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Generic model control of induced protein expression in high cell density
cultivation of Escherichia coli using on-line GFP-fusion monitoring
M.P. Delisa, H.J. Chae, W.A. Weigand, J.J. Valdes, G. Rao, W.E. Bentley

Abstract A model-based control algorithm (generic model
control) is presented for fed-batch cultivation of recom-
binant Escherichia coli producing either transcriptional or
translational fusion products. With the recent develop-
ment of translational and operon fusions using green
fluorescent protein (GFP) [Albano et al. (1998) Biotechnol
Prog 14:351-354] along with an on-line GFP sensor
[Randers-Eichhorn et al. (1997) Biotechnol Bioeng 55:921-
926], real-time measurements of foreign protein level are
now possible. A mathematical model is presented that is
both accurate and simple so as to ensure that all state
variables remain observable during cultivation. A balance
between model accuracy and mathematical tractability was
obtained to facilitate the formulation of the control algo-
rithm. Generic model control (GMC) is a process model-
based control algorithm incorporating a process model
directly within the control structure. GMC was desirable
since linearization of the process model was not necessary
and robust performance could be obtained despite process
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disturbances or plant/model mismatch. Furthermore, a
time-delay compensator was built into the control law to
account for the observed 90-min lag associated with GFP
fluorescence. The feasibility of the GMC algorithm was
demonstrated by simulations.
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List of symbols

d process disturbance(s)

E corrected error signal

F; feed rate of inducer (1 h™)

Fp,. maximum allowable inducer feed rate (1h™")

Fg feed rate of substrate (glucose; 1 h™)

i index for controller constants K; and K,

I inducer concentration (g )

Ip inducer feed concentration (g ™

Inax maximum allowable inducer concentration
(g1

k index for discrete control intervals

k; induced biosynthesis rate constant

k, biodegradation rate constant (h™")

K, proportional controller constant

K, integral controller constant

Kj, induction constant in protein synthesis rate
(g™

Ky, induction constant in protein synthesis rate
g™

Kic indutl:er saturation constant (arabinose system;
gl™)

K substrate saturation constant (g I

Kg; substrate inhibition constant (g )

Ps foreign protein (CAT) concentration (g ™

Pe* optimal foreign protein (CAT) trajectory (g ™

qr spefiﬁc inducer consumption rate (ara system;
h™)

QLo maximum specific inducer consumption rate
(ara system; h™")

S substrate concentration (g ™

Sk substrate feed concentration (g ™)

toMmc initiation of GMC controller (h)

te final time of fermentation (h)

u process input(s)

%4 culture volume (1)

Vimax maximum allowable culture volume (1)

x process state variable(s)
X biomass concentration (g )
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y process output variable(s)

y* desired process output

Ym modeled process output

Yx/s biomass yield coefficient (g g"l)
o protein attenuation factor

u specific growth rate (h™")

maximum specific growth rate (h™")

T specific foreign protein production rate (h™")
0 time delay (h)

T speed of response parameter

4 shape of response parameter

Introduction

Maximization of active recombinant product is a central
concern facing researchers of microbial fermentation.
Since most recombinant proteins in Escherichia coli are
synthesized intracellularly, the overall productivity of a
recombinant E. coli fermentation is a function of both the
cell density and the specific yield. One way in which bio-
process researchers have improved protein productivity is
by optimizing cell mass concentration during cultivation.
Simple pre-determined substrate feeding profiles [1, 2, 3]
as well as more sophisticated substrate feeding optimiza-
tion algorithms based on Pontryagin’s maximum principle
[4, 5, 6, 7], evolutionary programming [8] and neural
network modeling [9] have been implemented to achieve
high cell densities. However, simply maximizing cell con-
centration does not always guarantee high productivity.
Indeed, increased cell concentration can also be accom-
panied by a decline in recombinant protein productivity
[10, 11]. Additionally, using off-line pre-determined pro-
files can lead to the deterioration of process performance
in the presence of modeling errors or unmodeled distur-
bances. These are mitigated, however, by employing on-
line parameter and state variable estimation [12, 13].

