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Abstract Over the past decade, a dramatic increase of
functionality, quantity, size, and complexity of software-
intensive embedded systems in the automotive industry
can be observed. In particular, the growing complexity
drives current requirements engineering practices to the
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limits. In close cooperation between partners from in-
dustry and academia, the recently completed REMsES
(Requirements Engineering and Management for software-
intensive Embedded Systems) project has developed a
guideline to support requirements engineering processes in
the automotive industry. The guideline enables the require-
ments engineers to cope with the challenges that arise due to
quantity, size and complexity of software-intensive systems.
This article presents the major results of the project, namely,
the fundamental principles of the approach, the guideline it-
self, the tool support, and the major findings obtained during
the evaluation of the approach.

Keywords Software engineering · Requirements ·
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1 Introduction

As one of the core disciplines of any engineering process
for technical systems, requirements engineering aims at sys-
tematically specifying the requirements for the systems to
be developed. This ought to be done in a way that the sub-
sequent engineering activities (e.g. architecture design, de-
tailed design, implementation, and test) are supported in the
best possible way. In order to achieve the aforementioned
goal and in order to guarantee that the realized system satis-
fies the intentions of the system’s stakeholders and considers
the constraints of the environment, the requirements specifi-
cation has to exhibit specific quality criteria, e.g. complete-
ness, correctness (cf. [27]).

1.1 Software-intensive embedded systems

The notion “software-intensive embedded system” is de-
fined by combining the meanings of “embedded system”
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and “software-intensive system”. An embedded system is
a technical system1 that operates in a physical and techni-
cal environment. Systems of that type measure or control
their environment using variables that reference physical or
technical properties of the environment (cf. [43]). The IEEE
Std 1362-1998 defines the notion “software-intensive sys-
tem” as a system “for which software is a major technical
challenge and is perhaps the major factor that affects sys-
tem schedule, cost, and risk” [26]. Additionally, [26] states
that typical software-intensive systems consist of software
as well as of hardware.

Software-intensive embedded systems are widely spread
in our daily life. They can be found in many real world do-
mains such as automation technology, medical technology,
telecommunications, consumer electronics, avionics, and in
the automotive domain. Software-intensive embedded sys-
tems in modern vehicles, for example, provide for comfort
of the occupants or ensure their safety. Typical systems of
this kind are electronic stability systems, vehicle light sys-
tems, engine management systems, pre-crash detection sys-
tems, adaptive cruise control systems or traffic lane assis-
tance systems.

1.2 Observations in the automotive industry

In the automotive industry, engineering processes for soft-
ware-intensive embedded systems go along with three
fundamental challenges we observed in many industrial
projects.2

1.2.1 Increasing size and complexity

Especially over the past 10 years, a significant increase of
the size and complexity of software-intensive embedded
systems can be observed. The number of software-based
functions in vehicles increased permanently over the past
decade. As reported in [46], a typical upper class vehicle in
2007 contained about 270 implemented functions to inter-
act with its driver. Upper class vehicles of the most recent
generation contain more than 500 of such functions.

Not only did the number of software-based functions
grow but also the size of the software of vehicles grew sig-
nificantly over the past 10 years. The amount of binary code
in an upper class vehicle in 2007 was about 65 megabyte.
The current generation of such vehicles requires more than
one gigabyte of binary code (cf. [46]).

1A technical system can be defined as a system that is built by means
of technical resources which collaborate in order to achieve an overall
system goal.
2However, these observations are also valid for the majority of other
domains.

Fig. 1 Market volume of software in the automotive domain

The increasing number and size of software-based func-
tions comes along with a growth of complexity.3 The per-
ceivable functions of a vehicle are increasingly realized by
integrating fine-grained software-intensive embedded sub-
systems. Therefore the complexity of software-intensive
embedded systems in vehicles increases in two ways (cf.
[21]):

– Intra-system complexity: Since the customer require-
ments regarding well-known functionalities increasingly
require more individual software-intensive systems (e.g.
the breaking system, engine management, driving assis-
tance system), manifold and more sophisticated features
are required. That leads to a higher degree of complexity
of these individual systems.

– Inter-system complexity: More and more perceivable
functions in modern vehicles are realized by integrating
systems into higher compound structures that collabora-
tively provide extensive services (“systems of systems”).
Therefore, the number and variety of inter-system rela-
tionships increases significantly. Consequently, in addi-
tion to the internal complexity of a system, the complex-
ity of the relationships to other systems becomes more
and more important to manage.

1.2.2 Increasing economical relevance

A joint study [10] of the Mercer Management Group, the
Fraunhofer-Gesellschaft, and the Robert Bosch GmbH pre-
dicted that the market volume of software in the automotive
domain would have a high growth rate until 2015. Figure 1
compares the market volume of software in the automotive
domain in 2003 with the predicted market volume for 2015.

As shown in Fig. 1, the study predicts a growth of the
market volume of software from 25 billion EUR in 2003 to
133 billion EUR in 2015. This is equivalent to an increase

3The term complexity of a system refers to the number of different
building blocks and the number of non-trivial relationships between
these blocks.
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of the market volume of software in the automotive domain
of nearly 530%. These market trends rely on the estimations
that, beginning in 2010, more than 40% of value creation in
automotive industry is realized by software and that the ma-
jority of innovations in the automotive industry will be re-
alized by software (cf. [22]). In [19], experts from Daimler
AG prognosticate that almost 80% of all future automotive
innovations will be on the basis of software. Consequently,
the negative effects of software project failures in the auto-
motive industry or system failures of software-intensive em-
bedded systems in the field seriously impact the economic
success of the responsible companies.

1.2.3 Inappropriate requirements engineering

Our experiences show that requirements engineering proces-
ses in the automotive industry are not well-defined in most
cases. As a consequence, engineering staff that is involved
in the elicitation, specification, and quality assurance of re-
quirements mostly proceeds in an ad-hoc manner. Require-
ments for a new system are mostly documented in the form
of natural language statements and are usually structured by
predefined requirements templates (cf. [54]).

In view of the increasing size and complexity of software-
intensive systems and the growing economic importance of
software-based functions in vehicles, the current practice
with respect to requirements engineering in the automotive
industry is often inadequate for coping with these upcoming
challenges (cf. [2, 3, 54]).

1.3 The REMsES project

The project was partly funded by the German Federal Min-
istry of Education and Research (BMBF) in the context of
the research initiative “Software Engineering 2006”. The
acronym “REMsES” stands for Requirements Engineering
and Management for software-intensive Embedded Systems.

1.3.1 Vision of the project

The vision of the project was to develop a field-proven pro-
cess guide for supporting requirements engineering pro-
cesses in the automotive industry. Whenever possible, this
should be done by using techniques which are already es-
tablished in industrial practice rather than compete against
the current state of practice.

Motivated by the three fundamental observations made in
requirements engineering processes within the automotive
industry, the REMsES Guide aims at enabling engineers to
cope with: (1) the growing quantity and size of software-
intensive embedded systems in vehicles, (2) the increasing
inter-system complexity, and (3) the increasing intra-system
complexity within large compound structures.

1.3.2 Project structure

The project started in August 2006 and was completed in
August 2009. The project duration of 36 month was divided
into two coarse-grained project phases:

– Phase I: Analysis (month 1–3): Requirements and asso-
ciated application scenarios for the REMsES Guide were
elicited from the industrial partners based on an adapta-
tion of the strategy proposed in [47]. Afterwards, the re-
quirements and application scenarios were analyzed, con-
solidated and documented within a requirements docu-
ment. The application scenarios were the main inputs for
the subsequent evaluation activities.

