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Abstract A new approach to optimization of bioprocesses
described by fuzzy rules is introduced in the paper. It is
based on genetic algorithms (GA) and allows to determine
optimal values or profiles of control variables and to op-
timize fuzzy rules (parameters of membership functions).
The process can be described by linguistic variables and
fuzzy rules. An algorithm and related software was de-
veloped. The approach was applied to an industrial anti-
biotic fermentation. The optimal profile of a physical
variable of the preculture was determined which leads to
an increasing output product concentration in the main
culture of about 5%.

List of symbols
P product (antibiotic) concentration in the

main culture
X physical variables of the preculture
N number of sampling time units of the

preculture
Xk value of the variable X at the time point k,

k = 0, ..., N
Ak derivative of X at the time point k,

k = 0,...,N
kr time point k = Integer{r*0.1*N}, e.g.

k4 = Integer{0.4*N}
H, M, L, S, SN fuzzy linguistic variables High, Medium,

Low, Small and Small Negative
pi singleton’s values for P
li membership functions of the fuzzy sets
lA resulting membership function of the de-

rivatives Ak

lP resulting membership function of the
yield product concentration

1
Introduction
The optimization problem of bioprocesses is very im-
portant for their efficiency, and it is mathematically chal-
lenging [4, 14, 16]. Deterministic descriptions commonly
used are not generally satisfactory and neglect some pos-
sible process states [4, 5]. Bioprocesses are characterized
by uncertainties, non-quantified factors (such as smell,
taste, color, morphophysiological specifics, sedimentation
rate etc.). Practically, for good performance of biopro-
cesses subjective estimations of the experienced technol-
ogist [16] are very important. There exist a number of
generalizations of the optimization problem for the case
when fuzzy elements exist [12, 13]. However, most of them
are practically non-applicable to real problems, because of
computational efforts [12].

In the last decade an alternative tool for optimization
has been developed: the so called genetic algorithms (GA)
[1, 6, 11], however their application to bioprocesses just
starts.

Rivera and Karim [15] used a modified GA (the so called
micro GA) for dynamic optimization of bioprocesses ap-
plying it to a neural-network-based model of ethanol
production by the strain Zymomonas mobilis [16], how-
ever, the neural network was applied directly to the data. It
would be more appropriate to the specifics of a bioprocess
to use separate neural networks for each phase of the
process and/or to use qualitative knowledge which could
be represented by fuzzy linguistic variables.

A new approach named FOGA (Fuzzy Optimization
supported by Genetic Algorithms) which combines the
advantages of fuzzy rule-based models and of GA is in-
troduced in this paper. It is more flexible and robust than
conventional approaches because the process can be de-
scribed by linguistic variables and fuzzy rules and the
derivatives can be unknown and because GA are robust
with respect to the optimization problem [6]. It is tested
with data of an industrial antibiotic fermentation and the
optimal profile of a physical variable of the preculture is
determined.

2
Fuzzy Optimization supported by Genetic Algorithms (FOGA)
The proposed approach uses the more convenient and in
some cases only possible description of processes by fuzzy
rules. The advantages of GA, that they don’t require the
structure of the model to be known, that they are robust
over complex optimization surfaces and that they operate
over a large number of points simultaneously, complement
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very well the specifics of fuzzy rule-based models. On the
other hand, the fuzzy models allow a more detailed de-
scription that can be closer to the nature of the processes
described and can include linguistic and qualitative in-
formation. The flow-chart of the proposed approach can
be sketched as shown in Fig. 1.

The algorithm is initialized by a set of chromosomes
called initial population. Each chromosome consists of
genes. Each gene have the value 0 or 1. The meaning of
genes and respectively of the chromosomes depends on
the coding procedure. Here a chromosome is a sequence of
(N+1) parts each of them with n genes as shown in Fig. 2.

It means that the whole chromosome consist of (N+1)*n
genes such that the first n of them are the coded value of
the first unknown (U0), the second n of them are the coded
value of the second one (U1), ... , and the last n of them are
the coded value of the last one (UN). More complex
methods for coding are also possible. Each population (Π)
consists of m chromosomes (parents) as shown in Fig. 3.

In order to minimize computation time we propose to
design the initial population (Π0) using a suggested solu-
tion (all chromosomes are initialised with the same set of
suggested data) instead of random values.

At the stage of reproduction a new population (Π1) is
formed depending on the fitness value. The so called
roulete wheel method [6] is used. The stage of cross over is
applied at a random choosen point of the parents chro-
mosome in order to exchange information. Mutation is a
random (with probability usually less than pm = 0.1) al-
teration of a gene value (change of 1 to 0 and vice versa).
The process of generation of new populations with better
fitness is repeated until a given stop-criterion is reached.

In its most general form the proposed approach can be
represented by the following pseudo-computer program:

Program FOGA;
Begin

number_of_epochs: = 0
Set the initial population Π (number_of_epochs)

which constitutes of values of unknowns (U0,
U1 ,..., UN) suggested or randomly generated
into the interval of consideration;

Determine objective function’s value by fuzzy rules;
while (number_of_epochs < maximal_number_
of_epochs) do:

begin
number_of_epochs: = number_of_epochs +1;
Assign the probabilities to each chromosome in
Π (number_of_epochs -1)

which are proportional to the value of the
objective function;

Generate randomly (using these probabilities) the
new population Π (number_of_epochs);
Perform cross over and mutation on the genes in
Π (number_of_epochs);
Calculate the objective function for each

chromosome of Π (number_of_epochs);
end;

End.