The use of on-line, automated control algorithms has
been instrumental in improving foreign protein produc-
tion. On-line sensors for glucose, acetate, and dissolved
oxygen tension have led to the development of control
strategies that adjust the substrate feed rate based on
feedback from these measurements [11, 14, 15]. The
drawback of these approaches is that protein synthesis is
controlled in an indirect manner, typically via the maxi-
mization of cell mass. Efforts to control productivity di-
rectly, such as optimization of inducer feed rate using
structured models [16] and on-line optimal control of
foreign protein production [17], have been limited due to
the lack of an on-line sensor for protein assay. Recent
advances utilizing green fluorescent protein (GFP) fusion
constructs coupled with on-line GFP monitoring should
help overcome these limitations.

Since its discovery by Shimomura [18], GFP has had a
remarkable impact in the area of bioprocessing due to
some of its unique characteristics. Unlike other fluores-
cent tags, GFP does not require cofactors to fluoresce or
fixation techniques that can be deleterious to cells [19].
Among its many recent applications, GFP was shown as
a quantitative marker of foreign protein in low [20, 21]
and high cell density recombinant E. coli fermenta-
tions [22]. When coupled with a low-cost optical probe,

in-vivo on-line monitoring during cultivation was
achieved [22, 23].

With the recent development of on-line GFP monitor-
ing, control algorithms that respond directly to the level of
product can now be implemented. Previously, an accurate
and tractable mathematical model was proposed and val-
idated for recombinant protein expression in high cell
density cultivation of E. coli [13]. In the present paper, a
nonlinear model-based control algorithm is demonstrated
for a recombinant product expressed simultaneously with
a GFP marker in a nonlinear fed-batch production process.
This construction allows for the implementation of a
model-based control algorithm that is product specific,
such that the control actions are made based on product
concentrations and not on external state parameters such
as dissolved oxygen tension, glucose, or acetate concen-
tration. In the process industries, model-based controllers
such as dynamic matrix control (DMC) [24], model algo-
rithmic control (MAC) [25], and internal model control
(IMC) [26] have been used to control a melange of ap-
plications in order to meet production demands. These
controllers typically rely on linear approximations of the
process, whereas the vast majority of biochemical pro-
cesses behave in a nonlinear fashion, and whose behavior
can change rapidly and severely over a period of time.
Generic model control (GMC) [27, 28] was utilized here
because the nonlinear dynamic structure of the model
could be directly embedded in the control law. Conse-
quently, a linearized approximation of the model was not
necessary, allowing for stable operation around a transient
trajectory during fed-batch operation.

An advantage of GMC was that it was a single-step
control law where solution of the last control step was a
good approximation to the solution of the current control
step. Additionally, the controller was tuned using
straightforward controller parameters. These features al-
lowed for robust control performance, even in the pres-
ence of unmodeled disturbances or plant/model mismatch.
Development of a model-based controller that can be used
to control a recombinant E. coli fermentation is shown
here. Specifically, this paper first presents the underlying
structure of GMC and then demonstrates the feasibility of
this control structure via simulation. This is one of the first
critical steps in the development of product-based biore-
actor control.

2

Generic model control

A model-based control algorithm was explored here
through computer simulation prior to implementation
with GFP probe (currently under investigation). Specifi-
cally, GMC [27] was chosen as it allows incorporation of
nonlinear, multivariable process models directly in the
control algorithm. A generalized schematic of the GMC
control scheme is depicted in Fig. la. The process was
described by a dynamic model comprised of a set of or-
dinary differential equations:

X:f(Y7u7d7 t) (1)

Y =8(x) (2)
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where x is the state vector of dimension m, u is a vector of
process inputs of dimension #, d is a vector of process
disturbances of dimension I, y is the output vector of di-
mension #, and ¢ is time. The functions f and g are non-
linear and it was assumed that all states and outputs were
measurable. From (1) and (2):

0
Y= 5o f(xudi) 3)
Noting that the desired trajectory (setpoint) of the outputs
is y*, it was desired that the rate of change of y*, (y)*, be
proportional to the deviation from the setpoint while
eliminating offset. The closed-loop trajectory was therefore
expressed as follows:

W =Ky —y) + K, / (v - y)dt (4)

where K1 and K, are diagonal nxn matrices and were
determined using the following expressions:
_ 2 _ 1

Ky = P Koy = =
1

()
where &; and 1; determine the shape and speed, respec-
tively, of the desired closed-loop trajectory. For a step
change in the setpoint, the closed-loop trajectory of Eq. (4)
yields a pseudo-second-order response [29]. A more de-
tailed account of system responses can be found elsewhere
[30]. Finally, to ensure that the rate of change of the
process outputs tracks the desired reference system,
Eq. (3) was set equal to Eq. (4), yielding:

0

SEfrud ) =K K [ -pde @

In practice, the exact process is rarely known and an ap-

09 -

e d ) =Ky -y K [ -y ()
fx

where ¢ and f are approximations to the true model. So-
lution of Eq. (7) for the manipulated inputs, u, results in
an algebraic control law to be solved at every sample time.
Any inaccuracies introduced by this approximation will
result in y(#) not tracking y*(¢) but the integral term in the
control algorithm compensates for this.

