided by the user and thus allow
clustering on a higher abstraction with semantics defined by
the user, yet the user must not instrument the library just for
the purpose of performance analysis.

Listing 6 Proposed gprof output
1 Phase profile
2
3 Overview
4 % cumulative self self
5 time seconds seconds calls s/call phase name
6 60.08 48.06 48.06 10 4.80 iteration
7 20.02 64.08 16.02 2 8.01 checkpoint
8 10.04 72.11 8.03 10 0.80 exchange-neighbor
9 8.02 78.53 6.42 1 6.42 post-processing
10 1.80 79.97 1.44 1 1.44 pre-processing
11 0.04 80.00 0.03 - 0.03 [unlabeled]
12
13 Phase "iteration"
14 % cumulative self self total
15 time seconds seconds calls s/call s/call name
16 69.37 33.33 33.33 10 18.62 33.33 calculateValues
17 30.63 48.06 14.72 10 14.72 14.72 calculateOffset
18
19 Phase "checkpoint"
20 % cumulative self self total
21 time seconds seconds calls s/call s/call name
22 100.00 20.02 20.02 2 20.02 10.01 writeMatrix
23 ...

5 An interface fostering energy efficiency

From an energy efficiency point of view the additional infor-
mation provided by the developer can be used to make better
decisions when setting hardware device states. For example,
spinning up and down hard disk drives takes a considerable
amount of time. Their energy consumption is also higher
during this period. Thus, it only makes sense to do this if
they are not used for an extended period of time.

Using the knowledge of the application’s phases, it is
possible to predict whether possible actions are beneficial
or not. A major goal is to identify the phases where switch-
ing to low power modes is profitable—for example in case
of device idleness, memory-boundness or busy-waiting. The
energy consumption to turn into another energy saving mode
and to transit into the required mode for the next phase
must be computed and compared with the savings during



Towards an energy-aware scientific I/O interface

a phase—if the latter dominates, then switching energy sav-
ing mode is advisable. In brief, the minimal power consump-
tion without reducing the time to complete the operation is
searched—components only switch to a lower energy saving
mode if the component utilization is below a certain thresh-
old and can be woken up before more performance is re-
quired.

The decision whether a component switches to another
energy saving mode depends on different factors: The du-
ration of the phase, the power saving potential of the
state change (Pdiff , difference of power consumption be-
tween power saving states), the duration of the state change
(tchange , which is the time to switch to the better energy
saving mode of this phase and the energy saving mode re-
quired by the next phase) and the energy of the state change
(Echange, the sum of both changes). Note that in case the
saving mode of the next state can not be anticipated, then
the maximum performance state must be chosen. With these
values the minimal duration of the phase tphase can be calcu-
lated, for which switching energy saving mode is advicable
(see 1). In case the selected mode matches the requirements
of the phase, that is, if CIAO manages to estimate the per-
formance demand correctly, then those transitions do not
increase wall-clock time. Some more details about changing
states are available in [13].

tphase = Echange

Pdiff

+ tchange (1)

The identification of phases is partly addressed by the
developer, who indicates the areas of demand with CIAO,
which estimates the duration and characteristics of those
phases. If CIAO detects that during an I/O phase only
buffered writes happen, then the disk can still be off dur-
ing that phase, while an I/O phase which performs read op-
erations will need an active I/O subsystem. Also, with the
knowledge of the phases it is possible to reduce performance
of the components according to the demand, for example,
the CPU frequency while checkpointing [12].

With profund knowledge about the future phases (as dis-
cussed in Sect. 3.2) characteristics of those could be incor-
porated into the calculation. As this would lengthen the time
in which devices are not required with maximum perfor-
mance this knowledge would enable to control devices even
better.

5.1 Saving energy by controlling hardware

To identify the general power saving potential, we measured
the hardware of our power-aware cluster in multiple operat-
ing and idle states. Our cluster consists of five dual socket
Intel Nehalem (Xeon X5560, 4 cores + Hyperthreading)
and five dual socket AMD Magny-Cours (Opteron 6168, 12
cores) computing nodes. Each of the processors is DVFS

Fig. 2 Idle power consumption for Opteron and Xeon nodes depend-
ing on hardware device states

enabled and supports multiple performance states (P-States)
and idle states (C-States). Further the hard disks6 and the
network interface cards7 of each node support transitions to
low power or reduced performance states (D-States). Addi-
tionally, the cluster has two I/O subsystems with five disks,
one with HDDs and one with SSDs. The computation nodes
and the I/O nodes are connected with Gigabit Ethernet.
To measure the power consumption of the hardware, each
node and the Gigabit switch are connected to ZES LMG450
high precision power meters with a accuracy of about 0.1%.
The power consumption of each node is stored in a database
on the head node, to whom all power meters are connected
via serial ports.