– Phase II: Development and Evaluation (month 4–36):
Based on the requirements document, in this phase the
guide was developed. Complementary to the development
of the guide, tools supporting the application of the guide
in industrial environments were designed. Accompany-
ing the development of the guide in three engineering-
evaluation cycles, several evaluation activities in aca-
demic and industrial environments were conducted. The
results of the industrial evaluation were analyzed in or-
der to define the required changes and extensions that had
to be integrated in the guide within the next engineering
iteration.

1.3.3 Members of the project consortium

The guide was developed in the project in close collabora-
tion between academic partners, industrial partners from the
automotive industry, and industrial partners whose main fo-
cus lies on consulting the automotive industry with regard to
model-based specification and formal techniques for quality
assurance. The project consortium consists of two academic
and three industrial members.

Academic members

– Technische Universität München
– Universität Duisburg-Essen

Industrial members

– Daimler AG (Vehicle Manufacturer)
– Robert Bosch GmbH (First Tier Supplier)
– Validas AG (Consulting Company)

1.4 Challenges from industrial partners

At the beginning of the project, the industrial partners took
lead in gathering the major industrial application scenar-
ios concerning the support of requirements engineering pro-
cesses in the automotive industry. The analysis of the gath-
ered application scenarios revealed four major challenges.
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The guide and the complementary tool support should:

– consider input information as well as other information
that must be documented;

– provide fine-grained, stepwise instructions for documen-
tation activities;

– provide templates and examples and recommend docu-
mentation techniques;

– be tailorable to project-specific or company-specific needs.

1.5 Outline

The remainder of this article is structured as follows: Sect. 2
introduces the four core principles of the approach. In
Sect. 3, the major elements of the guide are exemplified. Af-
terwards, Sect. 4 elaborates on the tool support for efficiently
using the guide in practice. The evaluation strategy and im-
portant evaluation results are presented in Sect. 5. A discus-
sion of the related work is given in Sect. 6. The article ends
with a conclusion and an outlook on future work in Sect. 7.

2 The four principles of the approach

The approach is based on fundamental principles.4 The prin-
ciples provide a foundation for any activity performed dur-
ing the requirements engineering processes. The principles
are:

– Consider system decomposition explicitly
– Distinguish between problem and solution
– Keep the documentation model-based
– Focus on artefacts

These four principles aim at establishing specific ways
of thinking in order to meet the increasing number, size,
and complexity of software-intensive systems in the auto-
motive industry (see Sect. 1). The approach realizes each of
these principles by introducing appropriate conceptualiza-
tions and techniques. Each of the four principles is explained
below.

2.1 Consider system decomposition explicitly

The objective of this principle is to consider the decompo-
sition of the overall system into fine-grained subsystems.
Along the decomposition of the system, its engineering pro-
cess can be divided into a number of individual fine-grained
engineering processes, complemented by activities that sup-
port the integration of the results.

4The term principle is used in the sense of [17] as a convention that is
subject to any activity.

2.1.1 Abstraction layers in general

Requirements engineers in the domain of software-intensive
embedded systems tend to specify the requirements at a de-
tailed, technical level. Yet, the documentation of high-level
requirements is insufficient (cf. [54]). The higher levels of
abstraction are essential for justifying detailed requirements,
understanding a requirements document, and managing the
high complexity of embedded systems. Requirements at dif-
ferent levels of detail and abstraction, ranging from goals to
detailed technical requirements (e.g. concerning the system
hardware), need to be included in the requirements docu-
ment. High-level requirements provide a justification for de-
tailed requirements and support the understandability of the
requirements document. Low-level (i.e. detailed) require-
ments are needed to provide enough information for imple-
menting the system correctly.

The diversity of requirements at different levels of detail
demands a systematic way of dealing with each requirement
adequately and dealing with it according to its level of detail
and its granularity. The granularity of a requirement influ-
ences, for instance, its importance in a certain stage of sys-
tem development. For example, at an early stage of contract
negotiation, coarse-grained goals might receive more atten-
tion than fine-grained and detailed technical requirements.
Later on, when the feasibility of the planned system is eval-
uated, detailed technical requirements or even a preliminary
high-level system design are needed. A well-known tech-
nique for dealing with varying levels of detail and granular-
ity of requirements is to establish multiple layers of abstrac-
tion and assign each requirement to the appropriate abstrac-
tion layer (cf. e.g. [18]).

2.1.2 The REMsES abstraction layers

In literature as well as in industrial practice, different hierar-
chies of abstraction layers for technical systems are defined
and used. Existing approaches like [15, 38] vary, for exam-
ple, in the way how the abstraction layers are generated and
in the number of resulting layers. In the project, we have
adopted a hierarchy of three abstraction layers (see Fig. 2):
system layer, function groups layer, and hardware/software
layer.

The separation between system layer and function group
layer is based upon the academic and practical experiences
that complexity and size of technical systems can be mas-
tered by decomposing the system in a set of coherent logical
components. Consequently, the overall engineering problem
is divided into a number of small engineering problems to-
gether with the problem of integrating the resulting logical
components of the system.

The separation between function group layer and hard-
ware/software layer is based upon academic and practical
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Fig. 2 Abstraction layers and system decomposition

experiences that the logical decomposition of a software-
intensive embedded systems should be independent from
the decisions concerning which aspects of the systems are
realized by software and which aspects are realized by hard-
ware. The characteristics of each of the three abstraction lay-
ers are described below.

– System layer: At the system layer, the stakeholders take an
“outside” view (i.e. black box view) of the system. Mod-
els on this layer focus on how the system is used by its
users as well as by other systems. This layer comprises,
for instance, usage goals, usage scenarios, and the func-
tions or services that the system offers to its users via pre-
defined interfaces. These services represent the function-
ality that is directly visible to the users. As a consequence,
this layer does not regard system-internal functions.

– Function group layer: The function group layer repre-
sents a whitebox view of the system. At this layer, the sys-
tem is regarded as a network of interacting, logical units
obtained by a logical functional decomposition of the sys-
tem. We refer to these units as “function groups”. The in-
formation captured at the system layer can be refined at
the function group layer and assigned to individual func-
tion groups. Function groups have defined interfaces and
can interact with each other as well as with the system
environment. Each function group exhibits a defined be-
havior at its interfaces. Function groups are identified, for
instance, by logical decomposing and clustering the sys-
tem functions that are defined at the system layer.

– Hardware/software layer: At this layer, a physical par-
titioning of the system functionality into hardware and
software is defined. For this purpose, the system is tech-
nically decomposed into individual hardware and soft-
ware components. This decomposition can be regarded
as a preliminary or draft technical system architecture.
Software components may include code of more than one
function group. Hardware components are devices such
as electronic control units (ECUs), sensors and actuators.
A hardware component can be used by more than one
function group. It should be noted that detailed design

models are not within the scope of the hardware/software
layer. The main purpose of such models in the REMsES
approach is to support the refining and specification of re-
quirements (cf. [41]).

How the abstraction layers address the challenges Ab-
straction layers help to control the high system complexity
that can be found in software-intensive embedded systems,
for example, when decomposing a software-intensive em-
bedded system of a vehicle (e.g. an adaptive cruise control)
into logical subsystems (e.g. control unit, signal processing,
sensors, actuators). In addition, abstraction layers allow for
a clear assignment of requirements, for example the require-
ment “In case of . . . the system shall emit . . . ” clearly be-
longs to another abstraction layer than the requirement “The
software function F123 and F124 may not be executed on the
same processor”. The abstraction layers support separation
of concerns such as differentiating between external and in-
ternal system behavior, or the distinction between functional
decomposition and the partitioning into hardware and soft-
ware. Finally, the abstraction layers provide assistance for
verification, for example, for a security certification. Such a
certification may require that each component is justified by
a system requirement.

