
Comput Sci Res Dev (2011) 26: 221–228
DOI 10.1007/s00450-011-0159-z

S P E C I A L I S S U E PA P E R

Scalable parallel AMG on ccNUMA machines with OpenMP

Malte Förster · Jiri Kraus

Published online: 9 April 2011
© Springer-Verlag 2011

Abstract In many numerical simulation codes the back-
bone of the application covers the solution of linear sys-
tems of equations. Often, being created via a discretiza-
tion of differential equations, the corresponding matrices
are very sparse. One popular way to solve these sparse lin-
ear systems are multigrid methods—in particular AMG—
because of their numerical scalability. But looking at mod-
ern multi-core architectures, also the parallel scalability has
to be taken into account. With the memory bandwidth usu-
ally being the bottleneck of sparse matrix operations these
linear solvers can’t always benefit from increasing numbers
of cores. To exploit the available aggregated memory band-
width on larger scale NUMA machines evenly distributed
data is often more an issue than load balancing. Addition-
ally, using a threading model like OpenMP, one has to en-
sure the data locality manually by explicit placement of
memory pages. On non uniform data it is always a trade-
off between these three principles, while the ideal strategy
is strongly machine- and application dependent. In this pa-
per we want to present some benchmarks of an AMG imple-
mentation based on a new performance library. Main focus
is on the comparability to state-of-the-art solver packages
regarding sequential performance as well as parallel scala-
bility on common NUMA machines. To maximize through-
put on standard model problems, several thread and mem-
ory configurations have been evaluated. We will show that
even on large scale multi-core architectures easy parallel

M. Förster (�) · J. Kraus
Fraunhofer Institute for Algorithms and Scientific Computing
SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
e-mail: malte.foerster@scai.fraunhofer.de

J. Kraus
e-mail: jiri.kraus@scai.fraunhofer.de

programming models, like OpenMP, can achieve a compet-
itive performance compared to more complex programming
models.

Keywords LAMA · AMG · OpenMP · ccNUMA · First
Touch · PETSc · hypre

1 Introduction

In this paper we show that we obtain competitive parallel
performance with an OpenMP based parallelization com-
pared to an MPI based parallelization. The test application
is a classical algebraic multigrid (AMG) solver [13, 19] for
sparse matrices used as a preconditioner for the conjugate
gradient method (CG).

Algorithmically, every iteration of AMG does consist
of several sparse matrix vector multiplications (SpMV) on
each level of the AMG hierarchy [10]. It is well known that
these operations are rather memory bound than CPU bound.
Therefore, it is not common to observe linear speedups
by just increasing the number of cores. It is more cru-
cial to utilize the available memory bandwidth, especially
when expanding threads on multi-socket ccNUMA ma-
chines. We show that, via OpenMP worksharing, it is pos-
sible to achieve nearly linear speedups in terms of sockets
rather than cores, resulting in absolute runtimes comparable
to complex MPI implementations.

For the MPI implementation we use the package hypre
[1] via the PETSc [5] interface. For the OpenMP imple-
mentation we use an AMG based on the new Library for
Accelerated Math Applications (LAMA [4]). For the de-
tailed comparison we first verify that—for given sets of
parameters—the two implementations are basically equiv-
alent regarding the mathematical operations. Additionally,

mailto:malte.foerster@scai.fraunhofer.de
mailto:jiri.kraus@scai.fraunhofer.de

222 M. Förster, J. Kraus

we will see that due to algorithmic optimizations and general
software design the sequential AMG in LAMA even outper-
forms the reference solver. After verification we present par-
allel benchmarks on different ccNUMA machines described
in Sect. 3. Here we show that LAMA shows good paral-
lel scalability over the available sockets, resulting in abso-
lute runtimes still comparable to the reference solver pro-
grammed with MPI.