Following the format for GMC, a SISO (single input-
single output) nonlinear control law was developed by
equating Eqs. (A5) and (7) such that the input/output
model (Eq. A5) exactly matched the reference model
(Eq. 7). Algebraic solution of the resulting equation for the
manipulated process input, u(t), lead to the final form of
the GMC control law. Initially, F; was selected as the ma-
nipulated variable that would be used to control the level
of recombinant protein expression. However, the relatively
low inducer feed rate values, which arose from the use of
highly concentrated inducer feed solutions, led to sluggish
control performance when F; was implemented as the
manipulated variable (not shown). It was noted, however,
that the expression [I/(K/+I)] explicitly accounted for the
connection between the inducer, I, and the cloned gene
concentration, Py Therefore, the control input, u(t), was
defined as:

85

Ky, + I
ul) = [ ] ®)
and was subject to the following constraint:
u(t) >0 (9)

In addition, constraints on state variables were imposed
during all simulations as follows:

proximate model is used to determine the control law: 0 <V < Viax (10)
(a)
* Generic
y (t) E(t) Model U(t) Nonlinear y(t) o
Controller Process
(b)
y*(t).QQ E'QQ E; G,\,Tg;:lc u®) | Nonlinear y(® >
Y Y Controller Process
A
Process Yim(t) Process |y, {t+6)
Model »  Model
w/ Delay
Fig. 1. a Generic model control (GMC)

block diagram, and b block diagram of
GMC with incorporation of time-delay

compensation strategy
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OSFlgFImaX

(11)
(12)

At every control interval, the manipulated variable, u(#)x
was used to calculate the corresponding value of inducer

concentration, I, for that interval. Finally, solution of Eq.
(A3) for the inducer feed rate, F;,, determined the control
action to be implemented on the process. In Eq. (A3), the
term dI/dt was needed and was subsequently estimated
using a discrete approximation as follows:
drI N AI [Ik — Ik—l}

d.a 13

dr At At (13)
where the subscript k denotes the current control interval,
while k-1 refers to the value from the previous interval,
and At is the integration interval.

0 <TI < Imax

3

Time-delay compensation

Experimentally, GFP fusion constructs allowed for on-line
tracking of a model protein (i.e., CAT) during cultivation
of E. coli. However, previous reports have indicated that
GFP fluorescence intensity lags cloned gene expression by
approximately 90 min due to chromophore cyclization
[21]. Shifting fluorescence data by a constant 90 min was
necessary to track foreign protein levels. Accordingly,
levels of the foreign protein (chloramphenicol acetyl-
transferase) were determined directly from the following
relationship [22]:

Pp(g I"")|—15 = 0.134 x FI(V)[,—0.012 (14)

where FI is the fluorescence intensity measured in volts by
the on-line optical sensor. Importantly, Eq. (14) provided
values for the cloned gene level, utilizing real-time fluo-
rescence measurements, that were delayed by 90 min. This
time delay was viewed as a threat to control of the E. coli
bioprocess since it is a significant fraction of the total
processing time and is large compared to the doubling
time of the bacteria.

In linearized process control methods, a common
technique employed to compensate for time delay is the
Smith predictor [31, 32]. In our system, an internal loop
was integrated into the GMC control block diagram

(Fig. 1b) that calculated an error signal, E’, which would
occur if no time delay were present. In this scenario, the
control output, u(t), is sent to the actual process and to the
process model. Upon receiving the control action, the
model predicted the effect of this action on the process,
calculating an undelayed output value, y,,(#). The con-
troller compared this value to the desired or optimal tra-
jectory value at the current time step and calculated the
necessary control action to be implemented at the next
time step. Consequently, the error signal was the difference
between the desired output value (y*) and the undelayed
output as predicted by the model (y,,). Additionally, the
model also calculated the process output delayed by 0,
Ym(t+0), and compared this value to the actual process
output, y(t), to provide a correction for modeling errors
and disturbances. Finally, the corrected error was written:

E(t) =y"(t) = yu(t) = (1) = y,u(t + 0)] (15)

which simplifies to the following if the process model is
perfect and there are no significant disturbances:

E = y(t) 3, (1) (16)

where y*(#) is the optimal trajectory, y.,(¢) is the unde-
layed model output, y(t) is the actual process output, and
Ym(t+0) is the model output delayed by 0.