2.2 Distinguish between problem and solution

The objective of this principle is to continuously distinguish
between the information concerning the underlying prob-
lem and information concerning the corresponding solution,
with regard to the systems to be developed. This principle
represents one of the core principles of requirements engi-
neering (cf. [57]). The problem description elaborates on the
underlying engineering problem with regard to characteris-
tics and conditions of the environment (in which the system
shall operate in the future) together with the goals and needs
of the stakeholders, and aspects that constrain the charac-
teristics of the system. The documentation of the solution
contains information about how to solve the problem stated
in the problem description.

2.2.1 The distinction “environment”, “system”,
and “interface” in general

The differentiation between the problem and the solution
leads to three distinct system views. According to Jackson’s
“World and the Machine” model [29], there are three major
views onto a system: Firstly, there are requests for changes
that the system shall enforce in the world (i.e. in its environ-
ment). Secondly, there are characteristics the system shall
exhibit at its interfaces to the world. Thirdly, there are spec-
ifications for the “inside” of the machine or system, docu-
menting details about how the system should be realized.
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The environment as well as the conditions and capabilities
the system should provide at its interface define the prob-
lem that has to be solved by the system. Although their is a
notational similarity between the system view “system” and
the abstraction layer “system layer”, both classifications are
orthogonal to each other, e.g. the system view “system” can
be applied to each of the three abstraction layers described
in Sect. 2.1.2.

2.2.2 The system views

Based on the distinction between environment, interface,
and system, the approach distinguishes between three main
content categories: “context”, “requirements”, and “design”.
The “world” is modelled in the context, the “interface” is
captured in the requirements, and the “inside” is represented
by the design. The categories “context” and “design” con-
tain important information for the requirements engineering
process and therefore have a considerable influence on the
requirements (cf. [41, 52]).

– Content category “context”: The context of the system
is the part of the real “world” that influences the require-
ments for the system and therefore the system itself. Con-
text elements are, for example, laws, business goals, gen-
eral constraints, technical or physical environmental con-
ditions, and information about adjacent systems. Many
requirements for the system and its components, respec-
tively, originate directly from the demands and constraints
imposed by the context (cf. [55]). The context of a system
has an inner boundary and an outer boundary. The inner
boundary (system boundary) separates the system from its
environment and therefore defines the subject of engineer-
ing. The outer boundary (context boundary) separates the
part of the environment that influences the requirements
of the system from the irrelevant part of the world that
does not.

– Content category “requirements”: The content category
“requirements” defines conditions or capabilities the sys-
tem should exhibit at its interface. Information within this
content category can be documented using both natural
language and conceptual models such as goal models (cf.
e.g. [35]), scenario models (cf. e.g. [8]), or models of
function, data, or behavior (cf. e.g. [12]). In the indus-
trial context of the project partners, goals, scenarios, and
functions were identified as the most important concepts
of a software-intensive embedded system within the con-
tent category “requirements”.

– Content category “design”: As already stated above,
a certain amount of design information in the require-
ments document of an software-intensive embedded sys-
tem is inevitable, because the consideration of major de-
sign decisions is required to specify detailed requirements

(cf. [41]). Detailed requirements such as component re-
quirements must be specified, for instance, to facilitate the
integration of systems developed by different suppliers.

2.2.3 Abstraction layers and content categories

The two principles described so far are orthogonal to each
other. In other words, the three content categories are de-
fined orthogonally to the abstraction layers. The abstraction
layers form the vertical dimension of the structure and the
content categories relate to the horizontal dimension of the
model structure.

How the system views address the challenges We have
found that in industrial practice, requirements often con-
tain implicit design choices, which makes the requirements
unnecessarily complex and unnecessarily limit the solution
space. In such cases stakeholders may not be aware which
of the so called “requirements” hide design choices and
which ones are actually part of the content category “re-
quirements”. Furthermore, developers need to understand
where certain information has to be documented. Distin-
guishing between the three content categories of informa-
tion helps to reduce complexity by separating the indicative
problem description (context), the optative problem descrip-
tion (requirements) and the description of the solution (de-
sign).

2.3 Keep the documentation model-based

The objective of this principle is to establish a continu-
ous model-based documentation of information that is cre-
ated during the requirements engineering process. The no-
tion “model-based” is used in the approach in two ways (cf.
[13]):

– The content structure of the relevant information is de-
fined by a meta-model that specifies the pieces of infor-
mation and the structural dependencies between them.

– The relevant information is documented using visual con-
ceptual modeling languages (e.g. class diagrams, message
sequence charts, and statecharts).

Since conceptual modeling languages are typically de-
fined using meta-models that can be regarded as specific
information models, the two interpretations of the notion
“model-based” are not disjoint. The interpretations differ
with respect to the fact that the template-based documenta-
tion refers to “model-based” in the sense that the template
structure is visible in the form of an information model.
Therefore, the template-based documentation is regarded as
a kind of “model-based documentation”.
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2.3.1 Continuous modelling in general

The level of automated support that can be provided for nat-
ural language requirements is limited. Thus, requirements
engineering tasks such as requirements analysis, validation,
or negotiation become increasingly difficult when the size
and complexity of the requirements specification grows. As
pointed out in [56] model-based requirements engineering
can help to overcome some of the difficulties related to nat-
ural language requirements (e.g. ambiguity, confusion of ab-
straction layers or perspectives).

A conceptual model is an abstraction of a real world
partition that is based on a conceptual modeling language
(cf. [13]). Conceptual models help to separate requirements
specifications from design specifications. Design constraints
and design choices can be documented in separate models,
e.g. by using an architecture description language. Models
can be checked automatically, e.g. for consistency between
different views or in order to identify the absence of certain
requirements (cf. [14]). Conceptual models support commu-
nication among the stakeholders and help to acquire a com-
mon understanding of the planned system (cf. [16]). Ad-
ditionally, conceptual models support adhering to specific
abstractions layers and system perspectives by providing a
restricted set of modelling elements and permitted relation-
ships (cf. [56]).

2.3.2 Continuous modelling in REMsES

In order to combine the abstraction layers and content cate-
gories, we have selected a number of well-established mod-
elling techniques and adapted or extended them to support
consistent modelling across the three abstraction layers (see
Sect. 2.1.2). These techniques are: context modelling (e.g.
[30, 31]), goal modelling (e.g. [11, 36]), scenario modelling
(e.g. [32, 45]), function modelling (e.g. [49]), architecture
modelling (e.g. [39]), and behavior modelling (e.g. [23]).
Figure 3 shows the assignment of these modelling tech-
niques to the abstraction layers and content categories.

The modelling techniques provide mechanisms to ensure
the consistency of models between abstraction layers. Each
modelling technique can be applied across the three abstrac-
tion layers and, while some of them stick to one content
category, others explicitly belong to two categories. For in-
stance, scenario modelling is assigned to the requirements
category, expressing that scenario models should be used
preferentially for documenting requirements. In contrast,
goal modelling is assigned to two categories, namely con-
text and requirements. Modelling techniques that belong to
two content categories, facilitate the integration of the corre-
sponding content categories (e.g. goal modelling integrates
the content categories “context” and “requirements”). In the
following, the modelling techniques that have been adapted
to be used in the approach are described at a glance:

– Context Modelling develops a model of the environment
of a planned system, a function group, or a software
or hardware component, respectively. We distinguish be-
tween business context, stakeholder context, and opera-
tional context (cf. [55]). For instance, a context model
of the operational context represents, among other things,
actors who use the system or component and environment
variables that the system must control.