2 LAMA

The Library for accelerated math applications, LAMA,
is a new open source project which will be available at
http://www.libama.org shortly. The first of two main design
aims of LAMA is to enable a natural mathematical syntax
without sacrificing performance like it is also achieved by
the C++ Library Blitz++ [7]. The second main design aim is
to allow easy integration of accelerators like CUDA GPG-
PUs [12]. To achieve both goals LAMA is separated into
two parts. A C library which provides BLAS functional-
ity for dense and sparse types and which is used to utilize
all types of accelerators and a C++ part which provides the
natural mathematical syntax. The C library makes our core
algorithms of our library usable by a wide range of applica-
tions and allows the integration of existing BLAS Libraries.
The C++ part uses simplified expression templates [22] to
achieve the second design aim. Utilizing this and by formu-
lating solvers only in terms of simple BLAS operations, like
they are printed in text books [11], we achieve very com-
prehendible solver implementations and it is easy to experi-
ment with new accelerators or data structures, e.g. different
sparse matrix formats. To give an example, Fig. 1 shows
the main part of our CG implementation. Currently the C++
part of LAMA mainly uses “compile time polymorphism”
through templates. This enables aggressive compiler opti-
mizations while sacrificing some runtime flexibility. For the
AMG solver examined in this paper we have concentrated
on the solver phase. The setup is only partially parallelized
and optimized, so the AMG setup times are not comparable
to Boomer AMG.

3 Hardware setup

All results presented in this paper were computed on three
different machines. Table 1 shows the key specifications for
the used hardware.

All machines are running with Scientific Linux SL 5.3.
Please note that in case of SCAIPROD84 we work with ac-
tivated hyperthreading, effectively doubling the number of
logical cores visible to the system. Still, one has to keep in
mind that the number of physical cores remains at 32 when
looking at benchmark results for the ‘oversubscribed’ con-
figurations at 64 threads/processes for this machine.

template < . . . >
void CG< Matr ix , Vector , Logger > : : i t e r a t e ()
{

t y p e d e f typename VectorType : : ValueType ValueType ;
ValueType l a s t P S c a l a r = m_pSca la r ;
ValueType& p S c a l a r = m_pSca la r ;
ValueType a l p h a ;
ValueType b e t a ;
VectorType& r e s i d u a l = (∗ m _ r e s i d u a l) ;
c o n s t Matr ixType& A = (∗ m _ c o e f f i c i e n t s) ;
VectorType& x = (∗ m _ s o l u t i o n) ;
VectorType& p = (∗m_p) ;
VectorType& q = (∗m_q) ;
VectorType& z = (∗m_z) ;

/ / CG i m p l e m e n t a t i o n s t a r t
i f (m _ p r e c o n d i t i o n e r == 0)

z = r e s i d u a l ;
e l s e
{

z =0;
m _ p r e c o n d i t i o n e r −>s o l v e (& r e s i d u a l ,& z) ;

}

p S c a l a r = r e s i d u a l ∗ z ;

i f (t h i s −> g e t I t e r a t i o n C o u n t () == 0)
p = z ;

e l s e
{

i f (l a s t P S c a l a r == 0 . 0)
b e t a = 0 . 0 ;

e l s e
b e t a = p S c a l a r / l a s t P S c a l a r ;

p = z + b e t a ∗ p ;
}

q = A ∗ p ;

c o n s t ValueType pqProd = p ∗ q ;
i f (pqProd == 0 . 0)

a l p h a = 0 . 0 ;
e l s e

a l p h a = p S c a l a r / pqProd ;

x = x + a l p h a ∗ p ;
r e s i d u a l = r e s i d u a l − a l p h a ∗ q ;

/ / CG i m p l e m e n t a t i o n end

m _ s o l u t i o n . s e t D i r t y (f a l s e) ;
}

Fig. 1 Main part of the LAMA CG implementation

3.1 ccNUMA

The machines BULL, SCAIPROD83 and SCAIPROD84 are
cache coherent NUMA (ccNUMA) machines. Nearly all
larger servers today are ccNUMA machines that are build
from 2 to 8 CPUs where each CPU has access to a local
memory. Figure 2 shows a basic NUMA architecture with 4
sockets or NUMA nodes. As NUMA stands for None Uni-
form Memory Access a CPU can access the memory which

http://www.libama.org

Scalable parallel AMG on ccNUMA machines with OpenMP 223

Table 1 Different architectures used for benchmarks

Name BULL SCAIPROD83 SCAIPROD84

Cpu Xeon X5650 Opteron 8435 Xeon X7560

Core freq. 2.67 GHz 2.6 GHz 2.27 GHz

L3-cache 12 MB 6 MB 24 MB

Cores/cpu 6 6 8

HT Off n.a. on

Sockets 2 8 4

Cores (w.HT) 12(12) 48(48) 32(64)