4

Results and discussion

Simulations were performed implementing GMC as the
control law used to determine the feed profile of inducer
necessary to maintain the foreign protein level (Py) at or
near a pre-determined foreign protein trajectory (Pg*). All
simulations were performed using Advanced Continuous
Simulation Language (ACSL; MGA Software, Concord,
MA) and utilized model parameters listed in Table 1 and 2.
During each iteration, the measured value of P; was
compared to a desired value, P¢*, and a control action,
u(t), was calculated. At each time interval, the calculated
control input, u(t), was used to determine the value of
inducer concentration, I, required to keep the foreign
protein concentration, Pg on the desired profile, P¢*. From
this value of I, the feed rate of inducer was calculated by
solving Eq. (3) for the variable, F;. Therefore, the final
control action resulted in a change of the inducer feed rate

Table 1. Model parameters and other simulation conditions. All data obtained from experiment (DeLisa et al. [22], Chae et al. [13])

Parameter Strain Variable Strain
JM105 JM105 JM105 JM105
[pPBAD-GFP::CAT] [pTrcHis-GFPuv/CAT] [pPBAD-GFP::CAT] [pTrcHis-GFPuv/CAT]
UMy (7Y 0.55 0.36 S (g1 400 400
Ks (g1 0.23 0.13 Ip (g 1) 50 50
Kg (g17) 103.8 99.0 X(0) (g1 0.025 0.025
Yxis (g g 0.52 0.45 S(0) (g17h) 20 20
o 0.15 0.15 PO) (g17h) 0 0
qr...(h™) 0.005 0 v(0) (1) 2 2
K (g1 0.015 N/A? Vinax () 3 3
tomc (h) 20 20 F_ (g1 5.0 0.6
te (h) 30 30 Inax (8171 5.0 0.6

*N/A: not applicable
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to the fermentor. In practice, this control action would be
implemented on the process directly. However, in this
report we have evaluated GMC in this nonlinear time-de-
layed system via simulation in order to gauge the general
feasibility of the control algorithm.

For all simulations, an optimal profile for P¢* was de-
termined via solution of an open-loop optimization using
an SQP-based algorithm [13] which, in turn, was similar to
profiles obtained experimentally. Additionally, an expo-
nential feed rate of glucose, Fs, was pre-determined ac-
cording to Paalme et al. [3]. This feeding policy was
identical to the pre-determined profile used in both
modeled simulations and experiments, and ensured at-
tainment of high cell densities. Growth-related parameters
and cultivation conditions for both arabinose- (JM105
[pPBAD-GFP::CAT]) and IPTG-inducible (JM105 [pTH-
GFPuv/CAT]) systems are displayed in Table 1. Since
arabinose is metabolized by E. coli, increases and de-
creases in inducer concentration are possible within the
fermentor enabling much tighter process control, com-
pared to an IPTG-based system. Correspondingly, simu-
lations utilizing IPTG were less satisfactory and hence
excluded here. Lastly, product-related and GMC parame-
ters are shown in Table 2.

4.1

Tuning of generic model controller

A method for tuning GMC controllers based on selection
of a desired profile for the controlled variable, y(¢), is
outlined in Lee and Sullivan [27]. Briefly, the shape of this
profile is characterized by the two parameters, & and 7. A
figure of GMC reference trajectories is included in Lee and
Sullivan, which presents relative control performances for
different combinations of & and . Following selection of &
and 7, calculation of K; and K, is straightforward from
Eq. (5). Ideally, control constants should be tuned for
minimal offset between P¢* and P;. However, previous re-
ports have indicated that rapid induction can be deleteri-
ous and might not be modeled accurately using a simple
model [33]. Thus, control constants were selected that
avoided severe overshoot in Pr while still suppressing
offset. In tuning the GMC controller, since overshoot was
undesirable, ¢ was set to 4.0. From the Lee and Sullivan
tuning chart, with £=4.0, the speed of response was chosen
as =60 min.

