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Abstract Three-dimensional FFT is an important compo-
nent of many scientific computing applications ranging from
fluid dynamics, to astrophysics and molecular dynamics.
P3DFFT is a widely used three-dimensional FFT package.
It uses the Message Passing Interface (MPI) programming
model. The performance and scalability of parallel 3D FFT
is limited by the time spent in the Alltoall Personalized ex-
change (MPI_Alltoall) operations. Hiding the latency of the
MPI_Alltoall operation is critical towards scaling P3DFFT.
The newest revision of MPI, MPI-3, is widely expected
to provide support for non-blocking collective communica-
tion to enable latency-hiding. The latest InfiniBand adapter
from Mellanox, ConnectX-2, enables offloading of general-
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ized lists of communication operations to the network in-
terface. Such an interface can be leveraged to design non-
blocking collective operations. In this paper, we design a
scalable, non-blocking Alltoall Personalized Exchange al-
gorithm based on the network offload technology. To the
best of our knowledge, this is the first paper to propose high
performance non-blocking algorithms for dense collective
operations, by leveraging InfiniBand’s network offload fea-
tures. We also re-design the P3DFFT library and a sample
application kernel to overlap the Alltoall operations with
application-level computation. We are able to scale our im-
plementation of the non-blocking Alltoall operation to more
than 512 processes and we achieve near perfect computa-
tion/communication overlap (99%). We also see an improve-
ment of about 23% in the overall run-time of our modi-
fied P3DFFT when compared to the default-blocking ver-
sion and an improvement of about 17% when compared to
the host-based non-blocking Alltoall schemes.

Keywords Non-blocking collective communication -
InfiniBand network offload - 3DFFT - Alltoall personalized
exchange - Message passing interface (MPI)

1 Introduction

Current generation supercomputing systems are comprised
of thousands of compute nodes based on modern multi-core
architectures and high-speed interconnection networks that
offer low latencies and high bandwidth. Together, these sys-
tems are allowing scientists to scale their parallel applica-
tions across tens of thousands of processes. The Message
Passing Interface (MPI) [8] has been the dominant program-
ming model for the past couple of decades. It has undergone
some revisions, and the current standard version is 2.2. MPI
defines a set of collective operations that are used to commu-
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Fig. 1 Design space of collective algorithms

nicate data among a group of participating processes. The
performance of collective operations is very critical to the
overall scalability and performance of scientific parallel ap-
plications. Currently, MPI only defines blocking collective
operations, i.e. the application has to wait until the collec-
tive call completes. This limits the overall performance and
scalability of various scientific applications that extensively
rely on collective communication. This has spurred interest
in the design of non-blocking collective communication op-
erations in MPI. The upcoming version of MPI, MPI-3, de-
fines non-blocking collective communication operations to
achieve communication/computation overlap.

In Fig. 1, we present the design space of collective com-
munication algorithms. Current MPI implementations, such
as MPICH2, Open-MPI and MVAPICH?2 [9] rely on multi-
core aware algorithms to optimize the latency of blocking
collective operations across various systems [1, 10]. How-
ever, these schemes cannot offer overlap, because the col-
lective operations are defined to be blocking operations. To
overcome this limitation, researchers have explored host-
based designs to overlap computation with collective op-
erations. One of the major challenges of attempting over-
lap with collective operations is that the MPI communica-
tion stack needs to be progressed while the processors are
busy in computation. One of the obvious approaches is to
halt the computation on the processors and call MPI_Test
to progress communication [6]. While this approach pro-
vides some benefits, the MPI application developer has to
guess the correct number of times to call MPI_Test. Too
few calls result in poor communication/computation over-
lap. Too many calls will unnecessarily increase the overhead
of the MPI_Test calls. This is very hard to do in the context
of real applications because: i) the number of test calls varies
according to computation time and network speed, prohibit-
ing performance portability, and ii) the computation for the
application may be done within a third party library (such
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separate threads that call MPI_Test, as suggested in [5] and
schedule them on separate compute cores. However, this so-
lution reduces the number of compute cycles that are avail-
able to the application. We also expect the base latency of
these approaches to be higher than the optimized blocking
operations, owing to the costs associated with setting up
the schedules. This leads us to the broad challenge: Can
we design a scalable, high performance interface for non-
blocking collectives that delivers the best latency and over-
lap, in a portable manner?