Memory 12 GB 128 GB 128 GB

Channels 3 2 4

Mem. type DDR3 DDR2 DDR3

Mem. freq. 1333 MHz 333 MHz 1066 MHz

Fig. 2 Basic NUMA architecture

it is directly attached to faster than remote memory which
is attached to a different CPU. The remote memory is ac-
cessed over a very fast inter socket protocol (QPI for In-
tel and Hyptertransport for AMD). On the one hand, this
makes memory placement a crucial thing, especially for a
memory bound algorithms like AMG. But on the other hand,
the available memory bandwidth increases with each added
socket. To fully utilize the available memory bandwidth it
is necessary to distribute the data evenly across the different
sockets and to keep the portion of data that a single thread
works on local to the CPU it is running on. Because of the
rather unspecified access to an input vector in a matrix vec-
tor multiplication for sparse matrix formats like CSR it is not
possible to fully exploit both, data locality and utilization
of available memory bandwidth. The data access pattern of
SpMV are comparable to the access patterns of AMG [10].

4 Software setup

In this section we describe our software setup with enough
detail that our results should be easily reproducible by oth-
ers. This includes compiler and configure options used to
build PETSc, hypre and LAMA, as well as runtime options.
For all compilations we used the GNU Compiler Version

4.5. with the optimization flags -O3 -ffast-math and
MPICH2-1.2 for the MPI implementation. The used version
of PETSc is 3.1p4 with hypre 2.6.0b. We have configured
PETSC (including automatic hypre installation) with the fol-
lowing options:

--with-c++-support
--COPTFLAGS=-O3 -ffast-math
--CXXOPTFLAGS=-O3 -ffast-math
--with-debugging=0
--download-parmetis=0
--with-log=0
--with-errorchecking=0
--download-superlu_dist=1
--download-mumps=1
--download-f-blas-lapack=1
--download-hypre=1
--download-blacs=1
--download-scalapack=1

As parmetis did not compile with -O3 we have build
parmetis with -O2.

5 Execution

Because AMG is memory bound [10] the main focus should
be to inspect scaling with respect to available memory band-
width instead of the number of CPU cores. Besides this, we
are normally interested in what can we get out of a certain
machine and not what we can get if we utilize only a part
of it. Therefore, all benchmarks have been executed bound
to a subset of the available CPU sockets, utilizing all cores
on these sockets to simulate systems with different numbers
of sockets. For LAMA we have done this with numactl
and for PETSc we have bound the mpd daemon of MPICH
to a socket with taskset to enforce the PETSc processes
to only utilize these specific sockets [15, 16]. When Using
taskset, it has to be taken into account that the numbering of
CPU cores is not always as expected [20]. To start the CG
solver with AMG preconditioning described in Sect. 5.2 we
have used the following PETSc commandline options [2, 3,
6] (Logging has been disabled for all benchmarks):

-ksp_max_it 10 -ksp_type cg -pc_type hypre
-ksp_rtol 1e-20 -ksp_norm_type NATURAL
-pc_hypre_boomeramg_max_levels 7
-pc_hypre_boomeramg_grid_sweeps_all 2
-pc_hypre_boomeramg_relax_type_all jacobi
-pc_hypre_boomeramg_relax_weight_all 0.5
-pc_hypre_boomeramg_relax_type_coarse
Gaussian-elimination
-pc_hypre_boomeramg_coarsen_type HMIS
-pc_hypre_boomeramg_interp_type standard
-pc_hypre_boomeramg_truncfactor 0.1

224 M. Förster, J. Kraus

Table 2 Laplacian discretizations used for solver benchmarks

Name Dimensions Diags Entries CSR mem

1D3P 1,000,000 3 3 Mio. 38 MB

2D5P 1,000 × 1,000 5 5 Mio. 61 MB

3D7P 100 × 100 × 100 7 7 Mio. 83 MB

2D9P 1,000 × 1,000 9 9 Mio. 107 MB

3D27P 100 × 100 × 100 27 27 Mio. 307 MB

The only parameter that changes between the different
benchmarks is the max level parameter to synchronize the
setups of LAMA and PETSc. The solver phase has been
called 5 times for PETSc and LAMA all reported runtimes
are the minimum of these 5 executions.