Figure 2 visualizes the measured power savings for our
specific hardware for an idle node [12]. For the Opteron
nodes, we can save up to about 11% power while we can
save about 18% with the Xeon nodes. Switching the device
state of network card and disk result in a decreased power
consumption of about 6% compared to using only frequency
scaling. Adjusting the processor frequency only seems to be
promising in phases of load imbalance, MPI communica-
tion, I/O or memory-boundness, because the performance
decreases faster than the energy-efficiency increases. This
should be even more the case for the network card, be-
cause the power consumption decreases to 40% while the
speed decreases to 10% (when switching from 1000 Mbit to
100 Mbit, switching to 10 Mbit is even worse, see Table 3).
Entering the sleep state of the disk makes sense only if the
disk is idle for a longer period of time. Unfortunately, there
are only two sleep states (standby and sleep) supported, yet.
But when entering the sleep mode, the disk can reduce its
power consumption to about 18% (see Table 2).

6http://www.seagate.com/staticfiles/support/disc/manuals/desktop/
Barracuda%207200.12/100529369b.pdf.
7http://download.intel.com/design/network/datashts/82574.pdf.

http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369b.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369b.pdf
http://download.intel.com/design/network/datashts/82574.pdf


J.M. Kunkel et al.

Table 2 Seagate Barracuda ST3500418AS power consumption

Mode Power (W)

Idle 5.0

Operating 6.57

Standby 0.79

Sleep 0.79

Table 3 Intel 82574 NIC power consumption

Speed (Mbit/s) Power active (mW) Power idle (mW)

1000 878 642

100 351 190

10 416 167

no link – 44

Table 4 Transition times

Transition Time (milliseconds)

CPU P-State 0.01

NIC Speed 4000

Disk Spinup 8500

Table 4 shows the transition times of the manageable de-
vices. Each P-State transition of the processor takes about
10000 nanoseconds as estimated by common operating sys-
tems. A speed change of the network card results in a tran-
sition time of about 4 seconds, independent of the concrete
transition. The transition time for the disk is even higher,
about 8.5 seconds.

Taking the device state power consumption and the tran-
sition time into account, energy savings with slight per-
formance degradation is possible for HPC applications as
shown in recent works [3, 6, 13, 16].

6 Conclusion and future work

In summary, it is safe to say that high-level interfaces like
ADIOS and CIAO offer great possibilities to provide even
better support for trace analysis and energy saving while re-
quiring very little additional work from the application de-
velopers. A huge portion of the necessary information can be
inferred from the normal ADIOS and CIAO calls. With the
extensions to mark computation and communication dom-
inant phases background I/O activity could be scheduled
even more efficiently than with ADIOS.

A future goal is to modify the ADIOS interface to sup-
port the proposed CIAO extensions. The preliminary work
described in this paper is just a first step towards integration.

Proposed extension would make it possible to use energy-
saving mechanisms like those developed by the eeClust
project without additional instrumentation. Further research
to automatically detect phase transitions and for phase char-
acterization can be inferred from existing projects and inte-
grated into the system.

Acknowledgements This work has been partially funded by the
BMBF (German Federal Ministry of Education and Research) under
grant 01|H08008E within the call: “HPC-Software für skalierbare Par-
allelrechner.”

References

1. Burtscher M, Kim BD, Diamond J, McCalpin J, Koesterke L,
Browne J (2010) Perfexpert: An easy-to-use performance diag-
nosis tool for HPC applications. In: Proceedings of the 2010
ACM/IEEE international conference for high performance com-
puting, networking, storage and analysis, SC ’10. IEEE Computer
Society, Washington, DC, pp 1–11. doi:10.1109/SC.2010.41

2. Freeh V, Lowenthal D, Pan F, Kappiah N, Springer R, Rountree
B, Femal M (2007) Analyzing the energy-time trade-off in high-
performance computing applications. IEEE Trans Parallel Distrib
Syst 8:1575–1590

3. Freeh VW, Lowenthal DK (2005) Using multiple energy gears in
MPI programs on a power-scalable cluster. In: PPoPP ’05: Pro-
ceedings of the tenth ACM SIGPLAN symposium on principles
and practice of parallel programming. ACM, New York, pp 164–
173. doi:10.1145/1065944.1065967

4. Geimer M, Wolf F, Wylie BJN, Abraham E, Becker D, Mohr B
(2010) The Scalasca performance toolset architecture. Concurr
Comput 22(6):277–288

5. Gerndt M, Ott M (2010) Automatic performance analysis with
periscope. Concurr Comput 22:736–748. doi:10.1002/cpe.v22:6

6. Hotta Y, Sato M, Kimura H, Matsuoka S, Boku T, Takahashi D
(2006) Profile-based optimization of power performance by using
dynamic voltage scaling on a PC cluster. In: IPDPS ’06: proceed-
ings of the 20th international parallel and distributed processing
symposium (2006). doi:10.1109/IPDPS.2006.1639597

7. Hsu CH, Feng WC (2005) A power-aware run-time system for
high-performance computing. In: SC ’05: proceedings of the 2005
ACM/IEEE conference on Supercomputing. IEEE Computer So-
ciety, Washington, pp 1. doi:10.1109/SC.2005.3

8. Huang S, Feng W (2009) Energy-efficient cluster computing via
accurate workload characterization. In: CCGRID ’09: proceedings
of the 2009 9th IEEE/ACM international symposium on cluster
computing and the grid. IEEE Computer Society, Washington, pp
68–75. doi:10.1109/CCGRID.2009.88

9. Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M, Mickler
H, Müller MS, Nagel WE (2008) The Vampir performance anal-
ysis tool-set. In: Tools for high performance computing, proceed-
ings of the 2nd international workshop on parallel tools. Springer,
Berlin, pp 139–155

10. Lofstead J, Klasky SKS, Podhorszki N, Jin C (2008) Flex-
ible IO and integration for scientific codes through the
adaptable IO system (ADIOS). http://www.adiosapi.org/uploads/
clade110-lofstead.pdf

11. Lofstead J, Zheng F, Klasky S, Schwan K (2009) Adaptable,
metadata rich IO methods for portable high performance IO. In:
Proceedings of IPDPS’09, May 25–29, Rome, Italy. Springer,
Berlin

http://dx.doi.org/10.1109/SC.2010.41
http://dx.doi.org/10.1145/1065944.1065967
http://dx.doi.org/10.1002/cpe.v22:6
http://dx.doi.org/10.1109/IPDPS.2006.1639597
http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1109/CCGRID.2009.88
http://www.adiosapi.org/uploads/clade110-lofstead.pdf
http://www.adiosapi.org/uploads/clade110-lofstead.pdf


Towards an energy-aware scientific I/O interface

12. Minartz T, Knobloch M, Ludwig T, Mohr B (2011, will be pub-
lished) Managing hardware power saving modes for high perfor-
mance computing

13. Minartz T, Kunkel J, Ludwig T (2010) Simulation of power con-
sumption of energy efficient cluster hardware. Comput Sci Res
Dev 25:165–175. doi:10.1007/s00450-010-0120-6

14. Minartz T, Molka D, Knobloch M, Krempel S, Ludwig T, Nagel
W, Mohr B, Falter H (2011, will be published) eeClust—Energy-
efficient cluster computing

15. Minh TN, Wolters L (2010) Using historical data to pre-
dict application runtimes on backfilling parallel systems. In:
Euromicro conference on parallel, distributed, and network-
based processing, pp 246–252. http://doi.ieeecomputersociety.
org/10.1109/PDP.2010.18

16. Rountree B, Lowenthal DK, Funk S, Freeh VW, de Supin-
ski BR, Schulz M (2007) Bounding energy consumption in
large-scale MPI programs. In: SC ’07: proceedings of the 2007
ACM/IEEE conference on supercomputing. ACM, New York, pp
1–9. http://doi.acm.org/10.1145/1362622.1362688

17. Shende SS, Malony AD (2006) The tau parallel performance
system. Int J High Perform Comput Appl 20(2):287–311.
http://doi.acm.org/10.1007/s00450-011-0193-x

18. Smith W, Foster IT, Taylor VE (1998) Predicting applica-
tion run times using historical information. In: Proceedings
of the workshop on job scheduling strategies for parallel
processing. Springer, London, pp 122–142. http://portal.acm.
org/citation.cfm?id=646379.689526

Julian M. Kunkel received his
M.Sc. degree in computer science
at the University of Heidelberg in
2007. Employed at the German
High Performance Computing Cen-
tre for Climate- and Earth System
Research he conducts research to
improve performance of parallel ap-
plications. His interests cover par-
allel file systems, MPI middleware,
and modeling of cluster systems’
performance.

Timo Minartz received his M.Sc.
degree in computer science at the
University of Heidelberg in 2009.
Now he is a research scientist at
the University of Hamburg and con-
tributes to the eeClust project. His
major research interests are energy-
efficiency aspects in high perfor-
mance computing.

Michael Kuhn received his M.Sc.
degree in computer science at the
University of Heidelberg in 2009.
Currently, he is employed at the
University of Hamburg and works
towards his Ph.D. His research in-
terests are in high performance in-
put/output, file systems and dis-
tributed systems in general.

Thomas Ludwig became Professor
at the Ruprecht-Karls-Universität
Heidelberg in 2001 and lead the
research group Parallel and Dis-
tributed Systems. Since 2009 he
is Professor at the university of
Hamburg and CEO of the German
High Performance Computing Cen-
tre for Climate- and Earth System
Research. His major research inter-
ests are high performance storage
and energy efficiency in HPC.

http://dx.doi.org/10.1007/s00450-010-0120-6
http://doi.ieeecomputersociety.org/10.1109/PDP.2010.18
http://doi.ieeecomputersociety.org/10.1109/PDP.2010.18
http://doi.acm.org/10.1145/1362622.1362688
http://doi.acm.org/10.1007/s00450-011-0193-x
http://portal.acm.org/citation.cfm?id=646379.689526
http://portal.acm.org/citation.cfm?id=646379.689526

	Towards an energy-aware scientific I/O interface
	Abstract
	Introduction
	Related work
	ADIOS interface

	CIAO interface
	Triggered activity by the library
	Characterization of phases

	Benefit for analysis tools
	An interface fostering energy efficiency
	Saving energy by controlling hardware

	Conclusion and future work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