4.2

Performance of GMC controller

For this system, it was known that the GFP fluorescence
signal lagged the expression of cloned genes by approxi-
mately 1.5 h (0=1.5 h) and was modeled using a first order

Table 2. Estimated foreign production-related model parameters and
GMC constants

Model Value Control Value
parameter parameter

k, 8.48+0.48 £ 4.0
k, 0.60%0.11 T 1.0
K, 0.65+0.05 K, 8.0
Ky, 2508.1+8.0 K, 1.0

transfer function with a time constant of 1.5. The effect of
this time delay was evidenced when control was performed
without the assistance of time-delay compensation and the
aforementioned values were used for & and 7, respectively.
The closed-loop response for this scenario yielded an ini-
tial lag of the optimal trajectory followed by a severe
overshoot and ended with slight oscillations (data not
shown). This is because in time-delay systems, the effect of
the control action will not be immediately felt by the
process thereby adding a phase lag to the feedback loop
[32]. Consequently, the gain must be decreased to maintain
stable operation resulting in sluggish control compared to
that obtained when there is no time delay. The sluggish
response behavior will persist unless steps to circumvent
the time delay are incorporated into the control loop.

A representative simulation using the aforementioned
control law for a high cell density cultivation of E. coli
JM105 [pBAD-GFP::CAT] is depicted in Fig. 2 (simulated
time course of cell mass, glucose concentration and glu-
cose feed) and Fig. 3. For GMC control results (Figs. 3a, b,
and c), it was first assumed that plant/model mismatch
and unmeasured disturbances were negligible. In addition,
no time-delay compensation was implemented but the
control parameters were retuned to be less aggressive so as
to minimize overshoot. Figure 3a, b, and ¢ demonstrate
the tracking of the optimal profile, P¢#, by the actual for-
eign protein expressed, Pr, which was made possible by
manipulating the inducer feed rate, Fj, as determined by
the GMC controller. In order to simulate the actual in-
dustrial setting, the controller was initiated at approxi-
mately 20 h. This enabled attainment of sufficient cell
mass prior to induction and supplemental glucose feed.

The effect of this time delay on control is evident in
Figs. 3a and b, which illustrate that initially there was
sluggish control of the foreign protein concentration be-
tween 20 and 22.5 h. In Fig. 3a, the closed-loop response
improved slightly by hour 25, but significant offset be-
tween the optimal trajectory and the simulated expression
level were observed over the final 5 h. Importantly, no
overshoot of the target trajectory was observed. In Fig. 3b,
retuning the constants for slightly more aggressive control
(implemented as increases in K; and K,) led to a decrease
in the offset observed over the final 5 h, but the simulated
protein product level still deviated from the optimal tra-

25

00 A 0.25
Biomass

20 Glucose

=)
L

Glucose
Feed Profile

o
o
o
s
o

Glucose Concentration (g L")
Cell Density (600 nm)
Substrate Feed Rate (L h™)

0.00

0 5 10 15 20 25 30
Cultivation Time (h)
Fig. 2. A time profile of simulated cell density, glucose concentration,

and glucose feed rate for E. coli JM105 [pBAD-GFP::CAT] fermenta-
tion
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(£=4.0, 7=2.0) with no time-delay compensation; b optimal trajectory,
foreign protein concentration and inducer feed rate for GMC
simulation (£=4.0, =1.5) with no time-delay compensation; and

¢ optimal trajectory, foreign protein concentration, and inducer feed
rate obtained during on-line GMC simulation (¢=4.0, t=1.0) with
time-delay compensation strategy. Plant/model mismatch and un-
modeled disturbances assumed negligible. Controller initiated at 20 h

jectory over the same period. Notably, over the final 5 h of
the simulation, an oscillatory response was observed cul-
minating with overshoot of the optimal trajectory. In

Fig. 3a, there was significant offset but no overshoot
whereas in Fig. 3b the offset has been reduced at the ex-
pense of some overshoot, illustrating a trade-off in control
performance.