5.1 Model problems

Our set of test matrices are shown in Table 2. They consist of
different discretizations of the Laplacian operator on struc-
tured grids in up to three dimensions. All matrices have a
total of 1 million rows but increase in the number of nonzero
entries. Each row corresponds to exactly one grid point and
its nonzero values refer to the entries of the differential sten-
cil applied. We have chosen this model problems because
they are well known, which makes it more easy to compare
our results [12]. Additionally, they are a good measure for
real world 1D, 2D and 3D applications because of the basic
local access patterns common for matrices based on a wide
range of PDE applications.

To exploit the sparsity all matrices are stored in Com-
pressed Sparse Row (CSR) format using double precision.

5.2 Algorithmic comparability of Boomer AMG and
LAMA

For the benchmarks we measure 10 iterations of a CG solver
preconditioned with AMG. As a coarsening strategy for
the AMG we use the classical Ruge-Stüben algorithm [19]
(1stage) in combination with standard interpolation. On the
coarsest grid Gaussian elimination is used. In the solution
phase AMG is running a V-cycle performing two pre- and
post-smoothing steps with a weighted Jacobi. Note that for
the benchmarks only the time for the solution phase, not the
setup time needed to construct the AMG hierarchy, is mea-
sured.

One important difference between our LAMA configu-
ration and the hypre counterpart is in the type of coarsen-
ing. HMIS [14] is actually a combination of (local) Ruge-
Stüben(1stage) and PMIS, introducing additional coarsegrid
points at the processor boundaries for better convergence in
parallel. Since LAMA does not construct the coarser grids
in a distributed parallel process this is not needed here.

Table 3 Galerkin operator stats for 1D3P on 13 levels

BoomerAMG LAMA

Lvl Rows Entries Rows Entries

0 1,000,000 2,999,998 1,000,000 2,999,998

1 500,000 1,499,998 500,000 1,499,998

2 250,000 749,998 250,000 749,998

3 125,000 374,998 125,000 374,998

4 62,500 187,498 62,500 187,498

5 31,249 93,745 31,250 93,748

6 15,624 46,870 15,625 46,873

7 7,812 23,434 7,812 23,434

8 3,906 11,716 3,906 11,716

9 1,953 5,857 1,953 5,857

10 976 2,926 976 2,926

11 488 1,462 488 1,462

12 244 730 244 730

Table 4 Galerkin operator stats for 2D9P on 7 levels

BoomerAMG LAMA

Lvl Rows Entries Rows Entries

0 1,000,000 8,988,004 1,000,000 8,988,004

1 250,000 622,0036 250,000 622,0036

2 62,500 277,6608 62,500 277,6594

3 15,624 68,4720 15,625 684,745

4 3,124 120,906 3,126 120,954

5 614 20,110 601 21,161

6 95 2,171 121 3,405

In order to compare benchmarks for the different imple-
mentations of AMG in BoomerAMG and LAMA we have to
ensure that the approaches basically perform the same work.
This work consists of SpMV operations defined by the solu-
tion process based on the matrices of all AMG levels. Due
to implementation details in the coarsening and interpola-
tion strategy (e.g. truncation techniques or special thresh-
olds) it is not possible to guarantee identical AMG behavior.
Therefore, we show that the hierarchies constructed within
the setup processes have (nearly) identical matrix properties.

Tables 3 and 4 show the dimensions and the density of
the constructed Galerkin matrices. In the one dimensional
test case—due to the straightforward coarsening and inter-
polation process—the hierarchies are almost identical. In the
two dimensional test case the operators start to differ slightly
starting from the second Galerkin construction. However,
these differences are fairly small and most probably negli-
gible while analyzing SpMV sequences over all levels.

Although it has no effect on the performance analysis,
we also like to verify the correctness of the entries inside
Galerkin and interpolation matrices. Therefore we exem-

Scalable parallel AMG on ccNUMA machines with OpenMP 225

Table 5 L2-residual reduction for 2D9P

Iter BoomerAMG LAMA

0 1.89 × 10+2 1.89×10+2

1 2.49 × 10+1 2.62×10+1

2 1.68 × 10+0 2.39×10+0

3 1.31 × 10−1 1.82×10−1

4 3.75 × 10−3 9.22×10−3

5 2.94 × 10−4 5.59×10−4

6 2.81 × 10−5 7.99×10−5

7 1.73 × 10−6 4.32×10−6

8 1.08 × 10−7 3.24×10−7

9 9.61 × 10−9 3.54×10−8

10 6.64 × 10−10 1.67×10−9

Table 6 Sequential runtimes (s) on BULL

1D3P 2D5P 2D9P 3D7P 3D27P

BoomerAMG 2.79 3.56 3.89 5.12 7.47

LAMA 1.17 1.87 2.13 2.86 4.70

plary show convergence histories of both approaches applied
to 2D9P.