– Goal Modelling provides an overview of the intentions
of the stakeholders together with the corresponding char-
acteristic functional and quality properties of the system,
a function group, or a software component. Goals jus-
tify detailed requirements and design decisions but are
defined independently from a specific technical solution.
High-level goals are refined hierarchically into subgoals
(cf. e.g. [34]).

– Scenario Modelling develops a scenario-based descrip-
tion of the system, a function group, or a software com-
ponent in terms of sequences of interaction that exem-
plify the satisfaction of individual goals (cf. [44]). The
most common technique for scenario-based descriptions
are use cases [32]. Since scenarios describe, among other
things, the satisfaction of individual stakeholders’ goals,

Fig. 3 Structure of the
reference model with assigned
specification techniques
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goal models facilitate the integration of the content cate-
gories “context” and “requirements”.

– Function Modelling documents the functions of the
planned system and their relationships. A function model
consists of an overview diagram of the functions and their
communication relationships and template-based defini-
tions of the individual functions (cf. [20]). Functions on
the system layer are usage functions, functions on the
function groups layer are logical functions, and func-
tions on the hardware/software layer are technically im-
plemented functions. An example for a relationship on
the system layer is a usage dependency, on the function
group layer it is a data flow, and on the hardware/software
layer it is a call-relationship.

– Architecture Modelling defines the essential structures of
the planned system in terms of components, connectors,
and interfaces (cf. e.g. [39]). Since specific characteristics
of the solution (system, function group) are relevant for
specifying the requirements of the respective abstraction
layer below, the architecture modelling in the approach
is restricted to structural dependencies. This is due to co-
design in the embedded systems domain, where, for ex-
ample, the design of the overall system restricts the re-
quirements on the function groups layer.

– Behavior Modelling defines the essential behavioral view,
for example the state-based view of the system opera-
tions within the content category “design” (cf. [12]). This
allows for a comprehensive specification of system and
component behavior which is relevant for the specifica-
tion of requirements of the system layer below.

How continuous modelling addresses the challenges Each
modelling technique is restricted to a specific perspective
that is relevant for supporting the specification of the sys-
tem, a function group, a software component or a hardware
component. Consequently, the resulting specification mod-
els only exhibit information that is relevant from that spe-
cific perspective. Statements across content categories can
be made on the basis of cross-cutting language concepts.
For instance, context models and scenario models contain
the cross-cutting language concept of an “actor”. The inte-
gration of the context and scenario model with respect to a
specific actor permits to make statements that integrate in-
formation from these two content categories.

2.4 Focus on artefacts

The objective of this principle is to establish artefacts as the
central concept of the approach.

2.4.1 Artefact-centered approaches in general

An artefact within a requirements engineering process can
be characterized as a cohesive set of documented informa-
tion. An artefact type defines joint properties of a set of

Fig. 4 The three defining elements of the approach

similar artefacts. Within an artefact-based approach, a doc-
ument is a coarse-grained logical grouping of artefacts and
addresses a specific purpose (e.g. the “Customer Require-
ments Document” includes all information concerning the
needs and constraints of the customers). A document type is
defined by the set of artefact types which are used to docu-
ment the information related to the specific document type.

2.4.2 Artefact-centering in REMsES

The approach is defined by three interrelated models which
are in turn based on the artefacts (see Fig. 4). This means
that both the Process Model and the Environment Model are
tightly connected to the Artefact Model as depicted in the
figure.

The Artefact Model provides a basic structure for the defi-
nition of the artefacts, their assignment to abstraction layers
and content categories, and the relations between the arte-
facts. The Process Model defines the coarse-grained course
of action and fine-grained task descriptions. The former de-
fines general control flow dependencies within requirements
engineering processes. The latter model defines individual
artefact-related tasks. Each of these tasks provides a struc-
tured description for supporting the systematic development
of artefacts of the specific type. The interfaces between tasks
or the execution of a task are defined on the basis of the
development and completion of certain artefacts. The Envi-
ronment Model defines the interfaces between the environ-
mental processes that interact during the engineering pro-
cess of the system with its requirements engineering pro-
cess, for example, product management, project manage-
ment, or quality assurance. These interfaces are defined in
an artefact-oriented manner by demanding certain artefacts
to be received, delivered, or exchanged.

By choosing a particular content category, abstraction
layer, and specification technique, the modeler obtains a de-
tailed characterization of the model to be created. However,
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Fig. 5 Artefact types of the
Artefact Model

the guidance for creating the model comes from three dif-
ferent sources: the descriptions of the corresponding content
categories, the descriptions of the corresponding abstraction
layers, and the descriptions of the corresponding modelling
techniques.

Having to put together the guiding information from the
three sources may overwhelm the modeler. Thus, we pro-
vide predefined artefact type descriptions for the different
options concerning content category, abstraction layer, and
specification technique. Figure 5 shows an overview of the
artefact model and its content dependencies.

All artefacts derived from the Artefact Model are de-
scribed using a template that, for example, includes the clas-
sification into corresponding content categories, abstraction
layers, and specification techniques. In most cases, artefact
descriptions suggest alternative notations, so that the devel-
oper can choose, for instance, the most suitable modelling
tool. It should be noted, that in a specific project, an impor-
tant step is to tailor the model and choose the artefacts that
are relevant for the project rather than creating all artefacts
defined by our model.

How the artefact-centered approach addresses the chal-
lenges Focusing on artefacts helps to cope with the num-
ber, size, and complexity of software-intensive systems in
automotive industry. The Artefact Model structures the re-
quirements engineering process by defining which informa-
tion should be gathered and documented. The artefact-based
interface definition between REMsES-based processes and
interacting processes helps to integrate the approach in ex-
isting process landscapes. Additionally, the consideration of
individual artefact types supports the specific validation and
the assignment of responsibilities.

3 Realization of the REMsES guide

The four principles of the approach, which were introduced
in Sect. 2, represent the foundation of the guideline. Each
principle induces specific characteristics of the REMsES
Guide.5 In order to give an example, the principle differ-
entiation between abstraction layers leads to a classification
of artefacts within the guideline in terms of their assignment
to the system layer, the function groups layer, and the hard-
ware/software layer.

3.1 Structure of the guide

The guide was realized as a hypertext-based system. On the
highest level the guide consists of the more specific Pro-
cess Guide and the Demonstrator. Using the example of
a “Radio-Frequency-Warning-System” 6 the Demonstrator
shows the various artefacts that will be created during a re-
quirements engineering process for a software-intensive em-
bedded system. In the following, we focus on the first com-
ponent of the guide, the Process Guide. Its overall content
structure is shown in Fig. 6.

The Process Guide consists of seven sections:

5The REMsES Guide and further material, including extensive illus-
trating examples, is available free of charge at http://www.remses.org.
This source also includes the complete list of project-related publica-
tions which complement the paper at hand, for instance, concerning
details of the six REMsES modelling techniques. We decided not to
present example instances of artefact descriptions within the article at
hand, but we encourage the interested reader to download it.
6The Radio-Frequency-Warning-System (RFW) is a vehicle system
that detects the radio-signature of road signs. Depending on the type
of detected road signs and the driving direction the system initiates
specific actions, e.g. the system informs the driver about a legal speed
limit.

http://www.remses.org.