Recently, Mellanox has introduced network offload fea-
tures in their ConnectX-2 [7] adapter. In [3, 4, 12], re-
searchers have explored various facets of this interface. Us-
ing this feature, generic lists of communication tasks can be
offloaded to the network interface. Such an interface elim-
inates the need for the host processor to progress commu-
nication and provides a low-level mechanism which can be
leveraged to design non-blocking collective communication
algorithms. However, in order to leverage the full benefits of
this low-level mechanism, MPI libraries must be designed
in a highly efficient manner.

The three-dimensional FFT (3D-FFT) is commonly used
in many scientific applications [2, 13]. 3D-FFT kernels typi-
cally perform large message MPI_Alltoall exchanges to im-
plement the transpose operations and spend nearly 50% of
their run-times in the MPI_Alltoall operations [13]. Hence,
the performance and scalability of these applications is
highly dependent on the choice of the MPI_Alltoall im-
plementation. We believe that overlapping the communica-
tion intensive MPI_Alltoall operation with application-level
computation holds much promise for improving the perfor-
mance and scalability of an entire class of such applications.
This challenge leads us to the following questions:

1. Is it possible to achieve near perfect communication/
computation overlap by offloading collective operations
to the network interface?

2. Can we leverage the InfiniBand network offload feature
to design the MPI_Ialltoall operation efficiently?

3. Can the throughput of applications be improved by over-
lapping communication with computation through our
proposed non-blocking designs?

4. Finally, can we re-design a 3-D FFT kernel to leverage
our proposed MPI_Ialltoall operation to achieve better
run-times?

In this paper, we present our designs for MPI_Alltoall
and MPI_Ialltoall (MPI-3 interface) operations that lever-
age the network offload feature offered by the Infini-
Band ConnectX-2 adapter. We also re-design a Parallel
Three-Dimensional Fast Fourier Transform (P3DFFT) [11]
library, to leverage our MPI_Ialltoall implementation to
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achieve communication/computation overlap. PA3DFFT is an
open-source library that implements three-dimensional FFT
algorithms and is based on the MPI programming model.
Our studies indicate that we are able to achieve an im-
provement of about 23% in the overall application run-time,
compared to the default blocking version and about 17%
when compared to the host-based implementations of the
MPI_Ialltoall operation.

2 Background and related work

In this section we give the necessary background informa-
tion for our work.

2.1 InfiniBand and ConnectX-2 network interface

InfiniBand is a popular switched interconnect standard being
used by 41% of the Top500 Supercomputing systems [14].
Current generation InfiniBand network cards and switches
can deliver 32 Gbps bandwidth and about 1-1.5 ps latency.
The ConnectX-2 [7] network interface is the latest adapter
from Mellanox. Along with all of the standard InfiniBand
features, it offers a new network offloading feature called
CORE-Direct. Using this feature, we can create arbitrary
lists of send, receive and wait operations and post them to
a work-request queue of the network card. Once the task-list
has been posted, the network interface executes it and elimi-
nates the need for the host processor to progress them. Using
such task-lists, non-blocking collective operations may be
designed by upper-level libraries. Switch-based collectives
have been proposed by Voltaire [15], for non-personalized
collectives (MPI_Barrier and MPI_Reduce). Since we fo-
cus on the MPI_Alltoall operation, which has a significantly
higher communication volume, this technology is not ex-
plored here.

2.2 Message passing interface

The Message Passing Interface (MPI) [8] is one of the pop-
ular programming models used for designing parallel appli-
cations. In our work, we use the MVAPICH?2 [9] software
stack, a high performance MPI implementation over Infini-
Band and RDMA networks, used by more than 1,500 orga-
nizations worldwide.

2.3 P3DFFT and its applications

Many applications in areas including Direct Numerical
Simulations of Turbulence, astrophysics, and material sci-
ence rely on highly scalable 3D FFTs [2, 13]. The Paral-
lel Three-Dimensional Fast Fourier Transforms (P3DFFT)
library [11] from the San Diego Supercomputer Center
(SDSC) is a portable, high performance, open source imple-
mentation based on the MPI programming model. It lever-
ages the fast serial FFT implementations of either IBM’s

ESSL or FFTW. P3DFFT uses a 2D, or pencil, decompo-
sition and overcomes an important limitation to scalability
inherent in FFT libraries by increasing the degree of paral-
lelism up to N2, where N is the linear size of the data grid.
It has been used in various Direct Numerical Simulation
(DNS) turbulence applications [2]. In this paper, we have
re-structured the P3DFFT library to leverage our proposed
implementation of the MPI_Ialltoall operation and use one
of the sample programs provided with the P3DFFT library
distribution, test_sine, to evaluate the performance benefits.