As shown in Table 5 both approaches show convergence
rates with similar orders of magnitude. Slightly better con-
vergence of BoomerAMG can be explained by the differ-
ences in the coarsening strategy as mentioned above.

6 Single threaded performance

As a first step towards a scaling analysis we look at the se-
quential performance of both AMG implementations. All
timings are minimal runtimes out of 5 repetitions. Table 6
is an overview of the single thread/process run on BULL.

Obviously, there is a huge gap between the runtimes
of both packages. Looking closer at the implementations
we identify two main optimizations applied to LAMA that
could be responsible for this:

– We introduce a solution proxy which is used to only re-
calculate the residual if it is needed. This way, we are
able to reuse the residual calculated for the convergence
check for the next CG iteration because the solution is not
changed between these two steps.

– We do not copy the solution before each Jacobi iteration.
Instead, we simply switch the pointers of old and new so-
lution.

Additionally, due to the design of LAMA using C++ tem-
plates, most decisions are made at compile time. Especially,
this has an impact on the logging since no additional infor-
mation is being computed in case of deactivated output.

Table 7 Execution times on BULL in seconds

N 1D3P 2D5P 2D9P 3D7P 3D27P

N P L P L P L P L P L

S 2.50 1.17 3.56 1.87 3.89 2.13 5.12 2.86 7.47 4.70

1 1.31 0.58 1.76 0.86 1.79 0.98 2.42 1.25 3.33 1.99

2 0.59 0.32 0.85 0.51 0.88 0.53 1.34 0.67 1.90 1.05

Table 8 Execution times on SCAIPROD83 in seconds

N 1D3P 2D5P 2D9P 3D7P 3D27P

N P L P L P L P L P L

S 5.64 2.45 7.92 3.90 8.15 4.56 10.27 5.78 15.91 9.49

1 3.69 1.60 4.66 2.21 4.62 2.47 6.31 3.13 7.89 4.69

2 2.79 0.90 3.08 1.34 3.22 1.34 3.93 1.60 6.82 2.40

3 1.64 0.63 2.37 1.18 2.24 0.96 3.12 1.12 5.40 1.57

4 0.85 0.64 1.19 0.75 1.46 0.92 2.33 0.85 3.41 1.21

5 0.60 0.35 0.90 0.54 1.08 0.53 2.10 0.72 2.76 0.96

6 0.46 0.28 0.66 0.38 0.85 0.47 1.61 0.58 2.40 0.82

7 0.25 0.22 0.46 0.43 0.52 0.37 1.08 0.51 1.37 0.70

8 0.19 0.31 0.37 0.28 0.43 0.32 1.00 0.47 1.27 0.65

Deactivating the solution proxy and the Jacobi optimiza-
tion slows down LAMA execution quite a lot to 3.44 s on
2D9P and 1.86 s on 1D3P, moving the execution timings fur-
ther into the direction of BoomerAMG. Only relevant on the
finest grid, the cost of the computation of additional residu-
als prevented by the solution proxy scales exactly with the
matrix size. The cost for copying of the solution vector re-
mains constant throughout all test matrices, being negligible
on larger 3D examples with higher bandwidth.

7 Parallel performance

We ran benchmarks on the three machines described in
Sect. 3 for all the five model problems from Sect. 5.1. To an-
alyze the scaling behavior of PETSc and LAMA we have al-
ways occupied full sockets like it is described in Sect. 5. The
results of these measurements are given in Tables 7, 8 and 9.
Remember that on SCAIPROD84 hyperthreading was en-
abled, the benchmarks runs where hyperthreading was uti-
lized are marked with a *, e.g. 4* stands for 4 fully utilized
sockets with hyperthreading (64 threads on SCAIPROD84).
The first column of these tables is the number of sock-
ets or NUMA nodes (NN) that have been used to execute
the benchmark, S stands for serial run and the configura-
tion where PETSc was faster than LAMA are highlighted in
red. The reasons why the runtimes of PETSc are in general
slower than LAMA are explained in Sect. 6. However, these
reasons are also source for the better parallel scaling behav-