30 P. Braun et al.

Fig. 6 Structure of the REMsES navigation frame

– Introduction: This chapter describes the problem state-
ment and the vision of the approach.

– Principles: This chapter describes the core principles of
the approach which were already presented in Sect. 2.

– Modelling Technique: This chapter refers to the corre-
sponding modelling technique of the approach which
were also presented in Sect 2.

– Artefact Model: This chapter describes the artefact model
of the approach consisting of a detailed description of the
individual artefact types. The artefact model within the
guide is structured in two different ways. The user of the
guide can choose one of these structuring mechanisms
as an entry point for accessing the artefact descriptions
within the guide. The artefact description within the arte-
fact model is classified by the three system layers or by
the three different system views (see Sect. 2). Section 3.2
presents the content structure of the artefact descriptions.

– Process Model: This chapter describes the Process Model
consisting of fine-grained task descriptions for systemati-
cally creating the individual artefacts. The structure of the
task descriptions is presented in Sect. 3.3.

– Environment Processes: This chapter describes the in-
terfaces between REMsES processes and environmental
processes that provide information for requirements en-
gineering (e.g. product management) or processes that
use information created during requirements engineering.

The interface between REMsES processes and the envi-
ronmental processes (e.g. product management, project
management, or quality assurance) is specified in terms
of artefact and corresponding artefact flows.

– Glossary: The Glossary defines the technical terms that
are used in the approach. The glossary contains more than
50 definitions of technical terms.

3.2 Process guide: artefact descriptions

The Artefact Model defines artefact types and the relation-
ships between them with regard to their content. Artefact de-
scriptions in the process guide provide detailed information
that is relevant for the documentation and quality assurance
of the concerning artefact. The structure of artefact descrip-
tions within the guide is illustrated in Fig. 7.

– Artefact name contains the name of the artefact type. If
artefacts of a specific kind occur on more than one system
layer, the name of the layer is added to the artefact name,
e.g. “Operational context (FG)”.

– Short description contains a brief description of the pur-
pose of the artefact type. This description includes, among
other things, the rationale why artefacts of this type have
to be created and why they are relevant in requirements
engineering processes.

– Relationships to tasks contains the various relationships
between artefacts of this type and the tasks within the Pro-
cess Model. The tasks are differentiated into input tasks
(tasks that require artefacts of the specific type as input)
and output tasks (tasks that create artefacts of the specific
type).

– Process classification of the artefact explains, to which
coarse-grained requirements engineering activity the arte-
fact can be assigned (e.g. elicitation, specification).

– Main artefact description refines the short description of
the artefact and describes the detailed structure of the con-
tent of the artefact (e.g. the individual slots of a use case
description or the types of elements in a context model).
Complementary to the abstract content structure and se-
mantics, appropriate documentation techniques are sug-
gested (e.g. textual documentation or model-based docu-
mentation).

– Templates and examples provides templates for structured
textual documentation or reference models, depending
on the suggested documentation techniques. Besides, this
section contains examples for artefacts of the correspond-
ing artefact type.

– Additional information contains evaluation criteria for
checking the quality of the created artefact and rules that
define when sufficient information with regard to an arte-
fact has been documented and, thus, when the description
of the artefact is complete.
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Fig. 7 Structure of an artefact description

3.3 Process guide: task descriptions

The Process Model consists of a coarse-grained and a fine-
grained process model (see Sect. 2.4). The structure of a task
description within the fine-grained process model is illus-
trated in Fig. 8.

– Task name contains the name of the tasks. Typically, the
tasks name consists of the activity followed by the name
of the specific artefact type (“Document Technical Con-
straint”). If tasks of a specific kind occur on more than
one abstraction layer the name of the layer is added to the
tasks name, e.g. “Document Operational context (FG)”.

– Corresponding modelling technique shows the classifica-
tion of the task to an individual modelling technique, de-
scribed in Sect. 2.3.

– Purpose of the task contains a description of the intention
of the task, e.g. the systematic gathering and consolida-
tion of the required information together with an appro-
priate documentation of the information.

– Relations to artefacts describes relations of the task to
artefacts of specific artefact types. The related artefacts
are differentiated as input artefacts and output artefacts.
Input artefacts of a task are artefacts that are mandatory
or optionally required to perform that task. The output
artefact indicates the artefact type that is instantiated by

performing the task, i.e. the type of the artefact that is
created by the task.

– Task main description provides a detailed description of
the task. The main description details the purpose of the
task together with a general specification how the input
artefacts are to be used in order to create the output arte-
facts.

– Process steps provides individual process steps that
should be executed to develop the artefacts of the spe-
cific artefact type systematically. The process steps also
describe how the input information (i.e. input artefacts)
should be analyzed and how the gathered information
should be consolidated and enriched to create the output
artefacts. Whenever necessary, each of the process steps
gives hints on how to elicit missing artefact information.

– General hints for task execution provides hints for sup-
porting task execution, e.g. stakeholders who should be
involved or documents that should be considered when
eliciting missing artefact information.

3.4 Tailoring requirements engineering processes in
automotive industry

In order to apply the guide in a specific process context, the
guideline has to be tailored. For this purpose the relevant
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Fig. 8 Structure of a task description

artefact types have to be determined and roles from the over-
all development process together with responsibilities have
to be assigned to artefact types. The artefact-based definition
of the approach provides a basis for tailoring requirements
engineering processes by selecting relevant artefact types
and their assignment to specific roles in engineering pro-
cess. In particular, this holds for the manifold occurrences
of supplier-manufacturer-relationships which are typical in
automotive industry. However, the tailoring process for the
guide was not in the scope of the project.

4 Tool support for REMsES processes

Besides the documentation of the Artefact Model and Pro-
cess Model (see Sect. 3.1), a developer needs specific sup-
port for developing and managing artefacts. A variety of
tools exists in the area of requirements management and
model-based design that are suitable for developing the in-
dividual artefacts of the Artefact Model (Sect. 2.4) and that
are already widely established in industrial practice. Exam-
ples for such tools include a range of UML tools for mod-
elling use cases and activity diagrams, depicting functional
requirements and behavior models, or MSC editors for sce-
narios. Available products are, for instance, IBM Telelogic

Doors,7 Borland Together,8 or SparxSystems Enterprise Ar-
chitect.9

The range of available tools gives rise to the necessity
to use a dedicated repository to manage the artefacts and
their relations according to the Artefact Model. So we devel-
oped a concept and a tool prototype for the management of
artefacts and their relations. Thereby, the types of relations
between artefacts are grouped into structural dependencies,
consistency relations, and generative relations:

– Structural dependencies between artefacts are, in the field
of requirements engineering, mainly composition rela-
tions (“A is part of B”).

– Consistency relations realize dependencies which can be
checked (contrary to structural dependencies). Depending
on the artefact types and the dependency, the correspond-
ing checks can be executed automatically or have to be
performed manually. An example for a consistency rela-
tion states, that an artefact that describes a component and
another artefact that describes the behavior of this compo-
nent are interface-compatible with each other. Other ex-

7www-01.ibm.com/software/awdtools/doors/.
8www.borland.com/de/products/together/index.html.
9www.sparxsystems.com.au/products/ea/index.html.

http://www-01.ibm.com/software/awdtools/doors/
http://www.borland.com/de/products/together/index.html
http://www.sparxsystems.com.au/products/ea/index.html
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amples are dependencies describing refinement or design
rationales.