3 Design space of collective algorithms

In Fig. 1, we compare host-based and network-offload de-
signs for the MPI_Alltoall operation across three dimen-
sions: latency, portability and overlap. The Alltoall Person-
alized Exchange operation (MPI_Alltoall) is the most dense
collective operation defined in the MPI Standard. MVA-
PICH2 uses the hypercube algorithm for small messages and
the pair-wise exchange algorithm for larger messages.

Latency: Across MPI implementations, the host-based
blocking algorithms are optimized for latency. However, we
expect the latency of host-based non-blocking versions, such
as in LibNBC [6] to be poorer than the default host-based al-
gorithm used in MVAPICH?2, depending on the cost of cre-
ating the schedules and the choice of the algorithms. We be-
lieve that the network-offload designs should perform com-
parably with the host-based pair-wise exchange algorithm.

Overlap: The default host-based blocking MPI_Alltoall
operation does not offer any overlap. LibNBC allows users
to achieve communication/computation overlap, but it is
also a host-based approach. Applications can be designed
to initiate collective operations and use MPI_Test calls to
progress them, while performing compute tasks. LibNBC’s
threaded progression mode spawns a new thread that pro-
gresses the collective schedule in the background while
the application performs computation. These schemes have
been demonstrated to perform well when idle cores can be
spared in each compute node. With modern network inter-
faces that offer support for offloading tasks, we can offload
task-lists of communication operations to the network, and
utilize the computing cycles of the host processors, while the
NIC executes the task-lists. We believe that such network-
offload based designs have the potential to maximize over-
lap.

Portability: The host-based blocking operations are de-
signed to be portable across various systems. However, if
applications are designed to use the host-based non-blocking
operations along with MPI_Test calls, it is necessary to de-
termine the right frequency of MPI_Test calls to maximize
overlap. This is neither trivial nor portable and places a high
burden on application scientists. Host-based non-blocking
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approaches that rely on real-time threads to achieve overlap
are often tricky and lead to complications within the MPI li-
braries. With network-offload designs, the NIC can indepen-
dently progress the collective operations in the background
and the computing cycles of the host processors are available
for computation.

4 Designing non-blocking algorithms with collective
offload

Researchers have demonstrated the overlap capabilities of-
fered by the ConnectX-2 network interface with MPI_
Barrier [3]. In [4], a set of primitives that can be used to
design collective operations to leverage the network of-
fload feature were proposed. However, neither of these have
designed scalable, non-blocking versions for data-moving
collective operations. In this section, we discuss our pro-
posed ideas for designing a high performance, scalable
MPI_Ialltoall operation, the most dense collective opera-
tion.

4.1 Point-to-point communication protocols for overlap
with offload

We use a separate set of InfiniBand Completion Queues
(CQ) and queue-pairs (QP) for all offload communication.
We also use separate QP’s for small and large message trans-
fers. For small messages, we use a protocol similar to the
existing eager protocol in MVAPICH2. The traditional ren-
dezvous protocol requires intermediate intervention to pro-
cess the hand-shake packets and start the actual data trans-
fer. However, the current generation CX-2 interface does not
support hardware-level tag-matching. Hence, we rely on the
InfiniBand Receiver Not Ready (RNR) feature to maximize
overlap for large messages.

4.2 Designing a scalable non-blocking Alltoall
personalized exchange algorithm

The pair-wise exchange algorithm is commonly used to im-
plement large message Alltoall exchanges across MPI li-
braries. For P processes, each process performs P iter-
ations, performing a blocking sendrecv operation in each
step. We define a “Communication-Window” to include a
variable number of send-tasks and a wait task. The current
generation CX-2 interface allows us to post task-lists con-
taining a fixed number of entries. Hence, this directly limits
the scalability of an offload version of the Alltoall operation.
In order to address this limitation, we propose using a light-
weight Offload-progress-thread. The host processor creates
the entire task-list when MPI_Ialltoall is invoked. But, we
split the operation into multiple phases, and we rely on our
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Fig. 2 Designing scalable offload Ialltoall

Offload-progress-thread to post a sub-task-list, a portion of
the overall task-list, in each phase.