3
Testing the approach with fermentation data
Experimental data of 10 fermentations of an industrial
antibiotic was used in order to test the approach. The data
of the same process was used in [8] for multiple correla-
tion analysis of preculture and main fed-batch culture.

Figure 4 represents the dynamics of a physical variable
(X) of the preculture (normalized values). Figure 5 shows
the dynamics of the final product concentration (P) of the
main culture (normalized values). The dependence of the
product concentration (P) on the values of the variable X
at the end of the fermentation in the preculture (XN), on
the derivative of X at the middle-time point (Ak5) and on
the time point k8.5 (Ak8.5) are shown in Figs. 6–8 for all
fermentations.

The following fuzzy rule-based model was extracted
from the data:

R1: IF (XN is H) THEN (P is H)
R2: IF (XN is L) THEN (P is L)
R3: IF (XN is M) AND (Ak5 is L) AND (Ak8.5 is H) THEN

(P is H)
R4: IF (XN is M) AND (Ak5 is M) AND (Ak8.5 is M) THEN

(P is M)
R5: IF (k1 6 k 6 k4) THEN (Ak is S)
R6: IF (k6 6 k 6 k8) THEN (Ak is SN) (1)

It describes the dependance of the final product con-
centration at the end of the fermentation (P) on the value

Fig. 1. Principle flow-chart of the proposed algorithm

Fig. 2. Chromosome

Fig. 3. Initial population
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of the physical variable (X) and its derivatives (A) in the
preculture. Similar model was used in [7] for modelling
the same process. We extended this model by the ‘‘dum-

my’’ rules R5 and R6 and modified rules R3 and R4. The
rules R1-R4 describe the impact of the static parameter of
the preculture (XN) and of the derivative of X on the
product concentration (P) at two time points only (at k5
and k8.5). The additional ‘‘dummy’’ rules R5 and R6 de-
scribe the dynamics of the physical variable (X) in the first
phase of the process, when X is almost constant, and in the
second phase, when X decreases. Such rules that describe
the dynamics of the whole process are necessary in order
to solve dynamic optimization problems. The experi-
mental data are described well by this model.

The objective is to determine such a profile of X (X0,
X1,..., XN) that satisfies the highest possible output con-
centration of the product (P). The optimization problem
can be formulated as follows:

J � lp � lA ! max : �2�

The first part of this criterion describes the resulting
membership functions of the output antibiotic con-
centration which is determined from rules R1-R4. The
second part describes the resulting membership functions
of the derivatives of the variable X which is determined by
rules R5-R6. It can be considered as a smooth constraint to
the optimization problem whose main objective is given by
the first part. The resulting membership functions can be
determined by the well known operations over fuzzy sets
[18] taking into account the membership functions (the
degree of satisfaction) of linguistic variables in each fuzzy
set, shown in Figs. 9–12, as follows:

lp �
X3

i�1

pi
�li �3�

l1 � lXL

l2 � lXM�lA�k8:5�M�lA�k5�M

Fig. 4. Dynamics of X (N = 30)

Fig. 5. Normalized values of P of all fermentation runs

Fig. 6. Dependence of P on XN

Fig. 7. Dependence of P on Ak5

Fig. 8. Dependence of P on Ak8.5 Fig. 9. Membership functions of XN
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l3 � max�lXH; �lXM�lA�k5�L�lA�k8:5�H��

p � �0:804 ; 0:920 ; 1:036�T

lA �

Xk4

k�kl

lS �
Xk8

k�k6

lSN �4�

Applying the proposed approach we solved the problem
(1)–(4) by a genetic algorithm. The initial value of X was
considered to be in the interval [0.75; 0.95]. The following
parameters of the genetic algorithm were used: probability
for cross over (pc = 0.3), probability for mutation
(pm = 0.05), number of chromosomes in each population
(m = 40). The resulting profile of the physical variable (X)
of the preculture received after 291 epochs is shown in
Fig. 13. It leads to about 5% higher output product con-
centration than the best of the 10 experimental runs (Popt

= 1.05192). It can be seen that X is almost constant be-
tween time points k1 = 3 and k4 = 12 (0.86 < X < 0.91)
and the stable decreasing of X starts after time point
k4 = 12. Between the time points k6 = 18 and k8 = 24 the
variable X decreases and the derivative Ak is Small Nega-
tive (–0.1 < Ak < –0.05). At the point k8.5 = 25 the deri-
vative of X is High (Ak8.5 = 0.82) and at the end the
optimal value of XN is between Medium and High
(XN = 0.31). This profile is closest to one of the best ex-

perimental runs (run number 6) but at the end of the
preculture the values of X are higher and this profile gives
about 6% higher product concentration at the end of the
main culture than in this experimental run.

4
Conclusions
FOGA (Fuzzy Optimization supported by Genetic Algo-
rithms) is a new approach that combines the advantages of
fuzzy rule-based models and of GA as presented in this
paper. It was tested with experimental data. The optimal
profile of a physical parameter of the preculture was de-
termined which leads to increasing output product con-
centration of about 5%. This result demonstrates the
possibility to use this approach for optimization of bio-
processes. Application of GA for adaptation of fuzzy rules
is currently under investigation.
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