Subsequently, simulations demonstrating GMC using
time-delay compensation to account for the lag in GFP
fluorescence were performed and the results are depicted
in Fig. 3c. Shown are the foreign protein expression level,
the optimal trajectory of foreign protein, and the inducer
feed rate obtained with the controller constants tuned as
mentioned previously. Again, the model was assumed

devoid of error and there were no unmodeled distur-
bances, hence GMC performance was quite good. Addi-
tionally, larger and therefore more aggressive K; and K,
values were used while still maintaining robust control.
The ability to use higher gains without jeopardizing sta-
bility, even when a time delay exists, provides for much
more robust control especially when modeling error and
disturbances are encountered.

4.3

Robustness evaluation

In practice, the exact process model is rarely known and
approximations of the actual process are used to describe
the system as accurately as possible. Unfortunately, this
approach invariably leads to some amount of plant/model
mismatch, as the true process is always more complex than
the model (structural mismatch) and the true process
parameter values can never be precisely determined (pa-
rameter mismatch) [29]. Provided the modeling errors are
within approximately +30% of the actual values, the time-
delay compensator scheme has demonstrated improved
results over process control with no time-delay compen-
sation [34]. As a full robustness analysis of the GMC for-
mulation is beyond the scope of this paper, the robustness
properties of the controller were investigated via simula-
tion. Changes in process conditions (Table 3) from their
nominal values were made and the ability of the controller
to handle these discrepancies was evaluated [35].

To illustrate the controller’s ability to handle modeling
error, a +30% discrepancy between the value of k; in the
model and that observed experimentally was implemented.
This was achieved by randomly generating a £30% error in
the value of k; at each control interval. Since k; was de-
termined to be the most sensitive of the seven production-
related parameters [13], this error posed the greatest threat
to robust closed-loop control. As shown by Fig. 4, a ran-
dom 30% error in k; did not significantly affect the
tracking of the optimal trajectory. Additionally, even with
notable modeling error, the closed-loop response obtained
with time-delay compensation was an improvement over
the control observed with no modeling error and without
any time-delay compensation. As a further comparison,
the same random error in k; was introduced to a simu-
lation using the GMC law with no time-delay compensa-
tion. As expected, when modeling error was present, the
closed-loop response was extremely poor as the cloned
gene level was considerably offset from the optimal tra-
jectory (data not shown).

Table 3. Robustness evaluation; RE: random error

Model Case 1 Case 2 Case 3
parameter
k, +30% RE +20% RE
k, +10% RE

K;, +10% RE
K, +10% RE

E 800 g 1™
Ir 100 g 1!
X(0) 0.035 g 1"
S(0) 30g ™!
V(0) 1.01
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A more realistic scenario was explored by extending the GMC performance was quite good prior to approxi-
the error beyond the product synthesis rate (k;) and in- mately 27 h, however, a slight overshoot of the desired
troducing a random 10% error in the production-related setpoint was observed beyond 27 h. Overall, the GMC
parameters k,, K;; and K;, in addition to a 20% error in controller did an adequate job tracking the setpoint
k;. The tracking of the optimal trajectory by the actual  despite the extensive error in all four production-related
foreign protein level as well as the value of the manipu- parameters.
lated variable, Fj, for this case is depicted in Fig. 5a. A final test of the controller’s robustness was performed
Using controller constants tuned as described previously, by changing five simulation conditions from their nominal
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values as originally given in Table 1. The initial values for X,
S, and V were changed to 0.035 g 1%, 30 g 1Y, and 1.0 1,
respectively, while the feed concentrations of glucose and
inducer were increased to 800 and 100 g 17", respectively.
Again, controller constants were tuned for nominal opera-
tion and additional modeling error and disturbances were
assumed negligible. GMC simulation results, incorporating
the changes in simulation conditions, are depicted in

Fig. 5b. GMC controller performance was again quite good
even with significant changes in initial conditions, which
can often be detrimental when using simple process models.