However, as discussed in Sect. 3, it is necessary to mini-
mize the resource contention between the application thread
and the offload-thread. We describe our approach to tackle
this problem in Fig. 2. We use a “trigger” operation in each
phase of our algorithm. We create a separate trigger_qgp and
a light-weight trigger_cq, to allow a process to communi-
cate with itself. We also create a completion channel, trig-
ger_comp_channel, associated with the trigger_cq. At the
end of a sub-task-list, each process en-queues a send task to
itself on the trigger_qp. The offload-progress-thread posts
a sub-task-list and calls ibv_get_cq_event, and is scheduled
into a sleep state. The NIC independently executes the sub-
task-list and finally executes the send on the trigger_qp. This
generates a network interrupt on the trigger_comp_channel,
signaling the offload-progress-thread to wake up and post
the next sub-task-list (if any).

Through such a design, we are able to work around the
limitation imposed by the current generation CX-2 interface
and scale the Alltoall operation. We have also ensured that
the progression thread remains active for a very short time.

The other major challenge concerning the design of an
efficient interface for non-blocking collectives deals with
handling un-expected messages which arise due to process
skews. For small messages, the unexpected messages can be
buffered internally by pre-posting buffers on the small mes-
sage QP. For large messages, we leverage the Receiver Not
Ready (RNR) feature, as the network guarantees to perform
the data transfer only after the target process has posted its
receive operation.

A non-blocking interface for collective operations should
also allow applications to initiate multiple non-blocking
operations and wait on them later. For a collective like
MPI_Alltoall, the network can easily get congested if multi-
ple Alltoall operations progress in parallel. In our design, we
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append the task-lists created by different MPI_Ialltoall op-
erations and post them sequentially, in the same order. The
application can post multiple MPI_Ialltoall operations and
call MPI_Wait on them later, without any intermediate in-
tervention. Our modified P3DFFT kernel leverages this fea-
ture to overlap two different MPI_Ialltoall operations with
compute tasks, simultaneously.

5 Redesigning P3DFFT to achieve
communication/computation overlap

The Cooley-Tukey algorithm for FFT used for 1D FFTs
is very efficient computationally, O(N log N). However,
the butterfly pattern of memory accesses of this algorithm
makes it challenging to achieve good parallelism. To per-
form a 3D FFT, the 1D transform must be applied in each of
the three dimensions. Two primary strategies are possible:

1. Direct approach: Develop a parallel 1D FFT and com-
municate as necessary to carry out an FFT on data that is
distributed.

2. Transpose approach: Rearrange data prior to each 1D
FFT such that the data for the FFT is available locally
and a serial 1D FFT can be used.

While both methods require expensive communication
operations, the commonly used transpose approach affords
the opportunity to combine many smaller messages as a
larger buffer in a single all-to-all exchange. In order to scale
this approach to a large number of processors, a 2D domain
decomposition (pencils) is used in P3DFFT. This algorithm
first performs a 1D FFT along the X dimension, followed by
a transpose between the X and the Y dimensions. The same
pattern is then repeated across the Y and the Z dimensions,
followed by a 1D FFT along the Z dimension.

The original data array is typically distributed as pen-
cils along the X dimension, with the Y, Z dimensions being
split among processors in rows and columns of the 2D pro-
cessor grid. In the first transpose, the Y dimension is gath-
ered to become local while the X dimension is split among
the row processors. This involves an All-to-All exchange
in rows, which is implemented in the baseline version as
MPI_Alltoall over Cartesian sub-communicator ROW. The
second transpose similarly brings together all data for the
Z dimension and splits the Y dimension within columns,
which involves an All-to-All over communicator COL.

Each of the two transposes requires P,y (or Pgy)
MPI_Alltoall exchanges of N 3 /Prow (or N 3 / Peor) ele-
ments. This typically implies that applications have to per-
form several large message MPI_Alltoall operations, and
therefore the performance is bandwidth-bound. The row
transpose typically takes much less time than the column
one since the tasks in the ROW communicator fall in the

1D FFT in x for V;
transpose x and y of V;
ID FFT in y for V)
Initiate transpose y and z of V;
doVi=V,t0V,
1D FFT in x for V;
transpose x and y of V;
1D FFT in y for V;
Initiate transpose y and z of V;
Wait for transpose complete for V;_
ID FFT in z for V;_
enddo
Wait for transpose complete for V),
1D FFT in z for V,,

Fig. 3 Algorithm for the forward transform in the redesigned multi-
variable, pipelined, overlapped version

same node (or on a few adjacent nodes), so the fraction of
communication happening over the network is smaller.