226 M. Förster, J. Kraus

Table 9 Execution times on SCAIPROD84 in seconds

N 1D3P 2D5P 2D9P 3D7P 3D27P

N P L P L P L P L P L

S 4.92 2.52 7.09 4.58 8.16 5.60 11.35 6.99 16.49 11.87

1 1.75 0.95 2.75 1.49 2.87 1.75 3.97 2.05 5.48 3.39

2 0.89 0.53 1.31 0.93 1.31 0.98 3.11 1.07 4.52 1.82

3 0.74 0.43 0.74 0.69 0.89 0.76 1.63 0.87 3.01 1.43

4 0.31 0.37 0.47 0.39 0.57 0.60 1.24 0.61 2.02 0.96

4∗ 0.18 0.25 0.28 0.33 0.42 0.40 1.42 0.56 1.74 0.82

Fig. 3 (Color online) Speedup vs. one socket on BULL

Fig. 4 (Color online) Speedup vs. one socket on SCAIPROD83

ior of PETSc because especially the residual calculation on
the fine grid has good parallel scaling behavior.

As one can see in Figs. 3, 4 and with some limitations
also in Fig. 5, LAMA and PETSc scale quite nicely with the
available memory bandwidth, i.e. the number of processor
sockets. The super linear speedup of PETSc in case of the
low dimensional model problems 1D3P, 2D5P and 2D9P

Fig. 5 (Color online) Speedup vs. one socket on SCAIPROD84

Fig. 6 (Color online) Speedup vs. on socket on SCAIPROD83 for dif-
ferent memory allocation policies

are most likely due to cache effects because of the rela-
tively small input sets. Additionally, those examples involve
less communication than 3D models. The surprisingly large
benefit for PETSc of Hyperthreading on SCAIPROD84 for
these model problems have been already reported by Leng
et al. [17]. They observed that a MPI applications where the
interconnect is the bottleneck benefit from Hyperthreading.
Although the interconnect on SCAIPROD84 (QPI) can be
considered really fast, it becomes the bottleneck because of
the small chunks each process has to process. We assume
that the small chunks are also the reason for the suboptimal
scalability of LAMA for these small examples, because they
lead to false sharing across socket boundaries.

To obtain the scalability for LAMA it was crucial to uti-
lize the first touch policy to achieve good data locality [18,
21] as can be seen in Fig. 6. In this figure the speedups
vs. one socket for the memory allocation policy localalloc
is shown in red, the policy interleaved is shown in green

Scalable parallel AMG on ccNUMA machines with OpenMP 227

and the policy preferred is shown in blue. Localalloc or first
touch means to place a memory page in the memory which is
local to the socket from which it is first accessed. Interleaved
distributes the memory pages in a round robin fashion across
the memory of the sockets in use. Preferred places all mem-
ory pages in the local memory of socket 0. Figure 6 shows
quite nicely the expected behavior. If we use only the mem-
ory of a single socket we do not see any scaling because the
available memory bandwidth remains constant as shown in
blue. If all memory is placed locally we see a near optimal
behavior as shown in red. The interleaved policy is some-
where in between because the available memory bandwidth
increases but the memory is not always local to the thread
that needs access to it.

7.1 Parallel scalability considerations

Looking at the results of Sect. 7 we see a quite good over-
all scaling for both, the MPI and OpenMP programming
model. However, while cutting out cache effects, running
plain SpMV operations LAMA seems to scale worse on
smaller test cases compared to large ones regarding both,
lower dimensions and bandwidth. Of course, this statement
also holds for low level matrices inside an AMG hierarchy.
There are at least two effects that might explain this to a
certain degree. First of all, the matrix data as well as the so-
lution and right hand side vectors are accessed in workshar-
ing constructs. By default, this is done in a static manner,
causing all loop indizes to be divided into as many equally
sized chunks as there are threads to process them. In the
same way, we try to keep those chunks of data locally in the
memory closest to the thread that need access. Additionally,
the size of memory chunks limited by the pagesize, which
is typically 4k. For our data types, e.g. integer, this means
that arrays can not be subdivided into smaller chunks than
1024. Looking at smaller matrices this means that data lo-
cality just can not be established by first touch anymore. Ef-
fectively, this often even leads to slowdowns with increasing
numbers of threads. The second effect that is often mislead-
ing in interpreting speedups for differently sized matrices is
cache effects. The more data a CPU can fit into its level 3
cache the faster data access becomes. This often leads to
much better relative performance (e.g. MFLOPS) in sequen-
tial mode. That, in combination with problems in data local-
ity, has a negative effect on the speedup on multiple CPU
sockets. While we don’t have much control over the cache
effects, there are some few remedies in OpenMP that might
help to overcome the problem of data locality with small
chunks of data. One way could be to handle data storage
manually by subdividing arrays in a MPI fashion and syn-
chronize explicitly. However, this is certainly not consistent
with general OpenMP philosophy.