– Generative relations describe that (and how) artefacts are
generated automatically from other artefacts. Thus, if a
new version of a source artefact is available, a follow-up
generation process has to be triggered. Generative rela-
tions declare, for example, that a test protocol was gener-
ated from a specific behavior model and a specific (test)
scenario description.

4.1 Challenges for the tool support

Our industrial project partners emphasized the following
challenges:

– In accordance with the principle “Focus on artefacts” (see
Sect. 2.4) a set of artefacts has to be managed. The num-
ber of artefacts is variable and there are different types
and formats of artefacts. This does also include addi-
tional artefacts that are not necessarily listed in the arte-
fact model, e.g. meeting protocols or presentations. Fur-
thermore, an artefact may be represented by a document
or may be a part of a document containing many artefacts.

– There are relations and dependencies between artefacts,
which have to be managed. Relations have different types
and can be parameterized. For example, consistency re-
lations can be parameterized with the name of the role in
the process that is responsible for proving the consistency.

– The interconnectedness of the artefacts raises the need for
consistency checks, thereby supporting seamless model-
based development and adhering to principle “Distinguish
between problem and solution” (see Sect. 2.3). This is
impaired by the fact that the artefacts do not necessarily
build on a common information model. In part, the consis-
tency checks can be executed automatically, but typically
the majority is performed manually by developers.

– Apart from artefacts and their relations, there are validity
states that have to be managed. The state of an artefact
can be “under work”, “check content required”, “check
relation required”, and “finished”. The state of a relation
can be “check required” and “valid”.

– Assembling artefacts requires version controlling. This
includes versioning the artefacts themselves, the relations,
and the states of artefacts and relations.

– The artefacts require well-defined and well-supported
change management that accompanies all change proc-
esses and supports the developer in transitioning the arte-
fact model from one consistent state to another consistent
state.

The aim of providing a tool support for the REMsES pro-
cesses is to present a light-weight tooling concept based on
a framework for a generic workflow that supports the de-
velopment of an adaptable artefact model (see Sect. 2.4).

Fig. 9 Architectural Concept of the tool

Fig. 10 Structure of the artefact
repository

This framework can be instantiated with an adapted arte-
fact model and an adapted workflow. The workflow thereby
specifies the order and detailed content of the checks that are
performed.

4.2 Architectural concept

To meet the challenges discussed above, we developed a
logical and technical tool architecture that provides the re-
quested support, as shown in Fig. 9. It is based on a ver-
sion control system (VCS), with a specific structure, which
is complemented by an issue tracking system.

The VCS serves as a central database. The issue tracking
system provides the ability to integrate human beings into
the (validation) workflow. Thereby, the generic workflow is
enforced by executing checks, restricting check-ins, and is-
suing tickets.

Some parts of the workflow cannot be executed automat-
ically as it is not possible to express many of the test crite-
ria in formal terms. As a consequence, manual consistency
checks have to be integrated. We achieve this through the
combination of the VCS with the issue tracking system, in a
way that manual check tasks are issued as tickets enforcing
a workflow.

Repository structure The VCS keeps track of the different
versions of each document containing artefacts and the cur-
rent state of the document. Figure 10 shows the structure of
the artefact repository. The directory “repository” contains
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the artefacts, which are filed in their respective subdirec-
tories, depending on their current state. For the user, only
the directories “work” and “check content” are writable.
“check relation” and “finished” are maintained by the sys-
tem. “work” provides a space, where developers can save
their daily work without any consequences, as this direc-
tory does not excerpt any effects if changes are committed.
The generic workflow starts once the user commits a docu-
ment to the directory “check content”. This incorporates that
the predefined checks are executed. As the kind of checks,
which have to be performed, depend on the contained arte-
facts of the document, the type of each contained artefact
has to be provided as meta-data of the document (as defined
in the artefact model).

The directory “relations” holds the currently valid rela-
tions stored in the instance model. The implementation of
the check scripts for content-based checks and dependency
checks can be found in the “checks” directory.

Content and relation checks Content and relation checks
can both be executed automatically and manually. Every
check is triggered by invoking a shell script and returns
“pass” or “fail”. After the invocation, in case of a manual
test, the script creates a ticket for a predefined role, which
has to perform the check. The corresponding ticket can be
closed with result “pass” or “fail”. In case of a failure, the
author of the document is informed via a ticket. For auto-
matic checks, the procedure is the same, with the exception
of automatic execution of a specific check script.

The specific implementation of the checks has to be de-
fined for each type of artefact. To cope with this situation,
our concept foresees organizing the checks as part of the
repository. As a consequence, this eases the adaption of the
system to different project properties and allows for redefin-
ing the checks.

4.3 Prototype

We realized the proposed concept on the basis of the two
well-known and widely used, freely available tools: Subver-
sion10 as version control system and Trac11 as issue tracking
system. In this section we describe the integrated tools and
the functionality of the prototype.

Subversion Subversion provides the functionality for ver-
sioning documents. User specific extensions could be im-
plemented with so called hook scripts. There exist differ-
ent kinds of hook scripts, which are executed either before
a commit starts (pre-commit) or after a commit is finished

10www.subversion.org.
11trac.edgewall.com.

(post-commit). Within the prototype post-commit scripts re-
alize the checks. These scripts evaluate the meta-data, which
describe the types of the contained artefacts, and invoke the
corresponding checks. Possible results are:

– pass, if the check can be performed instantaneously and
it is passed.

– fail, if the check can be performed instantaneously and it
is not passed.

– check pending means that the check was not performed.
This is basically the case if a ticket is issued, which is not
closed immediately. In this case the system has to keep
track of the state of the document.

Trac Trac is mainly used as a ticket system. It allows to
create tickets automatically and to modify them with user
defined properties. In our scenario, trac integrates the de-
velopers in the way that the check scripts create tickets for
specific roles, e.g. quality assurance manager. After the re-
viewer has performed a check, the corresponding ticket can
be closed and trac returns the result to the VCS.

Realization of the instance model The instance model
stores the dependencies between artefacts and is imple-
mented using the functionality of the eclipse modelling
framework12 (EMF). The project specific artefact model is
modelled as an ecore-model. By making use of the EMF
code generation facility, we generated a software compo-
nent, which allows creating and accessing the correspond-
ing instance model. It also provides the VCS with the infor-
mation, which checks have to be performed in the different
states of an artefact. Figure 11 shows a screenshot of the
tool used to maintain the instance model of the demonstra-
tor, the ‘Radio-Frequency-Warning-System” case study (see
Sect. 3.1).

Implementing checks The check routines and the depen-
dency information are also managed via the VCS. Upon ev-
ery check event, the system searches the relevant path in the
repository for corresponding check scripts.

Functionality We illustrate the functionality of our proto-
type by describing the exemplary workflow of the use case
artefact “Display warning to driver”.

If the author commits the document to “check content”,13

a ticket to the quality manager of the project is issued. Sub-
version invokes a pre-commit hook, which ensures that the
REMsES-specific meta-data exist, i.e. that the artefact is a
use case and that an artefact of this type can be added to the

12www.eclipse.org/emf.
13For example, subversion could maintain the history of a document
by using svn move and svn copy.

http://www.subversion.org
http://trac.edgewall.com
http://www.eclipse.org/emf
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Fig. 11 RFW Instance Model

instance model. After the commit was successful, the post-
commit hook triggers an automatic check of the content, for
example to ensure that the correct template has been used.
Afterwards, the project manager is informed (via ticket), that
the instance model needs to be updated. In our example, this
means that he or she has to specify which goal is exempli-
fied by this use case. This information is needed for the VCS
to complete the state “check relation”.