The test_sine kernel is a sample driver for the P3ADFFT
library. The baseline version generates a 3D sine function
and calls a forward and backward transform repeated over a
number of iterations and verifies the results obtained.

In many applications of 3D FFT, it is necessary to trans-
form several independent arrays (variables) at a time. When
designing a version enhanced with overlap of communica-
tion and computation we chose to avoid splitting the trans-
poses into smaller chunks. Instead we keep the bulk trans-
poses in place by overlapping communication and compu-
tation stages for different variables. Thus the initial and re-
sult sine array and intermediate Fourier space array in the
test_sine kernel are augmented with an extra dimension rep-
resenting the number of variables, which is also passed to
the forward and backward FFT routines. The forward FFT
routine is restructured as shown in Fig. 3 and described be-
low. The backward routine is similarly restructured.

Here the loop index j runs over the variables that need
to be transformed. We start with a prologue which performs
the first three stages of the 3D FFT algorithm for variable
1 (V1), namely transform in X, row transpose, and trans-
form in Y. Then we initiate (post) an all-to-all exchange in
the COL communicator for this variable and let the non-
blocking communication proceed. Assuming it does not in-
terfere with the CPUs, the latter can work on XY transform
of the second variable. This is the overlap of computation
for XY transform of V>, with network communication for
Vi. After posting the exchange for V>, we are then ready to
complete the exchange for the first variable with a Wait call
followed by a transform of the resulting array (now in shape
of Z-pencils) in Z dimension, thus completing the algorithm
for Vi. Meanwhile the non-blocking exchange for variable
V» is ongoing behind the scenes, thus achieving an overlap
of FFT in Z for V; with Column transpose for V;. The cycle
continues for the rest of the variables, always keeping one
exchange in the background.
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This design is only one of many possible (and work on
this continues). It should be kept in mind that in practice
the column transpose dominates the row transpose since the
latter occurs among contiguously numbered tasks which are
typically placed on cores of the same node. Assuming the
size of ROW communicator is not too large, the row trans-
pose occurs entirely within the nodes. This decision is con-
sistent with the current trend of increasing cores per node
on large system, therefore we chose not to overlap the row
transpose with computation. However it is overlapped with
the column transpose in this pipe-lined design.

To summarize, we have developed a version of the 3D
FFT kernel which achieves communication/computation
overlap. This version allows us to study latency hiding with
different versions of MPI_Ialltoall operations. For this pa-
per, we consider both the Host-Based and our proposed net-
work offload implementations for the MPI_Ialltoall as re-
placements for the MPI_Alltoall operation.

6 Experimental results

We detail the results of our experimental evaluation in this
section.

6.1 Experimental setup

Each node of our 512-core testbed has eight Intel Xeon cores
running at 2.53 GHz with 12 MB L3 cache. The cores are
organized as two sockets with four cores per socket. Each
node also has 12 GB of memory and Gen2 PCI-Express bus.
They are equipped with MT26428 QDR ConnectX-2 HCAs
with PCI-Ex interfaces. We used a 171-port Mellanox QDR
switch, with 11 leafs, each having 16 ports. Each node is
connected to the switch using one QDR link. The HCA as
well as the switches use the latest firmware. The operating
system used is Red Hat Enterprise Linux Server release 5.4
(Tikanga), with the 2.6.18-164.el5 kernel version. OFED
version 1.5.1 is used on all machines, and the OpenSM ver-
sion is 3.3.7. We would like to note that there were non-
deterministic race-conditions while running LibNBC’s ba-
sic threaded version and LibNBC’s real-time thread option
was crashing the nodes, while running with super-user per-
missions. For the rest of this paper, we refer to LibNBC’s
MPI_Test approach as “Host-Based-Test” and its threaded
approach as “Host-Based-Thread.”