8 Conclusion

We have shown that the easy to use parallel programming
model OpenMP can achieve competitive performance com-
pared to the more complex programming model MPI even
on larger ccNUMA machines. For this, the most important
point is to achieve good data locality which can be done
by utilizing the first touch policy of modern NUMA aware
operating systems. There are however, some points that we
could not explain in a satisfiable manner. We could only
speculate about the facts that the parallel scaling behavior
of the lower dimensional model problems is suboptimal and
what are the reasons for some outliers. One guess for the
outliers is a bad thread placement by the operating system.
We have tried to track that down with an explicit pinning of
the OpenMP threads, but always degraded performance with
more explicit thread pinning, especially with hyper thread-
ing enabled. Baker et al. needed to explicitly manage the
placement of threads and data by using NUMAlib [10]. Be-
cause our code is structured in a way that we basically can
utilize the first touch policy for this we have not done this
so far. Nevertheless more explicit data and thread placement
might be an option for LAMA as well.

9 Future work

The solution phase of our AMG is already competitive with
state of the art implementations, but if we take a look at the
performance of the whole algorithm the setup phase still has
most optimization potential. So this will be one of the next
things to do. To overcome the page size and load balanc-
ing issues mentioned in Sect. 7.1, we want to evaluate more
explicit threading models. As we also plan to support dis-
tributed memory machines one option is to use a PGAS lan-
guage like UPC [9] or a communication library like GPI [8]
to resolve these issues. Besides that, we are planning to eval-
uate the impact of different data structures and mixed preci-
sion calculation on AMG and other linear solvers. These are
especially interesting on accelerator like GPGPUs which is
an additional topic we want to explore. Last mentioned, but
definitely our very next step is the open source release of
LAMA on http://www.libama.org.

Acknowledgements We want to thank Matthias Makulla who has
designed the C++ solver framework within LAMA which we used to
implement the analyzed AMG solver.

References

1. hypre homepage. https://computation.llnl.gov/casc/hypre/software.
html, last viewed Dec 2010

2. hypre reference manual. https://computation.llnl.gov/casc/hypre/
download/hypre-2.6.0b_ref_manual.pdf, last viewed Jan 2011

http://www.libama.org
https://computation.llnl.gov/casc/hypre/software.html
https://computation.llnl.gov/casc/hypre/software.html
https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_ref_manual.pdf
https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_ref_manual.pdf

228 M. Förster, J. Kraus

3. hypre user’s manual. https://computation.llnl.gov/casc/hypre/
download/hypre-2.6.0b_usr_manual.pdf, last viewed Jan 2011

4. Lama homepage. http://www.libama.org, last viewed Dec 2010
5. Petsc homepage. http://www.mcs.anl.gov/petsc/petsc-as/, last

viewed Dec 2010
6. Petsc users manual. http://www.mcs.anl.gov/petsc/petsc-as/

snapshots/petsc-current/docs/manual.pdf, last viewed Jan 2011
7. Blitz++ homepage. http://www.oonumerics.org/blitz/, last viewed

Jan 2011
8. Gpi homepage. http://www.itwm.fraunhofer.de/abteilungen/

competence-center-high-performance-computing/hpc-tools.html,
last viewed Jan 2011

9. Unified parallel c homepage. http://upc.gwu.edu/, last viewed Jan
2011

10. Baker A, Schulz M, Yang U (2009) On the performance of an al-
gebraic multigrid solver on multicore clusters. Tech rep, Lawrence
Livermore National Laboratory (LLNL), Livermore, CA

11. Barrett R (1994) Templates for the solution of linear systems:
building blocks for iterative methods. Society for Industrial Math-
ematics