If the check fails, a ticket is issued to the owner of the
document. The owner has to revise the document in “work”
before he or she submits the revised version to be checked
once more by committing it to “check content”. After the
check was successful, the manual content check is triggered
by issuing a ticket for example to the quality assurance man-
ager. If he closes the ticket with status “pass”, the state of the
document is changed to “check relation”.

Similarly, the check of the relations could be processed. If
all relation checks are passed the document is finally trans-
ferred into the directory “finished”, which is equivalent to
state “finished”.

Assessment of the prototype The implementation shows
that the proposed concepts can be realized by means of
freely available tools, which must be slightly modified.
The prototype was evaluated using the “Radio-Frequency-
Warning-System” case study. The overall evaluation of the
approach is described in the next section.

Fig. 12 Evaluation strategy

5 Evaluation of the REMsES guide

In accordance with [6, 53], the guide was evaluated by
demonstrating its applicability and usefulness in the consid-
ered application area. The evaluation of the guideline was
conducted within two strands. First, the guideline was re-
viewed by domain experts and process experts. Secondly,
the guideline was evaluated by means of experiments and
case studies. This section presents the major findings of the
evaluation process.14

5.1 Evaluation process

The evaluation process of the guide is based on systematic
reviews with requirements engineering experts and develop-
ers from the industrial partners as well as the application of
selected parts of the guideline in experiments and case stud-
ies. As shown in Fig. 12 the evaluation strategy consists of
several steps.

First of all, the shown evaluation strategy itself was
defined (E.1). Secondly, application scenarios for selected
parts of the guideline were defined (E.2). Therefore, our in-
dustrial partners prepared specifications for two software-
intensive embedded systems in the automotive domain to

14Details concerning the evaluation activities have already been pub-
lished in [37] and [40].
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demonstrate the feasibility of the approach, namely the
“Radio-Frequency-Warning-System” and the “Door-Lock-
System”.

5.1.1 Gap analysis and reviews

The evaluation by review comprised a systematic gap anal-
ysis and reviews (E.3). Several developers and process ex-
perts from various business units reviewed the guideline in
workshops and guided interviews.15 They compared REM-
sES with the existing processes to understand how the ap-
proach could fit into their development processes. The con-
tinuous reviews (every 3 to 6 months) allowed for a com-
prehensive evaluation of the guideline and provided valu-
able improvement suggestions. Findings from these reviews
were used to consolidate the guideline (E.6).

5.1.2 Experiments and case studies

Beside gap analysis and reviews, two experiments were con-
ducted with student participants. The experiments focused
on selected parts of the guide in order to evaluate specific
parts of the guideline (E.4). The first experiment was con-
ducted with 12 students at Ulm University (cf. [37]). Addi-
tionally, an exploratory comparison to a state-of-the-practice
process (SotP) was included. The students were grouped in
six teams, four using the guideline and two groups followed
the SotP. To achieve a better quality of the results two differ-
ent systems had to be developed (called “MachZu”, a con-
troller for a central locking system and “Lumiere”, a con-
troller for a light system).

In the second experiment 11 students from University of
Kaiserslautern worked in two groups on the specification of
a door lock system using the two modelling techniques goal
and scenario modelling across the three abstraction layers
(cf. [40]). All students were recruited through bulletin and
participated voluntarily. The students were naive to the goal
of the experiment.

Based on the experiences of the experiments, two larger
case studies at the University of Applied Sciences in Esslin-
gen were conducted to evaluate how development projects
can benefit from systematic goal/scenario modelling (E.5).
This study incorporated a full development project with a
complete development life-cycle. The students had to under-
stand a customer specification of a door lock system, create
a system requirements specification, implement the system
using the programming language “C”, deploy it, and finally
test the realized system.

In the first study, students were split into 6 groups con-
sisting of 5 to 6 students each. All groups participated in

15Workshops and guided reviews were chosen over statistically signif-
icant questionnaires as we wanted concrete feedback on applicability
and possible improvements rather than a rating.

the same lecture on requirements engineering for embedded
software. Three of them were additionally trained to use the
goal/scenario approach and they were told to apply it. The
other three groups were allowed to specify the requirements
using techniques from the general lecture. We called this
the “ad-hoc” approach, although the students were trained
at techniques which are typically used in companies. For
every group, key metrics were collected in a tracking sys-
tem. These metrics measured the effort in every develop-
ment phase and the number of successfully executed test
cases at the end of each project. Over the course of the case
study, the groups were interviewed. The second case study
was a replication of the first case study with an increased
number of groups and thus an increased number of samples.
This time 55 students were divided into 10 groups. Students
were recruited in the same manner described above, naive to
the nature of the investigation, and participated voluntarily.

The empirical results were analyzed to get deeper evi-
dences concerning the applicability and usefulness of the
approach. In addition findings from the evaluation activities
were used for revisions of the guide (E.6).

5.2 Empirical results

The evaluation activities provide strong evidences for the
applicability and usefulness of the guide by improving the
quality of specifications without an additional development
effort. The experiment [37] at the University of Ulm had two
major results concerning the comprehensibility of the guide-
line and the quality of specification. In this context compre-
hensibility can be seen as a facet of applicability.

5.2.1 Comprehensibility of the guide

The first result shows that the guide is suitable at least in the
application area of the case studies. Based on interviews of
the students, the artefacts and process steps were rated with
a median score of 3, which means “well understandable”
(see Fig. 13). Furthermore the process steps seem to guide
the development of each artefact well.

5.2.2 Specification quality

The second result of the experiment demonstrates that the
specification quality significantly increases. For this purpose
a checklist consisting of categories such as correctness or
consistency was used. Figure 14 shows the quality score of
the specification of each group. A MannWhitney U test with
an U value of 0.1 gives significant evidence that the speci-
fication quality of the approach is better than the quality of
the SotP approach.

The second experiment confirms the results of the first
experiment. Furthermore, it indicates that by applying a use
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Fig. 13 Median rating with a range from 1 (worst) to 4 (best) of the process step descriptions

Fig. 14 Checklist based specification quality scores

case-based approach (e.g. goal modelling and scenario mod-
elling) significantly more interactions were described, as de-
picted in Fig. 15 (cf. [40]). This figure shows boxplots of
the number of interactions between components being de-
scribed in the different specifications. On average (based
on the median), the groups that were using the use case
approach specified 3 interactions more than the remaining
groups per artefact.

5.2.3 Development effort

Additionally, the two case studies give strong evidence that
the approach is cost-effective and reduces the effort vari-
ance. Initially, we expected “better” requirements at higher
expense of development effort. Contrary to our expectations,
this increase did not occur. As depicted in Fig. 16 the appli-
cation of goal/scenario models in the two case studies did
not significantly increase the overall project effort.

Figure 16 shows two boxplots of the total efforts for the
student groups and the individual values. As it can be seen,
the median and mean values do not differ much, but the vari-
ance in total effort is higher for the ad-hoc groups compared
to the goal/scenario groups.

Fig. 15 Described interaction in experiment

This effect can by traced back to variances during
the coding phase. The ad-hoc groups had a much higher
variance of their effort during the coding phase than the
goal/scenario groups. This is shown in Fig. 17. In sum-
mary, there are authoritative indications that the approach
can be applied in a cost-effective way. On the other hand,
with respect to quality improvement, no differences in terms
of successfully executed test cases could by observed. Both
groups passed roughly the same amount of test cases.

5.2.4 Threats to validity

From our point of view, students are not fully representative
of professionals. Therefore, we believe that a generalization
of the absolute numbers is not possible. Furthermore, the
number of case studies and experiments is too low to have
statistically significant results with respect to development
efforts and quality.