6.2 Benchmark suite

In this paper, we use modified versions of the OSU Micro-
Benchmarks, which are a part of the MVAPICH2 software
package. We use the osu_alltoall benchmark to measure the
average latency of the Network-Offload based MPI_Alltoall
operation for various message sizes.
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Overlap benchmark: In this benchmark, we measure
the overlap percentage between host-based and offload-
based MPI_Ialltoall implementations. For each message
size, we first measure the baseline latency, with no overlap-
ping computation. We then insert a compute loop between
MPI_Ialltoall and MPI_Wait calls that runs for the same
duration as the baseline latency for each message size. We
measure the time consumed to complete both the compute
and communication tasks and calculate the percentage over-
lap achieved for the MPI_Ialltoall implementation. For the
Host-Based-Test version, we also introduce MPI_Test calls
at different frequencies to examine its impact on the over-
lap percentage. We experimented with a large range of test-
frequencies, but report about four of them for the sake of
brevity. In Fig. 5, Host-Based-Test-X indicates that we in-
voked the MPI_Test call X times to progress the communi-
cation, while performing compute tasks.

Throughput benchmark: In this benchmark, we perform
floating point matrix-matrix operations by invoking the
cblas_dgemm function supported by the Intel MKL Library
(10.2.1.017), between the MPI_Ialltoall and the MPI_Wait
operations. We measure the overall time required for com-
pletion and compute the GFLOPS rating for the given case
and compare it against the theoretical peak FLOPS rating for
our system. We also report the average results from multiple
runs to eliminate any experimental errors.

6.3 Latency of various Alltoall schemes

In Figs. 4(a), (b) and (c), we compare the latency of the
default host-based MPI_Alltoall operation in MVAPICH2,
with the Host-based Test and Thread approaches along with
our proposed Network-Offload based MPI_Alltoall algo-
rithm, for 64, 128 and 256 processes. For the Host-based
Test and Thread approaches, we post the NBC_Ialltoall op-
eration, immediately followed by the NBC_Wait() operation
to measure the latency when no overlap is attempted. We can
observe that our proposed Network-Offload design delivers
nearly the same latency as the default host-based pair-wise
exchange algorithm. We also observe that the Host-based
Test and Threaded implementations have poorer latency.

6.4 Computation/communication overlap

In Fig. 5, we compare the communication/computation over-
lap measured through our overlap benchmark, across var-
ious system sizes. We compare our proposed Network-
Offload implementation of MPI_Ialltoall with the host-
based implementations that rely on either using MPI_Test
calls (Host-Based-Test) or a separate progress-thread (Host-
Based-Thread) for achieving overlap. We observe that our
proposed network-offload implementation delivers near-
perfect overlap, about 95-99% for different message sizes,
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Fig. 5 Overlap comparison: (a) 64 processes, (b) 128 processes, and (¢) 256 processes

across different system sizes. With the Host-Based-Test ver-
sion, we observe that we can get good overlap when we
use the right number of MPI_Test calls. We would also like
to point out that the optimal frequency of MPI_Test calls
varies across system sizes. For example, with 64 processes,
having about 400 calls to MPI_Test appears to deliver bet-
ter overlap. However, with 256 processes, we observe bet-
ter overlap when we make 1,000 calls to MPI_Test. This is
consistent with our claims in Sect. 3. It is not an easy task
to determine the right frequency of MPI_Test operations in
a portable manner. We also observe that the Host-Based-
Thread version delivers poor overlap in these experiments.
This is probably because all our experiments were run in
a fully-subscribed manner (8 processes in each node utiliz-
ing all of the 8 cores). It is to be noted that typical super-
computer users also use all available cores within compute
nodes. Thus, the Host-Based-Thread version is prone to poor
overlap in practical usage scenarios.

6.5 Application throughput

In this section, we discuss the impact of various non-
blocking Alltoall designs on the overall throughput of
DGEMM, a matrix-matrix multiplication program. For a
given number of processes, we fix the message length to
be 128 kB and we vary the problem size for the matrix-
matrix operation gradually and measure the throughput in

GFLOPS. We compare it to the estimated theoretical peak
of the system, based on the CPU clock frequency (2.53 GHz)
and the fact that the Xeon processors used have four float-
ing point units (10 GF double precision per core). With
DGEMM, dividing the matrix-matrix multiplication into a
large number of computation chunks is complicated since
computation is proportional to (N3), i.e., it is not a linear
relationship. In order to study overlap benefits with the Host-
based Test approach, we interleave the NBC_Test calls with
multiple calls to cblas_dgemm, with adjusted matrix dimen-
sions, so that the overall compute operation remains equiv-
alent to making one cblas_dgemm with matrix of size N.
We observed that the overall throughput of the Host-Based-
Test implementation does not vary for a range of different
frequencies of MPI_Test calls.