5

Conclusions

Demonstrated here is a model-based control algorithm
capable of determining inducer feed profiles that allow
foreign protein concentration to accurately track an opti-
mal foreign protein trajectory. Generic model control was
chosen as the control algorithm as it imbedded the process
model within the control law, enabling the nonlinear dy-
namic structure of the model to be incorporated. Impor-
tantly, GMC performed well despite process disturbances
and plant/model mismatch (modeling error). With the
recent availability of a low-cost optical sensor for detection
of recombinant GFP-fusion products [22, 23], the need for
on-line feedback controllers in bioprocessing has arisen.
Additionally, the development of accurate and tractable
mathematical models coupled with improved computa-
tional processors has opened the door for rapid, on-line
calculations and simulations. Previously, Chae et al. [13]
proposed a simple, unstructured model for cloned gene
expression in recombinant cultures of E. coli. Incorpora-
tion of this model within the GMC architecture has led to
the development of a powerful tool for controlling foreign
protein production based directly on foreign protein levels
and not on other indirect process variables (i.e., dissolved
oxygen tension, biomass or glucose concentration). Fur-
ther, coupling a time-delay compensation scheme to the
GMC algorithm was demonstrated to sustain robust
closed-loop control despite the 90-min time lag associated
with GFP fluorescence. Lastly, the proportional and inte-
gral reference trajectory was capable of controlling protein
expression in the face of significant plant/model mismatch
(£30% modeling error in parameter k;) and changes in
five simulation conditions. Overall, the feasibility of on-
line control using GMC and GFP-fusion monitoring was
demonstrated by simulation and the simulation results
presented here have provided the groundwork for imple-
menting bioprocesses with a generic scheme for moni-
toring and controlling levels of a recombinant protein.

Appendix A

A1

Mathematical model

In order to successfully implement GMC, a simple but
descriptive model was necessary. As the model was recently
shown in the literature [13], it is reproduced here in the
Appendix. Moreover, the model was constructed so that
most of the state variables were readily available via exist-
ing on-line techniques. The model was defined as follows:

dx

= WX =T (Fs + ) (A1)
S B9 S (%2)
at v “F Yos V'

I F

EZVI(F—I)——(FS)—CIIX (A3)
dv

dp P

d—tf:nX—ksz—Vf(Fs-l-FI) (A5)

where X, S, I, V, and Py are the concentrations (g ™Y of
biomass, substrate, glucose, inducer, and foreign product,
respectively. The terms Fgand F; are the feed rates (g h™') of
glucose and inducer, while Sr and I are the concentrations
(g I'") of glucose and inducer in the feed streams. Lastly,
Yx/s is the growth yield coefficient (g cell mass/g substrate
consumed), k, is the product degradation constant (h™),
and © and gy are the specific foreign production and inducer
consumption rates (h™'), respectively.

Foreign production models that consider induction
effects have been documented [36, 37] and have success-
fully predicted the shock and recovery dynamics of IPTG-
induction on cell growth. The following expression de-
scribing specific foreign protein expression in E. coli,
adopted from Bentley et al. [36] and Lee and Ramirez [37],
was investigated:

K I
TC:kllLL|:—IO+ :|

A6
R, +1 (A6)

where K;, and K;, are the inducer saturation constants
(g 1I™") and k; is the induced foreign protein biosynthesis
rate.

The inducible systems derived from the lac promoter
were regulated by addition of isopropyl--D-thiogalacto-
pyranoside (IPTG), a gratuitous, non-metabolized
inducer. Alternatively, the inducible system derived from
the ara promoter was controlled by introduction of
arabinose, which was readily metabolized by the host cell.
Both systems were utilized experimentally, although the
ara promoter system was hypothesized to be more
appropriate for process control as the inducer concen-
tration could be both raised (input) and decreased
(consumption) without significant biomass dilution. For
the ara promoter system, an inducer consumption rate
was included that accounted for the loss of arabinose due
to host cell metabolism and was based on the E. coli
arabinose uptake mechanism [38]:

1
q1 = Gl {m}

(A7)
where g;,__ is the maximum specific consumption rate (h™")
and K¢ is the arabinose saturation constant (g ™.
During the batch mode of operation, the specific
growth rate could be modeled according to the classical
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Monod equation with substrate inhibition [39]. Unfortu-
nately, this expression was inadequate when cloned genes
were expressed. The metabolic burden placed on the cell
during recombinant protein production [40, 41, 42] is
often manifested as a reduction in growth rate [10, 36].
Therefore, in order to model the mitigating effect that
foreign protein expression has on the specific growth rate,
the Monod expression was modified as follows:

maxs
Mnes® ) exp(—apy) (A8)

e
K5+S+K5,

where fimqy is the maximum specific growth rate (h™"), Kg
is the substrate saturation constant (g 1™, Ky is the
substrate inhibition constant (g 1™') and « is the protein
attenuation factor (dimensionless).
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