12. Bell N, Garland M (2009) Efficient sparse matrix-vector multipli-
cation on CUDA. In: Proc ACM/IEEE conf supercomputing (SC),
Portland, OR, USA

13. Brandt A, McCormick S, Ruge J (1984) Algebraic multigrid
(AMG) for sparse matrix equations. In: Evans DJ (ed) Sparsity
and its applications. Cambridge University Press, Cambridge

14. De Sterck H, Yang U (2006) Reducing complexity in parallel
algebraic multigrid preconditioners. SIAM J Matrix Anal Appl
27:1019–1039

15. Kayi A, Kornkven E, El-Ghazawi T, Newby G (2008) Applica-
tion performance tuning for clusters with ccnuma nodes. In: 2008
11th IEEE international conference on computational science and
engineering, pp 245–252. IEEE

16. Kleen A (2005) A numa api for Linux. Novel Inc
17. Lenga T, Ali R, Celebioglu O, Hsieh J, Mashayekhi V, Rooho-

lamini R (2003) The impact of hyper threading on communica-
tion performance in HPC clusters. In: Proceedings of the 17th
annual international symposium on high performance computing
systems and applications and the OSCAR symposium, May 11–
14, 2003, Sherbrooke, Quebec, Canada. NRC Research Press, Ot-
tawa, p 173

18. Nikolopoulos D, Artiaga E, Ayguadé E, Labarta J (2001) Exploit-
ing memory affinity in OpenMP through schedule reuse. Comput.
Archit. News 29(5):49–55

19. Ruge J, Stüben K (1987) Algebraic multigrid (AMG). In: Mc-
Cormick SF (ed) Multigrid methods. Frontiers in applied math-
ematics, vol 3. SIAM, Philadelphia, pp 73–130

20. Terboven C Daily cc-numa craziness. http://terboven.wordpress.
com/2009/12/02/daily-cc-numa-craziness/, last viewed Jan 2011

21. Terboven C, et al (2008) Data and thread affinity in openmp pro-
grams. In: Proceedings of the 2008 workshop on memory access
on future processors: a solved problem? ACM, New York, pp 377–
384

22. Vandevoorde D, Josuttis N (2003) C++ templates: the complete
guide. Addison-Wesley, Reading

Malte Förster is a senior scien-
tist at the Numerical Software De-
partment of Fraunhofer’s Scientific
Computing Institute (FhG-SCAI),
where he is a member of the nu-
merical solver group lead by Klaus
Stüben. In his current work he fo-
cusses on the development of effi-
cient parallel software, both MPI-
and OpenMP-based. On the appli-
cation side, his focus is primarily on
algebraic multigrid approaches for
the solution of Navier-Stokes equa-
tions. Malte Förster has obtained his
master degree in Mathematics at the
University of Cologne.

Jiri Kraus is a senior scientist
at the Simulation Engineering De-
partment of Fraunhofer’s Scientific
Computing Institute (FhG-SCAI),
where he is a member of the high
performance computing group lead
by Thomas Soddemann. His work
focuses on parallel algorithms and
their efficient implementation on
modern parallel hardware. Besides
MPI and OpenMP he has a spe-
cial focus on many core parallelism
for hpc accelerators like GPUs. Jiri
Kraus has obtained his master de-
gree in Mathematics at the Univer-
sity of Cologne.

https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_usr_manual.pdf
https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_usr_manual.pdf
http://www.libama.org
http://www.mcs.anl.gov/petsc/petsc-as/
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/docs/manual.pdf
http://www.oonumerics.org/blitz/
http://www.itwm.fraunhofer.de/abteilungen/competence-center-high-performance-computing/hpc-tools.html
http://www.itwm.fraunhofer.de/abteilungen/competence-center-high-performance-computing/hpc-tools.html
http://upc.gwu.edu/
http://terboven.wordpress.com/2009/12/02/daily-cc-numa-craziness/
http://terboven.wordpress.com/2009/12/02/daily-cc-numa-craziness/

	Scalable parallel AMG on ccNUMA machines with OpenMP
	Abstract
	Introduction
	LAMA
	Hardware setup
	ccNUMA

	Software setup
	Execution
	Model problems
	Algorithmic comparability of Boomer AMG and LAMA

	Single threaded performance
	Parallel performance
	Parallel scalability considerations

	Conclusion
	Future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