In Fig. 6, we compare the throughput of DGEMM when
it is overlapped with different implementations of non-
blocking Alltoall operations for 256 and 512 processes. We
can observe that as the problem size increases, the through-
put of the version with network-offload is higher than the
host-based version and both the versions saturate at very
large values of N for 256 processes. We also note that the
network-offload version performs even better with 512 pro-
cesses. We would like to note that scientific applications are
typically run in a manner to utilize about 50-60% of the
memory available per core, and many systems like the IBM-
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Fig. 6 Throughput comparison of various schemes with (a) 256 and (b) 512 processes

Table 1 Application run-times with different Alltoall schemes

Job size 64 128
Alltoall Impl Offload H-Test Blocking Offload H-Test Blocking
Problem size

512 1.81 202 229 0.89 1.05  1.15
600 3.14 372 384 1.57 1.91 1.92
720 5.36 6.34  6.63 2.93 327 332
800 7.99 883 9.09 3.90 443 448

Blue Gene, offer smaller memory per core. Therefore, real-
istically, one cannot arbitrarily increase N.

6.6 P3DFFT kernel performance comparison

To evaluate how our network offload Alltoall operation
can be utilized to improve the performance of applica-
tions which require many 3D FFT operations, we performed
a study with the P3DFFT Sine kernel. As described in
Sect. 5, we replaced the two most expensive Alltoall op-
erations in the P3DFFT Sine kernel (namely the column
wise transposes which occur in both the forward and back-
ward transforms) with non-blocking alternatives, for various
3D FFT problem sizes. In Table 1, we compare the appli-
cation run-times of the baseline blocking version, the re-
designed P3DFFT kernel with overlapped collective com-
munication with the host-based and Network-Offload based
MPI_Ialltoall implementations. We report experimental re-
sults for different “Job Sizes,” with 64 and 128 processes.
We also vary the problem size, N, between 512 and 800.
From Fig. 7, we can see that the kernel with our pro-
posed MPI_Ialltoall consistently performs better than the
one with MPI_Alltoall by about 10%—-23% and the kernel
that uses the non-blocking MPI_Ialltoall operation offered
by the Host-Based-Test approach by about 10%—17%.
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Fig. 7 Performance improvement comparison with 64 and 128 pro-
cesses

As discussed in Sect. 6.5, it is not trivial to split up com-
pute tasks to accommodate a large number of MPI_Test
calls, particularly when the computation is being performed
by a third-party library. In our redesigned P3DFFT the com-
putation work that is overlapped with the Alltoall is carried
out by either the FFTW or ESSL FFT libraries. For the Host-
based-Test version, we have split the FFT calls into several
calls, interleaved with MPI_Test calls. We have modified the
P3DFFT library to support a small range of test call frequen-
cies, with the maximum amount equal to one test call per
each 1D FFT in the pencil assigned to a process. We report
the best run times obtained for each problem size.

7 Conclusion
In this paper, we have designed a high performance, scal-

able Network-Offload based non-blocking algorithm for the
Alltoall Personalized Exchange operation. Simultaneously,
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we have also re-designed the P3DFFT library and a sam-
ple application kernel to study the benefits of overlapping
application level computation with the Alltoall operation.
Our experimental evaluation shows that we achieve near
perfect overlap of computation and communication (99%)
and we also deliver very good application throughput, with
512 processes. We also see an improvement of about 23%
in the overall run-time with the modified P3DFFT ker-
nel when compared to the default blocking version and
about 17% better than the Host-Based Non-Blocking All-
toall implementations. We plan to incorporate the pro-
posed network-offload implementation of MPI_Ialltoall()
in a future MVAPICH?2 release and contribute an efficient
implementation of P3DFFT for modern InfiniBand clus-
ters based on the ConnectX-2 network adapters. We also
plan to design non-blocking collective operations (such as
MPI_Bcast, MPI_Reduce, MPI_Allreduce, etc.) based on
the ConnectX-2 network offload feature.
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