We think that the comparison between the goal/scenario
technique and the “ad-hoc” approach does not represent a
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Fig. 16 Overall development
effort in the case studies

Fig. 17 Effort per phase in the
case studies

crucial threat to validity. Although the term “ad hoc” im-
plies that the students had no special guidance, they applied
techniques they knew from the lecture. These techniques are
techniques that are frequently used in companies. We vali-
dated our assumption (i.e. that the students use techniques
which are commonly used in industrial practice) by com-
paring the requirements documents created by the students
to requirements documents from the companies.

5.2.5 Conclusions from evaluation

In summary, there are strong indications to assume that
the REMsES approach may have a positive impact if used
appropriately. Compared to industrial automotive systems,
the experimental tasks have a rather small to medium size.
Therefore we believe that our empirical studies show trends,

but further empirical evidence is needed before these results
can be generalized for real complex systems development.

6 Related work

The following section discusses the work that is directly re-
lated with the project or concerned with a closely related
topic.

The book by Robertson and Robertson [48] concerning
the topic requirements engineering is wide-spread through-
out the industry. The authors provide systematic guidance
with practical insights, techniques, and templates for sup-
porting requirements engineering processes. In contrast to
the processes guidance for requirements engineering pro-
posed in this and other approaches, REMsES is artefact-
centred and thereby considers the specific characteristics of
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software-intensive embedded systems (e.g. the differentia-
tion between software and hardware).

The IEEE Recommended Practice for Software Require-
ments Specifications [27] recommends a structure and out-
line for requirements documents, and the IEEE Guide for
Developing System Requirements Specifications [25] pro-
vides for a respective outline for system requirements doc-
uments. Both recommendations do not include further in-
structions on methods or modelling techniques.

In [4] a reference model for requirements engineering
for embedded systems has been proposed with an artefact
scheme. Though, this work does not recommend or give
a detailed elaboration of the artefacts’ contents or specific
modelling techniques. [4] served as an input for the devel-
opment of the REMsES artefact model.

Approaches from the automotive industry often empha-
size on architecture description languages (ADLs). These
can be used for some of the proposed artefacts (i.e. the com-
ponent models) in the content category “Design” of the arte-
fact model. For example the AUTOSAR consortium pro-
poses a standard for architectural descriptions [24] that is
intended to be used by original equipment manufacturers as
well as suppliers to ease distributed development and inte-
gration. At about the same time, the project EAST-EEA pro-
posed the EAST ADL [38], but after its initial release, the ar-
chitecture description language has not been developed any
further. In [42] the authors proposed an experience-based
approach for integrating architecture and requirements engi-
neering, but without providing a concrete artefact structure.

Focused rather on the design and the technical archi-
tecture, the project ARTEMIS proposes to use their Rich
Components approach [9], while the design environment
METROPOLIS [1] supports a formal platform-based design
method for hardware and software co-design based on for-
mal semantics. The project AutoMoDe [15] also proposes a
model-based design approach with the help of transforma-
tions. Each of these approaches could be integrated with the
REMsES approach, thereby providing for a smooth transi-
tion to the design phase.

Concerning process support, the ISO provides an pro-
cess assessment model [28], while Chrissie et al. give guide-
lines for process integration and product improvement for
CMMI [7]. Another well-known process model is the Ra-
tional Unified Process (RUP) framework [33] that pro-
vides best practices for software and systems development.
Instead of competing with available process support ap-
proaches, REMsES differs by emphasizing an artefact-based
approach to requirements engineering that does not depend
on a particular development process but works in combina-
tion with any of them.

Especially for the automotive domain, the SPICE con-
sortium offers Automotive SPICE, composed by a process
assessment model [50] and a process reference model [51].

Fig. 18 Mapping REMsES contents to the V-Modell XT

The process support in these works considers what informa-
tion has to be captured, yet is hardly concerned with how
contents can be captured or processed. In contrast, REMsES
provides concrete guidance on the single steps that have to
be taken and embeds the development process explicitly into
surrounding processes.

Integration with one specific standard process frame-
work, namely the V-Modell XT [5], has already been per-
formed exemplarily for the REMsES Guide. The V-Modell
XT is a framework for the definition of process models that
is well-known and widely applied in the industry in large-
scale projects. The general advancement when developing a
process comprises three main steps: First, define a process
model by choosing activities from the V-Modell XT. Sec-
ondly, select the type of project (e.g. supplier- manufacturer
project for embedded systems). Thirdly, develop a project
execution strategy of how the chosen activities are to be per-
formed. The third step includes the integration of the guide
for the requirements engineering activities chosen in the first
step, as depicted in Fig. 18.

Thereby, the product types of the V-Modell XT are
mapped to artefact subsets from the artefact model (see
Fig. 5). The V-Modell XT product types are hierarchi-
cally decomposed into themes which can consequently be
mapped to single artefacts. On this basis, the integration into
the respective process phases can be derived.

7 Conclusion and outlook

The approach aims at supporting requirements engineering
processes for software-intensive embedded systems in the
automotive industry. In this paper, we introduce the four
fundamental principles of the approach and give a structural
overview over the guide. Furthermore, we presented the ex-
isting tool support, the evaluation process and the findings
which we gain from the evaluation activities.

7.1 Contribution to the state-of-the-art

The presented approach is based on existing modelling tech-
niques. These techniques are indeed already used in indus-
trial practice, but, to a large extent, they are used in isolation
and in an ad-hoc manner. Based on their expert knowledge,
engineers have to decide in this situation which available in-
formation should be used to develop the new artefact and
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how the characteristics of the new artefact are influenced by
other artefacts.

Our approach contributes to the state-of-the-art by adapt-
ing these techniques with respect to the four REMsES prin-
ciples. For example, each modelling technique has been
adapted to support the consistent documentation of infor-
mation across the three abstraction layers.

The artefact model of the approach yields the integra-
tion of artefacts and corresponding modelling techniques by
explicitly defining relationships between the content of dif-
ferent artefact types. Beyond that, our approach also facili-
tates the integration of modelling techniques by providing a
systematic process guidance to create artefacts, consistently,
across the three abstraction layers and by using information
that is already documented within other artefacts.

The contribution of the approach is additionally increased
by its tooling concept. Together with the guide, the tooling
concept provides a concrete technical infrastructure for sup-
porting requirements engineering processes in practice.

Even though we have not yet evaluated the guide in any
large industrial setting, the feedback from the experiments
and case studies we have performed and the existing tool
support for the approach has been very encouraging. We
found evidences that our approach can serve as a vehicle for
improving the quality and cost-efficiency of requirements
engineering processes in the automotive industry. Further-
more, regarding its application in industry, we observed that
the approach constitutes an initial step towards a common
requirements engineering terminology and the comparabil-
ity of requirements engineering processes in industrial prac-
tice.

7.2 Ongoing and future work

The research project SPES (Software Platform Embedded
Systems) which is currently a key project in German re-
search on engineering theories for embedded systems aims
at developing a holistic domain-independent development
platform for engineering embedded systems. From the per-
spective of the SPES project the REMsES approach (i.e.
principles, techniques, guideline, and tool support) is a
significant domain-specific input. Currently, as part of the
SPES project, the approach is applied and extended to serve
a broader spectrum of domains (e.g. automation, avionic, en-
ergy, and medicine).

The next stage for bringing the approach into practice is
to execute a pilot project in the industry based on the general
process integration described by use of the V-Modell XT
and then integrate the guide into the actual process of the
respective company.
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